
Published as a conference paper at ICLR 2023

WARPING THE SPACE: WEIGHT SPACE ROTATION FOR
CLASS-INCREMENTAL FEW-SHOT LEARNING

Do-Yeon Kim1, Dong-Jun Han2∗, Jun Seo3, Jaekyun Moon1

1 Korea Advanced Institute of Science & Technology, 2 Purdue Univirsity, 3 LG AI Research
dy.kim@kaist.ac.kr, han762@purdue.edu,
jun.seo@lgresearch.ai, jmoon@kaist.edu

ABSTRACT

Class-incremental few-shot learning, where new sets of classes are provided se-
quentially with only a few training samples, presents a great challenge due to
catastrophic forgetting of old knowledge and overfitting caused by lack of data.
During finetuning on new classes, the performance on previous classes deteriorates
quickly even when only a small fraction of parameters are updated, since the
previous knowledge is broadly associated with most of the model parameters in
the original parameter space. In this paper, we introduce WaRP, the weight space
rotation process, which transforms the original parameter space into a new space
so that we can push most of the previous knowledge compactly into only a few
important parameters. By properly identifying and freezing these key parameters in
the new weight space, we can finetune the remaining parameters without affecting
the knowledge of previous classes. As a result, WaRP provides an additional room
for the model to effectively learn new classes in future incremental sessions. Ex-
perimental results confirm the effectiveness of our solution and show the improved
performance over the state-of-the-art methods.

1 INTRODUCTION

Humans can easily acquire new concepts while preserving old experiences continually over the course
of their life span. With a growing desire to imitate such ability, incremental or continual learning has
been brought into the spotlight in the AI community recently (Hung et al., 2019; Wortsman et al.,
2020; Saha et al., 2021). Here, due to storage and privacy constraints, it is impractical to save all
the training samples of previous tasks during the training process (Desai et al., 2021). The most
challenging issue in this setup is to preserve the knowledge of previous tasks against catastrophic
forgetting (Serra et al., 2018). More recently, an increasing need for such learning capability when
dealing with rare data (e.g., military image, medical data, photos of rare animals) has encouraged
many researchers to focus on a more challenging setup, known as class-incremental few-shot learning
(CIFSL). In CIFSL, each task consists of only a few training samples, making the problem much
harder as we must additionally handle the severe overfitting issue caused by lack of training data.

Prior works on CIFSL typically take the following two steps: (i) pretraining the model on the first task
(base classes) and (ii) adapting the pretrained model to new classes (novel classes) in each training
session (e.g., via finetuning), assuming that the first task contains a sufficiently large number of
training samples. One recent work, F2M (Shi et al., 2021), tries to find the flat local minima during
the pretraining stage and then finetunes the model within this flat area for learning novel classes so
that the forgetting issue could be resolved. Another line of work, named FSLL (Mazumder et al.,
2021), mitigates the forgetting issue by keeping some important parameters frozen and finetunes only
the remaining trainable parameters during the incremental learning sessions. Several other works
adopt different strategies to learn new classes well during incremental sessions without forgetting
(Tao et al., 2020; Cheraghian et al., 2021a; Zhang et al., 2021; Kukleva et al., 2021; Chen & Lee,
2021; Akyürek et al., 2022).

Motivation. One key strategy shared among some of these prior works is: model update is performed
in the original parameter space, which is defined here with the standard basis. To illustrate the

∗Corresponding author.

1



Published as a conference paper at ICLR 2023

Figure 1: Visualization of loss landscape for base classes after pretraining. Left: red dashed arrow lines refer to
directions of standard basis. Finetuning along either of these directions at each incremental session can adversely
affect the loss. In this original space, it is generally challenging to capture the flat directions directly. Right:
weight space rotation with desired basis (blue dashed lines) provides us with flat direction K11; following this
direction, we can finetune the model without performance loss on the base classes. The performance on the
novel classes are also preserved by accumulating and freezing the important parameters obtained at each session.

concept of standard basis in this context, consider an example with 2 × 2 weight matrix W for a
specific layer. By defining wij as the (i, j)-th parameter of W , we can unroll W as follows:

W = w11

[
1 0
0 0

]
+ w12

[
0 1
0 0

]
+ w21

[
0 0
1 0

]
+ w22

[
0 0
0 1

]
= w11e11 + w12e12 + w21e21 + w22e22. (1)

Here, we denote E = {e11, e12, e21, e22} as standard basis, upon which the weight space is param-
eterized by w = {w11, w12, w21, w22}. Neural networks are typically implemented in the weight
space spanned by E, and thus the learning processes (e.g. gradient computation, parameter update)
are performed with respect to the parameters in w as shown in Figure 1. However, our empirical
observation in Figure 2, which showcases the effect of simple finetuning in two different spaces,
suggests that the accuracies of previous classes are extremely vulnerable to model finetuning in the

1 3 5 7 9

Session

20

40

60

80

B
as

e 
A

cc
ur

ac
y 

(%
)

 miniImageNet

New Space (97% freeze)
New Space (3% freeze)
Original Space (97% freeze)
Original Space (3% freeze)

Figure 2: Original vs. New space.

original space, even when we finetune only a small fraction of
parameters; finetuning only 3% of model parameters (freeze 97%)
throughout the incremental sessions significantly degrades the
performance on base classes. This implies that the previous knowl-
edge is more broadly associated with, to a certain extent, most
of the model parameters in the original space. Motivated by this,
we pose the following question: Can we find another basis, i.e., a
new weight parameter space, such that we can push most of the
previous knowledge compactly into only a few key parameters?

Contributions. In this paper, we introduce the concept of Weight space Rotation Process (WaRP)
that provides a solution to the above question. By viewing the weight matrix of a neural network
from a different perspective, WaRP transforms the original parameter space into a new space. For any
given orthonormal set of matrices, we can reparameterize the weight in (1) as

W = w̃11

update

K11 + w̃12

freeze
K12 + w̃21

update

K21 + w̃22

update

K22 (2)

where B = {K11,K12,K21,K22} is a newly constructed basis that consists of orthonormal matrices
and w̃ij is the weight parameter that is reparameterized according to Kij . As shown in Figure 1, we
can always rotate the axes by which the weight is represented for an arbitrary basis B. Here, if w̃12 in
(2) plays a key role in determining the output of the layer, then {K11,K21,K22} can be viewed as
flat directions. Thus, finetuning can be performed along the flat directions by freezing the important
parameter w̃12 in the new space, which effectively preserves the previous knowledge (Figure 2).
Figure 1 provides high-level descriptions of WaRP and our finetuning process along the flat direction.

By introducing the concept of WaRP, we propose a new strategy to construct an appropriate basis B
using the low-rankness property of activation, and redefine the model parameters in this new space so
that we can push most of the knowledge of base classes compactly into only a few parameters. Once
we construct a new weight space, we identify and freeze the important parameters for keeping the
knowledge of previous classes at the end of each training session, and finetune only the remaining

2



Published as a conference paper at ICLR 2023

parameters in the next session without performance degradation on previous knowledge. With a
careful construction of new basis and a proper criterion for identifying important parameters, we
can preserve the knowledge of base classes after finetuning the model on novel classes at each
incremental session. The knowledge of novel classes can be also preserved by accumulating the
important parameters and keeping them frozen. It turns out that WaRP is easy to implement and the
proposed score criterion is efficient to compute. Experimental results on various benchmarks show
the improved performance of our method over the state-of-the-art baselines.

2 WEIGHT SPACE ROTATION

Before describing our solution for CIFSL, we first introduce the general concept of WaRP proposed
in this paper. To begin with, we view the weight matrix W ∈ Rm×n as a linear combination of
orthonormal matrices {eij}i,j , where eij ∈ Rm×n is defined as a matrix having one for the (i, j)-th
element and zeros for others. We can rewrite W as

W =

m∑
i=1

n∑
j=1

wijeij (3)

where wij denotes the (i, j)-th element of W which is the coefficient of eij . Since neural networks
are parameterized by coefficients w := {wij}i,j in practical deep learning implementations, typical
learning operations such as gradient descent are conducted on the weight space spanned by the
standard basis E := {eij}i,j . However, the learned knowledge of previous tasks is likely to be
associated with most of the parameters in w (i.e., most directions in standard basis E); updating
a small fraction of selected parameters could give rise to significant performance degradation on
previous classes as shown in Figure 2, suggesting that the previous performance is highly vulnerable
to finetuning in the original space.

In this paper, we extend the above linear algebraic interpretation of the weight matrix (based on
standard basis E) using an arbitrary basis B = {Kij ∈ Rm×n|i ∈ [m], j ∈ [n]} that spans Rm×n.
Specifically, let B be an arbitrary set of orthonormal matrices satisfying: (i) ⟨K,K′⟩ = 0 if K ̸= K′

for K,K′ ∈ B, and (ii) ∥K∥ =
√
⟨K,K⟩ = 1 for all K ∈ B, where ∥ · ∥ and ⟨·, ·⟩ are the norm and

inner product properly defined in Rm×n, respectively. Since a vector spaceH := Rm×n equipped
with the inner product operation ⟨A,B⟩ := trace(A⊤B) (for A,B ∈ H) is Hilbert space, one can
always rewrite W ∈ H as a linear combination of orthonormal matrices in B as follows:

W =
∑
K∈B
⟨W,K⟩K =

m∑
i=1

n∑
j=1

⟨W,Kij⟩Kij . (4)

Note that this equation generalizes (3) to the case with an arbitrary basis B; the special case with
Kij = eij (i.e., B = E) reduces to the result in equation (3). Thus for any orthonormal set of matrices
B spanning Rm×n, we can always reparameterize the layer of the model with w̃ := {⟨W,K⟩}K∈B in
place of w. In the next section, we describe how WaRP can address forgetting in CIFSL.

3 PROPOSED ALGORITHM FOR CIFSL

Problem Setup and Notations. The main goal of CIFSL is to incrementally train the model on a
new set of classes at each training session, while avoiding forgetting of old classes. Let Tk be the
task given in k-th session with tuples of training sample and its class label, i.e., Tk = {(xk

t , y
k
t )}

Nk
t=1,

where Nk denotes the number of samples in Tk. For simplicity, we omit super/subscripts of xk
t and

ykt if these can be clearly referred from the context. By defining ns as the total number of training
sessions, we assume that the corresponding sets of categories in each task, denoted by C1, . . . , Cns ,
are completely disjoint. As in previous works (Tao et al., 2020; Shi et al., 2021), we consider a
setup where a sufficiently large amount training data are available in the first task T1. In contrast, the
subsequent tasks T2 . . . , Tns

consist of only a small number of samples per class, e.g., 5 samples
per class. We consider a practical setup where all training samples of previous tasks cannot be
accessed during training due to privacy and storage constraints. We use the term ‘task’ and ‘session’
interchangeably throughout the paper. We let Wl ∈ Rml×nl be the weight matrix of l-th layer in the
neural network. We discard the layer index l and use W ∈ Rm×n for weight whenever the context
obviates it. In denotes the n× n identity matrix, [n] denotes the set {1, . . . n}, and {ai}i or {ai}i∈I
represents {ai|i ∈ I} for some index set I.

3



Published as a conference paper at ICLR 2023

Overview of Approach. Given the model trained on the first task T1, our first step is to construct
a new basis via WaRP on which most directions are flat. Once new basis is constructed in the first
session, this new basis is fixed throughout the whole remaining (incremental) sessions. At the end of
each session, we identify the important parameters based on the scoring criterion and freeze them.
In the next session, we finetune only the remaining parameters, namely, the directions of flat axes,
and the same process is repeated for the future tasks. Throughout the learning process, the important
parameters are accumulated and kept frozen to preserve the knowledge of both novel and base classes.

In the following, we start by describing how to construct an appropriate basis via WaRP for CIFSL
and how to implement it in practice (Sec. 3.1). Then we describe our criterion for identifying
the important parameters in each incremental session (Sec. 3.2). Finally, we describe the overall
procedure of our algorithm for CIFSL with details (Sec. 3.3).

3.1 CONSTRUCTING NEW BASIS FOR WEIGHT SPACE ROTATION

To find an appropriate basis to reparameterize W ∈ Rm×n, we start by expressing the basis by using
a pair of unitary matrices. Given any two unitary matrices V ∈ Rm×m, U ∈ Rn×n, it can be seen
that the set B = {Kij := viu

⊤
j ∈ Rm×n|i ∈ [m], j ∈ [n]} is orthonormal, where vi and uj denote

the i-th and j-th column vectors of V and U , respectively. Thus from (4), we can rewrite W as

W =

m∑
i=1

n∑
j=1

⟨W,Kij⟩Kij =

m∑
i=1

n∑
j=1

⟨W,viu
⊤
j ⟩viu

⊤
j =

m∑
i=1

n∑
j=1

w̃ijviu
⊤
j , (5)

where w̃ij := ⟨W,viu
⊤
j ⟩. In other words, W is reparameterized by {w̃ij}i,j using the basis

{viu
⊤
j }i,j constructed with arbitrary two unitary matrices V and U . Now the question is, how to

design appropriate V and U to make most of the elements in the basis to be flat directions?

For a specific layer l, we define a matrix Φl = [ϕl(x1), ϕl(x2), . . . , ϕl(xN1
)] where ϕl(xt) denotes

the activation of the l-th layer for the t-th sample in the first task T1. Then the singular value
decomposition of covariance of activations is given by

ΦlΦ
⊤
l = UlΣlU

⊤
l , (6)

where Σl is a diagonal matrix having singular values on its diagonal and Ul is the corresponding
unitary matrix. Here, note that the activations of deep neural networks are known to have low-rankness
property as shown in (Suzuki et al., 2020b; Wang et al., 2021), i.e., singular values decrease rapidly
and most of the singular values are close to 0. Thanks to this low-rankness property, by adopting
U = Ul in (5) for the l-th layer Wl and defining w̃l

ij = ⟨W l,viu
⊤
j ⟩, we have

Wlϕl(x) =

m∑
i=1

n∑
j=1

w̃l
ij viu

⊤
j ϕl(x)︸ ︷︷ ︸
≈ 0 for most (i, j) pairs by low-rankness.

(7)

for any unitary matrix V and any sample x in T1. Namely, the effect of activation ϕl(x) is highly
likely to be negligible in most directions in B = {viu

⊤
j }i,j during forward propagation. In other

words, most directions in B are flat and thus only a few directions and their corresponding parameters
are meaningful. So if we can properly identify the important parameters among {w̃ij}i,j and freeze
them, finetuning along the remaining directions (for which viu

⊤
j ϕl(x) ≈ 0) does rarely change

the output Wlϕl(x) for x in T1. This implies that the feature embedding of previous classes can be
preserved by freezing only a small fraction of parameters in this new weight space.

Implementation. Note that the actual implementation of WaRP in (5) turns out to be simple in
practice. By using the fact that V V ⊤ = Im and UU⊤ = In, we have W = V V ⊤WUU⊤ = V W̃U⊤

where W̃ := V ⊤WU . From the definition above, w̃ij is (i, j)-th element of W̃ . Thus to apply WaRP,
we just multiply unitary matrices to W and reparameterize the layer with W̃ while V , U remain fixed.
Throughout the algorithm, we set V = Im which we found to be a valid choice.

Convolutional Case. Implementing WaRP for convolutional layers is almost the same with the case
of fully-connected layers except for flattening the feature maps and reshaping the weight/unitary
matrices, to make the pipelines workable as in fully-connected layer. The detailed implementation
for convolutional layer can be found in Appendix A.2.

4



Published as a conference paper at ICLR 2023

3.2 IDENTIFYING IMPORTANT PARAMETERS

In the new weight space constructed in Sec. 3.1, our scheme identifies the important parameters at the
end of each training session and keep freezing them throughout the training process. The remaining
trainable parameters (except the accumulated important parameters) are finetuned in the next session.
In this subsection, we describe our strategy for selecting the important parameters in each session.

To identify the trainable parameters (i.e., flat directions), at the end of each k-th session, we take the
score criterion that is well compatible with our new space constructed by WaRP. By the chain rule,
taking the derivative of the loss function, denoted by L, with respect to the parameter w̃l

ij yields:

dL/dw̃l
ij = dz⊤l viu

⊤
j ϕl(x)︸ ︷︷ ︸
(a)

, (8)

where dzl denotes the gradient of the loss with respect to the output of the layer zl = Wlϕl(x) for
any x in Tk. Interestingly, it turns out that the term (a) in equation (8) also appears in (7). In addition,
as shown in (8), the trend of the magnitude of dL/dw̃l

ij follows the tendency of (a). From these
observations, it can be seen that the gradient can indirectly capture the influence of finetuning within
each direction viu

⊤
j on Tk. Motivated by this, we consider the following score criterion:

slij := importance score of w̃l
ij =

∑
b∈Dnb

k

∣∣dLk(b)/dw̃
l
ij

∣∣ (9)

where Lk(b) is the loss computed with batch b in Tk, and Dnb

k is a set that consists of Nk/nb batches
with size nb in Tk. In words, the score is computed by summing up the magnitudes of the gradients
using the samples in Tk. Here, if slij is small, then ∆w̃ijviu

⊤
j ϕl(x) is likely to be small where ∆w̃ij

simulates the gradient with respect to w̃ij . Thus, finetuning with respect to this w̃ij (following the
direction of viu

⊤
j ) on new classes may not distort the feature embedding of all previous classes.

Remarks. We wish to highlight two points here. First, WaRP in Sec. 3.1 and the score criterion in
Sec. 3.2 work in a highly complementary manner; if we use the standard basis, the flat directions are
limited and thus the performance could be restricted regardless of the scoring criterion. If we use a
different score criterion (e.g. weight magnitude as done in (Mazumder et al., 2021)) other than (9) in
the new weight space, we cannot fully exploit the low-rankness as in (8) and thus cannot properly
identify flat directions. These results are confirmed via experiments in Sec. 5.3. Secondly, due to the
simplicity of implementing WaRP, we can rely on auto-grad computation of gradient with respect to
the weight matrix; we can take the derivative with respect to W̃ rather than with respect to w̃ij one
by one, to obtain the scores at once. Thus it is efficient to compute.

3.3 OVERALL PROCEDURE FOR CIFSL

Based on WaRP and the proposed score criterion, we describe the overall procedure of our algorithm.

First Session (k = 1). We pretrain the embedding network and the linear classifier Wcls by minimiz-
ing the cross-entropy loss LCE(Tk) = − 1

Nk

∑Nk

t=1

∑
c∈Ck

1{yk
t =c} log

(
exp(γc,t)∑

c′∈∪k
i=1

Ci
exp(γc′,t)

)
with

k = 1, where 1{·} is an indicator function and γc,t denotes the output of classifier corresponding to
class c. When pretraining is done, we replace the weight vector of linear classifier Wcls corresponding
to class c with the prototype (average of feature embeddings corresponding to class c), which we
found is a good option for balancing the model performance on base classes and future novel classes.

Now we construct a new basis for each layer according to Sec. 3.1 and apply WaRP. Here, to
alleviate the overfitting issue on novel classes during the remaining incremental sessions, we restrict
the learnable space by applying WaRP only to the last few layers while keeping other layers fixed
throughout the whole training process. Note that once we construct a new basis in the first session,
this basis is fixed throughout the remaining sessions and thus model updates are performed in the
new/fixed space. See Appendix A.4 for discussions on validity of the new space for novel classes.

At the end of the first session, we identify the important/trainable parameters based on the proposed
importance score (9) in Sec. 3.2. We select the parameters with the scores up to top α × 100% as
important parameters and let the remaining ones as trainable parameters, where α is the parameter

5



Published as a conference paper at ICLR 2023

keeping ratio, a hyperparameter defined in range [0, 1]. To indicate whether each element of W̃l is
important or not, we introduce a 0-1 mask Ml ∈ Rml×nl as follows:

(i, j)-th element of Ml =

{
1 slij ≥ sα
0 otherwise

,∀(i, j) ∈ [ml]× [nl],∀ selected layers l (10)

where sα is the score value corresponding to top α × 100% of the scores of all parameters in all
selected layers, i.e., in {slij |i ∈ [ml], j ∈ [nl], selected layers l}. If the (i, j)-th element of Ml is 1,
the (i, j)-th element of W̃l is regarded as an important parameter.

Incremental Sessions (k ≥ 2). In the beginning of each incremental session k ≥ 2, we compute
the prototypes corresponding to new classes in Ck and utilize them as a classifier along with the
prototypes of the base classes. To preserve the knowledge of previous classes during finetuning, we
only update the unimportant parameters using the importance mask Ml obtained from the previous
session. We block the gradient computation with respect to important parameters at each layer l as

W̃l ← stop grad
(
W̃l ⊙Ml

)
+ W̃l ⊙ (1−Ml) (11)

and let Wl ← V W̃lU
⊤, where stop grad(·) is an operation that detaches the input from the

computational graph during loss computation, and ⊙ denotes element-wise multiplication. Thus,
gradient descent with respect to W̃l in (11) leads to model update of the unimportant parameters only.
In each incremental session k, we finetune the model W̃l using the cross-entropy loss LCE(Tk) for
each selected layer l, while keeping the weights of the classifier fixed during finetuning.

After finetuning is finished on task Tk, we also identify the important parameters for Tk to be
considered for the next session; we obtain the importance mask Ml,k using criterion in (10) for a
given α. To preserve not only the knowledge of Tk but also of classes in previous sessions, we
accumulate important parameters identified so far:

Ml ← 1− (1−Ml)⊙ (1−Ml,k). (12)

All the knowledge encountered so far can be properly preserved by this accumulated mask.

Finally, when each k-th session is finished, the prediction is made on the test samples from all encoun-
tered classes, i.e., for a given input, the prediction ŷtest is given by ŷtest = argmaxc′∈∪k

i=1Ci
γc′,t. The

whole process described above is repeated until the last incremental session, i.e., for k = 2, 3, . . . ns.

4 RELATED WORKS

Class-Incremental Few-shot Learning. There have been many attempts to solve class-incremental
few-shot learning where only a few labeled samples are available in each task (Cheraghian et al.,
2021b; Zhu et al., 2021; Zhou et al., 2022b; Cheraghian et al., 2021a). To address both catastrophic
forgetting and overfitting issues in CIFSL, some prior works take meta-learning approaches (Gidaris
& Komodakis, 2018; Ren et al., 2019; Yoon et al., 2020). They typically mimic the inference stage
during training so that the model can rapidly adapt to new classes. However, these works assume
that only one set of classes is given during the incremental session and do not consider a scenario in
which “more than one” sets of new classes are consecutively provided. TOPIC (Tao et al., 2020) is
the first work that considered more than one incoming sets of classes, providing a cornerstone for
future emerging studies (Akyürek et al., 2022; Chen & Lee, 2021; Zhang et al., 2021; Mazumder
et al., 2021; Shi et al., 2021; Zhou et al., 2022a). The authors of TOPIC adopted neural gas network
to maintain the topology of feature space, preventing forgetting issue. FSLL (Mazumder et al., 2021)
addressed the overfitting issue by choosing a few trainable parameters to be updated for finetuning
and prevented forgetting issue by imposing additional regularization to minimize the deviation from
the pretrained model parameters. However, this additional regularization may limit the learnability of
the model on new classes. Unlike many existing works, (Shi et al., 2021; Zhou et al., 2022a) turned
their focus on preparing a desired pretrained model in advance suitable for future incremental sessions.
Specifically, the authors of F2M (Shi et al., 2021) inject noise to model parameters during pretraining
to find the flat local minima, and finetune the model within this flat area during incremental sessions.
However, pretraining with noise injection can lead to a longer training time for the model to converge
and induce a little compromise on the performance of the pretrained model in return for the flatness
of local minima. Compared to existing works where the proposed algorithms are performed in the
‘original parameter space’ (e.g. freezing/updating the parameters in standard basis as done in FSLL),

6



Published as a conference paper at ICLR 2023

Table 1: Accuracy on miniImageNet dataset under 5-way 5-shot incremental few-shot learning setup.

Method Session

1 2 3 4 5 6 7 8 9

Finetuning 72.99 67.79 63.71 60.17 56.82 53.18 48.36 43.43 39.60
iCaRL (Rebuffi et al., 2017) 71.77 61.85 58.12 54.60 51.49 48.47 45.90 44.19 42.71
Rebalance (Hou et al., 2019) 72.30 66.37 61.00 56.93 53.31 49.93 46.47 44.13 42.19
GPM (Saha et al., 2021) 72.99 68.04 64.18 60.96 58.32 55.66 52.90 51.10 49.96
EEIL (Castro et al., 2018) 61.31 46.58 44.00 37.29 33.14 27.12 24.10 21.57 19.58
TOPIC (Tao et al., 2020) 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42
FSLL (Mazumder et al., 2021) 66.48 61.75 58.16 54.16 51.10 48.53 46.54 44.20 42.28
FSLL+SS (Mazumder et al., 2021) 68.85 63.14 59.24 55.23 52.24 49.65 47.74 45.23 43.92
CEC (Zhang et al., 2021) 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63
F2M (Shi et al., 2021) 72.05 67.47 63.16 59.70 56.71 53.77 51.11 49.21 47.84

WaRP (Ours) 72.99 68.10 64.31 61.30 58.64 56.08 53.40 51.72 50.65

our method explores the ‘new parameter space’ where the axes are aligned with many flat directions
along which the model is stably updated, by reparameterzing the weight as in equation (4). With a
careful construction of the new weight space, we can finetune along the flat directions by properly
identifying and freezing the important parameters at each session, enjoying both advantages of F2M
(Shi et al., 2021) and FSLL (Mazumder et al., 2021), without any dedicated process to find the flat
region in advance or additional regularization on model parameters. Although not directly targeting
CIFSL, there is another work (Liu et al., 2018) that reparameterizes the weight using a rotation
matrix for tackling continual learning. Its focus is mainly on a good diagonalization of the Fisher
information matrix (FIM) that shows up in the objective function of (Kirkpatrick et al., 2017). In
our work, however, the role of rotation is different in that we rotate the axes of loss landscape for
identifying/utilizing the flat directions aligned with new basis by further exploiting the low-rankness
property.

Utilizing Low-Rankness Property of Activation. There are a few works that exploit the low-
rankness property of activation in deep neural network (Suzuki et al., 2020b;a; Saha et al., 2021;
Wang et al., 2021). This suggests that the inputs are highly concentrated on the subspace spanned by
only a few number of certain orthogonal vectors. (Suzuki et al., 2020b; Wang et al., 2021) confirm
this property by showing the empirical distribution of singular values at some layers. The authors of
(Suzuki et al., 2020a) proposed a network compression scheme by exploiting this property which
brings on small number of degrees of freedom. In (Suzuki et al., 2020b), the authors derived the
tight generalization bound of deep neural network with the help of high compressibility of the model
induced by this property. Another line of works (Saha et al., 2021; Wang et al., 2021) try to solve
continual learning problem by utilizing the low-rankness property. At each learning session, they
update the model parameters using the gradient orthogonal to the subspace which the previous tasks
are concentrated on. Note that our work turns out to generalize the update process of (Saha et al.,
2021; Wang et al., 2021) in that if we freeze the parameters of the weight matrix in a column-wise
manner, the gradient update of our method can be reduced to that of these works as special cases.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP & DETAILS

Datasets. We evaluate our method on three benchmark datasets, CIFAR100 (Krizhevsky et al., 2019),
miniImageNet (Vinyals et al., 2016) and CUB200 (Wah et al., 2011), in the CIFSL setting. For both
CIFAR100 and miniImageNet, we split the total of 100 classes into 60 classes (for base classes)
and 40 classes (for novel classes). The 40 novel classes are divided into 8 different sets having 5
categories each, and allocated to each incremental session following the 5-way 5-shot setting. For
CUB200, we split the total of 200 classes into 100 for the base classes and the remaining 100 for
the novel classes, where the 100 novel classes are divided into 10 different sets having 10 categories
each, following the 10-way 5-shot setting in each incremental session. We follow the same split
configuration proposed by TOPIC (Tao et al., 2020) in all datasets.

Model Architecture. For the embedding network, following the standard setup in (Tao et al., 2020;
Mazumder et al., 2021; Shi et al., 2021), we use ResNet20 for CIFAR100 and use ResNet18 (He
et al., 2016) for the others. Additionally, to see how a wider model affects the ability of our method
for making additional room for learning new classes, we also conduct experiments with ResNet181

1The ResNet18 model architecture for CIFAR100 dataset is adopted from https://github.com/
kuangliu/pytorch-cifar/blob/master/models/resnet.py

7

https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py
https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py


Published as a conference paper at ICLR 2023

Table 2: Accuracy on CUB200 dataset under 10-way 5-shot incremental few-shot learning setup.

Method Session

1 2 3 4 5 6 7 8 9 10 11

Finetuning 77.74 73.49 68.29 60.60 51.62 34.37 25.84 23.36 19.01 13.05 12.24
iCaRL (Rebuffi et al., 2017) 75.95 60.90 57.65 54.51 50.83 48.21 46.95 45.74 43.21 43.01 41.27
Rebalance (Hou et al., 2019) 77.44 58.10 50.15 44.80 39.12 34.44 31.73 29.75 27.56 26.93 25.30
GPM (Saha et al., 2021) 77.74 73.92 70.49 66.38 64.51 62.03 60.76 59.10 56.55 56.02 54.82
EEIL (Castro et al., 2018) 68.68 53.63 47.91 44.20 36.30 27.46 25.93 24.70 23.95 24.13 22.11
TOPIC (Tao et al., 2020) 68.68 62.49 54.81 49.99 45.25 41.40 38.35 35.36 32.22 28.31 26.28
FSLL (Mazumder et al., 2021) 72.77 69.33 65.51 62.66 61.10 58.65 57.78 57.26 55.59 55.39 54.21
FSLL+SS (Mazumder et al., 2021) 75.63 71.81 68.16 64.32 62.61 60.10 58.82 58.70 56.45 56.41 55.82
CEC (Zhang et al., 2021) 75.85 71.94 68.50 63.50 62.43 58.27 57.73 55.81 54.83 53.52 52.28
F2M (Shi et al., 2021) 77.13 73.92 70.27 66.37 64.34 61.69 60.52 59.38 57.15 56.94 55.89

WaRP (Ours) 77.74 74.15 70.82 66.90 65.01 62.64 61.40 59.86 57.95 57.77 57.01

Table 3: Accuracy on CIFAR100 dataset under 5-way 5-shot incremental few-shot learning setup.

Method Session

1 2 3 4 5 6 7 8 9

Finetuning 80.31 75.43 70.82 66.26 62.21 59.08 56.43 53.58 51.05
GPM (Saha et al., 2021) 80.31 75.54 71.27 66.97 63.63 60.48 57.92 55.57 53.18
FSLL (Mazumder et al., 2021) 80.24 74.32 69.03 64.75 61.37 58.56 56.48 54.47 52.27
FSLL+SS (Mazumder et al., 2021) 81.42 74.79 69.33 64.97 61.60 58.92 57.06 55.28 53.12
CEC (Zhang et al., 2021) 79.69 74.77 70.24 66.13 62.93 59.94 57.67 55.63 53.44
F2M (Shi et al., 2021) 79.78 74.93 70.68 66.58 63.45 60.51 58.30 56.20 53.99

WaRP (Ours) 80.31 75.86 71.87 67.58 64.39 61.34 59.15 57.10 54.74

on CIFAR100, which is wider than ResNet20. We randomly initialize the network before training on
base classes for both CIFAR100 and miniImageNet. For CUB200, we deploy the Pytorch’s built-in
pretrained model for initialization as existing works have done.

Evaluation & Design Parameter. At each session, we evaluate our method by measuring the
accuracy on test samples from all encountered classes so far. We conduct 5 simulations under
different random seeds and report average values. Regarding the hyperparameters, the parameter
keeping ratio is set to be α = 0.1 for all experiments. We apply WaRP to the last 1 or 2 resnet blocks
while the remaining parameters including batchnorm layers are fixed after the pretraining stage in
the first session. For computing the output of the classifier, we use the standard dot product in the
beginning, and replace it with cosine similarity (Gidaris & Komodakis, 2018) after adopting the
prototypes as a classifier. More detailed hyperparameter settings can be found in Appendix A.1.

Baselines. We consider the following recent methods as baselines: iCaRL (Rebuffi et al., 2017),
Rebalance (Hou et al., 2019), GPM (Saha et al., 2021), EEIL (Castro et al., 2018), TOPIC (Tao et al.,
2020), FSLL (Mazumder et al., 2021), CEC (Zhang et al., 2021) and F2M (Shi et al., 2021). The
performance of these baselines are mostly taken from (Zhang et al., 2021; Shi et al., 2021) for fair
comparisons. We also consider simple finetuning, which is equivalent to our method with α = 0
using a smaller learning rate.

5.2 MAIN EXPERIMENTAL RESULTS

We first report the evaluated accuracy of each scheme on miniImageNet, CUB200 and CIFAR100
for ResNet18, in Tables 1, 2 and 3, respectively. Due to space limitation, the result on CIFAR100
for ResNet20 is left to Appendix A.3. As can be seen from the results in Tables 1 and 2, WaRP
consistently outperforms all the baselines in whole incremental sessions. More specifically, iCaRL,
Rebalance and EEIL are far below WaRP, since all these methods are not originally developed for
handling the lack of data in CIFSL. The naive finetuning method shows poor performance in all
results as the model is highly overfitted to new classes and forgets previous ones rapidly due to
scarcity of data. It is worth noting that the performance gain of WaRP against one of SOTA methods,
F2M, is 2.68% for miniImageNet and 1.12% for CUB200. For CIFAR100 dataset, since there are no
prior results for ResNet18, we reproduced the results of the following SOTA methods: GPM, FSLL,
CEC and F2M. In Table 3, the trend is consistent with the results on miniImageNet and CUB200,
where the performance gains over the F2M and CEC are 0.75% and 1.30%, respectively.

To see the effect of finetuning in WaRP clearly, we compare our method with a simple and strong
baseline which takes the prototype of each class as classifier for both base and novel classes. Since this
baseline is equivalent to the case of our method with no finetuning, we can directly see the pure gains
of finetuning in WaRP by comparing with this baseline. As can seen from the results on CUB200
in Table 4, this prototype-based baseline already outperforms or is comparable to SOTA methods,
which is consistent with the observation from F2M (Shi et al., 2021). We can see performance gains

8



Published as a conference paper at ICLR 2023

Table 4: Performance improvement of WaRP over prototype-based baseline on CUB200 dataset.

Method Session

1 2 3 4 5 6 7 8 9 10 11

Baseline (Prototype) 77.74 73.88 70.40 66.45 64.40 61.88 60.46 58.89 56.93 56.48 55.46
WaRP (Ours) 77.74 74.15 70.82 66.90 65.01 62.64 61.40 59.86 57.95 57.77 57.01

Improvement +0.27 +0.42 +0.45 +0.61 +0.76 +0.94 +0.97 +1.02 +1.29 +1.55

2 3 4 5 6 7 8 9 10 11

Session

30

35

40

45

50

55

60

65

70

75

80

A
c
c
u
ra

c
y
 (

%
)

CUB200

Base: WaRP

Base: FSLL

Base: Prototype

Novel: WaRP

Novel: FSLL

Novel: Prototype

(a) Accuracy on base/novel classes.

1 2 3 4 5 6 7 8 9

Session

0

10

20

30

40

50

60

70

80

A
c
c
u
ra

c
y
 (

%
)

 miniImageNet

New + Gs (WaRP)

New + Ws

Standard + Gs

Standard + Ws

(b) Effect of basis and score.

6 7 8 9

Session

47

48

49

50

51

52

53

A
c
c
u
ra

c
y
 (

%
)

 miniImageNet

(c) Performance with varying α.

Figure 3: Further studies on WaRP using CUB200 and miniImageNet datasets.

of WaRP over this strong baseline coherently in all incremental sessions, where the gain increases as
the session progresses.

5.3 FURTHER STUDIES ON WARP

Performance on Base and Novel Classes. In Figure 3a, we report the accuracies on base classes and
novel classes separately. We compare our WaRP with FSLL (Mazumder et al., 2021), which also
finetunes the model by selecting trainable parameters as ours, but in the original parameter space
defined with the standard basis. We also report the performance of the prototype-based baseline
considered in Table 4. We have the following key observations in Figure 3a. First, for all sessions,
the base class performance of WaRP sacrifices little compared to the prototype baseline (0.61% drop
in the last session) while achieving better result than FSLL (1.40% gain in the last session). This
indicates that WaRP can effectively keep the knowledge of base classes throughout the learning
process. Regarding the novel classes, WaRP has considerable gains compared to both FSLL (1.2%-
2.8% gain) and the prototype-based baseline (3%-5% gain), indicating that WaRP effectively provides
additional room for learning new classes in the new space, compared to FSLL which may limit the
learnability on new classes due to additional regularization. The overall results confirm the ability of
WaRP for preserving the knowledge of previous classes and learning new classes.

Ablation on Choices of Basis/Score. To see how the proposed new basis and score criterion work
in a highly complementary manner, in Figure 3b, we compare the performance of 4 different (basis,
score) combinations: we consider standard basis and new basis for the basis candidates. For the
score criterion, we consider weight score (Ws) and gradient score (Gs), which are the magnitudes
of weight and gradient, respectively. As we can see, if we do not apply our new space and score
criterion simultaneously, the performance extremely degrades as the session progresses while our
method shows much better performance than other combinations.

Ablation on Varying α. In Figure 3c, we consider ablation on varying α ranging from 0.01 to 0.50
to see the robustness of WaRP against the perturbing hyperparameter. For an extreme case with
α = 0.01, the accuracy is low since most of model parameters are updated and thus the previous
knowledge cannot be preserved. However, if α is larger than a specific small threshold (0.05 in
this case), WaRP consistently provides additional gain against the baseline, suggesting that the
performance gain is robust to perturbing α.

6 CONCLUSION

In this paper, we introduced the concept of weight space rotation process (WaRP), a general framework
for reparameterizing the weight matrix of the neural network. By taking advantage of WaRP, we
proposed a novel strategy for CIFSL that effectively learns new classes while preserving previous
knowledge, alleviating forgetting/overfitting issues. Experimental results on various benchmarks
confirmed the advantage of our method over the state-of-the-arts. Although we focused on CIFSL in
this paper, the general concept of WaRP can be utilized in any deep learning applications where the
knowledge of the model should be kept in a few parameters, which we leave for a future work.

9



Published as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

The detailed experimental setups including datasets, model architectures, evaluation metrics and
hyperparameters are described in Sec. 5.1 and Appendix A.1. We also provide the source code
in Supplementary Material. We run the simulations 5 times with different random seeds using
NVIDIA GeForce RTX 3090 GPU machine and report average values. The code is available at
https://github.com/EdwinKim3069/WaRP-CIFSL.

ACKNOWLEDGMENTS

This work was supported by Samsung Electronics Co., Ltd. and by IITP funds from MSIT of Korea
(No. 2020-0-00626).

REFERENCES

Afra Feyza Akyürek, Ekin Akyürek, Derry Wijaya, and Jacob Andreas. Subspace regularizers for
few-shot class incremental learning. In International Conference on Learning Representations,
2022.

Francisco M Castro, Manuel J Marı́n-Jiménez, Nicolás Guil, Cordelia Schmid, and Karteek Alahari.
End-to-end incremental learning. In Proceedings of the European conference on computer vision
(ECCV), pp. 233–248, 2018.

Kuilin Chen and Chi-Guhn Lee. Incremental few-shot learning via vector quantization in deep
embedded space. In International Conference on Learning Representations, 2021.

Ali Cheraghian, Shafin Rahman, Pengfei Fang, Soumava Kumar Roy, Lars Petersson, and Mehrtash
Harandi. Semantic-aware knowledge distillation for few-shot class-incremental learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
2534–2543, 2021a.

Ali Cheraghian, Shafin Rahman, Sameera Ramasinghe, Pengfei Fang, Christian Simon, Lars Peters-
son, and Mehrtash Harandi. Synthesized feature based few-shot class-incremental learning on a
mixture of subspaces. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 8661–8670, 2021b.

Zhixiang Chi, Li Gu, Huan Liu, Yang Wang, Yuanhao Yu, and Jin Tang. Metafscil: A meta-learning
approach for few-shot class incremental learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 14166–14175, 2022.

Pradnya Desai, Phung Lai, NhatHai Phan, and My T Thai. Continual learning with differential
privacy. In International Conference on Neural Information Processing, pp. 334–343. Springer,
2021.

Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without forgetting. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4367–4375,
2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Michael Hersche, Geethan Karunaratne, Giovanni Cherubini, Luca Benini, Abu Sebastian, and
Abbas Rahimi. Constrained few-shot class-incremental learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9057–9067, 2022.

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier
incrementally via rebalancing. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 831–839, 2019.

Ching-Yi Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-Hung Chen, Yi-Ming Chan, and Chu-Song
Chen. Compacting, picking and growing for unforgetting continual learning. Advances in Neural
Information Processing Systems, 32, 2019.

10

https://github.com/EdwinKim3069/WaRP-CIFSL


Published as a conference paper at ICLR 2023

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521–3526, 2017.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10, cifar-100 (canadian institute for
advanced research). URL: http://www. cs. toronto. edu/kriz/cifar. html (Last accessed, 2019.

Anna Kukleva, Hilde Kuehne, and Bernt Schiele. Generalized and incremental few-shot learning by
explicit learning and calibration without forgetting. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 9020–9029, 2021.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Snip: single-shot network pruning
based on connection sensitivity. In International Conference on Learning Representations, 2019.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In International Conference on Learning Representations, 2017.

Huan Liu, Li Gu, Zhixiang Chi, Yang Wang, Yuanhao Yu, Jun Chen, and Jin Tang. Few-shot
class-incremental learning via entropy-regularized data-free replay. In European Conference on
Computer Vision, pp. 146–162. Springer, 2022.

Xialei Liu, Marc Masana, Luis Herranz, Joost Van de Weijer, Antonio M Lopez, and Andrew D
Bagdanov. Rotate your networks: Better weight consolidation and less catastrophic forgetting. In
2018 24th International Conference on Pattern Recognition (ICPR), pp. 2262–2268. IEEE, 2018.

Yuchen Liu, Zhixin Shu, Yijun Li, Zhe Lin, Federico Perazzi, and Sun-Yuan Kung. Content-aware
gan compression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 12156–12166, 2021.

Pratik Mazumder, Pravendra Singh, and Piyush Rai. Few-shot lifelong learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35, pp. 2337–2345, 2021.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Mengye Ren, Renjie Liao, Ethan Fetaya, and Richard Zemel. Incremental few-shot learning with
attention attractor networks. Advances in Neural Information Processing Systems, 32, 2019.

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning. In
International Conference on Learning Representations, 2021.

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In International Conference on Machine Learning, pp.
4548–4557. PMLR, 2018.

Guangyuan Shi, Jiaxin Chen, Wenlong Zhang, Li-Ming Zhan, and Xiao-Ming Wu. Overcoming
catastrophic forgetting in incremental few-shot learning by finding flat minima. Advances in Neural
Information Processing Systems, 34:6747–6761, 2021.

Taiji Suzuki, Hiroshi Abe, Tomoya Murata, Shingo Horiuchi, Kotaro Ito, Tokuma Wachi, So Hirai,
Masatoshi Yukishima, and Tomoaki Nishimura. Spectral pruning: Compressing deep neural
networks via spectral analysis and its generalization error. In IJCAI, 2020a.

Taiji Suzuki, Hiroshi Abe, and Tomoaki Nishimura. Compression based bound for non-compressed
network: unified generalization error analysis of large compressible deep neural network. In
International Conference on Learning Representations, 2020b.

Xiaoyu Tao, Xiaopeng Hong, Xinyuan Chang, Songlin Dong, Xing Wei, and Yihong Gong. Few-shot
class-incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 12183–12192, 2020.

11



Published as a conference paper at ICLR 2023

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. Advances in neural information processing systems, 29, 2016.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Shipeng Wang, Xiaorong Li, Jian Sun, and Zongben Xu. Training networks in null space of feature
covariance for continual learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 184–193, 2021.

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari,
Jason Yosinski, and Ali Farhadi. Supermasks in superposition. Advances in Neural Information
Processing Systems, 33:15173–15184, 2020.

Sung Whan Yoon, Do-Yeon Kim, Jun Seo, and Jaekyun Moon. Xtarnet: Learning to extract task-
adaptive representation for incremental few-shot learning. In International Conference on Machine
Learning, pp. 10852–10860. PMLR, 2020.

Chi Zhang, Nan Song, Guosheng Lin, Yun Zheng, Pan Pan, and Yinghui Xu. Few-shot incremental
learning with continually evolved classifiers. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 12455–12464, 2021.

Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, Liang Ma, Shiliang Pu, and De-Chuan Zhan. Forward
compatible few-shot class-incremental learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9046–9056, 2022a.

Da-Wei Zhou, Han-Jia Ye, Liang Ma, Di Xie, Shiliang Pu, and De-Chuan Zhan. Few-shot class-
incremental learning by sampling multi-phase tasks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2022b.

Kai Zhu, Yang Cao, Wei Zhai, Jie Cheng, and Zheng-Jun Zha. Self-promoted prototype refinement
for few-shot class-incremental learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6801–6810, 2021.

12



Published as a conference paper at ICLR 2023

A APPENDIX

A.1 HYPERPARAMETERS

Optimizer. We use SGD optimizer with a momentum of 0.9 throughout the whole sessions for all
our simulations.

First Session (k = 1). We pretrain the model with the batch size of 128 in the first session for all
datasets. The number of pretraining epochs is 210 for ResNet18 on both CIFAR100 and miniImageNet
and 300 for ResNet20 on CIFAR100. Regarding ResNet18 on CUB200, as we adopt Pytorch built-in
pretrained model as done in most of previous works (Tao et al., 2020; Zhang et al., 2021), we pretrain
the model using a smaller learning rate of 0.01 following (Chen & Lee, 2021), and the total number
of epochs is 120. The learning rate decays by 1/10 at last 90, 60, 30 epoch to the end of training (for
example, the learning rate decays at 210, 240, 270 if the total training epochs is 300).

Incremental Sessions (k ≥ 2). Following (Mazumder et al., 2021), we finetune the model with
training epochs of 30 for all datasets/architectures in WaRP experiments. We use the learning rate of
0.01 for ResNet18 and 0.001 for ResNet20. When searching the learning rate, we randomly split
trainset of base classes into train/validation so that the validation set has a ratio of about 10% in total.
We also randomly sample the data from trainset of novel classes (different from the 5-shots that we
use for training) and use them as validation set for novel classes. We search the learning rate within
the grids of [1e-1, 1e-2, 1e-3] on CUB200 for ResNet18 and on CIFAR100 for ResNet20. As for the
miniImageNet and CIFAR100 for ResNet18, we follow the setting of CUB200.

Overall Settings for WaRP Algorithm. Throughout the whole datasets/architectures, we randomly
sample 20 batches (20× 128 = 2, 560 samples) from base classes and use them for computing SVD
in the first session. For computing score criterion, we set the batch size in equation (9) to be nb = 60
for base classes and nb = 1 for new classes. As for the layers to be applied weight space rotation,
we apply WaRP to the last two resnet blocks (out of four blocks in total) for ResNet18 model and
apply to the last one block (out of three blocks in total) for ResNet20 model. We do not apply WaRP
to the batch-normalization layer. Note that we freeze all the layers, to which WaRP is not applied,
after completing the first session. The hyperparameter of keeping ratio α at each session is set to be
0.1. The temperature for cosine similarity (Gidaris & Komodakis, 2018) in classifier is set to be a
constant value of 16, following (Zhang et al., 2021).

A.2 IMPLEMENTATION OF WARP FOR CONVOLUTIONAL LAYER CASE

We first denote the filter (kernel) of convolutional layer by W ∈ Rm×n×k×k where k is size of kernel,
m is the target number of output channels and n is the number of input channels, and let the activation
(input of the layer) be denoted by Φ ∈ Rn×h×w where h and w are height and width of activation
feature map respectively. For computing SVD of activation map, all the patches in the feature map,
that the kernel slides across, are flattened as a vector form and all these flattened vectors are stacked
to be 2-dimensional matrix. For example, if the kernel size k is 3 and the stride and padding are 1
respectively, the shape of stacked version of activation matrix is (3× 3× n, h×w) and the resulting
unitary matrix would be U2-dim ∈ R9n×9n. Then after we reshape the filter W into 2-dimensional
weight matrix as W2-dim ∈ Rm×nk2

, the remaining process is the same with fully-connected layer
case; we reparameterize the layer with W̃2-dim = V ⊤

2-dimW2-dimU2-dim where V2-dim ∈ Rm×m and
U2-dim ∈ Rnk2×nk2

are unitary matrices.

During computing the loss, there are two options we can choose to implement W ← V W̃U⊤. The
first one is just to compute W2-dim = V2-dimW̃2-dimU

⊤
2-dim and reshape W2-dim to be the same with

W ∈ Rm×n×k×k at every loss computation. This approach is easy to implement but might be
computationally inefficient. To pursuit a slight computational efficiency, we take the second approach:
configure this layer as three convolutions with filters of Vconv ∈ Rm×m×1×1, W̃conv ∈ Rm×nk2×1×1

and Uconv ∈ Rnk2×n×k×k where Vconv, W̃conv and Uconv are reshaped version of V2-dim, W̃2-dim and
U2-dim respectively.

13



Published as a conference paper at ICLR 2023

A.3 ADDITIONAL EXPERIMENTAL RESULTS

We report additional results on CIFAR100 for ResNet20 as shown in Table 5. As ResNet20 is too
narrow (e.g., the number of channels in the last layer is 64) to make additional room that can be
reaped by WaRP for learning new classes, the gain is rather minimal compared to the results for wider
network of ResNet18 (the number of channels in the last layer is 512) as shown in Table 1, 2 and 3.
However, as can be seen in Table 6, WaRP still consistently provides gains in all sessions against
prototype-based baseline which we considered in Sec. 5.2. Note that the prototype-based baseline is
strong in that this baseline already outperforms or is comparable to state-of-the-art methods, which is
also confirmed in F2M (Shi et al., 2021). Moreover, the effectiveness of WaRP is not restricted by
the dataset; result on the same dataset, CIFAR100, for ResNet18 achieves state-of-the-art as can be
seen in Table 3 and reads appreciable gains compared to ResNet20 case as shown in Table 7. Thus,
the limited gain in small network can be easily handled by replacing the layers of the model with
wider layers in practical deployment of our method.

Table 8 and Figure 4 refers to the results on repeated experiments of Table 4 and Figure 3c on different
datasets respectively. As shown in Figure 4, WaRP consistently provides the gains against strong
baseline (prototype) once the α is larger than a certain threshold value, which suggests that the WaRP
is fairly robust to perturbing hyperparameter α value.

Table 5: Accuracy on CIFAR100 dataset under 5-way 5-shot incremental few-shot learning setup for ResNet20.

Method Session

1 2 3 4 5 6 7 8 9

Finetuning 74.21 69.81 65.61 61.59 58.53 55.59 53.29 51.20 49.06
iCaRL (Rebuffi et al., 2017) 72.05 65.35 61.55 57.83 54.61 51.74 49.71 47.49 45.03
Rebalance (Hou et al., 2019) 74.45 67.74 62.72 57.14 52.78 48.62 45.56 42.43 39.22
GPM (Saha et al., 2021) 74.21 69.84 65.66 61.69 58.53 55.56 53.29 51.27 49.16
EEIL (Castro et al., 2018) 64.10 53.11 43.71 35.15 28.96 24.98 21.01 17.26 15.85
TOPIC (Tao et al., 2020) 64.10 55.88 47.07 45.16 40.11 36.38 33.96 31.55 29.37
FSLL (Mazumder et al., 2021) 64.10 55.85 51.71 48.59 45.34 43.25 41.52 39.81 38.16
FSLL+SS (Mazumder et al., 2021) 66.76 55.52 52.20 49.17 46.23 44.64 43.07 41.20 39.57
CEC (Zhang et al., 2021) 73.07 68.88 65.26 61.19 58.09 55.57 53.22 51.34 49.14
F2M (Shi et al., 2021) 71.45 68.10 64.43 60.80 57.76 55.26 53.53 51.57 49.35
WaRP (Ours) 74.21 69.96 65.86 61.92 58.74 55.79 53.50 51.51 49.33

Table 6: Performance improvement of WaRP over prototype-based baseline on CIFAR100 dataset for ResNet20.

Method Session

1 2 3 4 5 6 7 8 9

Baseline (Prototype) 74.21 69.83 65.67 61.72 58.55 55.62 53.30 51.27 49.11
WaRP (Ours) 74.21 69.96 65.86 61.92 58.74 55.79 53.50 51.51 49.33

Improvement +0.13 +0.19 +0.20 +0.19 +0.17 +0.20 +0.24 +0.22

Table 7: Performance improvement of WaRP over prototype-based baseline on CIFAR100 dataset for ResNet18.

Method Session

1 2 3 4 5 6 7 8 9

Baseline (Prototype) 80.31 75.54 71.22 67.02 63.73 60.65 58.30 56.11 53.84
WaRP (Ours) 80.31 75.86 71.87 67.58 64.39 61.34 59.15 57.10 54.74

Improvement +0.32 +0.65 +0.56 +0.66 +0.69 +0.85 +0.99 +0.90

Additionally, we further compare our method with more recent works (Zhou et al., 2022b; Chi
et al., 2022; Hersche et al., 2022; Liu et al., 2022) on miniImageNet dataset. Note that as (Hersche
et al., 2022) adopted ResNet12 network for evaluating their method, we reproduced the results of
(Hersche et al., 2022) by adopting ResNet18 to match the architecture. As shown in the table 9, we
confirm our method outperforms all the baselines, except for (Zhou et al., 2022b), but still shows
better performance in most sessions. Moreover, we found that (Akyürek et al., 2022) provided
the results with ResNet12 architecture as done in (Hersche et al., 2022), thus we also evaluate our

14



Published as a conference paper at ICLR 2023

Table 8: Performance improvement of WaRP over prototype-based baseline on miniImageNet dataset.

Method Session

1 2 3 4 5 6 7 8 9

Baseline (Prototype) 72.99 68.07 64.09 60.83 58.06 55.38 52.68 50.88 49.70
WaRP (Ours) 72.99 68.10 64.31 61.30 58.64 56.08 53.40 51.72 50.65

Improvement +0.03 +0.22 +0.47 +0.58 +0.70 +0.72 +0.84 +0.95

7 8 9

Session

54

55

56

A
c
c
u
ra

c
y
 (

%
)

CIFAR100 for ResNet18

(a) Performance with varying α
on CIFAR100 for ResNet18.

9

Session

49

49.1

49.2

49.3

49.4

49.5

A
c
c
u
ra

c
y
 (

%
)

CIFAR100 for ResNet20

(b) Performance with varying α
on CIFAR100 for ResNet20.

8 9 10 11

Session

50

52

54

56

58

60

A
c
c
u
ra

c
y
 (

%
)

CUB200

(c) Performance with varying α
on CUB200.

Figure 4: Performance with varying α on different datasets/architectures.

method for ResNet12 architecture and compare with (Akyürek et al., 2022; Hersche et al., 2022)
on miniImageNet. As can be seen in the Table 10, our method shows better performance than the
baselines which is consistent with the case for ResNet18.

Table 9: Accuracy on miniImageNet dataset under 5-way 5-shot incremental few-shot setup for ResNet18.

Method Session

1 2 3 4 5 6 7 8 9

LIMIT (Zhou et al., 2022b) 72.32 68.47 64.30 60.78 57.95 55.07 52.70 50.72 49.19
MetaFSCIL (Chi et al., 2022) 72.04 67.94 63.77 60.29 57.58 55.16 52.90 50.79 49.19
C-FSCIL Mode 1 (Hersche et al., 2022) 64.72 59.63 55.43 51.95 48.99 46.44 43.86 41.76 39.78
C-FSCIL Mode 2 (Hersche et al., 2022) 64.73 59.68 55.41 52.04 49.31 46.65 44.11 42.09 40.15
C-FSCIL Mode 3 (Hersche et al., 2022) 64.73 59.75 55.23 51.97 49.05 46.36 43.62 41.43 39.69
Entropy-reg (Liu et al., 2022) 71.84 67.12 63.21 59.77 57.01 53.95 51.55 49.52 48.21

WaRP (Ours) 72.99 68.10 64.31 61.30 58.64 56.08 53.40 51.72 50.65

Lastly, we compare with (Hersche et al., 2022) on CIFAR100 dataset for ResNet12 (we further
evaluate our method on CIFAR100 for ResNet12 instead of ResNet18), as (Hersche et al., 2022) also
provided the results on CIFAR100 for ResNet12. Table 11 indicates that our method also shows the
improved performance compared to (Hersche et al., 2022) on CIFAR100, which is consistent with
the results on miniImageNet.

A.4 VALIDITY OF THE NEW BASIS ON NOVEL CLASSES

As aforementioned, once the new basis is constructed in the first session, the new basis is fixed during
the whole remaining sessions. The future incoming tasks are not used to reconstruct or modify the
basis to avoid unexpected behavior or statistical unreliability due to their lack of training samples.
Here one may argue that the new basis is suitable only for preserving the knowledge of the base
classes. Recall that we apply WaRP only to the last few layers while remaining the other layers
fixed to resolve the overfitting issue. Here, since the activation of each layer depends not only on
the task itself but also on preceding layers, the important parameters identified in the new basis
are shared among the base and novel classes, i.e., the novel classes are also aligned with the new
basis to some extent. To figure out this, we measure the keep ratio of important parameters that
is accumulated as the session progressed. As shown in Figure 5, although we set keep ratio α as
0.1 for all sessions, the measured accumulated ratio does not grow by multiples of 0.1. Rather, the

15



Published as a conference paper at ICLR 2023

Table 10: Accuracy on miniImageNet dataset under 5-way 5-shot incremental few-shot setup for ResNet12.

Method Session

1 2 3 4 5 6 7 8 9

Subspace-reg (Akyürek et al., 2022) 80.37 73.92 69.00 65.10 61.73 58.12 54.98 52.21 49.65
C-FSCIL Mode 1 (Hersche et al., 2022) 76.37 70.94 66.36 62.64 59.31 56.02 53.14 51.04 48.87
C-FSCIL Mode 2 (Hersche et al., 2022) 76.45 71.23 66.71 63.01 60.09 56.73 53.94 52.01 50.08
C-FSCIL Mode 3 (Hersche et al., 2022) 76.40 71.14 66.46 63.29 60.42 57.46 54.78 53.11 51.41

WaRP (Ours) 82.05 77.06 73.17 70.19 67.92 65.14 62.36 60.57 59.49

Table 11: Accuracy on CIFAR100 dataset under 5-way 5-shot incremental few-shot setup for ResNet12.

Method Session

1 2 3 4 5 6 7 8 9

C-FSCIL Mode 1 (Hersche et al., 2022) 77.47 72.20 67.53 63.23 59.58 56.67 53.94 51.55 49.36
C-FSCIL Mode 2 (Hersche et al., 2022) 77.50 72.45 67.94 63.80 60.24 57.34 54.61 52.41 50.23
C-FSCIL Mode 3 (Hersche et al., 2022) 77.47 72.40 67.47 63.25 59.84 56.95 54.42 52.47 50.47

WaRP (Ours) 79.30 75.27 71.49 67.60 64.55 61.90 59.89 57.82 55.49

accumulated ratio increases by some value smaller than α. As can be seen from the observation,
the important parameters at each session somewhat overlap since the activation also depends on the
preceding layers. This suggests that the new basis constructed in the first session would be aligned
with the future tasks to a certain extent. Hence the new basis is also eligible for preserving the
knowledge of the novel classes with our score criterion in (9).

1 3 5 7 9

Session

0.1

0.14

0.18

0.22

0.26

R
a
ti
o
 o

f 
Im

p
o
rt

a
n
t 
P

a
ra

m
s

CIFAR100 for ResNet18

1 3 5 7 9

Session

0.1

0.12

0.14

0.16

0.18

0.2

R
a
ti
o
 o

f 
Im

p
o
rt

a
n
t 
P

a
ra

m
s

CIFAR100 for ResNet20

1 3 5 7 9

Session

0.1

0.14

0.18

0.22

0.26

R
a
ti
o
 o

f 
Im

p
o
rt

a
n
t 
P

a
ra

m
s

 miniImageNet

1 3 5 7 9 11

Session

0.1

0.12

0.14

0.16

0.18

0.2

R
a
ti
o
 o

f 
Im

p
o
rt

a
n
t 
P

a
ra

m
s

CUB200

Figure 5: Accumulated keep ratios as the session progresses on various datasets.

Along with this observation, we further verify the ability to preserve the novel tasks by showing
how the mode accuracy on novel classes varies as session grows. The table 12 and 13 show the
accuracy on T2 and T3 respectively, i.e., the first and second incremental novel task. We evaluated on
miniImageNet dataset.

Moreover, to single out the effectiveness of WaRP in preserving the previous knowledge, we further
evaluate the accuracies on a certain novel task when the model knows task ID. In other words,
the prediction is made when the output logits corresponding to this novel task are only given. By
doing so, we can exclude the effect of forgetting induced by the interference from the output logits

16



Published as a conference paper at ICLR 2023

Table 12: Performance on the first novel task T2 at each incremental session on miniImageNet dataset.

Method Session

2 3 4 5 6 7 8 9

Prototype 21.52 20.68 19.88 19.28 18.92 18.24 17.84 17.04
WaRP (Ours) 27.16 25.48 24.32 23.92 23.52 22.84 22.12 21.04

Table 13: Performance on the first novel task T3 at each incremental session on miniImageNet dataset.

Method Session

3 4 5 6 7 8 9

Prototype 22.32 21.48 21.00 19.68 18.48 17.96 17.88
WaRP (Ours) 27.76 26.76 25.84 23.64 22.00 21.60 21.52

corresponding to other tasks. As can be seen in the table 14 and 15, the new basis constructed using
base classes is also suitable for preserving the knowledge of the novel classes.

Table 14: Performance on the first novel task T2 on miniImageNet dataset when the task ID is known.

Method Session

2 3 4 5 6 7 8 9

Prototype 58.92 58.92 58.92 58.92 58.92 58.92 58.92 58.92
WaRP (Ours) 60.60 60.76 60.68 60.56 60.36 60.40 60.40 60.48

A.5 COMPARISON WITH EXISTING NETWORK PRUNING SCHEMES

As our method identifies the important parameters, we can compare our method against the network
pruning schemes. We consider three network pruning methods: two for structured (channel/filter)
pruning (Li et al., 2017; Liu et al., 2021) and one for unstructured pruning, SNIP (Lee et al., 2019).
We adopted the methods of identifying parameters, including the score criterion and the structure
of identification (e.g. whether identifying channel-wise or element-wise manner) proposed in these
works. Although we set the ratio of important parameters α as 0.1 in WaRP experiments, during the
reproducing the results on the methods from (Li et al., 2017; Liu et al., 2021; Lee et al., 2019), we
tuned the parameter of this ratio α to get their best performances. We found that α = 0.9 ∼ 0.95 is
suitable for (Li et al., 2017; Liu et al., 2021; Lee et al., 2019) as all of them still consider the original
parameter space which exhibits the fundamental limitation as shown in the Figure 2. The results are
evaluated on miniImageNet dataset. As can be seen in the table 16, our method outperforms all of
score criterion suggested in pruning schemes we considered, which indicates that the new space and
its compatible score criterion are very effective in solving CIFSL.

A.6 COMPUTATIONAL COST

We first separate the computational aspects of our scheme into two parts and discuss them separately:
(a) constructing new basis in the first session, (b) finetuning/inference in the incremental sessions.

(a) After pretraining the model in the first session, we construct new basis by using singular value de-
composition (SVD). The computational complexity of SVD is known as O(n3) where the covariance
of activation is in the shape of n× n. Although constructing the new basis appears to have somewhat
large complexity due to the SVD, we only need to construct it just once in the first session. Moreover,
the real time taken to construct the basis is not that significant compared to that of pretraining in
the first session in practice. The table 17 shows the elapsed times for constructing the basis and
pretraining with only 5 epochs on miniImageNet dataset. We tested on NVIDIA GeForce RTX 3090
GPU.

(b) During finetuning in the new basis, the complexity induced in the layer, to which the WaRP is
applied, increases as much as when training with 3 layers due to V and U multiplied on both sides of

17



Published as a conference paper at ICLR 2023

Table 15: Performance on the first novel task T3 on miniImageNet dataset when the task ID is known.

Method Session

3 4 5 6 7 8 9

Prototype 69.40 69.40 69.40 69.40 69.40 69.40 69.40
WaRP (Ours) 71.04 70.72 70.80 70.64 70.64 70.52 70.44

Table 16: Comparison against various network pruning schemes on miniImageNet dataset.

Method Session

1 2 3 4 5 6 7 8 9

Filter prune (Li et al., 2017) (ratio=0.90) 72.99 66.57 56.81 41.19 29.98 24.24 19.44 17.52 13.15
Filter prune (Li et al., 2017) (ratio=0.95) 72.99 67.15 62.07 55.77 49.75 44.88 38.39 36.17 33.14
Channel prune (Liu et al., 2021) (ratio=0.90) 72.99 66.77 61.19 56.78 53.05 49.34 45.39 42.75 40.37
Channel prune (Liu et al., 2021) (ratio=0.95) 72.99 67.81 63.75 60.58 57.86 55.26 52.50 50.71 49.55
SNIP (Lee et al., 2019) (ratio=0.90) 72.99 66.98 62.42 59.16 56.52 54.11 51.40 49.63 48.44
SNIP (Lee et al., 2019) (ratio=0.95) 72.99 67.65 62.41 58.38 55.48 53.04 50.38 48.59 47.48

WaRP (Ours) 72.99 68.10 64.31 61.30 58.64 56.08 53.40 51.72 50.65

W in practical implementation. However, this difference does not that significantly slow down the
finetuning as the model is finetuned only with a small iterations using only a few labeled samples in
the actual incremental session. The table 18 shows the elapsed times for finetuning in both new and
original space on miniImageNet dataset (we report averaged time per each incremental session). We
tested on NVIDIA GeForce RTX 3090 GPU.

Moreover, we would like to highlight that, after completing the finetuning, we recover this layer to its
original one, i.e., W = V W̃U⊤ so that the inference time complexity does not increase.

A.7 NOTES ON THE SPACE OF MATRIX

In equation (4), we deal with the “space of matrix” and generalize the linear algebraic concepts
(which we are familiar with in space Rk, for example) to this matrix space. Here, we define the inner
product as ⟨A,B⟩ = trace(A⊤B) in Sec. 2. In fact, this inner product actually can be seen as a
typical dot product in the vector space Rk for any k (i.e. a ·b =

∑k
i=1 aibi for any vectors a,b ∈ Rk

where ai and bi are i-th element of a and b respectively), if A,B ∈ Rm×n are flattened as a vector
form. In other words, it can be easily seen that ⟨A,B⟩ = Aflatten ·Bflatten where Aflatten, Bflatten ∈ Rnm

is flattened version of A and B respectively. Thus, once W and Kij are flattened, we can easily
interpret the equation (4) as the flattened version of W and Kij are in the vector space Rnm and the
linear algebraic concepts we are familiar with in Rk such as linear combination, orthonormal vectors
are directly adopted to this equation.

18



Published as a conference paper at ICLR 2023

Table 17: Elapsed time for constructing new basis and pretraining the model with 5 epochs.

Construct basis Pretrain with 5 epochs

Elapsed time (sec) 136.73 123.49

Table 18: Elapsed time for finetuning in new and original space.

New space Original space

Elapsed time (sec) 1.2661 0.8472

19


	Introduction
	 Weight Space Rotation
	Proposed Algorithm for CIFSL
	Constructing New Basis for Weight Space Rotation
	Identifying Important Parameters
	Overall Procedure for CIFSL

	Related Works
	Experiments
	Experimental Setup & Details
	Main Experimental Results
	Further Studies on WaRP

	Conclusion
	Appendix
	Hyperparameters
	Implementation of WaRP for Convolutional Layer Case
	Additional Experimental Results
	Validity of the New Basis on Novel Classes
	Comparison with Existing Network Pruning Schemes
	Computational Cost
	Notes on the Space of Matrix


