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Abstract

Though, deep learning based medical image registration is currently starting to show
promising advances, often, it still falls behind conventional frameworks in terms of reg-
istration accuracy. This is especially true for applications where large deformations exist,
such as registration of interpatient abdominal MRI or inhale-to-exhale CT lung registra-
tion. Most current works use U-Net-like architectures to predict dense displacement fields
from the input images in different supervised and unsupervised settings. We believe that
the U-Net architecture itself to some level limits the ability to predict large deformations
(even when using multilevel strategies) and therefore propose a novel approach, where the
input images are mapped into a displacement space and final registrations are reconstructed
from this embedding. Experiments on inhale-to-exhale CT lung registration demonstrate
the ability of our architecture to predict large deformations in a single forward path through
our network (leading to errors below 2 mm).

Keywords: deformable image registration, convolutional neural networks, thoracic CT

1. Introduction

Recently, learning based medical image registration has shown great advances in different
tasks, but, in contrast to other medical image analysis applications, e.g. segmentation,
remains a very challenging problem for deep networks. The majority of recently published
methods uses encoder-decoder architectures (like the U-Net) to predict dense displacement
fields directly from the input images in an unsupervised setting using similarity metrics
(minimizing the objective function similar to conventional iterative registration frameworks)
(Balakrishnan et al., 2019) or uses annotated label images to guide the training process
(Hu et al., 2018). To deal with large deformations in medical images primarily multilevel
strategies and iteratively trained networks were proposed (Eppenhof et al., 2019; de Vos
et al., 2019; Hering et al., 2019). Still, while deep networks offer very fast inference times and
have the potential to further learn from expert annotations, with errors above 2.2 mm they
can not yet compete with accuracies of conventional registration frameworks on challenging
thoracic CT benchmarks (below 1 mm (Rühaak et al., 2017)).
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Figure 1: Outline of our proposed architecture for deep learning based medical image reg-
istration under large deformations. Dense features are extracted from both, the
fixed and moving image, using a convolution neural network. In the fixed image,
features are sparsely sampled at given descriptive keypoints and compared with
displaced feature patches in the moving image building up a feature displacement
map. To make it feasible to learn final predictions and regularized displacements,
we propose to map to a (learned) embedding for further processing.

2. Methods

In contrast to aforementioned encoder-decoder architectures, in this work we propose to
explicitly model the relation between fixed and moving image features with displacement
maps. Figure 1 outlines our approach. This concept is similar to the low resolution cor-
relation layer for 2d images in FlowNet (Dosovitskiy et al., 2015) and dense volumes in
PDDNet (Heinrich, 2019), but we compute the dissimilarities on high resolution feature
maps (stride of 2) and therefore employ different strategies to limit the computational bur-
den (this is especially important for learning based approaches as gradients need to be
passed through the network in the backward path): 1. we extract fixed features only at
sparse keypoints based on the Foerstner interest operator (cf. (Rühaak et al., 2017)), thus
reducing the search space and 2. propose to (non-linearly) map the displacement map to
a low dimensional embedding space, substantially compressing the displacement features.
Further processing, e.g. estimation of final displacements and regularization, is directly
employed on the displacement embeddings.

3. Experiments and Results

To validate our approach we choose the challenging task of inhale-to-exhale lung registration
on the DIR-Lab 4D-CT and DIR-Lab COPD data set (Castillo et al., 2013), as it contains
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Table 1: Results for inhale and exhale CT scan pairs of the DIR-Lab 4D-CT and DIR-Lab
COPD data set (Castillo et al., 2013), respectively. The mean(standard deviation)
target registration error (TRE) in mm is computed on 300 expert annotated land-
mark pairs per case. *VoxelMorph was trained on affine pre-aligned images using
the publicly available code at https://github.com/voxelmorph/voxelmorph.

# levels DIR-Lab 4D-CT DIR-Lab COPD

initial – 8.46(6.58) 23.36(11.86)

(Eppenhof et al., 2019) 1 3.68(3.32) –
DLIR (de Vos et al., 2019) 3 2.64(4.32) –

VoxelMorph*(Balakrishnan et al., 2019) 2 3.65(2.47) 9.18(4.48)
mlVIRNET (Hering et al., 2019) 3 2.19(1.62) –

(Hansen et al., 2019) 1 – 4.30(3.60)

ours-256 1 2.13(1.65) 4.73(8.56)
ours-512 1 1.97(1.42) 3.42(5.63)

complex and large deformations. We use a fixed feature extractor (lightweight U-Net with 3
encoder and 2 decoder blocks) that is pretrained to predict MIND-like descriptors (Heinrich
et al., 2012) from the input images. Feature patches from the fixed image are sampled at
∼1500 distinctive keypoints and compared with feature patches of 213(= 9261) voxels at
the corresponding locations in the moving image. For this proof-of-concept we simplify
our setting and use a PCA embedding (instead of a learned mapping) with 256 and 512
dimensions (thus compressing the displacement space by ∼98% and ∼95%, respectively).
As regularization method, we employ a simple diffusion over all keypoints and displacements
using the graph Laplacian. Table 1 shows the results of our method in comparison to other
learning based registration frameworks, four approaches based on dense encoder-decoder
(multi-level) architectures (Eppenhof et al., 2019; de Vos et al., 2019; Balakrishnan et al.,
2019; Hering et al., 2019) and one that is using keypoints with graph CNNs and a point
cloud matching algorithm (Hansen et al., 2019).

4. Conclusion

We presented a registration framework for large deformations in medical images that, in
contrast to recent approaches, explicitly considers a large number of discrete feature dis-
placements and maps them into an embedding space. It outperforms other deep learning
based state-of-the-art methods on the DIR-Lab 4D-CT (errors below 2 mm) as well as on
the DIR-Lab COPD dataset (errors below 3.5 mm). As this work may be considered as
a proof of concept, we see great potential for improvement of our method using a learned
non-linearly mapping to the embedding space as well as extending the regularization to use
graph CNNs that can learn from the inherent structure of the keypoint graph.
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