
Neural Algorithmic Reasoning with Causal Regularisation

Beatrice Bevilacqua 1 Kyriacos Nikiforou * 2 Borja Ibarz * 2 Ioana Bica 2 Michela Paganini 2 Charles Blundell 2

Jovana Mitrovic † 2 Petar Veličković † 2

Abstract
Recent work on neural algorithmic reasoning has
investigated the reasoning capabilities of neu-
ral networks, effectively demonstrating they can
learn to execute classical algorithms on unseen
data coming from the train distribution. How-
ever, the performance of existing neural reason-
ers significantly degrades on out-of-distribution
(OOD) test data, where inputs have larger sizes.
In this work, we make an important observation:
there are many different inputs for which an al-
gorithm will perform certain intermediate com-
putations identically. This insight allows us to
develop data augmentation procedures that, given
an algorithm’s intermediate trajectory, produce
inputs for which the target algorithm would have
exactly the same next trajectory step. We ensure
invariance in the next-step prediction across such
inputs, by employing a self-supervised objective
derived by our observation, formalised in a causal
graph. We prove that the resulting method, which
we call Hint-ReLIC, improves the OOD general-
isation capabilities of the reasoner. We evaluate
our method on the CLRS algorithmic reasoning
benchmark, where we show up to 3× improve-
ments on the OOD test data.

1. Introduction
Recent works advocate for building neural networks that
can reason (Xu et al., 2020; 2021; Veličković & Blundell,
2021; Veličković et al., 2022a). Therein, it is posited that
combining the robustness of algorithms with the flexibility
of neural networks can help us accelerate progress towards
models that can tackle a wide range of tasks with real world
impact (Davies et al., 2021; Deac et al., 2021; Veličković

*Equal contribution †Equal Advising 1Purdue University
2DeepMind. Work done while Beatrice Bevilacqua was
at DeepMind. Correspondence to: Beatrice Bevilacqua
<bbevilac@purdue.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

et al., 2022b; Bansal et al., 2022; Beurer-Kellner et al., 2022).
The rationale is that, if a model learns how to reason, or
learns to execute an algorithm, it should be able to apply
that reasoning, or algorithm, to a completely novel problem,
even in a different domain. Specifically, if a model has
learnt an algorithm, it should be gracefully applicable on
out-of-distribution (OOD) examples, which are substantially
different from the examples in the training set, and return
correct outputs for them. This is because an algorithm—and
reasoning in general—is a sequential, step-by-step process,
where a simple decision is made in each step based on
outputs of the previous computation.

Prior work (Diao & Loynd, 2022; Dudzik & Veličković,
2022; Ibarz et al., 2022; Mahdavi et al., 2022) has explored
this setup, using the CLRS-30 benchmark (Veličković et al.,
2022a), and showed that while many algorithmic tasks can
be learned by Graph Neural Network (GNN) processors in
a way that generalises to larger problem instances, there are
still several algorithms where this could not be achieved.

Importantly, CLRS-30 also provides ground-truth hints for
every algorithm. Hints correspond to the state of different
variables employed to solve the algorithm (e.g. positions,
pointers, colouring of nodes) along its trace. Such hints
can optionally be used during training, but are not available
during evaluation. In previous work, they have mainly been
used as auxiliary targets together with the algorithm output.
The prevailing hypothesis is that gradients coming from pre-
dicting these additional relevant signals will help constrain
the representations in the neural algorithmic executor and
prevent overfitting. Predicted hints can also be optionally
fed back into the model to provide additional context and
aid their prediction at the next step.

In practice, while utilising hints in this way does lead to mod-
els that follow the algorithmic trajectory better, they have
had a less substantial impact on the accuracy of the predicted
final output. This is likely due to the advent of powerful
strategies such as recall (Bansal et al., 2022), wherein the
input is fed back to the model at every intermediate step,
constantly “reminding” the model of the problem that needs
to be solved. The positive effect of recall on the final output
accuracy has been observed on many occasions (Mahdavi
et al., 2022), and outweighs the contribution from directly

1



Neural Algorithmic Reasoning with Causal Regularisation

1

3

2 4

5

1

3

2 4

5

1

3

2 4

5

1

3

2 4

5

1

3

2 4

5

6

7

8
9

Figure 1. An illustration of the key observation of our work, on the depth-first search (DFS) algorithm as implemented in CLRS-30
(Veličković et al., 2022a). On the left, the first four steps of DFS are visualised. At each step, DFS explores the unvisited neighbour with
the smallest index, and backtracks if no unexplored neighbours exist. The next computational step—assigning 2 as the parent of 4—is
bound to happen, even under many transformations of this graph. For example, if we were to insert new (dashed) nodes and edges into the
graph, this step would still proceed as expected. Capturing this computational invariance property is the essence of our paper.

predicting hints and feeding them back.

In this work, we propose a method, namely Hint-ReLIC,
that decisively demonstrates an advantage to using hints.
We base our work on the observation that there are many
different inputs for which an algorithm will make identical
computations at a certain step (Figure 1). For example, ap-
plying the bubble sort algorithm from the left on [2, 1, 3] or
[2, 1, 5, 3] will result in the same first step computation: a
comparison of 2 and 1, followed by swapping them. Con-
versely, the first step of execution would be different for
inputs [2, 1, 3] and [2, 5, 1, 3]; the latter input would trigger
a comparison of 2 and 5 without swapping them. This obser-
vation allows us to move beyond the conventional way of us-
ing hints, i.e. autoregressively predicting them (Veličković
et al., 2022a). Instead, we design a novel way that learns
more informative representations that enable the networks
to more faithfully execute algorithms. Specifically, we learn
representations that are similar for inputs that result in iden-
tical intermediate computation. First, we design a causal
graph in order to formally model an algorithmic execution
trajectory. Based on this, we derive a self-supervised ob-
jective for learning hint representations that are invariant
across inputs having the same computational step. More-
over, we prove that this procedure will result in stronger
causally-invariant representations.

Contributions. Our three key contributions are as follows:

1. We design a causal graph capturing the observation
that the execution of an algorithm at a certain step is
determined only by a subset of the input;

2. Motivated by our causal graph, we present a self-
supervised objective to learn representations that are
provably invariant to changes in the input subset that
does not affect the computational step;

3. We test our model, dubbed Hint-ReLIC, on the CLRS-
30 algorithmic reasoning benchmark (Veličković et al.,

2022a), demonstrating a significant improvement in
out-of-distribution generalisation over the recently pub-
lished state-of-the-art (Ibarz et al., 2022).

2. Related Work
GNNs and invariance to size shifts. Graph Neural Net-
works (GNNs) constitute a popular class of methods for
learning representations of graph data, and they have been
successfully applied to solve a variety of problems. We refer
the reader to Bronstein et al. (2021); Jegelka (2022) for a
thorough understanding of GNN concepts. While GNNs
are designed to work on graphs of any size, recent work
has empirically shown poor size-generalisation capabilities
of standard methods, mainly in the context of molecular
modeling (Gasteiger et al., 2022), graph property predic-
tion (Corso et al., 2020), and in executing specific graph
algorithms (Veličković et al., 2020; Joshi et al., 2020). A
theoretical study of failure cases has been recently provided
in Xu et al. (2021), with a focus on a geometrical inter-
pretation of OOD generalisation. In order to learn models
performing equally well in- and out-of-distribution, Bevilac-
qua et al. (2021); Chen et al. (2022); Zhou et al. (2022)
designed ad-hoc solutions satisfying assumed causal as-
sumptions. However, these models are not applicable to
our setting, as the assumptions on our data generation pro-
cess are significantly different. With the same motivation,
Buffelli et al. (2022) introduced a regularisation strategy to
improve generalisation to larger sizes, while Yehudai et al.
(2021) proposed a semi-supervised and a self-supervised ob-
jective that assume access to the test distribution. However,
these models are not designed to work on algorithmic data,
where OOD generalisation is still underexplored.

Neural Algorithmic Reasoning. In order to learn to ex-
ecute algorithmic tasks, a neural network must include a
recurrent component simulating the individual algorithmic
steps. This component is applied a variable number of times,
as required by the size of the input and the problem at hand.

2



Neural Algorithmic Reasoning with Causal Regularisation

The recurrent component can be an LSTM (Gers & Schmid-
huber, 2001), possibly augmented with a memory as in Neu-
ral Turing Machines (Graves et al., 2014; 2016); it could
exploit spatial invariances in the algorithmic task through
a convolutional architecture (Bansal et al., 2022); it could
be based on the transformer self-attentional architecture, as
in the Universal Transformer (Dehghani et al., 2019); or it
could be a Graph Neural Network (GNN). GNNs are par-
ticularly well suited for algorithmic execution (Veličković
et al., 2020; Xu et al., 2020), and they have been applied
to algorithmic problems before with a focus on extrapo-
lation capabilities (Palm et al., 2017; Selsam et al., 2019;
Joshi et al., 2020; Tang et al., 2020). Recently, Veličković
& Blundell (2021) have proposed a general framework for
algorithmic learning with GNNs. To reconcile different
data encodings and provide a unified evaluation procedure,
Veličković et al. (2022a) have presented a benchmark of
algorithmic tasks covering a variety of areas. This bench-
mark, namely the CLRS algorithmic benchmark, represents
data as graphs, showing that the graph formulation is gen-
eral enough to include several algorithms, and not just the
graph-based ones. On the CLRS benchmark, Ibarz et al.
(2022) has recently presented several improvements in the
architecture and learning procedure in order to obtain bet-
ter performances. However, even the latest state-of-the-art
models suffer from performance drops in certain algorithms
when going out-of-distribution, an aspect we wish to im-
prove upon here.

Self-supervised learning. Recently, many self-supervised
representation learning methods that achieve good perfor-
mance on a wide range of downstream vision tasks without
access to labels have been proposed. One of the most popu-
lar approaches relies on contrastive objectives that make use
of data augmentations to solve the instance discrimination
task (Wu et al., 2018; Chen et al., 2020; He et al., 2020;
Mitrovic et al., 2021). Other approaches that rely on tar-
get networks and clustering have also been explored (Grill
et al., 2020; Caron et al., 2020). Our work is similar in
spirit to Mitrovic et al. (2021), which examines represen-
tation learning through the lens of causality and employs
techniques from invariant prediction to make better use of
data augmentations. This approach has been demonstrated
to be extremely successful on vision tasks (Tomasev et al.,
2022). In the context of graphs, You et al. (2020); Suresh
et al. (2021); You et al. (2022) have studied how to learn
contrastive representations, with particular attention paid
to data augmentations. Moreover, Veličković et al. (2019);
Zhu et al. (2020) proposed novel objectives based on mu-
tual information maximization in the graph domain to learn
representations. Several other self-supervised methods (e.g.
Thakoor et al. (2022)) have also been studied, and we re-
fer the reader to Xie et al. (2022) for a review of existing
literature on self-supervision with GNNs.

Figure 2. The causal graph formalising our assumption about the
outcome of a step depends only on a subset Xs

t of the snapshot Xt,
while the remainder Xc

t of the snapshot can be arbitrarily different.

3. Causal Model for Algorithmic Trajectories
An algorithm’s execution trajectory is described in terms of
the inputs, outputs and hints, which represent intermediate
steps in the execution. We consider a graph-oriented way
of representing this data (Veličković et al., 2022a): inputs
and outputs are presented as data on nodes and edges of a
graph, and hints are encoded as node, edge or graph features
changing over time steps.

To better understand the data at hand, we propose to for-
malise the data generation process for an algorithmic trajec-
tory using a causal graph. In such a causal graph, nodes
represent random variables, and incoming arrows indicate
that the node is a function of its parents (Pearl, 2009). The
causal graph we use can be found in Figure 2. Note that this
graph does not represent input data for the model, but a way
of describing how any such data is generated.

Let us consider the execution trajectory of a certain algo-
rithm of interest, at a particular time step t. Assume X1 to
be the observed input, and let Xt be the random variable
denoting the “snapshot” at step t of the algorithm execution
on the input. For example, in bubble sort, X1 will be the
initial (unsorted) array, and Xt the array after t steps of the
sorting procedure (thus a partially-sorted array).

The key contribution of our causal graph is modelling the
assumption that outcomes of a particular execution step
depend only on a subset of the current snapshot, while the
remainder of the snapshot can be arbitrarily different.

Accordingly, we assume the snapshot Xt to be generated
from two random variables, Xc

t and Xs
t , with Xc

t repre-
senting the part of the snapshot that does not influence the
current execution step (what can be changed without af-
fecting the execution), while Xs

t the one that determines it
(what needs to be stable).

Let us now revisit our bubble sort example from this per-
spective (see Figure 3). At each execution step, bubble sort
compares two adjacent elements of the input list, and swaps
them if they are not correctly ordered. Hence, in this par-

3



Neural Algorithmic Reasoning with Causal Regularisation

3 2 4 1 5

Xc
1 Xs

1

X1

3 2 4 1 5

Xc
2 Xs

2

X2

3 2 4 1 5

Xc
3 Xs

3

X3

3 2 4 1 5

Xc
4 Xs

4

X4

3 2 4 1 5

Xc
5 Xs

5

X5

Figure 3. Example of values of Xc
t and Xs

t on an input array in the execution of the bubble sort algorithm. At every step of computation,
bubble sort compares and possibly swaps exactly two nodes—those nodes are the only ones determining the outcome of the current step,
and hence they constitute Xs

t . All other nodes are part of Xc
t .

ticular example, Xs
t constitutes these two elements being

compared at step t, while the remaining elements—which
do not affect whether or not a swap is going to happen at
time t—form Xc

t . By definition this implies that the next
algorithm state is a function of only Xs

t .

The data encoding used by Veličković et al. (2022a)
prescribes that hints have values provided in all relevant
parts of the graph. That is, in a graph of n nodes, an
m-dimensional node hint has shape Rn×m, and an
m-dimensional edge hint has shape Rn×n×m. However,
in order to keep our causal model simple, we choose to
track the next-step hint in only one of those values, using an
index, It, to decide which. Specifically, It ∈ {1, 2, . . . , n}
are possible indices for node-level hints, and It ∈
{(1, 1), (1, 2), . . . , (1, n), (2, 1), . . . , (2, n), . . . , (n, n)}
are possible indices for edge-level hints. For the indexed
node/edge only, our causal graph then tracks the next-step
value of the hint (either no change from the previous step or
the new value), which we denote by Yt+1.

Returning once again to our bubble sort example: one spe-
cific hint being tracked by the algorithm is which two nodes
in the input list are currently considered for a swap. If
I2 = 4, then Y3 will track whether node 4 is being consid-
ered for a swap, immediately after two steps of the bubble
sort algorithm have been executed.

Once step t of the algorithm has been executed, a new snap-
shot Xt+1 is produced, and it can be decomposed into Xc

t+1

and Xs
t+1, just as before. Note that the execution in CLRS-

30 is assumed Markovian (Veličković et al., 2022a): the
snapshot at step t contains all the information to determine
the snapshot at the next step. Finally, the execution termi-
nates after T steps, and the final output is produced. We can
then represent the output in a particular node/edge—indexed
by IT , just as before—by Y o

T+1 := g(Xs
T , IT ), with g being

the function producing the algorithm output.

As can be seen in Figure 2, Xs
t has all the necessary informa-

tion to predict Yt+1, since our causal model encodes the con-
ditional independence assumption Yt+1 ⊥ Xc

t |Xs
t . More

importantly, using the independence of mechanisms (Peters

et al., 2017) we can conclude that under this causal model,
performing interventions on Xc

t by changing its value, does
not change the conditional distribution P (Yt+1 |Xs

t ). Note
that this is exactly the formalisation of our initial intuition:
the output of a particular step of the algorithm (i.e., Yt+1)
depends only on a subset of the current snapshot (i.e., Xs

t ),
and thus it is not affected by the addition of input items that
do not interfere with it (which we formalise as an interven-
tion on Xc

t ).1 Therefore, given a step t ∈ [1 . . . T ], for all
x, x′ ∈ X c

t , where X c
t denotes the domain of Xc

t , we have
that Xs

t is an invariant predictor of Yt+1 under interventions
on Xc

t :

pdo(Xc
t )=x(Yt+1|Xs

t ) = pdo(Xc
t )=x′

(Yt+1|Xs
t ), (1)

where pdo(Xc
t )=x denotes the distribution obtained from as-

signing Xc
t the value of x, i.e. the interventional distribution.

Note, however, that Equation (1) does not give us a prac-
tical way of ensuring that our neural algorithmic reasoner
respects these causal invariances, because it only has access
to the entirety of the current snapshot Xt, without knowing
its specific subsets Xc

t and Xs
t . More precisely, it is gener-

ally not known which input elements constitute Xs
t . For this

reason, Xc
t and Xs

t are represented as unobserved random
variables (white nodes) in Figure 2. In the next section, we
will describe how to ensure invariant predictions for our
reasoner, leveraging only Xt.

4. Size-Invariance through Self-Supervision in
Neural Algorithmic Reasoning

Given a step t, to ensure invariant predictions of Yt+1 with-
out access to Xs

t , we construct a refinement task Y R
t+1 and

learn a representation f(Xt, It) to predict Y R
t+1, as orig-

inally proposed for images in Mitrovic et al. (2021). A
refinement for a task (Chalupka et al., 2014) represents a
more fine-grained version of the initial task.

More formally, given two tasks R : A → B and T : A →
1In bubble sort, adding sorted keys at the end of the array does

not affect whether we are swapping the current entries.

4



Neural Algorithmic Reasoning with Causal Regularisation

Figure 4. Our causal graph with the inclusion of the representation
learning components as in Mitrovic et al. (2021). Solid arrows
represent the causal relationships. Dashed arrows represent what
is used to learn (in the case of f(Xt, It)) or predict (in the case of
Y R
t+1) the corresponding random variables.

B′, task R is more (or equally) fine-grained than task T
if, for any two elements a, a′ ∈ A, R(a) = R(a′) =⇒
T (a) = T (a′).

We will use this concept to show that a representation
learned on the refinement task can be effectively used in the
original task. Note that, as for Yt+1, we assume f(Xt, It)
to be the representation learned from Xt of a predefined
hint value—indexed by It—for example, the representation
of the predecessor of a specific element of the input list.

Given a step t, let Y R
t+1 be a refinement of Yt+1, and let

f(Xt, It) be a representation learned from Xt, used for
the prediction of the refinement (see Figure 4). As we
will formally prove, a representation that is invariant in the
prediction of the refinement task across changes in Xc

t is
also invariant in the prediction of the algorithmic step under
these changes. Therefore, optimising f(Xt, It) to be an
invariant predictor for the refinement task Y R

t+1 represents
a sufficient condition for the invariance in the prediction of
the next algorithmic state, Yt+1.

In the next subsection we present how to learn f(Xt, It) in
order to be an invariant predictor of Y R

t+1 under changes in
Xc

t . Then, we show that this represents a sufficient condition
for f(Xt, It) to be an invariant predictor of Yt+1 across
changes in Xc

t .

4.1. Learning an invariant predictor of the refinement

We consider Y R
t+1 to be the most-fine-grained refinement

task, which corresponds to classifying each (hint) instance
individually, that is, a contrastive learning objective where

we want to distinguish each hint from all others. This repre-
sents the most-fine-grained refinement, because Y R

t+1(a) =
Y R
t+1(a

′) ⇐⇒ a = a′, by definition. Our goal is to learn
f(Xt, It) to be an invariant predictor of Y R

t+1 under changes
(interventions) of Xc

t . Thus, given a step t ∈ [1 . . . T ], for
all x, x′ ∈ X c

t , we want f(Xt, It) such that

pdo(Xc
t )=x(Y R

t+1|f(Xt, It)) = pdo(Xc
t )=x′

(Y R
t+1|f(Xt, It)),

(2)

where pdo(Xc
t ) is the interventional distribution and X c

t de-
notes the domain of Xc

t . Since we do not have access to Xc
t ,

as it is unobserved (it is a white node in Figures 2 and 4),
we cannot explicitly intervene on it. Thus, we simulate
interventions on Xc

t through data augmentation.

As we are interested in being invariant to appropriate size
changes, we design a data augmentation procedure tailored
for neural algorithmic reasoning, which mimics interven-
tions changing the size of the input. Given a current snap-
shot of the algorithm on a given input, the data augmenta-
tion procedure should produce an augmented input which
is larger, but on which the execution of the current step is
going to proceed identically.

For example, a valid augmentation in bubble sort at a certain
step consists of adding new elements to the tail of the input
list, since the currently-considered swap will occur (or not)
regardless of any elements added there. Thus, the valid
augmentations for the bubble sort algorithm at a given step
are all possible ways to add items in such a way that ensures
that the one-step execution is unaffected by this addition.

To learn an encoder f(Xt, It) that satisfies Equation (2), we
propose to explicitly enforce invariance under valid augmen-
tations. Such augmentations, as discussed, provide us with
diverse inputs with an identical intermediate execution step.

Specifically, we use the ReLIC objective (Mitrovic et al.,
2021) as a regularisation term, which we adapt to our causal
graph as follows. Consider a time step, t, and let Dt be
the dataset containing the snapshots at time t for all the
inputs. Let it, jt ∈ It be two indices, and denote by alk =
(al, ak) ∈ Axt ×Axt a pair of augmentations, with Axt the
set of all possible valid augmentations at t for xt (which
simulate the interventions on Xc

t ).

The objective function to optimise becomes:

Lt =

−
∑

xt∈Dt

(∑
it

∑
alk

log
exp (ϕ(f(xal

t , it), f(x
ak
t , it)))∑

jt ̸=it
exp (ϕ(f(xal

t , it), f(x
ak
t , jt)))

− α
∑

alk,aqm

KL(pdo(alk), pdo(aqm))
)

(3)

with xa
t the data augmented with augmentation a, and α

a weighting of the KL divergence penalty. The first term

5



Neural Algorithmic Reasoning with Causal Regularisation

1

3

2 4

5

1

3

2 4

5

7

6

Figure 5. Example of applying our data augmentation and con-
trastive loss, following the example in Figure 1. An input graph
(left) is augmented by adding nodes and edges (right), such that
the next step—making 2 the parent of 4, i.e. π4 = 2—remains
the same. The representation of the pair (4, 2) is hence contrasted
against all other representations of pairs (4, u) in the augmented
graph. In other words, the green edge is the positive pair to the
blue edge, with other edges (in red) being negative pairs to it.

represents a contrastive objective where we compare a hint
representation in xal

t , namely f(xal
t , it), with all the pos-

sible representations in xak
t , f(xak

t , jt). Note that this is
different from standard contrastive objectives, where neg-
ative examples are taken from the batch. Due to space
constraints, we expand on the derivation of Equation (3) in
Appendix A.

In practice, we consider only one augmentation per graph,
which is equivalent to setting al to the identity transforma-
tion. Consequently, the hint representation in the original
graph f(xal

t , it) is regularised to be similar to the hint rep-
resentation in the augmentation f(xak

t , it) and dissimilar
to all other possible representations in the augmentation
f(xak

t , jt), jt ̸= it. Similarly, the hint representation in
the augmentation f(xak

t , it) is regularised to be similar to
the hint representation in the original graph f(xal

t , it) and
dissimilar to all other possible representations in the original
graph f(xal

t , jt), jt ̸= it.

We follow the standard setup in contrastive learn-
ing and implement ϕ(f(xal

t , it), f(x
ak
t , it)) =

⟨h(f(xal
t ), it), h(f(x

ak
t , it)) ⟩/τ with h a fully-connected

neural network and τ a temperature parameter. Finally, we
use a KL penalty to ensure invariance in the probability
distribution across augmentations. This is a requirement for
satisfying the assumptions of our key theoretical result.

Example. To better understand Equation (3), we provide
an example illustrated in Figure 5. We will consider one of
the algorithms in CLRS-30—Kosaraju’s strongly connected
component (SCC) algorithm (Aho et al., 1974)—which con-
sists of two invocations of depth-first search (DFS).

Let G = (V,E) be an input graph to the SCC algorithm.
Further, assume that at step t, the algorithm is visiting a
node v ∈ V . We will focus on the prediction of the parent

of v: the node from which we have reached v in the current
DFS invocation. Note that, in practice, this is a classification
task where node v decides which of the other nodes is its
parent. Accordingly, given a particular node v, our model
computes a representation for every other node u ∈ V .
This representation is which is then passed through a final
classifier, outputting the (unnormalised) probability of u
being the parent of v.

Now, consider any augmentation of G’s nodes and edges
that does not disrupt the current step of the search algorithm,
denoted by Ga = (V a, Ea). For example, as the DFS
implementation in CLRS-30 prefers nodes with a smaller
id value, a valid augmentation can be obtained by adding
nodes with a larger id than v to V a, and adding edges from
them to v in Ea (dashed nodes and edges in Figure 5). Note
that this augmentation does not change the predicted parent
of v. We can enforce that our representations respect this
constraint by using our regularisation loss in Equation (3).

Given a node v ∈ V , we denote the representation of its
parent node, πv ∈ V by f(G, (v, πv)). This representation
is contrasted to all other representations of nodes w ∈ V a

in the augmented graph, that is f(Ga, (v, w)).2

More precisely, the most similar representation of
f(G, (v, πv)) is the representation in the augmentation of
the parent of v, f(Ga, (v, πv)), while the representations
associated to all other nodes (including the added ones)
represent the negative examples f(Ga, (v, w)), for w ̸= πv .

Figure 5 illustrates the prediction of the parent of node
v = 4. In this case, it in Equation (3) indexes the true
parent of node 4, namely π4 = 2, and therefore it = (4, 2),
while jt iterates over all other possible indices of the form
(4, u), u ∈ V a, indeed representing all other possible par-
ents of 4. The objective of Equation (3) is to make the true
parent representation in the original graph f(G, (4, 2)) sim-
ilar to the true parent representation in the augmentation
f(Ga, (4, 2)), and dissimilar to the representations of the
other possible parents in the augmentation f(Ga, (4, u)),
u ∈ V a. The same process applies to the augmentation.

4.2. Implications of the invariance

In the previous subsection, we have presented a self-
supervised objective, justified by our assumed causal graph,
in order to learn invariant predictors for a refinement task
Y R
t+1 under changes of Xc

t . However, our initial goal was
to ensure invariance in the prediction of algorithmic hints
Yt+1 across Xc

t . Now we will bridge these two aims.

In the following, we show how learning a representation
that is an invariant predictor of Y R

t+1 under changes of Xc
t

2Note that, in this case, It is a two-dimensional index, choosing
two nodes—i.e., an edge—at once.

6



Neural Algorithmic Reasoning with Causal Regularisation

represents a sufficient condition for this representation to be
invariant to Xc

t when predicting Yt+1.

Theorem 4.1. Consider an algorithm and let t ∈ [1 . . . T ]
be one of its steps. Let Yt+1 be the task representing a
prediction of the algorithm step and let Y R

t+1 be a refinement
of such task. If f(Xt, It) is an invariant representation for
Y R
t+1 under changes in Xc

t , then f(Xt, It) is an invariant
representation for Yt+1 under changes in Xc

t , that is, for all
x, x′ ∈ X c

t , the following holds:

pdo(Xc
t )=x(Y R

t+1|f(Xt, It)) = pdo(Xc
t )=x′

(Y R
t+1|f(Xt, It))

=⇒

pdo(Xc
t )=x(Yt+1|f(Xt, It)) = pdo(Xc

t )=x′
(Yt+1|f(Xt, It)).

We prove Theorem 4.1 in Appendix D. Note that this jus-
tifies our self-supervised objective: by learning invariant
representations though a refinement task, we can also guar-
antee invariance in the hint prediction. In other words, we
can provably ensure that the prediction of an algorithm step
is not affected by changes in the input that do not interfere
with the current execution step. Since we can express these
changes in the form of addition of input nodes, we are en-
suring that the hint prediction is the same on two inputs of
different sizes, but identical current algorithmic step.

5. Experiments
We conducted an extensive set of experiments to answer the
following main questions:

1. Can our model, Hint-ReLIC, which relies on the addi-
tion of our causality-inspired self-supervised objective,
outperform the corresponding base model in practice?

2. What is the importance of such objective when com-
pared to other changes made with respect to the previ-
ous state-of-the-art model?

3. How does Hint-ReLIC compare to a model which does
not leverage hints at all, directly predicting the output
from the input? Are hints necessary?

Model. As a base model, we use the Triplet-GMPNN
architecture proposed by Ibarz et al. (2022), which consists
of a fully-connected MPNN (Gilmer et al., 2017) where the
input graph is encoded in the edge features, augmented with
gating and triplet reasoning (Dudzik & Veličković, 2022).

We replace the loss for predicting the next-step hint in the
base model with our regularisation objective (Equation (3)),
which aims at learning hint representations that are invariant
to size changes that are irrelevant to the current step via
constrastive and KL losses.

We make an additional change with respect to the base
model, consisting of including the reversal of hints of
pointer type. More specifically, given an input graph, if a
node A points to another node B in the graph, we include an
additional (edge-based) hint representing the pointer from
B to A. This change (which we refer to as reversal in the
results) consists simply in the inclusion of these additional
hints, and we study the impact of this addition in Section 5.1.
The resulting model is what we call Hint-ReLIC.

Data augmentations. To simulate interventions on Xc
t

and learn invariant representations, we design augmentation
procedures which construct augmented data given an input
and an algorithm step, such that the step of the algorithm is
the same on the original input and on the augmented data.

We consider simple augmentations, which we describe in
detail in Appendix E. To reduce the computational overhead,
given an input graph, instead of sampling an augmentation at
each algorithm step, we sample a single step, t̃ ∼ U{1, T},
and construct an augmentation only for the sampled step.
Then, we use the (same) constructed augmentation in all
the steps until the sampled one, t ≤ t̃. This follows from
the consideration that, if augmentations are carefully con-
structed, the execution of the algorithm is the same not only
in the next step but in all steps leading up to that.

Whenever possible, we relax the requirement of having
the augmentation with exactly the same execution, and we
allow for approximate augmentations, in order to avoid
over-engineering the methodology and obtain a more robust
model. This results in more general and simpler augmenta-
tions, though we expect more tailored ones to perform better.
We refer the reader to Appendix E for more details.

We end this paragraph by stressing that we never run the
target algorithm on the augmented inputs: rather, we di-
rectly construct them to have the same next execution step
as the corresponding inputs. As a result, our method does
not require direct access to the algorithm used to generate
the inputs. Furthermore, the number of nodes in our aug-
mentations is at most one more than the number of nodes
in the largest training input example. This means that, in
all of our experiments, we still never significantly cross the
intended test size distribution shift during training.

Datasets. We run our method on a diverse subset of
the algorithms present in the CLRS benchmark consisting
of: 1. DFS-based algorithms (Articulation Points, Bridges,
Strongly Connected Components (Aho et al., 1974), Topo-
logical Sort (Knuth, 1973)); 2. Other graph-based algo-
rithms (Bellman-Ford (Bellman, 1958), BFS (Moore, 1959),
DAG Shortest Paths, Dijkstra (Dijkstra et al., 1959), Floy-
d-Warshall (Floyd, 1962), MST-Kruskal (Kruskal, 1956),
MST-Prim (Prim, 1957)); 3. Sorting algorithms (Bubble

7



Neural Algorithmic Reasoning with Causal Regularisation

He
ap

so
rt

St
ro

ng
ly

 C
on

n.
 C

om
ps

.

Fl
oy

d-
W

ar
sh

al
l

Qu
ick

so
rt

In
se

rti
on

 S
or

t

Bi
na

ry
 S

ea
rc

h

Bu
bb

le
 S

or
t

DA
G 

Sh
or

te
st

 P
at

hs

Ar
tic

ul
at

io
n 

Po
in

ts

To
po

lo
gi

ca
l S

or
t

Br
id

ge
s

M
ST

 K
ru

sk
al

Di
jk

st
ra

M
in

im
um

M
ST

 P
rim BF

S

Be
llm

an
-F

or
d

Ov
er

al
l A

ve
ra

ge

0

20

40

60

80

100

Av
er

ag
e 

sc
or

e 
[%

]

Hint-ReLIC (ours)
Baseline

Figure 6. Per-algorithm comparison of the Triplet-GMPNN baseline (Ibarz et al., 2022) and our Hint-ReLIC. Error bars represent the
standard error of the mean across three random seeds. The final column shows the average and standard error of the mean performances
across the different algorithms.

Sort, Heapsort (Williams, 1964), Insertion Sort, Quicksort
(Hoare, 1962)); 4. Searching algorithms (Binary-search,
Minimum). This subset is chosen as it contains most algo-
rithms suffering from out-of-distribution performance drops
in current state-of-the-art; see Ibarz et al. (2022, Table 2).

Results. Figure 6 compares the out-of-distribution (OOD)
performances of the Triplet-GMPNN baseline, which we
have re-trained and evaluated in our experiments, to our
model Hint-ReLIC, as described above. Hint-ReLIC per-
forms better or comparable to the existing state-of-the-art
baseline, showcasing how the proposed procedure appears
to be beneficial not only theoretically, but also in practice.
The most significant improvements can be found in the
sorting algorithms, where we obtain up to 3× increased
performance.

5.1. Ablation study

In this section we study the contribution and importance
of two main components of our methodology. First, we
consider the impact of the change we made with respect to
the original baseline proposed in Ibarz et al. (2022), namely
the inclusion of the reversal of hint pointers. Second, as
we propose a novel way to leverage hints through our self-
supervised objective, which is different from the direct su-
pervision in the baseline, one may wonder whether com-
pletely removing hints can achieve even better scores. Thus,
we also study the performance when completely disregard-
ing hints and directly going from input to output. Finally,
we refer the reader to Appendix F.1 for additional ablation
experiments, including the removal of the KL component in
Equation (3)—which is necessary for the theoretical results
but may not always be needed in practice.

Table 1. Effect of the inclusion of pointers’ reversal on each al-
gorithm. The table shows mean and stderr of the OOD micro-F1

score after 10,000 training steps, across different seeds.

Alg. Baseline Baseline + reversal Hint-ReLIC (ours)

Articulation points 88.93% ± 1.92 91.04% ± 0.92 98.45% ± 0.60
Bridges 93.75% ± 2.73 97.70% ± 0.34 99.32% ± 0.09
SCC 38.53% ± 0.45 31.40% ± 8.80 76.79% ± 3.04
Topological sort 87.27% ± 2.67 88.83% ± 7.29 96.59% ± 0.20

Bellman-Ford 96.67% ± 0.81 95.02% ± 0.49 95.54% ± 1.06
BFS 99.64% ± 0.05 99.93% ± 0.03 99.00% ± 0.21
DAG Shortest Paths 88.12% ± 5.70 96.61% ± 0.61 98.17% ± 0.26
Dijkstra 93.41% ± 1.08 91.50% ± 1.85 97.74% ± 0.50
Floyd-Warshall 46.51% ± 1.30 46.28% ± 0.80 72.23% ± 4.84
MST-Kruskal 91.18% ± 1.05 89.93% ± 0.43 96.01% ± 0.45
MST-Prim 87.64% ± 1.79 86.95% ± 2.34 87.97% ± 2.94

Insertion sort 75.28% ± 5.62 87.21% ± 2.80 92.70% ± 1.29
Bubble sort 79.87% ± 6.85 80.51% ± 9.10 92.94% ± 1.23
Quicksort 70.53% ± 11.59 85.69% ± 4.53 93.30% ± 1.96
Heapsort 32.12% ± 5.20 49.13% ± 10.35 95.16% ± 1.27

Binary Search 74.60% ± 3.61 50.42% ± 8.45 89.68% ± 2.13
Minimum 97.78% ± 0.63 98.43% ± 0.01 99.37% ± 0.20

The effect of the inclusion of pointers’ reversal. As
discussed above, pointers’ reversal simply consists of adding
an additional hint for each hint of pointer type (if any),
such that a node not only has the information representing
which other node it points to, but also from which nodes
it is pointed by. We study the impact of this inclusion
by running the baseline with these additional hints, and
evaluate its performance against both the baseline and our
Hint-ReLIC. Table 1 shows that this addition, which we refer
to as Baseline + reversal, indeed leads to improved results
for certain algorithms, but does not obtain the predictive
performances we reached with our regularisation objective.

The removal of hints. While previous works directly in-
cluded the supervision on the hint predictions, we argue in

8



Neural Algorithmic Reasoning with Causal Regularisation

Table 2. Importance of hint usage in the final performance. The
table shows mean and stderr of the OOD micro-F1 score after
10,000 training steps, across different seeds.

Alg. No Hints Hint-ReLIC (ours)

Articulation points 81.97% ± 5.08 98.45% ± 0.60
Bridges 95.62% ± 1.03 99.32% ± 0.09
SCC 57.63% ± 0.68 76.79% ± 3.04
Topological sort 84.29% ± 1.16 96.59% ± 0.20

Bellman-Ford 93.26% ± 0.04 95.54% ± 1.06
BFS 99.89% ± 0.03 99.00% ± 0.21
DAG Shortest Paths 97.62% ± 0.62 98.17% ± 0.26
Dijkstra 95.01% ± 1.14 97.74% ± 0.50
Floyd-Warshall 40.80% ± 2.90 72.23% ± 4.84
MST-Kruskal 92.28% ± 0.82 96.01% ± 0.45
MST-Prim 85.33% ± 1.21 87.97% ± 2.94

Insertion sort 77.29% ± 7.42 92.70% ± 1.29
Bubble sort 81.32% ± 6.50 92.94% ± 1.23
Quicksort 71.60% ± 2.22 93.30% ± 1.96
Heapsort 68.50% ± 2.81 95.16% ± 1.27

Binary Search 93.21% ± 1.10 89.68% ± 2.13
Minimum 99.24% ± 0.21 99.37% ± 0.20

favour of a novel way of leveraging hints. We use hints first
to construct the augmentations representing the same algo-
rithm step, and then we employ their representations in the
self-supervised objective. An additional valid model might
consist of a model that directly goes from input to output
and completely ignores hints. In Table 2 we show that this
No Hints model can achieve very good performances, but it
is still generally outperformed by Hint-ReLIC.

6. Conclusions
In this work we propose a self-supervised learning objective
that employs augmentations derived from available hints,
which represent intermediate steps of an algorithm, as a
way to better ground the execution of GNN-based algo-
rithmic reasoners on the computation that the target algo-
rithm performs. Our Hint-ReLIC model, based on such
self-supervised objective, leads to algorithmic reasoners
that produce more robust outputs of the target algorithms,
especially compared to autoregressive hint prediction. In
conclusion, hints can take you a long way, if used in the
right way.

Acknowledgements
The authors would like to thank Andrew Dudzik and Daan
Wierstra for valuable feedback on the paper. They would
also like to show their gratitude to the Learning at Scale
team at DeepMind for a supportive atmosphere.

References
Aho, A. V., Hopcroft, J. E., and Ullman, J. D. The design

and analysis of computer algorithms. Reading, 1974.

Alet, F., Doblar, D., Zhou, A., Tenenbaum, J., Kawaguchi,

K., and Finn, C. Noether networks: meta-learning useful
conserved quantities. Advances in Neural Information
Processing Systems, 34:16384–16397, 2021.

Bansal, A., Schwarzschild, A., Borgnia, E., Emam, Z.,
Huang, F., Goldblum, M., and Goldstein, T. End-to-
end algorithm synthesis with recurrent networks: Log-
ical extrapolation without overthinking. arXiv preprint
arXiv:2202.05826, 2022.

Bellman, R. On a routing problem. Quarterly of applied
mathematics, 16(1):87–90, 1958.

Beurer-Kellner, L., Vechev, M., Vanbever, L., and
Veličković, P. Learning to configure computer networks
with neural algorithmic reasoning. In Advances in Neural
Information Processing Systems, 2022.

Bevilacqua, B., Zhou, Y., and Ribeiro, B. Size-invariant
graph representations for graph classification extrapola-
tions. In International Conference on Machine Learning,
pp. 837–851. PMLR, 2021.

Bronstein, M. M., Bruna, J., Cohen, T., and Veličković,
P. Geometric deep learning: Grids, groups, graphs,
geodesics, and gauges. arXiv preprint arXiv:2104.13478,
2021.

Buffelli, D., Liò, P., and Vandin, F. Sizeshiftreg: a regu-
larization method for improving size-generalization in
graph neural networks. In Advances in Neural Informa-
tion Processing Systems, 2022.

Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P.,
and Joulin, A. Unsupervised learning of visual features
by contrasting cluster assignments. Advances in Neural
Information Processing Systems, 33:9912–9924, 2020.

Chalupka, K., Perona, P., and Eberhardt, F. Visual causal
feature learning. arXiv preprint arXiv:1412.2309, 2014.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In International conference on machine
learning, pp. 1597–1607. PMLR, 2020.

Chen, Y., Zhang, Y., Bian, Y., Yang, H., KAILI, M., Xie, B.,
Liu, T., Han, B., and Cheng, J. Learning causally invariant
representations for out-of-distribution generalization on
graphs. In Advances in Neural Information Processing
Systems, 2022.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Veličković,
P. Principal neighbourhood aggregation for graph nets.
Advances in Neural Information Processing Systems, 33:
13260–13271, 2020.

9



Neural Algorithmic Reasoning with Causal Regularisation

Davies, A., Veličković, P., Buesing, L., Blackwell, S.,
Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blun-
dell, C., Juhász, A., et al. Advancing mathematics by
guiding human intuition with ai. Nature, 600(7887):70–
74, 2021.

Deac, A.-I., Veličković, P., Milinkovic, O., Bacon, P.-L.,
Tang, J., and Nikolic, M. Neural algorithmic reasoners
are implicit planners. Advances in Neural Information
Processing Systems, 34:15529–15542, 2021.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and
Kaiser, L. Universal transformers. In International Con-
ference on Learning Representations, 2019.

Diao, C. and Loynd, R. Relational attention: Generalizing
transformers for graph-structured tasks. arXiv preprint
arXiv:2210.05062, 2022.

Dijkstra, E. W. et al. A note on two problems in connex-
ion with graphs. Numerische mathematik, 1(1):269–271,
1959.

Dudzik, A. J. and Veličković, P. Graph neural networks are
dynamic programmers. In Advances in Neural Informa-
tion Processing Systems, 2022.

Floyd, R. W. Algorithm 97: shortest path. Communications
of the ACM, 5(6):345, 1962.

Gasteiger, J., Shuaibi, M., Sriram, A., Günnemann, S.,
Ulissi, Z. W., Zitnick, C. L., and Das, A. How do graph
networks generalize to large and diverse molecular sys-
tems? ArXiv, abs/2204.02782, 2022.

Gers, F. A. and Schmidhuber, J. Lstm recurrent networks
learn simple context-free and context-sensitive languages.
IEEE transactions on neural networks, 12 6:1333–40,
2001.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In Proceedings of the 34th International Confer-
ence on Machine Learning, ICML’17, pp. 1263–1272.
JMLR.org, 2017.

Graves, A., Wayne, G., and Danihelka, I. Neural turing
machines. ArXiv, abs/1410.5401, 2014.

Graves, A., Wayne, G., Reynolds, M., Harley, T., Dani-
helka, I., Grabska-Barwińska, A., Colmenarejo, S. G.,
Grefenstette, E., Ramalho, T., Agapiou, J., Badia, A. P.,
Hermann, K. M., Zwols, Y., Ostrovski, G., Cain, A.,
King, H., Summerfield, C., Blunsom, P., Kavukcuoglu,
K., and Hassabis, D. Hybrid computing using a neural
network with dynamic external memory. Nature, 538
(7626):471–476, October 2016. ISSN 00280836.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P.,
Buchatskaya, E., Doersch, C., Avila Pires, B., Guo, Z.,
Gheshlaghi Azar, M., et al. Bootstrap your own latent-a
new approach to self-supervised learning. Advances in
neural information processing systems, 33:21271–21284,
2020.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Mo-
mentum contrast for unsupervised visual representation
learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738,
2020.

Hoare, C. A. Quicksort. The Computer Journal, 5(1):10–16,
1962.

Ibarz, B., Kurin, V., Papamakarios, G., Nikiforou, K., Ben-
nani, M., Csordás, R., Dudzik, A. J., Bošnjak, M., Vitvit-
skyi, A., Rubanova, Y., Deac, A., Bevilacqua, B., Ganin,
Y., Blundell, C., and Veličković, P. A generalist neural
algorithmic learner. In The First Learning on Graphs
Conference, 2022.

Jegelka, S. Theory of graph neural networks: Represen-
tation and learning. arXiv preprint arXiv:2204.07697,
2022.

Joshi, C. K., Cappart, Q., Rousseau, L.-M., and Laurent,
T. Learning the travelling salesperson problem requires
rethinking generalization. Constraints, 27:70 – 98, 2020.

Knuth, D. E. Fundamental algorithms. 1973.

Kruskal, J. B. On the shortest spanning subtree of a graph
and the traveling salesman problem. Proceedings of the
American Mathematical society, 7(1):48–50, 1956.

Mahdavi, S., Swersky, K., Kipf, T., Hashemi, M., Thram-
poulidis, C., and Liao, R. Towards better out-of-
distribution generalization of neural algorithmic reason-
ing tasks. arXiv preprint arXiv:2211.00692, 2022.

Mitrovic, J., McWilliams, B., Walker, J. C., Buesing, L. H.,
and Blundell, C. Representation learning via invari-
ant causal mechanisms. In International Conference on
Learning Representations, 2021.

Moore, E. F. The shortest path through a maze. In Proc. Int.
Symp. Switching Theory, 1959, pp. 285–292, 1959.

Palm, R. B., Paquet, U., and Winther, O. Recurrent re-
lational networks. In Neural Information Processing
Systems, 2017.

Pearl, J. Causality. Cambridge university press, 2009.

Peters, J., Janzing, D., and Schölkopf, B. Elements of causal
inference: foundations and learning algorithms. The MIT
Press, 2017.

10



Neural Algorithmic Reasoning with Causal Regularisation

Prim, R. C. Shortest connection networks and some gen-
eralizations. The Bell System Technical Journal, 36(6):
1389–1401, 1957.

Selsam, D., Lamm, M., Bünz, B., Liang, P., de Moura, L.,
and Dill, D. L. Learning a SAT solver from single-bit
supervision. In International Conference on Learning
Representations, 2019.

Suresh, S., Li, P., Hao, C., and Neville, J. Adversarial
graph augmentation to improve graph contrastive learning.
In Advances in Neural Information Processing Systems,
2021.

Tang, H., Huang, Z., Gu, J., Lu, B.-L., and Su, H. Towards
scale-invariant graph-related problem solving by iterative
homogeneous gnns. Advances in Neural Information
Processing Systems, 33:15811–15822, 2020.

Thakoor, S., Tallec, C., Azar, M. G., Azabou, M., Dyer,
E. L., Munos, R., Veličković, P., and Valko, M. Large-
scale representation learning on graphs via bootstrapping.
In International Conference on Learning Representations,
2022.

Tomasev, N., Bica, I., McWilliams, B., Buesing, L., Pascanu,
R., Blundell, C., and Mitrovic, J. Pushing the limits of
self-supervised resnets: Can we outperform supervised
learning without labels on imagenet? arXiv preprint
arXiv:2201.05119, 2022.

Veličković, P. and Blundell, C. Neural algorithmic reasoning.
Patterns, 2(7):100273, 2021.

Veličković, P., Badia, A. P., Budden, D., Pascanu, R., Ban-
ino, A., Dashevskiy, M., Hadsell, R., and Blundell, C.
The CLRS algorithmic reasoning benchmark. In Interna-
tional Conference on Machine Learning, 2022a.

Veličković, P., Bošnjak, M., Kipf, T., Lerchner, A., Hadsell,
R., Pascanu, R., and Blundell, C. Reasoning-modulated
representations. In The First Learning on Graphs Confer-
ence, 2022b.

Veličković, P., Fedus, W., Hamilton, W. L., Liò, P., Bengio,
Y., and Hjelm, R. D. Deep graph infomax. In Interna-
tional Conference on Learning Representations, 2019.

Veličković, P., Ying, R., Padovano, M., Hadsell, R., and
Blundell, C. Neural execution of graph algorithms. In
International Conference on Learning Representations,
2020.

Williams, J. W. J. Algorithm 232: heapsort. Commun. ACM,
7:347–348, 1964.

Wu, Z., Xiong, Y., Yu, S. X., and Lin, D. Unsupervised
feature learning via non-parametric instance discrimina-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 3733–3742, 2018.

Xie, Y., Xu, Z., Zhang, J., Wang, Z., and Ji, S. Self-
supervised learning of graph neural networks: A unified
review. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2022.

Xu, K., Li, J., Zhang, M., Du, S. S., ichi Kawarabayashi, K.,
and Jegelka, S. What can neural networks reason about?
In International Conference on Learning Representations,
2020.

Xu, K., Zhang, M., Li, J., Du, S. S., Kawarabayashi, K.-I.,
and Jegelka, S. How neural networks extrapolate: From
feedforward to graph neural networks. In International
Conference on Learning Representations, 2021.

Yehudai, G., Fetaya, E., Meirom, E., Chechik, G., and
Maron, H. From local structures to size generalization in
graph neural networks. In International Conference on
Machine Learning, pp. 11975–11986. PMLR, 2021.

You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., and Shen,
Y. Graph contrastive learning with augmentations. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F.,
and Lin, H. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 33, pp. 5812–5823. Curran As-
sociates, Inc., 2020.

You, Y., Chen, T., Wang, Z., and Shen, Y. Bringing your
own view: Graph contrastive learning without prefabri-
cated data augmentations. In Proceedings of the Fifteenth
ACM International Conference on Web Search and Data
Mining, pp. 1300–1309, 2022.

Zhou, Y., Kutyniok, G., and Ribeiro, B. OOD link prediction
generalization capabilities of message-passing GNNs in
larger test graphs. In Advances in Neural Information
Processing Systems, 2022.

Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., and Wang, L.
Deep Graph Contrastive Representation Learning. In
ICML Workshop on Graph Representation Learning and
Beyond, 2020.

11



Neural Algorithmic Reasoning with Causal Regularisation

A. Derivation of our Self-Supervised Objective
Equation (3) represents our objective function to optimise, which we derived by adapting the ReLIC objective (Mitrovic
et al., 2021) to our causal graph. Note that we propose a unique and novel way of employing a contrastive-learning based
objective, which is also different from Mitrovic et al. (2021), as we consider positive and negative examples for each hint
representation in an input graph to be hint representations in valid augmentations of the graph. To better understand the
equation, in this section we expand the derivation of our objective.

Recall that our goal is to learn f(Xt, It) to be an invariant predictor of Y R
t+1 under changes (interventions) of Xc

t . As we
do not have access to Xc

t , because we do not know which subset of the input forms Xc
t , we simulate interventions on Xc

t

through data augmentations. Therefore, our goal becomes to learn f(Xt, It) to be an invariant predictor of Y R
t+1 under

(valid) augmentations, that is:

pdo(ai)(Y R
t+1|f(Xt, It)) = pdo(aj)(Y R

t+1|f(Xt, It)), ∀ai, aj ∈ Axt

where Axt contains all possible valid augmentations at t for xt, and pdo(a) represents the simulation of the intervention on
Xc

t through data augmentation a. Following Mitrovic et al. (2021), we enforce this invariance through a regularisation
objective, which for every time step t has the following form:

E
Xt

E
alk,aqm

∼Axt×Axt

∑
it

∑
b∈{alk,aqm}

L̂b(f(Xt, it), Y
R
t+1 = it) s.t. KL(pdo(alk)(Y R

t+1|f(Xt, it)), p
do(aqm)(Y R

t+1|f(Xt, it))) ≤ ρ,

for some small number ρ. Since we consider L̂ to be a contrastive learning objective, we take pairs of hint representations,
indexed by it and jt, to compute similarity scores and use pairs of augmentations alk = (al, ak) ∈ Axt

×Axt
, that is

pdo(alk)(Y R
t+1 = jt|f(xt, it)) ∝ exp (ϕ(f(xal

t , it), f(x
ak
t , jt))),

where f is a neural network and ϕ is a (learnable) function to compute the similarity between two representations. Note
that, in words, we are computing the similarity of two hint representations (indexed by it and jt, respectively) in two data
augmentations (obtained from al and ak). Now, note that we want the representations of the same hint to be similar in the two
augmentations. This means that the hint representation indexed by it in xal

t must be similar to the hint representation indexed
by it in xak

t . Obviously, the same must be true when considering jt instead of it. Furthermore, we want representations
of different hints to be dissimilar in the two augmentations. Putting all together, our objective function at time t can be
rewritten as

Lt = −
∑

xt∈Dt

(∑
alk

∑
it

log
exp (ϕ(f(xal

t , it), f(x
ak
t , it)))∑

jt ̸=it
exp (ϕ(f(xal

t , it), f(x
ak
t , jt)))

− α
∑

alk,aqm

KL(pdo(alk), pdo(aqm))
)
,

where Dt is the dataset containing the snapshots at time t for all the inputs, it, jt ∈ It are two indices, alk = (al, ak) ∈
Axt × Axt is a pair of augmentations, with Axt the set of all possible valid augmentations at t for xt (which simulate
the interventions on Xc

t ). Finally, α is the weighting of the KL divergence penalty and pdo(alk) is a shorthand for
pdo(alk)(Y R

t+1|f(xt, it)).

We note here that jt is such that the hint representations of it and jt are actually different. In the SCC example in the main
text (visualised in Figure 5), the sum over jt is a sum over all other possible parents of the node v under consideration. In a
DFS’s execution, when the hint under consideration is the colour of a node in an input graph, its representation is regularised
to be similar to the hint representation of the same node in the augmentation, and dissimilar to all other hint representations
in the augmentation corresponding to different colours.

B. Causal Graph and Representation Learning Components
In this section we expand on the definition of our causal graph and on the representation learning components, justifying
design choices that were left implicit in the main paper due to space constraints. Specifically, we first explain thoroughly the
causal relationships among the random variables and then stress how we use those variables in a learning setting.

Recall that our causal graph (Figure 2) describes the data generation process of an algorithmic trajectory. We denote by X1

the random variable representing the input to our algorithm, and refer by Xt the snapshot at time step t of the algorithm
execution on such input, for every time step in the trajectory t ∈ [1 . . . T ].

12



Neural Algorithmic Reasoning with Causal Regularisation

We assume Xt to be generated by two random variables, Xc
t and Xs

t , which we assume to be distinct parts (or splits) of
Xt, which together form the whole Xt. We consider Xc

t to be the part of the snapshot that does not influence the current
execution of the algorithm at time step t, and can therefore be arbitrarily different without affecting it. We instead denote by
Xs

t the part of the snapshot that determines the current execution of the algorithm at time step t, and therefore should not be
changed if we do not want to alter the current step execution.

The current execution is represented as hint values on all nodes and/or edges. We call Yt+1 the execution (or hint) on a
specific node or edge chosen accordingly to an index It. Note that the current step hint Yt+1 is represented with an increment
of the time step, following a convention we adopt to indicate that we first need an execution and only then (in the next
time step) we materialise its results. Further, note that Yt+1 represents the algorithmic step in any node or edge, indicating
whether or not it is involved in the current execution, thus either encoding that there is no change (and thus it is not involved
in the current step) or representing what is its new hint value.

By definition of Xc
t and Xs

t , the current step of the algorithm on the node or edge indexed by It, namely Yt+1, is determined
by Xs

t only.

Assuming a Markovian execution, executing one algorithm step gives us Xc
t+1 and Xs

t+1, which form the snapshot we
observe Xt+1. Note that Xc

t+1 and Xs
t+1 are potentially different from Xc

t and Xs
t , because the current execution might

now be determined by very different subsets. Finally, note that we do not need an arrow from Yt+1 to Xc
t or Xs

t , because
Yt+1 is deterministically determined by Xs

t , and therefore all its information can be recovered from Xs
t .

Recall now that our goal is to learn an invariant predictor for the refinement task across changes of Xc
t , as this represents a

sufficient condition for the invariance in the prediction of Yt+1 (see Theorem 4.1). We denote by Y R
t+1 the refinement task of

the execution on a specific node or edge chosen according to It. We omit the arrow from It to Y R
t+1 as the dependency is

already implicit through Yt+1.

We denote by f(Xt, It) the representation of the execution step on a particular node or edge indexed by It, which we learn
to predict Y R

t+1 across changes of Xc
t . Finally, note that f(Xt, It) is used by the network to determine the predicted next

snapshot, which is determined by the next step prediction, and therefore it has a (dashed) arrow to Xt+1.

C. Assumptions on Prior Knowledge of the Unobserved Xc
t

Given a time step t, to ensure invariant predictions of Yt+1 we learn predictors of Y R
t+1 that are invariant across interventions

on Xc
t , simulated through data augmentations. However, since Xc

t is an unobserved random variable, we must make
assumptions about its properties to create valid data augmentations. In this section, we clarify our assumptions about prior
knowledge of Xc

t and propose potential methods to eliminate this assumption in future work.

We start by remarking that our neural network is not assumed to have any prior knowledge about Xc
t . This knowledge is

enforced into the network through our regularisation objective (Equation (3)), which is driven by appropriately chosen data
augmentations. Indeed, those data augmentations do rely on priors that assume something about what Xc

t might look like.
This is similar to how the choice of data augmentation in image CNNs governs which parts of the image we consider to be
“content” and “style”.

However, for most algorithms of interest, the required priors are conceptually very simple, and a single augmentation may be
reused for many algorithms. As an example, for many graph algorithms, it is an entirely safe operation to add disconnected
subgraphs – an augmentation we repeatedly employ. Similarly in several sorting tasks, adding elements to the tail end of the
list represent a valid augmentation. We provide an exhaustive list of the augmentation for each algorithm in Appendix E.

Performing data augmentations without knowledge of Xc
t represents an interesting but challenging direction, that can be

explored in future work. A simple, computationally-expensive, data-augmentation procedure that does not require any
knowledge of Xc

t could consist in randomly augmenting the input graph, run the actual algorithm and consider the generated
graph as a valid augmentation only if the next step execution of the algorithm remains unaltered. A more interesting
approach would consist in learning valid augmentations of a given input, perhaps by meta-learning conserved quantities in
the spirit of Noether Networks (Alet et al., 2021). Investigating these cases remains an important avenue for future research.

13



Neural Algorithmic Reasoning with Causal Regularisation

D. Theoretical Analysis
Theorem 4.1. Consider an algorithm and let t ∈ [1 . . . T ] be one of its steps. Let Yt+1 be the task representing a prediction
of the algorithm step and let Y R

t+1 be a refinement of such task. If f(Xt, It) is an invariant representation for Y R
t+1 under

changes in Xc
t , then f(Xt, It) is an invariant representation for Yt+1 under changes in Xc

t , that is, for all x, x′ ∈ X c
t , the

following holds:

pdo(Xc
t )=x(Y R

t+1|f(Xt, It)) = pdo(Xc
t )=x′

(Y R
t+1|f(Xt, It))

=⇒

pdo(Xc
t )=x(Yt+1|f(Xt, It)) = pdo(Xc

t )=x′
(Yt+1|f(Xt, It)).

Proof of Theorem 4.1.

pdo(Xc
t )=x(Yt+1|f(Xt, It))

=

∫
pdo(Xc

t )=x(Yt+1|Y R
t+1)p

do(Xc
t )=x(Y R

t+1|f(Xt, It))dY
R
t+1

=

∫
p(Yt+1|Y R

t+1)p
do(Xc

t )=x(Y R
t+1|f(Xt, It))dY

R
t+1

=

∫
p(Yt+1|Y R

t+1)p
do(Xc

t )=x′
(Y R

t+1|f(Xt, It))dY
R
t+1

= pdo(Xc
t )=x′

(Yt+1|f(Xt, It)).

The first equality is obtained by marginalising over Y R
t+1 and using the assumption of Y R

t+1 being a refinement of Yt+1, which
implies that Y R

t+1 has all the necessary information to predict Yt+1 (and thus we can drop the conditioning on f(Xt, It)).
The second equality follows from the fact that the mechanism Yt+1|Y R

t+1 is independent of interventions on Xc
t under our

assumptions. Finally, the third equality follows from the assumption that f(Xt, It) is an invariant predictor of Y R
t+1 under

changes in Xc
t .

E. Data Augmentations
In this section we expand on our proposed augmentations, which simulate interventions on Xc

t , valid until step t. Further,
we report which hints we use in our objective (see Equation (3)) using the naming convention in Veličković et al. (2022a).

DFS-based algorithms (Articulation Points, Bridges, Strongly Connected Components, Topological Sort). We
construct exact augmentations for these kinds of problems. First, we sample a step by choosing uniformly at random
amongst those where we enter a node for the first time (in case multiple DFSs are being executed for an input, we only
consider the first one). Then, we construct a subgraph of nodes with larger node-ids, and we randomly determine connectivity
between subgraph’s nodes. Finally, we connect all the subgraph’s nodes to the node we are entering in the sampled step. We
contrast the following hints up to the sampled step (we mask out the contrastive loss on later steps): pi h in Articulation
Points and Bridges; scc id h, color and s prev in Strongly Connected Components; and topo h, color, and
s prev in Topological Sort.

Graph-based algorithms (Bellman-Ford, BFS, DAG Shortest Path, Dijkstra, Floyd-Warshall, MST-Kruskal, MST-
Prim). We construct simple but exact augmentations consisting of adding a disconnected subgraph to each input’s graph.
The subgraph consists of nodes with larger nodes ids and whose connectivity is randomly generated. We contrast until
the end of the input’s trajectory the following hints: pi h in Bellman-Ford, BFS, Dijkstra and MST-Prim; pi h, topo h,
color in DAG shortest path; Pi h in Floyd-Warshall; pi in MST-Kruskal.

Sorting algorithms (Insertion sort, Bubble Sort, Quicksort, Heapsort). We construct general augmented inputs
obtained by simply adding items at the end of each input array. We consider as trajectories for those augmentations the ones
of the corresponding inputs. We note that those do not correspond to exact augmentations for all sorting algorithms, but only
for Insertion Sort. Indeed, running the executor of one of the other algorithms would yield potentially different trajectories
than those we consider. However, since we use the inputs’ trajectories, our regularisation aims at learning to be invariant to

14



Neural Algorithmic Reasoning with Causal Regularisation

He
ap

so
rt

St
ro

ng
ly

 C
on

n.
 C

om
ps

.

Fl
oy

d-
W

ar
sh

al
l

Qu
ick

so
rt

In
se

rti
on

 S
or

t

Bi
na

ry
 S

ea
rc

h

Bu
bb

le
 S

or
t

DA
G 

Sh
or

te
st

 P
at

hs

Ar
tic

ul
at

io
n 

Po
in

ts

To
po

lo
gi

ca
l S

or
t

Br
id

ge
s

M
ST

 K
ru

sk
al

Di
jk

st
ra

M
in

im
um

M
ST

 P
rim BF

S

Be
llm

an
-F

or
d

Ov
er

al
l A

ve
ra

ge

0

20

40

60

80

100

Av
er

ag
e 

sc
or

e 
[%

]

Hint-ReLIC (ours)
Baseline + reversal
Baseline

Figure 7. Per-algorithm comparison of the Triplet-GMPNN baseline (Ibarz et al., 2022), its augmented version which includes pointers’
reversal and our Hint-ReLIC. Error bars represent the standard error of the mean across three random seeds. The final column shows the
average and standard error of the mean performances across the different algorithms.

added nodes that do not contribute to each currently considered step. We contrast until the end of the input’s trajectories the
hints pred h, and parent for Heapsort, and pred h for all the other algorithms.

Searching algorithms (Binary Search, Minimum). We construct general augmented inputs obtained by simply adding
random numbers (different than the searched one) at the end of the input array. For those augmentations, we consider as
trajectories the ones of the corresponding input arrays, whose hints are contrasted until the end of the trajectories themselves.
We remark that running the searching algorithms on such augmentations could potentially lead to ground-truth trajectories
different than those of the inputs. However, since we consider as trajectories for the augmentations the inputs’ ones, the
contrastive objective is still valid, and can be seen as pushing the hint representations to be invariant to messages coming
from nodes that are not involved in the current computation. We run our model by allowing the network to predict the
predecessor of every array’s item, namely pred h, at every time step and use its representation in our regularisation loss (in
other words, we do not run with the static hint elimination of Ibarz et al. (2022)).

F. Experiments
F.1. Additional experiments

Table 3 contains a comprehensive set of experiments, including the performances of the No Hints, Baseline, Baseline +
reversal models, as discussed in the main text. The column Baseline + reversal + contr. + KL represents our Hint-ReLIC
model, which is obtained with the additional inclusion of the contrastive and KL losses (see Equation (3)). Additionally, we
report performances of our model when removing the KL divergence loss (setting α = 0 in Equation (3)), namely Baseline
+ reversal + contr.. By comparing Baseline + reversal + contr. to Baseline + reversal + contr. + KL, we can see that,
even if the KL penalty produces some gain for certain algorithms, it does not represent the component leading to the most
improvement. Finally, Table 3 also reports the scores obtained in the DFS algorithm, which appears to be solved by the
inclusion of the pointers’ reversal. We do not run our contrastive objective on such algorithm as there is no additional
improvement to be made.

Finally, to further evaluate the impact of the pointers’ reversal, we report the performances of Hint-ReLIC without the
inclusion of such additional hints. As can be seen in Table 4, the pointers’ reversal helps stabilise our model, especially
in the sorting algorithms. We remark however how only including those pointers’ reversal into a baseline model does not
produce the performances of our model (see column Baseline + reversal in Table 3 and Figure 7).

15



Neural Algorithmic Reasoning with Causal Regularisation

Table 3. Comparison of performances for different models, with last column representing our proposed method Hint-ReLIC. Table shows
mean and stderr of OOD micro-F1 score after 10,000 training steps, across different seeds.

Alg. No Hints Baseline Baseline Baseline Baseline
+ reversal + reversal + contr. + reversal + contr. + KL

Articulation points 81.97%± 5.08 88.93%± 1.92 91.04%± 0.92 98.91%± 0.34 98.45%± 0.60
Bridges 95.62%± 1.03 93.75%± 2.73 97.70%± 0.34 98.14%± 2.00 99.32%± 0.09
DFS 33.94%± 2.57 39.71%± 1.34 100.00%± 0.00 − −
SCC 57.63%± 0.68 38.53%± 0.45 31.40%± 8.80 75.78%± 1.25 76.79%± 3.04
Topological sort 84.29%± 1.16 87.27%± 2.67 88.83%± 7.29 95.44%± 0.52 96.59%± 0.20

Bellman-Ford 93.26%± 0.04 96.67%± 0.81 95.02%± 0.49 95.26%± 0.92 95.54%± 1.06
BFS 99.89%± 0.03 99.64%± 0.05 99.93%± 0.03 98.41%± 0.39 99.00%± 0.21
DAG Shortest Paths 97.62%± 0.62 88.12%± 5.70 96.61%± 0.61 97.31%± 0.51 98.17%± 0.26
Dijkstra 95.01%± 1.14 93.41%± 1.08 91.50%± 1.85 97.22%± 0.12 97.74%± 0.50
Floyd-Warshall 40.80%± 2.90 46.51%± 1.30 46.28%± 0.80 71.43%± 2.64 72.23%± 4.84
MST-Kruskal 92.28%± 0.82 91.18%± 1.05 89.93%± 0.43 95.18%± 1.29 96.01%± 0.45
MST-Prim 85.33%± 1.21 87.64%± 1.79 86.95%± 2.34 89.23%± 1.23 87.97%± 2.94

Insertion sort 77.29%± 7.42 75.28%± 5.62 87.21%± 2.80 95.06%± 1.33 92.70%± 1.29
Bubble sort 81.32%± 6.50 79.87%± 6.85 80.51%± 9.10 94.09%± 0.80 92.94%± 1.23
Quicksort 71.60%± 2.22 70.53%± 11.59 85.69%± 4.53 90.54%± 2.49 93.30%± 1.96
Heapsort 68.50%± 2.81 32.12%± 5.20 49.13%± 10.35 89.41%± 4.79 95.16%± 1.27

Binary Search 93.21%± 1.10 74.60%± 3.61 50.42%± 8.45 87.50%± 3.62 89.68%± 2.13
Minimum 99.24%± 0.21 97.78%± 0.63 98.43%± 0.01 99.54%± 0.05 99.37%± 0.20

F.2. Implementation details

We use the best hyperparameters of the Triplet-GMPNN (Ibarz et al., 2022) base model, and we only reduce the batch size
to 16. We set the temperature parameter τ to 1e − 1 and the weight of the KL loss α to 1. We implement the similarity
function as ϕ(f(xal

t , it), f(x
ak
t , it)) = ⟨h(f(xal

t ), it), h(f(x
ak
t , it)) ⟩/τ with h a two-layers MLP with hidden and output

dimensions equal to the input one, and ReLU non-linearities.

16



Neural Algorithmic Reasoning with Causal Regularisation

Table 4. Importance of the inclusion of the pointers’ reversal in our Hint-ReLIC. The table shows mean and stderr of the OOD micro-F1

score after 10,000 training steps, across different seeds.

Alg. Hint-ReLIC Hint-ReLIC
(no reversal)

Articulation points 98.45%± 0.60 97.33%± 1.32
Bridges 99.32%± 0.09 99.42%± 0.20
SCC 76.79%± 3.04 81.42%± 2.68
Topological sort 96.59%± 0.20 80.25%± 3.03

Bellman-Ford 95.54%± 1.06 95.27%± 0.97
BFS 99.00%± 0.21 98.23%± 0.17
DAG Shortest Paths 98.17%± 0.26 89.23%± 7.11
Dijkstra 97.74%± 0.50 96.70%± 0.92
Floyd-Warshall 72.23%± 4.84 57.38%± 1.75
MST-Kruskal 96.01%± 0.45 94.53%± 0.40
MST-Prim 87.97%± 2.94 74.24%± 10.85

Insertion sort 92.70%± 1.29 67.80%± 10.86
Bubble sort 92.94%± 1.23 82.36%± 6.88
Quicksort 93.30%± 1.96 74.32%± 10.12
Heapsort 95.16%± 1.27 77.15%± 4.73

Binary Search 89.68%± 2.13 86.65%± 2.38
Minimum 99.37%± 0.20 98.91%± 0.23

17


