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Abstract
Implicit Neural Representations (INRs) represent
data as continuous functions using the parame-
ters of a neural network, where data information
is encoded in the parameter space. Therefore,
modeling the distribution of such parameters is
crucial for building generalizable INRs. Exist-
ing approaches learn a joint distribution of these
parameters via a latent vector to generate new
data, but such a flat latent often fails to capture
the inherent hierarchical structure of the param-
eter space, leading to entangled data semantics
and limited control over the generation process.
Here, we propose a Controllable Hierarchical
Implicit Neural Representation (CHINR) frame-
work, which explicitly models conditional de-
pendencies across layers in the parameter space.
Our method consists of two stages: In Stage-1,
we construct a Layers-of-Experts (LoE) network,
where each layer modulates distinct semantics
through a unique latent vector, enabling disentan-
gled and expressive representations. In Stage-2,
we introduce a Hierarchical Conditional Diffusion
Model (HCDM) to capture conditional dependen-
cies across layers, allowing for controllable and
hierarchical data generation at various semantic
granularities. Extensive experiments across differ-
ent modalities demonstrate that CHINR improves
generalizability and offers flexible hierarchical
control over the generated content.

1. Introduction
Implicit Neural Representations (INRs) are powerful tools
to represent complex data as continuous functions with neu-
ral networks (Tancik et al., 2020; Mildenhall et al., 2021;

1Department of Electrical and Computer Engineering, Uni-
versity of Waterloo, Waterloo, Canada 2School of Comput-
ing and Mathematical Sciences, University of Leicester, Le-
icester, United Kindom. Correspondence to: Xiaoyu Xu
<x423xu@uwaterloo.ca>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

You et al., 2024), offering compact and universal representa-
tions across diverse data modalities such as audio (Su et al.,
2022), images (Sitzmann et al., 2020; Dupont et al., 2021),
videos (Chen et al., 2021a; 2023), and 3D volumes (Milden-
hall et al., 2021; Zhao et al., 2022; Michalkiewicz et al.,
2019). By modeling data as functions fθ : X → F , with X
and F being the input (e.g., pixel coordinates) and output
(e.g., RGB values), INRs implicitly encode data as a hidden
manifold within the parameter space of θ, capturing the
underlying structure of the data. By modeling the distribu-
tion of parameters p(θ), generative INRs present promis-
ing potentials for universal data generation (Dupont et al.,
2022c;a; Bauer et al., 2023; You et al., 2024). Nevertheless,
two fundamental questions have long been overlooked:

How are these parameters related to data semantics, and
hence how to control the parameters to generate expected
semantics?

Addressing this gap is critical for advancing the controlla-
bility of INR-based generative frameworks. Notably, we
observe that INRs (e.g., SIREN (Sitzmann et al., 2020))
naturally exhibit a hierarchical structure, where each layer
progressively expands the representational capacity of the
model (Yüce et al., 2022). This expansion is intrinsically
linked to the frequency basis of INRs: earlier layers cap-
ture coarse-grained features, while later layers progressively
refine fine-grained details (Section 2.2 provides detailed
analysis). As shown in Fig. 1, this progression aligns with
the semantic abstraction hierarchy in data. For example, in
facial images, hierarchical semantics are reflected in progres-
sively detailed facial attributes, such as overall facial shape,
expression, and shape of eyes. This connection between
INR’s hierarchical structure and data semantic abstraction
offers a natural pathway to achieve hierarchical control.

However, existing generative INR approaches (Dupont et al.,
2022a; Bauer et al., 2023; You et al., 2024) overlook this
hierarchy, instead modeling the joint distribution of flat-
tened INR parameters, either directly as p(θ) or through
the distribution of condensed latents. It ignores the cor-
respondence between the INRs’ expanded representation
capacity and the hierarchical semantics in the data. This
misalignment brings two challenges: (1) Control over the
generated content is limited. While generative models, such
as latent diffusion, are employed with INRs to generate new
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Figure 1. Hierarchical generation of universal data modality. Top: expanded representational capabilities of a Layers-of-Experts INR
model. Bottom: aligning these capabilities with hierarchical data patterns enables precise control over the generation process. Each
column presents generated samples resulting from a divergence in routing at a specific layer, with arrows indicating the shared routing in
the preceding layers.

data, they cannot link the sampled noise to the expected
semantics in the output. (2) The generalizability of INRs
to unseen data is impaired. The joint distribution learning
encodes the entangled semantics together into one flat latent,
where the co-occurrence of certain semantics is inevitable.
Therefore, the diversity of the generated data is limited.

To address this gap, we propose a Controllable Hierarchical
Implicit Neural Representation (CHINR) framework that
investigates the hierarchical structure of INRs, promoting
layer-wise control in the generation process. Our method
starts by training a collection of INRs on a dataset. Each
layer of an INR is parameterized as a Mixture-of-Experts
(MoE) layer to increase expressivity, where a set of expert
weights and latents are learned. The experts at each layer are
shared across the dataset, while the latents are data-specific,
routing the data flow and modulating the contribution of
experts. Layers of MoE are cascaded to form an INR, which
we call a Layers-of-Experts (LoE) network. Consequently,
a LoE with L layers will have L latents adapted to the
fitted data, effectively capturing and relating its complex
patterns with layers of latents. By modeling the conditional
dependencies of these layer-wise latents with a hierarchi-
cal conditional diffusion model (HCDM), we maintain the
hierarchical structure of INRs. This unlocks a controllable
generation process, aligning the layers in INRs with the hi-
erarchies of data semantics for the first time. As illustrated
in Fig. 1, the data flow for a generation process resembles
a tree-like structure: the routing in the next layer is con-
strained by the paths in previous layers, allowing full con-
trol of where a different routing strategy should be explored.
Early deviations in routing lead to significant semantic dif-
ferences in the generated content, while a later deviation

results in minor differences in details.

The contributions of our paper are summarized as follows:

• We are the first to achieve hierarchical control in gen-
erative INRs by modeling hierarchical and conditional
dependencies in INR parameters. This enables layer-wise,
precise control over data semantics during generation.

• We model the INR as a LoE framework to enhance expres-
sivity. This design aligns the inherent hierarchy of data
semantics with INR’s expanded representation capacity,
enabling the generation of diverse data.

• The proposed CHINR shows broad versatility across
modalities, highlighting the broad applicability of hierar-
chical control and conditional dependency modeling to
data semantics with inherent hierarchies.

• We conduct extensive experiments across various modal-
ities, demonstrating CHINR’s superior performance in
reconstruction and generation metrics.

2. Background
In this section, we introduce INR and generative INRs, while
highlighting their connections to our proposed approach. We
also analyze the inherent hierarchy in INR’s parameters.

2.1. Implicit Neural Representation & Generative INRs

Implicit Neural Representations (INRs) parameterize data
such as audio, images, video, and 3D voxels as mappings
from coordinates to signals, enabling a unified framework
for various data modalities (Genova et al., 2019a;b; Xie
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et al., 2022). Remarkable progress has been made to en-
hance the representation quality, efficiency and compact-
ness for audio (Zuiderveld et al., 2021; Luo et al., 2022; Su
et al., 2022; Lanzendörfer & Wattenhofer), images (Sitz-
mann et al., 2020; Fathony et al., 2020; Chen et al., 2021b;
Xu et al., 2022a; Saragadam et al., 2023; Yu et al., 2024; Xu
et al., 2024b; 2022b; Qiu et al., 2021), 3D contents (Milden-
hall et al., 2021; Barron et al., 2021; Tiwari et al., 2022;
Ortiz et al., 2022; Zhao et al., 2022; Ruan et al., 2024; Qiu
et al., 2020; 2019; Yang et al., 2020), and videos (Chen et al.,
2021a; Li et al., 2022; Yan et al., 2024). Despite performing
well on different modalities, INRs struggle to generalize
to multiple and unseen data, as each instance is typically
overfitted with a separate MLP. To address this, two key
strategies have emerged: (1) learning content-specific in-
put features (Yu et al., 2021; Hu et al., 2023; Lazova et al.,
2023) and (2) modulating or customizing network param-
eters with latents or hypernetworks (Mehta et al., 2021;
Wang et al., 2022; Dupont et al., 2022b; Kim et al., 2023;
Xu et al., 2024a). Generative models (Goodfellow et al.,
2014; Ho et al., 2020) further extend INR’s capability to
generate new data. GRAF (Schwarz et al., 2020) and GI-
RAFFE (Niemeyer & Geiger, 2021) generate shape and
appearance codes from noise, which are combined with
coordinates to construct scenes. Erkoç et al. (2023) use
a diffusion model to generate INR weights. Dupont et al.
(2022c); Du et al. (2021); Koyuncu et al. (2023) train hyper-
networks to generate INR parameters. Dupont et al. (2022a);
Bauer et al. (2023); Park et al. (2024) employ a two-stage
framework to learn the distribution of latents that map to
or modulate INRs, and generate new content by sampling
in the latent space. mNIF (You et al., 2024) further en-
hances the expressivity of INR via model averaging. These
methods essentially model the distribution of INR parame-
ters p(θ) by learning the latent distributions p(h), but fail
to capture the layer-wise hierarchical structure of INR pa-
rameters (Section 2.2), limiting their ability to accurately
model distributions and control generation. Building on the
latent modulation approach, we introduce a hierarchical con-
ditional diffusion model, capturing dependencies between
layer-wise latents for improved generalization and control.

2.2. Hierarchy Analysis of INR

In this section, we review the INR architecture and ana-
lyze its inherent hierarchical representation ability. Using
SIREN (Sitzmann et al., 2020) as an example, a two-layer
SIREN is generally formulated as:

fθ(x) = W2 sin(W1 · γ(x)),θ = [W1,W2], (1)

where γ(x) = sin(Ω · x),Ω ∈ Rc1×cin denotes po-
sitional embedding of coordinates x, W2 ∈ Rcout×c2 ,
W1 ∈ Rc2×c1 denote the parameters of each layer. The
bias is omitted for simplification. From the perspective of

Fourier Transform, the input frequency domain Ω is com-
posed of c1 frequency basis, Ω = [Ω0,Ω2, · · · ,Ωc1−1]. Ac-
cording to the Tancik et al. (2020) and Yüce et al. (2022),
an MLP layer with periodic activation sin(·) only expands
the input frequency basis in a sparse and limited bandwidth.
The equation 1 can be reformulated as:

fθ(x) =
∑

w′∈H(Ω)

αw′ sin(w′ · x),

αw′ ∝ W2 ·
c1−1∏
c=0

Jsc(W1[·,c])

H(Ω) ⊆ {
c1−1∑
c=0

βcΩc|βc ∈ Z &

c1−1∑
c=0

βc ≤ K},

(2)

where Jsc denotes a Bessel function, W1[·,c] denotes the
column c of W1. The Eq. (2) reveals the properties of each
sin(·) activated INR layer in two aspects. First, the output
spectrum of layer 2, i.e. αw′ , is dependent on the spectrum
of layer 1, determined by W1; Second, the output frequency
domain H(Ω) is sparse since βc is an integer, so H(Ω) only
covers sparse frequency space spanned by the basis {βcΩc}.
These suggest that INR layers’ spectrum and frequency ba-
sis inherently exhibit a sparse and hierarchical structure,
encoded by θ, which extends to their representation ability.
Latent-modulation approaches like mNIF (You et al., 2024),
which model the parameter distribution p(θ) with the surro-
gate task of modeling the latent distribution p(h), overlook
the hierarchy in h transferred from θ. Ignoring this hierar-
chy leads to reduced expressivity and generalizability, and
limited control over the generation process.

3. Proposed Method
Our method uses a two-stage framework to align the hier-
archy of data semantic and INR’s expanded representation
ability, as shown in Fig. 2. In Stage-1, we train individual
INRs to fit a target dataset. In Stage-2, we use generative
models to learn weight distributions to generate new data.

Directly modeling INR’s weight distribution brings three
challenges: (1) independently trained INRs make it hard to
extract shared information for distribution learning, (2) the
high dimensionality of raw weights makes distribution mod-
eling highly challenging, and (3) it ignores the hierarchical
structure of INRs. To address them, we configure INR as
a Layers-of-Experts (LoE) network, where each layer con-
tains a set of shared expert weights and an instance-specific
latent. As shown in Fig. 2 left, the inference process builds
each INR layer by layer, combining experts with corre-
sponding latents. This structure captures shared information
through experts, simplifies distribution learning by focusing
on latents, and explicitly models conditional dependencies
within the hierarchical structure of INRs. In the following
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Figure 2. CHINR consists of two stages. In Stage-1, a Layer-of-Experts (LoE) model represents data with instance-specific latents
and shared experts. The latent at each layer (shaded differently) modulates the mixture of experts at that layer. Stage-2 introduces a
Hierarchical Conditional Diffusion Model (HCDM) to learn layer-wise conditional distributions of latents. At inference, we sample
latents according to the conditional chain to achieve hierarchical control.

sections, we first define the LoE structure and learning task,
followed by detailed explanations of the two stages.

3.1. Problem Statement

Suppose an INR fθ has L layers. For layer l, we learn
a collection of K cross-data shared expert weights θl =
{θl

1,θ
l
2, · · · ,θl

K} (fully connected layers) and a unique la-
tent hl ∈ RH for each data instance. At inference, the
operation at layer l is yl+1 = sin(ω0 · (θ̄l · yl)), where y
represents each layer’s output and ω0 is a constant factor.
θ̄l =

∑K
n=1 θ

l
k · αl

k denotes instance-specific parameters at
layer l, modulated by a gating vector αl, which is computed
by a gating module gϕ(h

l) = αl = [αl
1, α

l
2, · · · , αl

K ]⊤.
Compared with directly learning the gating vectors, gϕ(·)
allows for a more compact latent hl that benefits distribu-
tion learning. By modulating the contribution of experts via
latents, each layer gains the flexibility to adapt to individual
data samples with a shared basis. As L layers are cascaded
to form the final INR, its expressive capacity is significantly
enhanced through the integrated contributions across layers.

In Stage-1, we optimize the shared network parameters
θ = {θ1,θ2, · · · ,θL,ϕ} and fully characterize each
instance-specific INR by layer-wise stacked latents h =
[h1,h2, · · · ,hL] ∈ RH×L. This layer-wise structure en-
ables hierarchical modeling of INR parameters, which aligns
with data semantic hierarchy, allowing for layer-wise depen-
dency modeling in Stage-2, and controllable data generation.

3.2. Stage-1: Learning a Dataset of LoE INRs

Similar to Functa (Dupont et al., 2022a) and mNIF (You
et al., 2024), we use meta-learning and auto-decoding to
train both the data-specific latents h and the shared pa-
rameters θ for the LoE INR during Stage-1. For meta-

learning, we adopt an interleaved training procedure in-
spired by CAVIA (Zintgraf et al., 2019), where the experts
and latents are updated alternately in separate training loops.
In the inner loop, we fix θ and adapt the latents h to data
samples. Within each inner loop, h is first randomly ini-
tialized around zero and then updated for a few steps. In
the outer loop, θ is optimized based on the updated h. This
ensures each data-specific latent can be effectively learned
within a few iterations, encouraging faster convergence and
adaptation to new data, which is essential for distribution
modeling and generalization in Stage-2. In the case of auto-
decoding, we jointly optimize all parameters, maintaining a
latent bank for the dataset and updating the sampled batch
of latents in each iteration. Unlike meta-learning, auto-
decoding does not require second-order derivatives, making
it more computationally efficient. Due to this efficiency, we
apply auto-decoding specifically for NeRF training.

In both approaches, each data-specific latent h consists
of L components separately modulating L layers in LoE
INR. This setup facilitates conditional distribution modeling
in Stage-2, as opposed to joint distribution learning like
mNIF and Functa, enabling hierarchical and controllable
generation—a crucial capacity lacking in prior works.

3.3. Stage-2: Conditional Distribution Learning

Given a collection of latents H = {h1, · · · ,hN |hn ∈
RH×L} obtained from N data instances, where L denotes
number of layers, and H the dimension of each layer’s latent,
Stage-2 aims at learning latent distribution p(h). Instead of
blindly modeling joint distribution, we reformulate p(h) as:

p(h) = p(h1,h2, · · · ,hL) = p(h1)

L∏
l=2

p(hl|h<l), (3)
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Figure 3. Condition formation. Layers of latent h are first concate-
nated and then compressed. The compressed tensors are binarized
to generate low-dimensional binary conditions.

where p(h<l) = p(h1, · · · ,hl−1) denotes the joint prob-
ability of the first l − 1 layers. We design a hierarchical
conditional diffusion model (HCDM) that learns the con-
ditional dependency p(hl|h<l) in Eq. (3). Figure 2 right
illustrates HCDM with a forward and a backward process.

3.3.1. FORWARD PROCESS

We initialize h at step 0 as h0 = [h1
0, · · · ,hL

0 ] with a condi-
tional chain of length L. The forward process for each layer
hl is formulated as:

q(hl
1:T |hl

0) :=

T∏
t=1

q(hl
t|hl

t−1),

q(hl
t|hl

t−1) := N (hl
t;
√
1− βth

l
t−1, βtI),

(4)

where q(hl
t|hl

t−1) denotes the posterior distribution of
hl
t given hl

t−1, T denotes the number of diffusion steps.
β1, · · · , βT denote the variance schedule of added Gaus-
sian noise N (·). By the forward process, the noise sample
hT = [h1

T , · · · ,hL
T ] is generated from h0 = [h1

0, · · · ,hL
0 ].

3.3.2. BACKWARD PROCESS

The backward process models the prior distribution as in
Eq. (3). To model the hierarchical structure, this process
should express the conditional dependency p(hl|h<l) for
all L components. Therefore, we take h<l as condition, and
generate hl for l = 1, · · ·L iteratively. Next, we explain the
details of how to process h<l as condition.

Condition formation. To generate h = [h1, · · · ,hL], we
prepare for each hl a condition vector cl encapsulating
h<l. Since h lives in a low-dimensional manifold (e.g.,
64), cl should contain less information to prevent HCDM
from memorizing all one-to-one mappings (h<l → hl),
where p(h) inevitably degenerates into p(h1). Therefore,
we embed the conditions h<l into a lower-dimensional
binary vector. Fig. 3 shows this process with two steps.
(1) All h<l are concatenated and compressed with a com-
pressor W to get a compressed tensor vl ∈ RC : vl =
W · concat(h1, · · · ,hL),W ∈ RC×HL,hj ∈ RH , with C
being the compressed dimension. To match W’s dimension

with concatenated tensors, we set its unused portion to zero.
(2) Given compressed vl, we obtain a binary condition cl:
cl = Q(σ(vl)), where Q(·) denotes binarization operation,
σ denotes Sigmoid. We set c1 as zero tensor since h1 has
no condition. Now we get the condition c1, · · · , cL.

Hierarchical generation. With condition c = [c1, · · · , cL],
noise sample hT = [h1

T , · · · ,hL
T ], time step t, we are

ready to generate a complete latent h0. To generate a
component hl

0, the backward process is formulated as:
p(hl

0:T |cl) = p(hl
T )

∏T
t=1 p(h

l
t−1|hl

t, c
l). Note that a com-

plete backward process, generating a sample from p(hl
0|cl),

is exactly the implementation of p(hl|h<l) in Eq. (3), where
cl corresponds to h<l. We adopt a UNet (Ronneberger et al.,
2015) µθ as in Song et al. (2021); Ho et al. (2020) to obtain
p(hl

t−1|hl
t, c

l) = N (hl
t−1 : ϵθ(h

l
t, t, c

l),Σ(t)), where

ϵθ(h
l
t, t, c

l) =

√
at(1−āt−1)h

l
t+
√

āt−1(1−at)µθ(h
l
t,t,c

l)

1−āt

at = 1− βt, āt =

t∏
i=1

ai, Σ(t) = (1−at)(1−āt−1)
1−āt

I.

(5)

Each backward process starts from a noise hl
T and gener-

ates a latent component hl
0 with condition cl. By iteratively

sampling from p(h1) and p(hl|h<l) with l = 2, · · ·L, a
complete latent h0 = [h1

0, · · · ,hL
0 ] is generated. The fi-

nal objective is: Lhcdm = EH,t,l[λ||ϵ − ϵθ(h
l
t, t, c

l)||2],
where H denotes all latents, ϵ denotes Gaussian sample
from N (0, I), and λ is a constant coefficient. For inference,
we first generate h1 from Gaussian noise, then perform a
chain of conditional sampling from p(hl|h<l) until we get
the complete latent h used by the LoE to generate new data.

4. Experiments
In this section, we first introduce the datasets and evalua-
tion criteria. We then show CHINR’s controllability of the
generation process across various modalities. A quantitative
evaluation is provided to highlight its hierarchical control
over semantic attributes. Next, we evaluate CHINR’s recon-
struction and generation quality. Furthermore, we analyze
the latent space, showing how data semantics are embedded
within the INR’s weight space, granting it a compositional
property across layers. Finally, we present ablation stud-
ies highlighting the importance of conditional dependency
modeling and the functionality of binary conditions.

In our experiments, both Stage-1 and Stage-2 are trained
and evaluated on the CelebA-HQ 642 (Karras et al., 2018),
ShapeNet 643 (Chang et al., 2015), SRN-Cars (Sitzmann
et al., 2019), and AMASS (Mahmood et al., 2019) datasets.
All experiments are implemented in Pytorch and run on
a single Nvidia RTX3090 GPU. For evaluation metrics,
we use peak signal-to-noise ratio (PSNR), structural sim-
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Figure 4. Controllable hierarchical generation by progressively fixing the layer-wise latent on three modalities.

ilarity (SSIM) (Wang et al., 2004), and accuracy to as-
sess Stage-1 reconstruction, and Fréchet inception distance
(FID) (Heusel et al., 2017), and coverage to evaluate Stage-2
generation performance. Further details about implementa-
tion can be found in the Appendix.

4.1. Hierarchical Controllable Generation

In this section, we show hierarchical controllable genera-
tion enabled by conditional sampling of HCDM, a crucial
capability missing in existing works. To sample a latent
h = [h1, · · · ,h5], we begin by sampling h1 with HCDM
taking a Gaussian noise as input. Next, we sample h2, con-
ditioned on the binary vector generated by h1. This process
continues layer by layer until h5 is generated, forming a
complete latent h. This layer-wise latent then modulates the
LoE to produce images, voxels, or NeRF renderings.

Qualitative results. Fig. 4 shows hierarchical control on
different modalities. For each, we show three samples
generated through the full chain of conditional sampling
(h1 · · ·h5) in column 1. In column 2, we fix their h1 from
the first column and sample the remaining (h2 · · ·h5). In
column 3, we fix both h1 and h2 from the second column
and conditionally sample the rest. This progressive fixation
allows us to control the finer details of the generated output.

In Fig. 4, each run starts from a different h1, resulting in
highly different semantics (column 1 in each modality). For
face images, when h1 is fixed, generations exhibit similar
overall contours but different facial features and hairstyles
(column 2). Fixing h1 and h2 causes variations in facial
details, like eye shape and hair color (column 3). Fixing
first three layers (column 4) results in changes limited to
skin tone. Lastly, h5 affects global properties like fore-
ground/background color, shown by heat maps. For voxels,
hierarchy control is manifested in category (e.g. chair and
plane), object parts (e.g. armrest and cushion), and finer
details (e.g. textures). For NeRF, hierarchy occurs at car
type (e.g. SUV), shape (e.g. boxy), parts (e.g. spoiler), etc.
Additional examples are provided in the Appendix.

Quantitative evaluation of hierarchical control. We fur-

Table 1. Quantitative evaluation of hierarchical control on CelebA-
HQ (top), ShapeNet (middle), and SRN-Cars (bottom).

Attributes Random L1 L2 L3 L4

Oval face 30.3% 73.2% 85.7% 90.2% 94.1%
Blonde hair 39.6% 40.5% 85.8% 91.4% 96.8%

Smiling 30.8% 31.2% 33.6% 83.0% 92.5%
Red lips 10.5% 11.3% 13.7% 12.5% 95.3%

Chair 12.8% 93.6% 98.9% 100.0% 100.0%
w/ Arms (Chair) 26.3% 29.3% 78.8% 97.0% 100.0%

Cushioned (Chair) 19.2% 21.2% 32.3% 87.9% 100.0%

SUV 19.4% 76.9% 94.8% 97.8% 100.0%
Boxy 32.8% 46.3% 88.8% 96.3% 97.0%

w/ Spoiler 14.9% 19.4% 24.6% 68.7% 89.6%

ther quantitatively evaluate controllability in Table 1. We
select representative attributes and start by randomly gen-
erating (w/o control) samples, then compute the ratio of
samples where each attribute is present (column Random).
For each attribute, we take the positive samples and progres-
sively fix the latents of initial layers while sampling the rest
(Columns L1−4). At each step, we compute the positive
ratio of the newly generated samples to verify whether an
attribute is preserved. This experiment assesses the model’s
ability to maintain control over fixed attributes while varying
others. The results show the effectiveness of coarse-to-fine,
layer-specific control enabled by the latent hierarchy. Bold
numbers denote a significant increase in preservation rate
compared to the previous layer, showing that the correspond-
ing attributes are effectively controlled at that layer.

4.2. Reconstruction & Generation Metrics

Table 2 presents reconstruction and generation results on
different modalities. Our model outperforms existing meth-
ods on most datasets. It achieves the highest reconstruction
PSNR, thanks to the expanded representation capacity of
LoE and layer-wise latent learning. It also shows superior
generation performance, highlighting the effectiveness of
hierarchical conditional modeling in capturing diverse data
semantics. On CelebA-HQ, its FID score is slightly behind
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Table 2. Quantitative results on different datasets.

CelebA-HQ
Reconstruction Generation

PSNR↑ SSIM↑ FID↓

Functa (Dupont et al., 2022a) 26.2±0.3 0.795±0.015 41.0±0.2
GEM (Du et al., 2021) 26.5±0.4 0.814±0.018 30.8±0.3

GASP (Dupont et al., 2022c) 31.6±0.8 0.902±0.021 13.6±0.3
mNIF (You et al., 2024) 34.5±0.2 0.957±0.005 13.2±0.1

CHINR 34.9±0.3 0.964±0.006 13.4±0.1

ShapeNet PSNR↑ Accuracy↑ Coverage↑

Functa (Dupont et al., 2022a) 22.1±0.3 0.983±0.005 0.437±0.005
GEM (Du et al., 2021) 21.4±0.4 0.977±0.007 0.408±0.003

GASP (Dupont et al., 2022c) 16.7±0.8 0.928±0.011 0.343±0.009
mNIF (You et al., 2024) 21.4±0.3 0.975±0.008 0.435±0.003

CHINR 22.3±0.2 0.988±0.005 0.441±0.002

SRN-Cars PSNR↑ SSIM↑ FID↓

Functa (Dupont et al., 2022a) 24.3±0.2 0.738±0.009 80.1±0.2
mNIF (You et al., 2024) 26.0±0.3 0.763±0.013 79.3±0.3

CHINR 26.3±0.2 0.780±0.011 77.8±0.2

mNIF. However, we observe that mNIF tends to “memo-
rize” the training set. To verify this, we generate 1, 000
samples and compute the average of their minimum L2 dis-
tances to training images. A lower value indicates a higher
degree of memorization. mNIF obtains a value of 6.243
whereas CHINR obtains 15.971, indicating that our model
generalizes better by generating new images that differ more
noticeably from training data. Examples of retrieval results
are provided in the Appendix.

Figure 5. Uncurated generations for CelebA-HQ (left), ShapeNet
(middle), and SRN-Cars (right) datasets.

Fig. 5 displays uncurated samples generated by our model
compared to mNIF. With HCDM, our model generates high-
quality samples with rich details. More results including the
AMASS dataset are provided in the Appendix.

4.3. Analysis

We uncover the success of hierarchical controllable genera-
tion. We first show that each layer modulates disentangled
semantics, giving our LoE model a compositional property.
Moreover, layer-wise conditional dependency modeling suc-
cessfully captures the hierarchy of data semantics, ensuring

Figure 6. Latent composition. top: 9 randomly generated images.
row 2-4: replace h2 to h4 of the first sample (green boxes) with
top images. Red boxes highlight representative examples.

the composed semantics are compatible across layers.

4.3.1. LATENT COMPOSITION

We explore CHINR’s controllability through latent com-
position. We find that the learned latents are layer-wise
compositional. Given two latents h1 = [h1

1, · · · ,h5
1],h2 =

[h1
2, · · · ,h5

2], exchanging a specific part, e.g. h2
1 and h2

2, re-
sults in the corresponding semantic changes in the generated
content. As shown in Fig. 6, we randomly sample 9 latents
from HCDM, trained on CelebA-HQ, and render the images
in the first row. These faces exhibit diverse characteristics
including expressions, hairstyles, facial orientations, skin
tones, etc. In the second row, we replace h2 of the first
sample with that of the other 8 samples, while keeping the
rest latents unchanged. The facial orientation and hairstyles
change accordingly, while facial features remain the same.
This indicates that the second layer encodes these specific
semantics disentangled from others, laying the foundation
for controllable hierarchical generation. In the third row,
when h3 is replaced, we observe that only facial features
are swapped, while other characteristics such as orientation
remain unchanged. In the last row, only skin tone changes.
More examples can be found in the Appendix.

It’s noted that latent composition can disrupt the conditional
chain, leading to incompatible latents and thus image arti-
facts. Nevertheless, this experiment illustrates how and why
our method works. It shows that image semantics can be
embedded and disentangled in parameter space, offering a
new perspective on image generation.

4.3.2. LAYER-WISE HIERARCHY ANALYSIS

We visualize hierarchical dependencies of latents to see how
data semantics are encoded in INR’s weight space. Fig. 7
shows conditional distributions of latents from adjacent lay-
ers, trained on CelebA-HQ. Specifically, we apply PCA to
Stage-1 latents and plot their distributions in grayscale (e.g.,
Fig. 7a shows distributions for layers 1 and 2). We then run
the generation process five times to obtain five latents at
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(a) (b)

Figure 7. Visualization of layer-wise hierarchical dependencies.
Gray regions show the distribution of latents from Stage-1, while
colored regions represent the sampled latents from Stage-2.

each layer, as depicted in color Figs. 7a and 7b left. Based
on HCDM, we plot the resulting conditional distributions
of latents at subsequent layers, shown by colored regions
on the right. Additionally, we show generated images cor-
responding to different samples. We can see clear patterns
of a hierarchical structure where semantics vary at different
granularities. For example, layer 1 determines the overall
contours of faces. When layer 2 is determined, variations in
layer 3 affect facial expressions without changing orienta-
tions. Furthermore, the latent sampling space at each layer
is constrained by its preceding layer, ensuring compatibil-
ity between layers when representing data. Therefore, the
generated data semantics are hierarchically controllable.

4.4. Ablation Studies

Figure 8. Ablations on conditional modeling.

Table 3. Ablation on number of layers in conditional chain.

Layers in chain 1, 2, 3, 4, 5 1, 2, 3, 4 1, 2, 3 1, 2 None
Independent layers None 5 4, 5 3, 4, 5 1, 2, 3, 4, 5

FID 13.4 13.6 15.5 52.8 112.7

Ablation on condition modeling. To show the importance
of conditional dependency modeling, we train an uncondi-
tional diffusion model that directly maps noise to layer-wise
latents in Stage-2. We then sample p(hl) independently for
l = 1, · · · , L to generate full latents. The resulting images
for CelebA-HQ are shown in Fig. 8 top, while images gen-
erated with conditional modeling are shown in bottom for
comparison. Although human faces are recognizable in top,
the noticeable artifacts highlight that independently sam-
pled layer-wise latents cannot ensure consistent semantic
composition across layers. In contrast, conditional mod-
eling successfully achieves this compatibility. In Table 3,

we evaluate the importance of conditional dependency by
progressive ablation where excluded layers are trained with
unconditional diffusion models. Results show that strength-
ening conditional modeling improves generation quality,
emphasizing its necessity for high-quality generations.

Table 4. Ablation on different binary condition lengths (8, 12, 15,
and 20) when training Stage-2 on CelebA-HQ.

Model std1 std12 std23 std34 std45

HCDM8 0.7766 0.9153 0.9363 0.8772 0.8631
HCDM12 0.7766 0.9092 0.9292 0.8663 0.8550
HCDM15 0.7766 0.5344 0.5478 0.3257 0.2570
HCDM20 0.7766 0.1032 0.1121 0.0853 0.0766

Ablation on binary condition. We show that the length of
binary conditions impacts the effectiveness of learning con-
ditional dependencies, as in Table 4. We set binary lengths
to 8, 12, 15, 20 and train HCDM on CelebA-HQ. Initially,
we sample 5, 000 latents and compute the standard devia-
tion (std1) of h1. Since h1 is sampled w/o condition, it
shows high values irrelevant to binary lengths. Then, we
select 10 random samples from h1 as conditions and get
5, 000 samples for h2. The standard deviation (std12) de-
creases as the binary condition length increases since longer
conditions contain more information from preceding layers.
Once it reaches a certain threshold, the standard deviation
approaches zero, turning the conditional chain into direct
one-to-one mapping, thus diminishing controllability. How-
ever, if the length is too small, e.g. 0, all parts will be
independent hence losing conditional dependency. There-
fore, we empirically set the length as 12. We repeat this
procedure for all layers and observe similar results.

5. Conclusion
We proposed the Controllable Hierarchical Implicit Neural
Representation (CHINR) framework, addressing the limita-
tions of existing generative INRs which ignore the hierarchy
in parameters and data semantics and lack control. By struc-
turing INR as a Layers-of-Experts network and leveraging
a hierarchical conditional diffusion model, our approach
captures conditional dependencies across layers, enabling
hierarchical controllable data generation.

One limitation is scalability to larger datasets, as the shared
network may struggle to capture complex and diverse data
patterns. A possible solution is to incorporate local infor-
mation using patch-wise modulation (Mehta et al., 2021;
Bauer et al., 2023) or INRs with localized nonlinearity (e.g.,
WIRE (Saragadam et al., 2023)). Future directions include
exploring sparse gatings, as in Mixture of Experts (Wang
et al., 2022), to promote expert diversity and specializa-
tion. Additionally, learning layer-wise semantic hierarchy in
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Stage-1 can be guided through predefined attributes or deep
clustering. This would allow the model to develop more
interpretable and distinct semantics across layers, improving
control over fine-grained details and desired characteristics.

Impact Statement
This paper advances generative INRs by introducing a novel
approach for controllable data generation. Our experiments
include datasets that contain human-related data (e.g., facial
images), but we do not foresee any immediate societal con-
cerns requiring specific attention. We encourage responsible
use of our method in applications involving human data.
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A. Details on Experimental Setup
Implementation details. The LoE structure can be configured with the number of layers L, the number of experts at
each layer K, the channel dimension of each expert C, and the dimension of the latent at each layer H , denoted as a
tuple (L,K,C,H). We train LoEs of (5, 128, 256, 128), (5, 256, 64, 256), (6, 256, 64, 64), and (5, 64, 64, 64) in CelebA-
HQ (Karras et al., 2018), ShapeNet (Chang et al., 2015), SRN-Cars (Sitzmann et al., 2019), and AMASS (Mahmood et al.,
2019) datasets, respectively. We follow mNIF (You et al., 2024) on the data processing protocols for CelebA-HQ, ShapeNet,
and SRN-Cars datasets. Details about the AMASS dataset are provided in Appendix B.3.

Training details. In Stage-1, we train LoEs via meta-learning on CelebA-HQ, ShapeNet, and AMASS, and with auto-
decoding on SRN-Cars. We use a batch size of 32, an outer learning rate of 1e−4, an inner learning rate of 1 with 3 steps,
and train the LoE for 800 epochs in the meta-learning setting. For auto-decoding experiments on SRN-Cars, we use a batch
size of 8, a learning rate of 1e−4, and train the LoE for 1000 epochs. In both settings, we use the AdamW (Loshchilov,
2017) optimizer without weight decay. In Stage-2, we set the training batch size to be 32, learning rate 1e−4, and cosine
scheduler with minimum learning rate 0.0. We train the HCDM for 1000 epochs with the AdamW optimizer.

B. Additional Experimental Results
B.1. Generalizability Analysis Through Retrieval

mNIF

CHINR

Generated Retrieved from training set

Figure 9. Retrieval on CelebA-HQ: mNIF retrieves images closely resembling those from the training set, while CHINR demonstrates
better generalization by producing distinct new images.

We use retrieval to compare the generalizability of CHINR and mNIF on the CelebA-HQ dataset. Specifically, we generate
samples and retrieve the closest images from the training set. As shown in Fig. 9, mNIF generates samples that are very
similar to the training images, suggesting a higher chance of “memorization”. In contrast, CHINR demonstrates better
generalization by producing “new” samples that differ more noticeably from the training data.

B.2. More Generated Samples

Figure 10 shows more generated samples on CelebA-Net, ShapeNet, and SRN-Cars datasets.
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Figure 10. More generated samples of CelebA-HQ, ShapeNet, and SRN-Cars data.

Table 5. Quantitative results on AMASS.
Model MSE↓

mNIF (You et al., 2024) 0.015
CHINR 0.011

Figure 11. Generated motions with HCDM. each row denotes one sampled data.

B.3. AMASS Experiments

We apply our proposed CHINR model to the AMASS dataset of 3D human motions. For each motion sequence, we use 200
frames, with each frame represented by 165 values corresponding to the locations and rotations of body joints. As a result,
each data instance is formatted as a grid with size 200× 165. In Stage-1, the LoE is employed to fit the motion instances. In
Stage-2, we set the binary lengths to 8 to avoid memorizing conditions.

Reconstruction and generation results. The reconstruction performance is shown in Table 5. The randomly generated
motions are shown in Fig. 11.

Semantic-level Interpolation. Since the LoE successfully learns the consistent latent space, we can perform semantic-level
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Figure 12. Semantic interpolation for AMASS data. Anchor sequential motions (indicated by the red and green dashed boxes) are first
fitted with LoE to obtain latents. Then semantic-level interpolation is performed by interpolating the latents. The red dashed box denotes
the start motion, and the green dashed box denotes the end motion.

interpolation for motions. As shown in Fig. 12, given two fitted sequential motions with LoE, each corresponds to a latent,
we can interpolate the latent from the start motion (indicated by the red dashed box) to the end motion (indicated by the
green dashed box) linearly with ratio [0.2, 0.4, 0.6, 0.8]. We can see that the interpolated motions change smoothly from the
start to the end. Semantic-level interpolation can be useful in the gaming industry, and 3D-digital content generation.

Temporal-level interpolation. Since the INR can generate data instances in any resolution, we can easily enlarge the input
coordinates’ resolution in the time dimension to achieve temporal-level interpolation. We set the length of the time dimension
to be 200 and 400, then get motions with LoE. The interpolated results are submitted as videos named “motion short.mp4”
and “motion long.mp4”.

B.4. Hierarchical Controllable Generation

More examples of hierarchical controllable data generation are presented in Fig. 13.

B.5. Latent-based Retrieval

We show an application of data retrieval by latents, since they already embed rich semantic meanings. We first obtain
the latents for the target data by fitting it to the LoE through a few gradient steps. Once the latents are optimized, they
can be used to retrieve similar data by comparing their latent representations to the searched set, allowing us to search for
semantically similar examples within the latent space. Figure 14 shows this process by using images from the test-split of
CelebA-HQ as the targets, and train-split images as the searched set. We demonstrate two approaches for retrieval: (1) using
the flattened h for all layers, and (2) layer-wise retrieval using each layer’s latent hl. As shown in Fig. 14, retrieval by the
flattened h will retrieve samples that are broadly similar, while layer-wise retrieval retrieves samples with specific semantic
similarities. For example, h2 retrieves faces with similar orientations, while h3 retrieves faces with similar facial features
such as eye shape and expressions.
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Figure 13. More examples of hierarchical controllable generation on CelebA-HQ, ShapeNet, and SRN-Cars data.
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Figure 14. Latent-based retrieval via two approaches: retrieval by all layers and retrieval by each layer.

C. Analysis
In this section, we provide more analysis of the latent space and the functionalities of binary conditions.

C.1. Latent Space Analysis

Here, we analyze the latent space further, focusing on its interpolation capabilities and providing more results of hierarchy
analysis.

Figure 15. Latent space interpolation is performed for LoE, with four corner points representing the anchor examples rendered in stage 1.
The intermediary points are generated through the bilinear interpolation of the latents associated with these four anchors. The interpolation
is evaluated on datasets CelebA-HQ, ShapeNet, and SRN-Cars.

C.1.1. LATENT INTERPOLATION

To illustrate that our model learns a consistent and metric latent space, following definitions in Du et al. (2021), we perform
latent space interpolation in two ways: complete interpolation, and layer-wise interpolation.
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Figure 16. Layerwise interpolation. The red boxes denote the start and the green boxes denote the end. For the CelebA-HQ, the layers
2 → 4 are interpolated respectively while other layers are fixed. For the ShapeNet, the layers 1 → 3 are interpolated respectively.

Complete Interpolation is shown in Fig. 15. Four corners present the signals with latent generated from Stage-1. The
intermediary signals are bilinearly interpolated from four corners in latent space. The results demonstrate that the learned
latent is metric and consistent with human perception.

Layer-wise Interpolation. Since our LoE embeds semantics hierarchically in different parts of the latent, we can interpolate
each part to control specific semantics. As shown in Fig. 16, we interpolate the second, third, and fourth parts of the latent
associated with red-boxed signals, with the corresponding parts of the right side latent. For CelebA-HQ samples, we find
that the facial orientation, facial features, and skin tone can be interpolated independently. This demonstrates that each part
of the latent also constructs a metric and consistent manifold.

C.1.2. LAYER-WISE HIERARCHY ANALYSIS

Layer-wise correlation analysis. We perform layer-wise correlation analysis on latents to show the necessity of conditional
dependency modeling. We compute cross-layer correlation between latents using Singular Vector Canonical Correlation
Analysis (SVCCA) (Raghu et al., 2017). Fig. 17a displays the pairwise correlations between h across layers, trained
on Celeba-HQ in Stage-1, showing the non-negligible correlation between layers. Similar findings in other datasets are
shown in Figs. 17b and 17c. This underscores the importance of modeling conditional distributions p(hl|h<l), rather than
independent marginal distributions p(hl) in Stage-2.

(a) CelebA-HQ. (b) ShapeNet. (c) SRN-Cars.

Figure 17. Correlation between the learned latents across layers, trained on CelebA-HQ (Karras et al., 2018) ShapeNet (Chang et al., 2015)
and SRN-Cars (Sitzmann et al., 2019). The non-negligible correlation between adjacent layers (e.g., h1 and h2) reveals the necessity of
conditional distribution learning.

Layer-wise dependency visualization. We provide more layer-wise dependency visualizations in Fig. 18. This highlights
the learned layer-wise dependencies in alignment with data semantic hierarchies.
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Figure 18. Visualization of conditional distributions across layers 3, 4, 5. The gray regions present the distribution of latents from Stage-1,
while the colored regions represent the sampled latents from Stage-2.

Figure 19. Clusters of each part of latent and binary conditions. The dotted plot presents clusters of each part of latents trained on
CelebA-HQ. The gray distribution plot presents the distribution of each part of latents, and starred scatter plot presents clusters of latents
with similar binary conditions.
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C.2. Binary condition Analysis

We analyze the clustering of latents and binary conditions on CelebA-HQ dataset, as shown in Fig. 19. Firstly, we use
the KMeans algorithm to get 10 clusters of latents, shown as the dots in the figure. Then we select three anchor latents,
generate three binary conditions with HCDM, and search the nearest binary-corresponded latents. The nearest neighbors are
represented by the stars. We can observe that the binary conditions embed the latents’ information and form a consistent
binary condition space. This binary condition space corresponds to the latent space.
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