
1

Fast Learning Radiance Fields by Shooting Much
Fewer Rays

Wenyuan Zhang, Ruofan Xing, Yunfan Zeng, Yu-Shen Liu, Kanle Shi, Zhizhong Han

Abstract—Learning radiance fields has shown remarkable
results for novel view synthesis. The learning procedure usually
costs lots of time, which motivates the latest methods to speed
up the learning procedure by learning without neural networks
or using more efficient data structures. However, these specially
designed approaches do not work for most of radiance fields based
methods. To resolve this issue, we introduce a general strategy
to speed up the learning procedure for almost all radiance fields
based methods. Our key idea is to reduce the redundancy by
shooting much fewer rays in the multi-view volume rendering
procedure which is the base for almost all radiance fields based
methods. We find that shooting rays at pixels with dramatic color
change not only significantly reduces the training burden but
also barely affects the accuracy of the learned radiance fields. In
addition, we also adaptively subdivide each view into a quadtree
according to the average rendering error in each node in the tree,
which makes us dynamically shoot more rays in more complex
regions with larger rendering error. We evaluate our method
with different radiance fields based methods under the widely
used benchmarks. Experimental results show that our method
achieves comparable accuracy to the state-of-the-art with much
faster training.

Index Terms—Novel view synthesis, Neural rendering, Radiance
fields, Neural networks, Quadtree

I. INTRODUCTION

Learning a scene representation from single or multiple
rendered views is an effective way to understand 3D shapes and
scenes. Recent work has made great progress in reconstructing
3D meshes or point clouds from given 2D images for scene
understanding [3], [4], [5], [6], [7], [8], [9]. However, it is still
a challenge to render realistic views from meshes and point
clouds. As a solution, neural radiance field builds up a bridge
between 2D images and 3D representations because it has the
ability to both learn the implicit representation of 3D scenes
and render novel views from any given perspectives [1], [10],
[11], [12], [13].

Wenyuan Zhang, Ruofan Xing are with the School of Software, Ts-
inghua University, Beijing, China. Yunfan Zeng is with the Department of
Computer Science and Technology, Tsinghua University, Beijing, China. E-
mail: zhangwen21@mails.tsinghua.edu.cn; xingrf20@mails.tsinghua.edu.cn;
zengyf20@mails.tsinghua.edu.cn.

Yu-Shen Liu is with the School of Software, BNRist, Tsinghua University,
Beijing, China. E-mail: liuyushen@tsinghua.edu.cn. Yu-Shen Liu is the
corresponding author.

Kanle Shi is with Kuaishou Technology, Beijing, China. E-mail:
shikanle@kuaishou.com.

Zhizhong Han is with the Department of Computer Science, Wayne State
University, USA. E-mail: h312h@wayne.edu.

This work was supported by National Key R&D Program of China
(2022YFC3800600, 2020YFF0304100), the National Natural Science Foun-
dation of China (62272263, 62072268), and in part by Tsinghua-Kuaishou
Institute of Future Media Data. Project Page is available at https://zparquet.
github.io/Fast-Learning and code is available at https://github.com/zParquet/
Fast-Learning.

A radiance field describes a scene by providing the color
and density at each queried location in the scene. Hence, with
a known camera pose, we can render a radiance field into
an image from a specific view angle using volume rendering,
which emits a ray on each pixel and accumulates the color
and density of sampled points along each ray. Given multiple
images taken from a scene as input, we can learn a radiance
field of the scene by pushing the radiance field to be rendered
as similar to the input images as possible.

Current methods leveraging deep learning models to learn
radiance fields have made significant progress. Radiance fields
have been used in various applications such as novel view syn-
thesis [1], [14], [11], scene editing [15], [16], stylization [17],
[18] and generation [19], [20], [21]. Despite great success, the
unaffordable learning time is still a big limitation suffering
from the state-of-the-art methods.

Current methods speed up the learning of radiance fields
by different strategies [22], [2], [23], [24], [25]. For example,
Plenoxels [2] replaced neural networks by a sparse voxel model
to learn radiance fields, which achieves a speedup of two orders
of magnitude compared to NeRF [1]. TensoRF [24] models the
radiance field of a scene as a 4D tensor, which represents a 3D
voxel grid with per-voxel multi-channel features. Differently,
Instant-NGP [23] introduced multiresolution hash encoding that
permits the use of a smaller network without sacrificing quality,
which also significantly reduces the training cost. Although
these methods can train radiance fields fast, they require
specific architectures, such as sparse voxel grids, discrete tensor
coordinates or hash coding, which are not easy to adapt to
improve the training efficiency of different neural radiance
fields variations.

To resolve this issue, we introduce a general strategy to speed
up the learning of radiance fields, as illustrated in Figure 1.
Our key idea is to shoot much fewer rays to the radiance
fields in volume rendering, which is a universal procedure
during training in different neural radiance fields methods.
Our contribution lies in our founding that we can perceive
a radiance field without dramatically sacrificing accuracy by
just shooting rays at pixels with dramatic color change, which
significantly reduces redundancy of training rays from other
pixels. Moreover, we also adaptively subdivide each view into
a quadtree according to the average rendering error in each
node in the tree, which makes us shoot more rays in more
complex regions with larger rendering error. We evaluate our
method with different radiance fields based methods under
different benchmarks. Experimental results show that our
method achieves comparable accuracy to the state-of-the-art
with much faster training. Our contributions are listed below.

https://zparquet.github.io/Fast-Learning
https://zparquet.github.io/Fast-Learning
https://github.com/zParquet/Fast-Learning
https://github.com/zParquet/Fast-Learning

2

Quadtree
Subdivision

0
500
1000
1500
2000
2500
3000
3500
4000

28

29

30

31

32

33

34

0 4 8 12 16 20 24

#R
ay

s
(×

19
20

0)

PS
N

R

Training Time (hours)

PSNR(NeRF) PSNR(ours)
#Rays (NeRF) #Rays (ours)

Shooting
Rays

Rendering
Error

0

1000

2000

3000

4000

5000

6000

7000

24

26

28

30

32

34

0 5 10 15 20 25 30

#R
ay

s
(×

10
00

0)

PS
N

R

Training Time (minutes)

PSNR(Plen) PSNR(ours)
#Rays (Plen) #Rays (ours)

Radiance Fields Backbone

−𝑔. 𝑡. 2
2

(a) Method Overview (b) Comparing with NeRF (c) Comparing with Plenoxels

Fig. 1. Illustration of our general strategy to learn radiance fields faster by shooting much fewer rays. (a) We use image context based probability distribution
and adaptive quadtree subdivision to determine where to shoot more rays or to reduce rays on training images. Take “lego” in Synthetic dataset [1] for example.
(b) Based on NeRF [1], our method decreases the number of training rays from 3334 to 852, which reduces 30% training time. (c) Based on Plenoxels [2], our
method decreases the number of rays from 12800 to 3218 and reduces 22% training time. Both of our methods achieve a higher accuracy on test views.

• We present a method to speed up the learning of radiance
fields. Our method can generally work for different
radiance field based methods without requiring specific
modifications.

• We justify the founding that the rays starting from different
pixels have different perceiving ability of radiance fields.

• Our method can generalize to different radiance field
based methods, and significantly reduce the training time
under different scenes.

II. RELATED WORK

Neural Radiance Fields. Recently, NeRF [1] has achieved
impressive results in novel view synthesis task and has
attracted lots of follow-up work. Unlike traditional explicit and
discretized volumetric representations, NeRF uses a continuous
5D function to represent a static scene and optimizes a deep
fully-connected neural network to learn this function. It can
render high-resolution photorealistic novel views of objects
and scenes from RGB images captured in natural settings.
The follow-up work resolves the deficiencies, and expands
possible applications of NeRF. NeRF++ [10] extends NeRF to
work for unbounded scenes, while NeRF-W [26] tackles the
learning of radiance fields from unstructured photo collections.
PixelNeRF, etc. [11], [27], [28], [29], [30] are devoted to
solve the distortion problems when input views are sparse
while others [31], [32], [33] remove the requirement for pose
estimation in volume rendering. In addition, there is still
much work to study the solutions of defects and various
applications of NeRF, e.g., mesh reconstruction [12], [34],
[35], relighting [36], [37], dynamic scene modeling [38], [39],
[40], [41] and deformation [42], [43], [44].
Fast NeRF rendering. Although NeRF has achieved amazing
novel view synthesis effects, its training and rendering phase
costs lots of time. Rendering a novel view usually takes about
one minute, which is not conductive to real-time rendering
and interaction. To solve this problem, NSVF [45] uses both
sparse voxel fields and classical techniques like empty space
skipping and early ray termination to speed up the rendering
procedure in NeRF. The idea of decomposition has also been

adopted by many other methods [46], [47], [48]. DeRF [46]
decomposes the scene into sixteen irregular Voronoi cells
to speed up the rendering. FastNeRF [47] splits the same
task into two neural networks that are amenable to caching.
Similarly, KiloNeRF [48] decomposes the scene into thousands
of tiny MLPs arranged on a regular 3D grid, leading to
significantly higher speedups. Moreover, DONeRF [49] uses
another network to predict the intersection of rays and mesh
surfaces. Only 4 sampled points near surface are needed for
neural rendering. AutoInt [50] replaces the need for numerical
integration in NeRF by learning a closed form solution of the
antiderivative.
Fast NeRF convergence. Training NeRF [1] and its vari-
ants [10], [26], [32] usually takes 1 to 2 days, which limits
its further applications. Many recent papers have proposed
methods to improve the training efficiency of radiance fields.
Some methods focus on rendering quality or sparse input
views and bring faster convergence as a side benefit, such as
generalizable pre-training [51], [14], [52], anti-aliasing [53],
[54], external depth [52], [45] and so on. Other methods
apply practical tricks to reduce training redundancy, such as
skipping empty space [23], [13], [22], pruning sample points
on rays [23], [25], [55], simplifying the two-stage coarse to
fine training [54], [24], [25], block decomposition [56] and so
on.

Recent studies [2], [22], [23], [57] adopt voxel grids to
represent neural radiance field without a prior consultation.
In these methods, parameters to be optimized are stored in
voxel grid vertices. Parameters of sampled points are trilinear-
interpolated from its neighboring vertices instead of directly
using its 5D coordinates. Through this way, the amount of
parameters to be optimized are reduced from infinite space to
the same scale as the number of voxel grid vertices. Specifically,
PlenOctrees [57] extracts the NeRF structure into a sparse voxel
grid in which each voxel represents view-dependent color using
spherical harmonic (SH) coefficients. Plenoxels [2] extends
PlenOctrees by additionally assign density parameters to voxel
grids. The color and density of sample points are directly
interpolated from grid vertices instead of predicted by MLP
(Multi-Layer Perceptron). DVGO [22] achieves a similar speed

3

as Plenoxels by splitting color and density into two voxel grids,
where one is feature grid and the other is density grid. The color
is generated by a shallow MLP, using interpolated feature from
feature grid as input, and the density is directly interpolated
from density grid. Latest work Instant-NGP [23] uses hash
encoding to store features in multiresolution voxel grids. The
feature of a sample point is queried, interpolated and then
concatenated from multiresolution features. It achieves both
very fast speed and quite good rendering results in different
tasks.

Although the above methods have made some progress in
terms of NeRF accelerating, they are task-specific and difficult
to migrate to different radiance fields variations because of their
specific and complex architectures. To resolve this issue, we
introduce a general strategy to speed up the learning procedures
for mainstream radiance fields based methods and achieves
much faster training speed and comparable accuracy than the
state-of-the-art works.

III. METHOD

Our method is a general framework of accelerating training
procedure, which can be easily integrated with mainstream
radiance fields based methods. This generalization ability comes
from the way of how we shoot much fewer rays in volume
rendering to perceive radiance fields better, which is a common
procedure in radiance fields based methods. Our method is
formed by two main components: (1) a probability-based
sampling function which samples rays according to the input
image context and (2) an adaptive quadtree subdivision strategy
that learns where to reduce rays in simple regions and where
to increase rays in complex regions. Figure 2 illustrates our
method, which will be detailed in the following.

A. Volume Rendering

NeRF [1] proposed to use a continuous 5D function to
represent a static scene and achieved great results in the view
synthetic task. We use the same differentiable model for volume
rendering as in NeRF, where the color ĉ of a camera ray
is rendered using 3D points sampled along the ray by the
discretized volume rendering, defined by

ĉ =

N∑
j=1

Tj(1− exp(−σjδj))cj

Tj = exp(−
j−1∑
t=1

σtδt),

(1)

where cj , σj and Tj represent the color, the opacity and the
transmittance of the ray at j-th sampled point, respectively,
δj indicates the distance between j-th and (j + 1)-th adjacent
sampled points. This function for calculating ĉ from the set
of (cj , σj) values is trivially differentiable and reduces to
traditional alpha compositing with alpha values αj = 1 −
exp(−σjδj).

B. Ray Sampling Probability

Specifically, given a 3D point x = (x, y, z) ∈ R3 and a
related viewing direction d = (θ, ϕ) ∈ R2, a neural network
FΘ : (x,d) 7→ (c, σ) maps a 5D point (x,d) to an emitted
color c = (r, g, b) and a volume density σ. The parameters of
the network are optimized by minimizing the pixel-level color
error obtained by volume rendering.

During training, an amount of 5D points are sampled on
each ray rki ∈ Ri, where rki represents the k-th ray from the
i-th training image Ii, and the set Ri of the rays is generated
from Ii ∈ I, i = 1, 2...N , where N is the number of images
and I is the set of all the training images. Volume rendering
VΘ : rki 7→ ĉki is then used for rendering per-pixel color ĉki
using color and density predicted from the sampled 5D points
along rki . The object function is to minimize the following
volume rendering loss from all the emitted rays

L =
1

NM

∑
Ii∈I

∑
rki ∈Ri

||VΘ(r
k
i)− cki ||22, (2)

where cki is the pixel’s ground truth color and M is the size
of Ri, that is, the amount of emitted rays in each image Ii.

With regard to how to obtain Ri of all the training images,
almost all radiance fields based methods randomly select M
pixels in the image Ii, and then emit M rays from the selected
pixels along the viewing direction. Given a pixel (u, v), we use
ri(u, v) to represent a ray starting from the pixel and the ray
orientation is consistent with the viewing direction of image Ii.
In this way, the sampled ray positions obey uniform distribution
on the training images:

ri(u, v) ∼ U(Ii), u ∈ [0, Hi], v ∈ [0,Wi], (3)

where Hi and Wi are the height and width of image Ii,
respectively.

Although such distribution is straight and proved to be
effective in practice [1], [10], there are still some potential
problems. (1) The uniformly distributed rays cannot well
capture the non-uniformly distributed information. In practice,
there are many areas of continuous pixels with the similar color
on images, which we call trivial areas, such as the background
of synthetic images, the sky in outdoor scene images, the wall
in indoor scene images. Pixels in such kinds of trivial areas
usually contain less information due to semantic consistency
with their neighborhood pixels.

As a result, the rendering error of the rays shot from trivial
areas can converge fast, because the density of most sampled
points along the rays is close to 0. Therefore, we only need to
shoot fewer rays in the trivial areas where the color changes
slightly to perceive the radiance fields. (2) In contrast, pixels
in the nontrivial areas where color changes greatly contain
more information, so more rays are required to capture the
detailed information and learn how to distinguish these pixels’
colors from its neighboring ones.

Figure 3 illustrates an example. We observe that the learning
of radiance fields in trivial areas (highlighted by green circles)
converges in a very short time, while it takes a long time to
finely render the nontrivial areas (highlighted by red circles)
with a great change in colors. Therefore, there is no need to

4

(a) Context based
Probability Distribution

(b) Initial
Ray Sampling

Input View

(d) QuadTree Subdivision

MLP

‖ − 𝑔. 𝑡 ‖2
2

Volume
Rendering

(c) Radiance Fields Backbone

(𝒄, 𝜎)

Shooting
Rays

Ray Sampling

…

Rendering
Error

Fig. 2. Overview of our method. Given an input view, we first (a) calculate a probability distribution according to the context around each pixel. Then we (b)
use it as a prior probability distribution to sample pixels from which we shoot rays. These rays are fed into (c) a radiance fields backbone network and an
average rendering loss is gathered for quadtree leaf nodes. Then (d) an adaptive quadtree subdivision algorithm is applied on each leaf node according to its
average rendering loss to adjust the distribution of sampling rays.

(a) NeRF (15s) (b) NeRF (1min) (c) NeRF (~8h) (d) Plenoxels (5s) (e) Plenoxels (4min) (f) Plenoxels (~1.2h)

Fig. 3. Comparison of convergence speed in different areas. (a) - (c) is the training process of NeRF [1] on the synthetic dataset. The blank background area
converges rapidly in 1 minute, while the lego building block area doesn’t become clear until about 8 hours of training. (d) - (f) is the training process of
Plenoxels [2] on the forward-facing dataset. Similarly, the wall of the room becomes the same color in 4 minutes, while the wires on the table cannot be
distinguished until 1.2 hours.

keep shooting a large number of rays at the trivial areas for
training. In contrast, it makes more sense to shoot more rays
in nontrivial areas to perceive the radiance field. Based on the
above observation, we propose two strategies to optimize ray
distribution on input images. The first one is to calculate a
prior probability distribution based on the image context, and
the second one is to apply an adaptive quadtree subdivision
algorithm to dynamically adjust ray distribution.

C. Context based Probability Distribution

In order to identify the trivial and nontrivial areas in an image,
we introduce the image context to capture the area importance
of this image, which will be used to non-uniformly sample rays
on the image. Specially, we use a center surround mechanism
for computing image context, because it has the intuitive appeal
of being able to identify areas that are different from their
surrounding context. Intuitively, a pixel, that has the same
color with its neighbors, has only a few context. In contrast,
a pixel, whose color is quite different from its surrounding
pixels, has more context. Therefore, we use the color variation
of pixels relative to their surroundings to quantitatively identify
the image context.

Given an input view before training, we design a probability
density function g(u, v), which maps a pixel (u, v) position
into a prior probability, indicating how likely a ray is sampled

at this position. We define g as the standard variation of the
color c of pixel (u, v) and its 8 one-order neighboring pixels,

g(u, v) = std(c(u, v)) =

√
1

9

∑
x,y

[c(x, y)− c̄]2,

x ∈ {u− 1, u, u+ 1}, y ∈ {v − 1, v, v + 1}.
(4)

where c̄ is the mean color among the center pixel (u, v) and
its 8 adjacent pixels.

In 2D image space, pixels with high values of g usually cor-
respond to the areas where color changes greatly. Accordingly,
in 3D space, these pixels usually correspond to the positions
where density changes greatly, and the positions are often
on the boundary surfaces of 3D objects. How to accurately
detect the surface of objects has proved to be significant to
3D reconstruction and novel views synthesis [12], [34], [35],
and our image context based probability distribution function
naturally helps to estimate where surfaces are located.

To balance the difference between maximum and minimum
values of g, we utilize a normalization operation on g below

g′(u, v) =
clamp(s,max(g(u, v)))

max(g(u, v))
, (5)

where we typically define threshold s = 0.01×mean(g(u, v)).
Values less than s will be clamped to s to avoid sampling too
few rays at the corresponding positions. After normalization,

5

g′(u, v) is distributed in interval [0, 1]. We use the distribution
g′ instead of uniform distribution to generate rays for neural
radiance field training, i.e.

ri(u, v) ∼ g′(u, v), u ∈ [0, Hi], v ∈ [0,Wi]. (6)

where ri(u, v) is the ray emitted from pixel (u, v) on i-th
image.

Compared with the uniform distribution, our probability
distribution takes into account the context information of the
image. We sample more rays in areas with large probability and
sample less rays in the areas with small probability. Figures 5,
6, 7 provide several visualization examples of our sampling
strategy. In the lines of “Sampled Rays Distribution”, we sample
50% rays according to the context based probability distribution
and randomly sample the other 50% rays, where each red point
represents a sampled ray. It can be observed that more rays
are distributed in the areas with complex shapes and colors,
i.e. nontrivial areas, where color changes a lot. On the other
hand, fewer rays are distributed in trivial areas, such as the
white background, the walls and the floors.

D. Adaptive QuadTree Subdivision

Ray Sampling

Rendering Error

Training one
epoch

Quantree Subdivision

Ray Sampling

Rendering Error

Training one
epoch

Quantree Subdivision

Ray Sampling

Rendering Error

Training one
epoch

Quantree Subdivision

Ray Sampling

Rendering Error

Training one
epoch

Quantree Subdivision

Ray Sampling

Rendering Error

Training one
epoch

Quantree Subdivision

Fig. 4. A demonstration of the overall procedure of ray sampling, training,
obtaining rendering error and quadtree subdivision.

Based on the prior probability distribution on images, we
further utilize an adaptive quadtree subdivision to adjust the
position of shooting rays and to reduce the number of training
rays. We firstly construct a quadtree on each input view, in
which each leaf node represents one block of the image. As
the training procedure goes on, we constantly traverse every
leaf node. For each node F , we first sample and shoot rays
on F according to the prior probability distribution, and then
calculate the average rendering error eF over all the emitted
rays ri ∈ F by

eF = meanri∈F (VΘ(ri)− ci), (7)

where ci is the ground truth color of the pixel emitting ri. If eF
is smaller than the pre-defined threshold a, we conclude that
the training in this block has converged well, so the leaf node
F is marked to be left aside. Only a few rays will be sampled
on F and it won’t be subdivided again anymore. Otherwise,

if the average rendering error eF is larger than threshold a,
we conclude the rendered color is still far from the ground
truth pixel color, which indicates that further training is still
needed, so this node will be subdivided into four smaller leaf
nodes. The selection of threshold a will be discussed in detail
in ablation study in Section IV-E.

Let Mi denote the number of rays emitted from image Ii.
Before subdivision, rays are randomly selected on image Ii at
the times of total number of pixels, so Mi = Hi ×Wi at the
beginning of training, where Hi and Wi are the height and
width of Ii. Let Ql

1 and Ql
2 denote the number of unmarked

leaf nodes and marked leaf nodes separately, and l denote the
times of subdivision. In an unmarked node, the number of
sampled rays is equal to the number of pixels of the node,
while in a marked node, only a few rays are sampled. Then we
get the total number of emitted rays after l times of quadtree
subdivision:

M l
i = Ql

1 ×
Hi

2l
× Wi

2l
+Ql

2 × n0, (8)

where n0 is a constant number of rays sampled on marked
leaf nodes (we typically set n0 = 10 in practice). With the
increase of subdivision times, the growth rate of Ql

2 is far lower
than that of Ql

1. As a result, much fewer rays are sampled on
marked leaf nodes, so the total amount of rays to be trained
will gradually decrease. We draw a flow chart in Figure 4 to
illustrate the overall process of ray sampling, training, rendering
error and quadtree subdivision as below. This figure will help
clarify the sampling and quadtree subdivision procedure.

We noticed that iMap [58] similarly uses rendering error
as sampling guidance. Here we clarify the main differences
between iMap and our sampling strategies. (1) The applications
of rendering loss are different. iMap uses the rendering loss
distribution on image blocks to decide how many points should
be sampled on each block, while we use the rendering loss on
each leaf node to decide whether this node should be subdivided
into 4 child nodes. (2) The number of sampled points and image
blocks are different. In our method, the number of sampled
points in each leaf node is identical, but the number and area
of the image blocks (i.e. leaf nodes) changes during training.
In contrast, iMap samples different numbers of rays according
to a render loss based distribution in each one of the same
size blocks. (3) The sampling strategies in image blocks are
different. In each image block, iMap uniformly samples points
for rendering, while we sample points according to the image
context. More points are sampled in the nontrivial areas where
color changes a lot, while fewer points are sampled in the trivial
areas where color changes slightly. Our sampling strategy helps
to capture the detailed information in the nontrivial areas and
reduce the training burden in the trivial areas. The ablation
study (Table VIII: “Ours w/o prob”) further demonstrates that
our context-based sampling method is efficient and effective. In
conclusion, although rendering loss is both used in our method
and iMap, there are essential differences between these two
methods on the applications of rendering loss, the number and
sampling strategies of points, and the problems to be solved.

Figures 5, 6, 7 demonstrate the process of quadtree subdivi-
sion. We select several scenes from different datasets and select

6

quadtree depths of 1, 3, 5, 7 for display. In each scene, red
images demonstrate the sampled rays distribution and each red
point represents a sampled ray. Green images demonstrate the
rendering error distribution and the intensity of green represents
the value of average rendering error of quadtree nodes. Dark
green represents large rendering error on the node while light
green represents small rendering error. The distribution of
quadtree leaf nodes and rendering error proves the effectiveness
of our subdivision strategy. The chosen subdivided leaf nodes
are always around the nontrivial areas, so the distribution of leaf
nodes will approach the details of the scene or the silhouette of
the object. With the increase of subdivision, more leaf nodes
are marked and sampled rays are more concentrated in the
nontrivial areas, which lead the deep network to learn more
details of the scene.

Section III-C and III-D respectively provide the prior and
posterior probability distribution for training rays on images.
Prior distribution guides how rays are sampled on each leaf
nodes, and posterior distribution determines which redundant
blocks are to be discarded. Our method of sampling rays not
only improves the rendering effect but also reduces the training
time. It should be noted that our method is only available for
the training stage. During test stage, the number of the rays to
be rendered always equals the number of pixels of the image
and can not be reduced, so the rendering procedure can not be
accelerated through quadtree subdivision or adaptive sampling.

E. Implementation Details

All-Pixel Sampling. To avoid under-fitting, we randomly
sample rays from all the pixels in the image instead of using
quadtrees for sampling at the last epoch. The color and density
in 3D space construct a continuous radiance field. The field
will be continuously updated when optimizing the network
parameters. Even if the training on some area of an image has
converged, the corresponding radiance field of the area may
change slowly and slightly in account of the changing of its
neighborhood fields. Therefore, the rendered color on marked
leaf nodes may gradually deviate from the ground truth color.
To avoid this problem, when it comes to the last epoch of
training, we just randomly sample rays from the whole image
instead of using quadtrees for sampling, where the number of
sampled rays is equal to the total number of pixels. Through
this way, rays on the marked leaf nodes are trained again at
the last epoch to finetune the radiance field. Because the rays
pruned by quadtree subdivision have reached the local optimum
before, they can converge very quickly at the last epoch of
finetuning. We find that the operation of all-pixel sampling
helps to further improve the rendering accuracy, which will be
demonstrated in ablation study below.
Epoch-based Subdivision. The subdivision of quadtrees starts
only when loss calculation of all the leaf nodes is complete (i.e.
at the end of each epoch). If the quadtrees are subdivided during
an epoch of training, it will be difficult to count the reduction
proportion of sampled rays and to control the subdividing
process. Following Plenoxels [2], we also generate training
rays for all training views before each epoch starts, unlike
NeRF [1] selecting only one view and sampling certain rays

from the view at every iteration. At the end of each epoch,
we collect the rendering error of rays sampled from each leaf
node, which will guide the quadtree subdivision. In this way,
we are able to synchronously subdivide all the quadtrees after
each epoch ends.
QuadTree Initialization. In practice, we initially subdivide
the quadtrees into 2 or 3 depths at the begin of training. This
helps our method to distinguish the trivial and nontrivial areas
faster among the quadtree leaf nodes.

IV. EXPERIMENTS

A. Experimental Settings
Dataset. We evaluate our method quantitatively and quali-
tatively under four widely used benchmarks for novel view
synthesis, including Realistic Synthetic 360◦ [1], Light Field
(LF) [61], Local Light Field Fusion (LLFF) [62], Tanks and
Temples (T&T) [60], Real-World 360◦ [54] and one widely
used benchmark for multi-view reconstruction, DTU [63].
Synthetic dataset contains pathtraced images of 8 objects
that exhibit complex geometry and realistic non-Lambertian
materials. LF dataset is formed by hand-held capturing or a
circular boom that rotates around a fixed object. Following
NeRF++ [10] settings, we use 4 scenes from the LF dataset:
Africa, Basket, Ship and Torch. LLFF dataset consists of 8
complex real-world scenes captured with roughly forward-
facing images. T&T dataset consists of hand-held 360° cap-
tures of large-scale scenes. In our experiments we use two
benchmarks of T&T dataset following the default settings of
different baselines. The first one contains four scenes with
real-world background, including M60, Playground, Train and
Truck. The other one contains five scenes with transparent
background, including Barn, Caterpillar, Family, Ignatius and
Truck. And Real-World 360° dataset consists of 9 indoor and
outdoor scenes, each containing a complex central object or
area and a detailed background. Additionally, DTU dataset
contains 15 scenes with a wide variety of materials, appearance
and geometry, including challenging cases for reconstruction
algorithms, such as non-Lambertian surfaces and thin structures.
Baselines. To demonstrate our method as a general framework
that can work for almost all radiance field based methods,
we apply our method to six representative methods, including
NeRF [1], NeRF++ [10], Plenoxels [2], Instant-NGP [23],
Mip-NeRF 360 [54] and NeuS [12]. Specially, NeRF is the
pioneer of neural radiance fields, NeRF++ improves NeRF
to represent large-scale unbounded 3D scenes, Plenoxels and
Instant-NGP is the latest work on speeding up the learning of
radiance fields, Mip-NeRF 360 is the latest work on rendering
unbounded scenes and NeuS is a widely adopted method
which combines radiance field and neural implicit surfaces to
reconstruct multi-view surfaces. Moreover, for fair comparison
with Plenoxels, we report the results without the octree pruning
in 3D space, since the octree pruning affects the number of
rays. We report our improvement in terms of both speed and
accuracy. The rendering accuracy is evaluated by PSNR, SSIM
and LPIPS, which have been widely adopted by most radiance
fields based methods (e.g. [2]). Additionally, for DTU dataset,
We use Chamfer Distance (CD) [12] to evaluate the quality of
reconstructed meshes.

7

Depth-1 Depth-3 Depth-5 Depth-7 Depth-1 Depth-3 Depth-5 Depth-7

Sampled
Rays

Distribution

Rendering
Error

Distribution

Sampled
Rays

Distribution

Rendering
Error

Distribution

Fig. 5. Visualization of sampled rays distribution and rendering error distribution at different quadtree depths. We select “Lego”, “Ship”, “Drums”, “Materials”
in Synthetic Dataset [1] as examples. In the lines of “Sampled Rays Distribution”, each red point represents a sampled ray and in the lines of “Rendering Error
Distribution”, the intensity of green represents the value of average rendering error of quadtree nodes. Dark green represents large rendering error of the node,
while light green represents small rendering error.

Training details. During training, the quadtree is initialized
to 2 depths and subdivided every three epochs with a threshold
of 1e-3. On each leaf node, 50% rays are sampled according to
the prior distribution and other 50% rays are randomly sampled.
The parameter of random sampling ratio will be discussed in
detail in ablation study. Additionally, we randomly sample rays
across the whole image at the last epoch to finetune the radiance
field. All of the training time of experiments is counted on a
single NVIDIA 3090Ti GPU.

B. Results on Synthetic Dataset

TABLE I
QUANTITATIVE RESULTS ON REALISTIC SYNTHETIC 360◦ DATASET.

RESULTS ARE AVERAGED OVER THE 8 SYNTHETIC SCENES.

Methods Training Time Reduction PSNR ↑ SSIM ↑ LPIPS ↓

NeRF [1] 22.0h 23% 31.14 0.950 0.067
Ours(NeRF) 16.9h 31.21 0.951 0.066

Plenoxels [2] 25.6min 23% 30.87 0.959 0.051
Ours(Plenoxels) 19.6min 30.84 0.960 0.054

Instant [23] 264s 18% 32.04 0.961 0.045
Ours(Instant) 217s 32.44 0.962 0.043

Table I shows the quantitative comparisons with NeRF [1],
Plenoxels [2] and Instant-NGP [23] under Realistic Synthetic
360◦ dataset. We report our results upon NeRF, Plenoxels and
Instant-NGP, as denoted by “Ours(NeRF)”, “Ours(Plenoxels)”
and “Ours(Instant)”, respectively. In Table I, the bold items
indicate better results in the numerical comparison, which is
the same setting as used below. Our method can save 23%
training time (from 22 hours to 16.9 hours) for NeRF and 23%
training time (from 25.6 minutes to 19.6 minutes) for Plenoxels
on synthetic dataset, where we achieve comparable results to
Plenoxels. Althogh Instant-NGP is the state-of-the-art work on
accelerating NeRF training and is able to train a radiance field
in less than 5 minues, our method upon Instant-NGP further

saves 18% training time (from 264s to 217s) and achieves
better performance than Instant-NGP. Figure 8 provides some
qualitative results between NeRF and our method, where more
details are demonstrated in our results. We compare with NeRF
in two training settings in the visualization results. In the first
setting, we train NeRF in the same time as ours, and in the
second setting, we train NeRF in the same epochs as ours, as
denoted by “NeRF(Time)” and “NeRF(Epoch)”, respectively.
The two settings of other methods below are the same as those
of NeRF.

We noticed that our numerical results are merely a little bit
better than baselines in Table I, III, V. However, the marginal
improvements are caused by the optimization of NeRF. A
remarkable phenomenon of NeRF-based methods is that the
accuracy increases rapidly at the beginning of training, while
increasing extremely slowly after some epochs. For example,
PSNR of NeRF in synthetic dataset increases less than 1.0 at the
last 5 hours, which is demonstrated in (b) and (c) of Figure 1.
Additionally, we provide some qualitative results between our
method and baseline methods, in which our method shows
obvious advantages on the scene details, as shown in Figure 8
- 11 in the paper.

We also conduct an experiment to illustrate the above
phenomenon. We train “Plenoxels” and “Ours(Plenoxels)” on
the “Lego” scene from synthetic dataset for 10 epochs. We
report the PSNR and time after each one of the first 10 epochs.
The initial depth of quadtrees is 3 and the quadtrees are
subdivided every 2 epochs (same as the settings in paper).
The PSNR (the larger the better) and the training time of
some epochs are listed in Table II. As shown in the table, at
the beginning of training, the PSNR of both our method and
Plenoxels increases rapidly after the first epoch. Benefiting
from our context-based probability sampling strategy, we
achieved larger PSNR improvements over Plenoxels after each
epoch. Additionally, as the training progresses, our PSNR
improvements over Plenoxels become smaller. It is because

8

Sampled
Rays

Distribution

Rendering
Error

Distribution

Sampled
Rays

Distribution

Rendering
Error

Distribution

Depth-1 Depth-3 Depth-5 Depth-7

Fig. 6. Visualization of sampled rays distribution and rendering error distribution at different quadtree depths. We select “horns” and “room” in LLFF
Dataset [59] as examples. The meanings of different colors of the images are the same as Figure 5.

Depth-1 Depth-3 Depth-5 Depth-7

Sampled
Rays

Distribution

Rendering
Error

Distribution

Sampled
Rays

Distribution

Rendering
Error

Distribution

Fig. 7. Visualization of sampled rays distribution and rendering error distribution at different quadtree depths. We select “M60” and “Playground” in Tanks
And Temples Dataset [60] as examples. The meanings of different colors of the images are the same as Figure 5.

TABLE II
THE COMPARISON OF PSNR AND TRAINING TIME BETWEEN PLENOXELS [2] AND OUR METHOD AFTER EACH EPOCH.

Epoch 0 1 2 3 4 5 6 7 8 9

PSNR ↑
Plenoxels [2] 10.427 30.198 31.218 31.696 31.965 32.140 32.245 32.327 32.373 32.405

Ours 10.427 30.336 31.317 31.755 32.010 32.201 32.315 32.375 32.449 32.464
Improvements 0.000 +0.138 +0.099 +0.059 +0.045 +0.061 +0.070 +0.048 +0.076 +0.059

Time(s) ↓
Plenoxels [2] 0 176.08 325.85 473.6 619.34 764.34 909.64 1053.4 1197.67 1342.52

Ours 0 185.65 346.21 465.69 590.4 682.89 789.62 875.16 976.27 1049.91
Improvements 0.00 +9.57 +20.36 -7.91 -28.94 -81.45 -120.02 -178.24 -221.40 -292.61

9

GT NeRF(Time) NeRF(Epoch) Ours

Fig. 8. Qualitative comparison of our method vs. NeRF on the Realisitic
Synthetic 360◦ dataset [1].

that the bottleneck capacity of Plenoxels restricts the upper
limit of PSNR. At the same time, our training speed shows
significant improvements because of the quadtree subdivision
strategy (the tiny increase of training time at the beginning is
because of sampling and subdividing). Therefore, these results
demonstrate that our method can achieve a balance of efficiency
and effectiveness, i.e. better performance improvements at the
early training stages or larger training speed improvements at
the later training stages.

C. Results on Real-World Dataset

TABLE III
QUANTITATIVE RESULTS ON FORWARD-FACING DATASET. RESULTS ARE

AVERAGED OVER THE 8 SCENES.

Methods Training Time Reduction PSNR ↑ SSIM ↑ LPIPS ↓

NeRF [1] 4.4h 16% 25.85 0.782 0.288
Ours(NeRF) 3.8h 25.79 0.784 0.294

Plenoxels [2] 66.6min 39% 24.60 0.768 0.316
Ours(Plenoxels) 40.4min 25.12 0.767 0.322

Instant [23] 350s 15% 26.03 0.810 0.265
Ours(Instant) 296s 26.39 0.812 0.264

GT Plenoxels OursLLFF Dataset

Fig. 9. Qualitative comparison of our method vs. Plenoxels on the LLFF
dataset [62]. Take cracks in walls, spots in flower beds for examples.

We then evaluate our method under Forward-Facing (LLFF)
dataset by comparing with NeRF, Plenoxels and Instant-NGP.
As shown in Table III, with the help of our framework, we
can speed up NeRF by 16% (from 4.4 hours to 3.8 hours),

TABLE IV
QUANTITATIVE RESULTS ON LIGHT FIELD DATASET. RESULTS ARE

AVERAGED OVER THE 5 SCENES.

Methods Training Time PSNR ↑ SSIM ↑ LPIPS ↓

NeRF++(Time) 6.7h 24.59 0.798 0.331
NeRF++(Epoch) 7.6h 25.14 0.811 0.318

Ours(NeRF++) 6.7h 25.06 0.807 0.324

TABLE V
QUANTITATIVE RESULTS ON TANKS AND TEMPLES DATASET[60]. RESULTS

ARE AVERAGED OVER ALL THE SCENES.

Methods Training Time Reduction PSNR ↑ SSIM ↑ LPIPS ↓

NeRF++ [10] 7.7h 18% 20.42 0.659 0.417
Ours(NeRF++) 6.3h 20.39 0.663 0.421

Plenoxels [2] 41.0min 20% 19.88 0.669 0.473
Ours(Plenoxels) 32.7min 19.98 0.671 0.469

Instant [23] 354s 19% 27.91 0.832 0.141
Ours(Instant) 285s 28.25 0.837 0.132

Plenoxels by 39% (from 66.6 minutes to 40.4 minutes) and
Instant-NGP by 15% (from 350s to 296s), respectively. Figure 9
provides some qualitative results between Plenoxels and our
method. The results show that our method can predict more
details such as the office chair leg, the cracks of the walls, the
spots on the flower beds and the gap between leaves in the
novel synthetic views.

In Table IV, we further report numerical comparison with
NeRF++ under Light Field (LF) dataset. Note that almost all
follow-up approaches [59], [64], [65] reporting results under
LF dataset use different dataset splits, thus their results are
not comparable with ours. Hence, we only list the results
of NeRF++ and ours on this dataset. We report the result
of NeRF++ by training it for the same time or the same
number of epochs as ours, as denoted by “NeRF++(Time)”
and “NeRF++(Epoch)”, respectively. The settings of “Time”
and “Epoch” are the same as the ones in Figure 8. With the
same training time, our method achieves better accuracy than
NeRF++, while NeRF++ achieves comparable results to ours
with more time cost. We further highlight our advantage in
visual comparison in Figure 10. Our method can reveal more
fine texture and structures in novel views.

TABLE VI
QUANTITATIVE RESULTS ON REAL-WORLD 360◦ DATASET[54]. RESULTS

ARE AVERAGED OVER THE 7 SCENES.

Methods Training Time Reduction PSNR ↑ SSIM ↑ LPIPS ↓

Mip-NeRF 360 [54] 41.5h 23% 26.45 0.785 0.242
Ours(Mip-NeRF 360) 31.9h 26.89 0.787 0.240

TABLE VII
QUANTITATIVE RESULTS ON DTU DATASET[63]. RESULTS ARE AVERAGED

OVER THE 15 SCENES.

Methods Training Time Reduction PSNR ↑ CD ↓

NeuS [12] 9.2h 21% 31.97 0.87
Ours(NeuS) 7.3h 33.41 0.73

10

GT NeRF++(Time) NeRF++(Epoch) OursLight Field Dataset

Fig. 10. Qualitative comparison of our method vs. NeRF++ [10] on the Light Field dataset [61]. Comparing with NeRF++, our method is faster and captures
the scene details well, taking reticular formation of basket, patterns on giraffes for examples.

NeRF++(Time) NeRF++(Epoch) OursGround Truth

Fig. 11. Qualitative comparison of our method vs. NeRF++ [10] on the Tanks and Temples dataset [60]. Comparing with NeRF++, our method achieves both
faster speed and better visual performance, taking gear of tank, exhaust fan of train for examples.

11

Instant-NGP Ours Ground Truth

Fig. 12. Qualitative comparison of our method vs. Instant-NGP [23] on the Tanks and Temples dataset [60]. Our method further improves the training speed
and the performance of Instat-NGP, which is the state-of-the-art among NeRF accelerating methods.

Ours Ground TruthMip-NeRF 360

Fig. 13. Qualitative comparison of our method vs. Mip-NeRF 360 [54] on the Real-World 360◦ [54]. Our method improves both the training speed and the
performance of Mip-NeRF 360, which is the state-of-the-art among Realistic 360◦ rendering methods.

We report numerical comparisons under Tanks and Temples
dataset in Table V, which further demonstrates that our method
is a general framework for most radiance fields based methods.
Our methods upon NeRF++, Plenoxels and Instant-NGP can
significantly speed up their training without scarifying accuracy.
Figure 12 and Figure 11 are visual comparison with NeRF++
and Instant-NGP and our method under T&T dataset. Note
that we use the benchmark of 4 scenes with real background
for NeRF++ and Plenoxels while use the benchmark of 5
scenes with transparent background for Instant-NGP, following
the same settings of the baselines. The results show that our
method can show more details with fewer artifacts.

We then evaluate our method by comparing with Mip-NeRF
360 [54] under Real-World 360° dataset [54], as reported
in Table VI. Mip-NeRF 360 is the state-of-the-art work on
rendering unbounded scenes and our method further speeds up
Mip-NeRF 360 by 23% (from 41.5h to 31.9h) and achieves

better numerical performance. Figure 13 provides some visual
examples between our method and Mip-NeRF 360, where our
method shows significant advantages in scene details, such as
the windows in the distance.

D. Results on Multi-view-stereo Dataset

In Sections IV-B and IV-C, we evaluate our method by
comparing with several representative methods which focus on
novel view synthesis. Our method is able to reduce the training
time from 15% to 40% and achieve comparable numerical
results under different baselines. However, our method is not
limited for novel view synthesis task. To further demonstrate
that our method is a general strategy for almost all radiance
fields based methods, we integrate our method with NeuS [12],
which combines radiance fields and neural implicit surfaces
and is designed for multi-view reconstruction task. We evaluate
our method under all the 15 scenes on DTU dataset [63] and

12

Scan24
Reference Image

Scan37
Reference Image

R
en

de
ri

ng
 V

ie
w

R
ec

on
st

ru
ct

ed
 M

es
h

R
en

de
ri

ng
 V

ie
w

R
ec

on
st

ru
ct

ed
 M

es
h

NeuS Ours

Fig. 14. Qualitative comparison of our method vs. NeuS [12] on DTU dataset [63]. For each scene, we display the reference view, rendering view and the
reconstructed mesh between our method and NeuS. The results show that our method can improve both the rendering quality and the reconstruction details of
NeuS.

report the quality of rendering views (evaluated by PSNR) and
reconstructed meshes (evaluated by CD) in Table VII. The
results show that our methods reduce 21% training time (from
9.2h to 7.3h) for NeuS and achieves better performance on
both rendering views and reconstructed meshes. Figure 14
provides visual comparison between our method and NeuS.
With the help of probability sampling and quadtree subdivision,
our method is able to render high-fidelity images with smooth
clean surfaces, taking scissors handles in scan24 and roofs in
scan37 as examples.

E. Ablation Study

Ratio of random sampling. We find that adding a certain
ratio of random sampling in probability distribution sampling
is helpful to learn the radiance field better. It is because that
the context based probability distribution may ignore some
trivial but important areas on the image, such as the areas
of smooth surfaces. Moreover, random sampling helps to pay
more attention to the trivial areas, which usually have small
color change, so this strategy intuitively plays the same role as
threshold s in Eq. (5). In this part of ablation study, we freeze

34

36

38

40

42

44

46

48

15

17

19

21

23

25

27

20% 40% 60% 65% 70% 80% 90%

PS
N

R

Random Sampling Ratio

PSNR Time

0

10

20

30

40

50

60

70

15

17

19

21

23

25

27

T
ra

in
in

g
T

im
e

(m
in

ut
es

)

Quadtree Subdivision Threshold

PSNR Time

(a) Ablation on
Random Sampling Ratio

(b) Ablation on Quadtree
Subdivision Threshold

Fig. 15. Ablation study on random sampling ratio and quadtree subdivision
thresholds.

quadtree settings and report the correlation between PSNR,
training time and random sampling ratio on Forward-Facing
dataset [62] based on Plenoxels [2]. The metrics are averaged
across the eight scenes of the dataset, as shown in Figure 15
(a). With the increase of ratio from 20% to 90%, a peak value
occurs to PSNR, while the training time keeps decreasing. This

13

(a) Ground Truth (b) Ours (All)
PSNR: 25.40

(c) Ours (w/o prob)
PSNR: 24.33

(d) Ours (w/o allPixel)
PSNR: 23.30

Fig. 16. Qualitative comparison of ablation study on each module of our
method.

TABLE VIII
ABLATION STUDY ON VARIOUS COMPONENTS OF OUR METHOD.

Methods Training Time PSNR ↑

Plenoxels 66.6min 24.60
Ours 40.4min 25.12

Ours w/o quadtree 71.5min 25.31
Ours w/o prob 38.4min 23.97

Ours w/o allPixel 37.8min 23.01
Ours w/o random 42.8min 23.39

is because that with the increase of random sampling ratio, our
method samples more rays in trivial areas, which (1) changes
the ability of learning details, leading to a wave of PSNR, and
(2) results in leaf nodes being marked more easily, leading to a
decline of training time. The results are not sensitive with large
random sampling ratio (>60%) while suffer from low random
sampling ratio. It is because that low random sampling ratio
leads to a lack of learning in trivial areas, while the metrics do
not reflect subtle differences on the ratios with high random
sampling ratio.
Threshold of Quadtree Subdivision. The threshold a intro-
duced in Section III-D is an important hyper-parameter in our
experiments. The leaf node with average rendering error larger
than a will be subdivided into four smaller leaf nodes, while
the leaf node with error smaller than a will be marked and will
not be subdivided anymore. Therefore, the threshold a greatly
affects the training speed and effect. In this part of ablation
study, we freeze the random sampling ratio as 65% and report
the correlation between subdivision threshold a, PSNR and
training time on the same dataset as the previous ablation
experiment based on Plenoxels [2], as shown in Figure 15
(b). With the increasing of the threshold from 0.0001 to 0.04,
the training time keeps decreasing, because larger threshold
results in fewer leaf nodes to be subdivided and fewer rays to
be trained. However, the metrics are not monotonous with the
threshold. If the threshold is too small, most leaf nodes are
subdivided, so the rays are sampled on very small leaf nodes,
which is similar to random sampling, losing the advantage of
our context-based sampling strategy. On the other hand, if the
threshold is too large, a leaf node may be marked to be not
subdivided anymore although the training on this node has not
converged yet.
Metrics of context based probability distribution. In Eq. 4,

we propose using the standard deviation of the color in 3× 3
patch to represent the probability density of a given pixel. In
this part, we compare the performance of different sizes of
patches and different kinds of metrics. We first change the
receptive field from 3× 3 patch to 5× 5, 7× 7, 9× 9 and then
change the metric method from standard deviation to variation
and entropy. The formulation of variation and entropy are listed
below, given 3× 3 patch as an example.

variance(c(u, v)) =
1

9

∑
x,y

[c(x, y)− c̄]2,

entropy(c(u, v)) =
∑
x,y

−c(x, y) log c(x, y),

x ∈ {u− 1, u, u+ 1}, y ∈ {v − 1, v, v + 1}.

(9)

For each combination of patch size and metric method, we
visualize the calculated probability distribution of an input
image, as shown in Figure 17. The lighter color represents the
larger probability in the grayscale image. The variation of patch
sizes and metric methods typically change the difference range
of probability distribution between trivial areas and nontrivial
areas. Therefore, the hyperparameter of patch size and the
different choices of metric methods play the same role as
random sampling ratio, which also controls the difference
range between small probability and large probability. We also
report the PSNR and the training time of each combination
on LLFF dataset [62] based on Plenoxels [2], as shown in
Figure 18. The results show that the performance of entropy
metric is a little worse than standard deviation and variance.
However, the performances between different patch sizes do
not differ a lot, which means that patch size is an insensitive
hyperparameter.
Ablation studies on other modules. As reported in Ta-
ble VIII and visualized in Figure 16, we perform extensive
ablation studies of various components of our method to
demonstrate their effectiveness. Our experiments are based
on Plenoxels [2] under the Forward-Facing dataset [62]. We
first remove quadtree subdivision (“w/o quadtree”), which
takes more time than Plenoxels to converge. This is because
probability sampling takes some extra time in traversing leaf
nodes and calculating probability. We then remove probability
distribution sampling (“w/o prob”), which takes less time, but
the performance greatly degenerates. Our probability sampling
method takes into account the context information of the image
and dynamically shoot more rays in more complex regions.
Therefore it significantly improves the performance. In the third
experiment, we remove all-pixel sampling in the last epoch
(“w/o allPixel”), which takes the shortest time and shows the
lowest accuracy. It is because that fewer rays are sampled at the
last epoch without the all-pixel sampling strategy, which leads
to a slight decrease of training time. At last, we remove random
sampling ratio (“w/o random”), and we find that both of the
time and the performance degenerates slightly. The reason is
detailed in the previous ablation section. Our method combines
the above strategies and takes a balance between time and
accuracy.

14

3×3 Patch 5×5 Patch 7×7 Patch 9×9 PatchInput Image
St

an
da

rd
 D

ev
ia

ti
on

V
ar

ia
nc

e
En

tr
op

y

Fig. 17. Visualization of different choices of measuring context based probability distribution. Each line represents patches of different scales, and each
column represents different approaches of calculating context information.

35

36

37

38

39

40

41

42

43

3×3 5×5 7×7 9×9 11×11

T
ra

in
in

g
T

im
e(

m
in

ut
es

)

Patch Size

(b)Training Time of Different
Patch Sizes and Metrics

std variance entropy

22.5

23

23.5

24

24.5

25

25.5

3×3 5×5 7×7 9×9 11×11

PS
N

R

Patch Size

(a) PSNR of Different
Patch Sizes and Metrics

std variance entropy

40

50

60

70

21

23

25

27

(b)
Ablation Study of Quadtree

Subdivision Threshold

Fig. 18. Ablation study on different sizes of patches and approaches of context
information metrics.

V. CONCLUSION

We introduce a general framework to speed up the learning
of radiance fields. Our method successfully leverages a context
based probability distribution and adaptive quadtree subdivision
to shoot much fewer rays in volume rendering without
sacrificing accuracy. Different from the existing approaches
which require specific data structures or networks, our method
can effectively speed up the training of almost all radiance
fields based methods. Our analysis justifies that our method
can dynamically shoot more rays to perceive the regions with
complex geometry and shoot much fewer rays in simple regions,
which significantly reduces redundancy in shooting rays. The
evaluation under the widely used benchmarks shows that our
method can significantly speed up the learning of radiance
fields and achieve comparable accuracy for different methods.

REFERENCES

[1] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “NeRF: Representing scenes as neural radiance fields for
view synthesis,” in European Conference on Computer Vision. Springer,
2020, pp. 405–421.

[2] S. Fridovich-Keil, A. Yu, M. Tancik, Q. Chen, B. Recht, and A. Kanazawa,
“Plenoxels: Radiance fields without neural networks,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 5501–5510.

[3] J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 4104–4113.

[4] X. Liu, Z. Han, Y.-S. Liu, and M. Zwicker, “Fine-grained 3D shape
classification with hierarchical part-view attention,” IEEE Transactions
on Image Processing, vol. 30, pp. 1744–1758, 2021.

[5] Z. Han, X. Wang, Y.-S. Liu, and M. Zwicker, “Hierarchical view predictor:
Unsupervised 3D global feature learning through hierarchical prediction
among unordered views,” in Proceedings of the 29th ACM International
Conference on Multimedia, 2021, pp. 3862–3871.

[6] X. Wen, J. Zhou, Y.-S. Liu, H. Su, Z. Dong, and Z. Han, “3D shape
reconstruction from 2D images with disentangled attribute flow,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 3803–3813.

[7] Z. Han, C. Chen, Y.-S. Liu, and M. Zwicker, “DRWR: A differentiable
renderer without rendering for unsupervised 3D structure learning from
silhouette images,” in International Conference on Machine Learning,
2020.

[8] M. Baorui, H. Zhizhong, L. Yu-Shen, and Z. Matthias, “Neural-Pull:
Learning signed distance functions from point clouds by learning to pull
space onto surfaces,” in International Conference on Machine Learning
(ICML), 2021.

[9] J. Zhou, B. Ma, L. Yu-Shen, F. Yi, and H. Zhizhong, “Learning
consistency-aware unsigned distance functions progressively from raw
point clouds,” in Advances in Neural Information Processing Systems
(NeurIPS), 2022.

[10] K. Zhang, G. Riegler, N. Snavely, and V. Koltun, “NeRF++: Analyzing
and improving neural radiance fields,” arXiv preprint arXiv:2010.07492,
2020.

[11] A. Yu, V. Ye, M. Tancik, and A. Kanazawa, “PixelNeRF: Neural radiance
fields from one or few images,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
4578–4587.

15

[12] P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and W. Wang, “NeuS:
Learning neural implicit surfaces by volume rendering for multi-view
reconstruction,” Advances in Neural Information Processing Systems,
2021.

[13] Q. Xu, Z. Xu, J. Philip, S. Bi, Z. Shu, K. Sunkavalli, and U. Neumann,
“Point-NeRF: Point-based neural radiance fields,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 5438–5448.

[14] Q. Wang, Z. Wang, K. Genova, P. P. Srinivasan, H. Zhou, J. T. Barron,
R. Martin-Brualla, N. Snavely, and T. Funkhouser, “IBRNet: Learning
multi-view image-based rendering,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
4690–4699.

[15] H.-X. Yu, L. Guibas, and J. Wu, “Unsupervised discovery of object
radiance fields,” in International Conference on Learning Representations,
2021.

[16] Y.-J. Yuan, Y.-T. Sun, Y.-K. Lai, Y. Ma, R. Jia, and L. Gao, “NeRF-
Editing: Geometry editing of neural radiance fields,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 18 353–18 364.

[17] K. Zhang, N. Kolkin, S. Bi, F. Luan, Z. Xu, E. Shechtman, and N. Snavely,
“ARF: Artistic radiance fields,” in European Conference on Computer
Vision (ECCV), 2022.

[18] Y.-H. Huang, Y. He, Y.-J. Yuan, Y.-K. Lai, and L. Gao, “StylizedNeRF:
Consistent 3D scene stylization as stylized nerf via 2D-3D mutual
learning,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 18 342–18 352.

[19] C. Wang, M. Chai, M. He, D. Chen, and J. Liao, “CLIP-NeRF: Text-and-
image driven manipulation of neural radiance fields,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 3835–3844.

[20] A. Jain, B. Mildenhall, J. T. Barron, P. Abbeel, and B. Poole, “Zero-shot
text-guided object generation with dream fields,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 867–876.

[21] S. Yao, R. Zhong, Y. Yan, G. Zhai, and X. Yang, “DFA-NeRF:
Personalized talking head generation via disentangled face attributes
neural rendering,” arXiv preprint arXiv:2201.00791, 2022.

[22] C. Sun, M. Sun, and H. Chen, “Direct Voxel Grid Optimization: Super-
fast convergence for radiance fields reconstruction,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022.

[23] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics
primitives with a multiresolution hash encoding,” ACM Trans. Graph.,
vol. 41, no. 4, pp. 102:1–102:15, Jul. 2022.

[24] A. Chen, Z. Xu, A. Geiger, J. Yu, and H. Su, “TensoRF: Tensorial
radiance fields,” in European Conference on Computer Vision (ECCV),
2022.

[25] T. Hu, S. Liu, Y. Chen, T. Shen, and J. Jia, “EfficientNeRF: Efficient
neural radiance fields,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, pp. 12 902–12 911.

[26] R. Martin-Brualla, N. Radwan, M. S. Sajjadi, J. T. Barron, A. Dosovitskiy,
and D. Duckworth, “NeRF in the Wild: Neural radiance fields for
unconstrained photo collections,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
7210–7219.

[27] A. Jain, M. Tancik, and P. Abbeel, “Putting NeRF on a Diet: Semantically
consistent few-shot view synthesis,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 5885–5894.

[28] M. Niemeyer, J. T. Barron, B. Mildenhall, M. S. M. Sajjadi, A. Geiger,
and N. Radwan, “Regnerf: Regularizing neural radiance fields for view
synthesis from sparse inputs,” in Proc. IEEE Conf. on Computer Vision
and Pattern Recognition, 2022.

[29] M. Kim, S. Seo, and B. Han, “InfoNeRF: Ray entropy minimization
for few-shot neural volume rendering,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022.

[30] K. Rematas, R. Martin-Brualla, and V. Ferrari, “ShaRF: Shape-
conditioned radiance fields from a single view,” in International
Conference on Machine Learning, 2021, pp. 8948–8958.

[31] S.-Y. Su, F. Yu, M. Zollhöfer, and H. Rhodin, “A-NeRF: Articulated
neural radiance fields for learning human shape, appearance, and pose,”
in Advances in Neural Information Processing Systems, 2021.

[32] Z. Wang, S. Wu, W. Xie, M. Chen, and V. A. Prisacariu, “NeRF–:
Neural radiance fields without known camera parameters,” arXiv preprint
arXiv:2102.07064, 2021.

[33] L. Yen-Chen, P. Florence, J. T. Barron, A. Rodriguez, P. Isola, and
T.-Y. Lin, “iNeRF: Inverting neural radiance fields for pose estimation,”

in 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2021, pp. 1323–1330.

[34] M. Oechsle, S. Peng, and A. Geiger, “UNISURF: Unifying neural implicit
surfaces and radiance fields for multi-view reconstruction,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2021,
pp. 5589–5599.

[35] L. Yariv, J. Gu, Y. Kasten, and Y. Lipman, “Volume rendering of neural
implicit surfaces,” Advances in Neural Information Processing Systems,
vol. 34, 2021.

[36] X. Zhang, P. P. Srinivasan, B. Deng, P. Debevec, W. T. Freeman, and
J. T. Barron, “NeRFactor: Neural factorization of shape and reflectance
under an unknown illumination,” ACM Transactions on Graphics (TOG),
vol. 40, no. 6, pp. 1–18, 2021.

[37] P. P. Srinivasan, B. Deng, X. Zhang, M. Tancik, B. Mildenhall, and J. T.
Barron, “NeRV: Neural reflectance and visibility fields for relighting
and view synthesis,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 7495–7504.

[38] E. Tretschk, A. Tewari, V. Golyanik, M. Zollhöfer, C. Lassner, and
C. Theobalt, “Non-Rigid Neural Radiance Fields: Reconstruction and
novel view synthesis of a dynamic scene from monocular video,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 12 959–12 970.

[39] A. Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-Noguer, “D-
NeRF: Neural radiance fields for dynamic scenes,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 10 318–10 327.

[40] Y. Du, Y. Zhang, H.-X. Yu, J. B. Tenenbaum, and J. Wu, “Neural radiance
flow for 4D view synthesis and video processing,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2021, pp.
14 304–14 314.

[41] Y. Guo, K. Chen, S. Liang, Y.-J. Liu, H. Bao, and J. Zhang, “AD-
NeRF: Audio driven neural radiance fields for talking head synthesis,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 5784–5794.

[42] A. Noguchi, X. Sun, S. Lin, and T. Harada, “Neural articulated radiance
field,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2021, pp. 5762–5772.

[43] K. Park, U. Sinha, J. T. Barron, S. Bouaziz, D. B. Goldman, S. M. Seitz,
and R. Martin-Brualla, “Nerfies: Deformable neural radiance fields,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 5865–5874.

[44] K. Park, U. Sinha, P. Hedman, J. T. Barron, S. Bouaziz, D. B. Goldman,
R. Martin-Brualla, and S. M. Seitz, “HyperNeRF: A higher-dimensional
representation for topologically varying neural radiance fields,” ACM
Transactions on Graphics (TOG), vol. 40, no. 6, pp. 1–12, 2021.

[45] L. Liu, J. Gu, K. Zaw Lin, T.-S. Chua, and C. Theobalt, “Neural sparse
voxel fields,” Advances in Neural Information Processing Systems, vol. 33,
pp. 15 651–15 663, 2020.

[46] D. Rebain, W. Jiang, S. Yazdani, K. Li, K. M. Yi, and A. Tagliasacchi,
“DeRF: Decomposed radiance fields,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
14 153–14 161.

[47] S. J. Garbin, M. Kowalski, M. Johnson, J. Shotton, and J. Valentin,
“FastNeRF: High-fidelity neural rendering at 200fps,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2021, pp.
14 346–14 355.

[48] C. Reiser, S. Peng, Y. Liao, and A. Geiger, “KiloNeRF: Speeding up
neural radiance fields with thousands of tiny mlps,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2021, pp.
14 335–14 345.

[49] T. Neff, P. Stadlbauer, M. Parger, A. Kurz, J. H. Mueller, C. R. A.
Chaitanya, A. Kaplanyan, and M. Steinberger, “DONeRF: Towards real-
time rendering of compact neural radiance fields using depth oracle
networks,” in Computer Graphics Forum, vol. 40, no. 4. Wiley Online
Library, 2021, pp. 45–59.

[50] D. B. Lindell, J. N. Martel, and G. Wetzstein, “AutoInt: Automatic
integration for fast neural volume rendering,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 14 556–14 565.

[51] A. Chen, Z. Xu, F. Zhao, X. Zhang, F. Xiang, J. Yu, and H. Su,
“MVSNeRF: Fast generalizable radiance field reconstruction from multi-
view stereo,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 14 124–14 133.

[52] K. Deng, A. Liu, J.-Y. Zhu, and D. Ramanan, “Depth-Supervised NeRF:
Fewer views and faster training for free,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, June 2022.

16

[53] J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-Brualla, and
P. P. Srinivasan, “Mip-NeRF: A multiscale representation for anti-aliasing
neural radiance fields,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 5855–5864.

[54] J. T. Barron, B. Mildenhall, D. Verbin, P. P. Srinivasan, and P. Hedman,
“Mip-NeRF 360: Unbounded anti-aliased neural radiance fields,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 5470–5479.

[55] R. Li, M. Tancik, and A. Kanazawa, “NeRFAcc: A general nerf
acceleration toolbox,” arXiv preprint arXiv:2210.04847, 2022.

[56] V. Saragadam, J. Tan, G. Balakrishnan, R. G. Baraniuk, and A. Veer-
araghavan, “MINER: Multiscale implicit neural representation,” in
Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv,
Israel, October 23–27, 2022, Proceedings, Part XXIII. Springer, 2022,
pp. 318–333.

[57] A. Yu, R. Li, M. Tancik, H. Li, R. Ng, and A. Kanazawa, “PlenOctrees
for real-time rendering of neural radiance fields,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2021, pp.
5752–5761.

[58] E. Sucar, S. Liu, J. Ortiz, and A. J. Davison, “iMAP: Implicit mapping and
positioning in real-time,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 6229–6238.

[59] G. Wu, Y. Liu, L. Fang, Q. Dai, and T. Chai, “Light field reconstruction
using convolutional network on EPI and extended applications,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 7,
pp. 1681–1694, 2018.

[60] A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun, “Tanks and Temples:
Benchmarking large-scale scene reconstruction,” ACM Transactions on
Graphics (TOG), vol. 36, no. 4, pp. 1–13, 2017.

[61] K. Yücer, A. Sorkine-Hornung, O. Wang, and O. Sorkine-Hornung,
“Efficient 3D object segmentation from densely sampled light fields with
applications to 3d reconstruction,” ACM Transactions on Graphics (TOG),
vol. 35, no. 3, pp. 1–15, 2016.

[62] B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. K. Kalantari,
R. Ramamoorthi, R. Ng, and A. Kar, “Local Light Field Fusion: Practical
view synthesis with prescriptive sampling guidelines,” ACM Transactions
on Graphics (TOG), vol. 38, no. 4, pp. 1–14, 2019.

[63] R. Jensen, A. Dahl, G. Vogiatzis, E. Tola, and H. Aanæs, “Large scale
multi-view stereopsis evaluation,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2014, pp. 406–413.

[64] H. Turki, D. Ramanan, and M. Satyanarayanan, “Mega-NeRF: Scalable
construction of large-scale nerfs for virtual fly-throughs,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, June 2022, pp. 12 922–12 931.

[65] J. Shen, A. Agudo, F. Moreno-Noguer, and A. Ruiz, “Conditional-Flow
NeRF: Accurate 3D modelling with reliable uncertainty quantification,”
arXiv preprint arXiv:2203.10192, 2022.

	Introduction
	Related Work
	Method
	Volume Rendering
	Ray Sampling Probability
	Context based Probability Distribution
	Adaptive QuadTree Subdivision
	Implementation Details

	Experiments
	Experimental Settings
	Results on Synthetic Dataset
	Results on Real-World Dataset
	Results on Multi-view-stereo Dataset
	Ablation Study

	Conclusion
	References

