
Optimized Class-specific Data Augmentation for Plant Stress Classification

Nasla Saleem, Aditya Balu, Talukder Zaki Jubery, Arti Singh, Asheesh K. Singh, Soumik Sarkar,
Baskar Ganapathysubramanian∗

Iowa State University
∗baskarg@iastate.edu

Abstract

Data augmentation has the potential to significantly im-
prove the performance of deep learning-based image
classifiers. However, a key challenge in applying data
augmentation is choosing an effective set of augmenta-
tions from a large pool of candidates. Recently, auto-
mated augmentation strategies have produced state-of-
the-art results for image classification. Most results have
focused on improving the total accuracy of the classi-
fier, often at the cost of reduced performance of a finite
number of classes. We explore a Genetic Algorithm-
based optimization to identify the ideal class-specific
augmentations that maximize the mean-per-class ac-
curacy, starting from a well-trained classifier (which
serves as our baseline). We illustrate the utility of
this strategy on a well-studied problem (and associated
dataset) of classifying soybean leaf stresses. Our (pre-
liminary) work indicated improvements over our base-
line model and showed improvement in the mean-per-
class accuracy from 90.68% to 93.11% across gen-
erations. Identifying class-specific augmentations can
provide contextual information to end users. This ap-
proach is computationally less expensive than tradi-
tional Network-Architecture-Search (NAS), as we only
seek to fine-tune the baseline classifier.

Introduction
Deep Learning models have performed remarkably well
when trained on massive amounts of data. Data augmenta-
tion techniques have been widely used for generating ad-
ditional data to improve the robustness of many computer
vision tasks (Shorten and Khoshgoftaar 2019). These aug-
mentations transform images to increase the diversity of the
data. However, picking a good set of augmentations that ef-
ficiently improves the model performance and capture prior
knowledge requires expertise and manual work in each do-
main. The recent developments in automated machine learn-
ing (AutoML) have led to automated search methods for
augmentation policies on datasets and therefore have the po-
tential to address some weaknesses of traditional data aug-
mentation methods (Cubuk et al. 2018; Ho et al. 2019; Zoph
et al. 2020; Lim et al. 2019). Among these, AutoAugment

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Cubuk et al. 2018, 2020) stands out with state-of-the-art re-
sults in CIFAR-10 (Krizhevsky, Hinton, and others 2009),
CIFAR-100 (Krizhevsky, Hinton, and others 2009), and Im-
ageNet (Deng et al. 2009). In AutoAugment, the search for
optimal augmentation policy for datasets is employed as a
discrete problem using Reinforcement Learning (RL) as the
search controller. However, the search method used in this
work is computationally infeasible to run for most non-CS
domain users. Furthermore, while these transformations en-
coding suitable invariances are intuitive for some classes, it
may not be the same for all. For example, in MNIST, if you
apply the transformation of vertical flip for class 0, it is still
class 0. But when you apply the same transformation to class
6, it becomes class 9.

Another interesting aspect of data augmentation that has
gotten little attention is that these transformations often de-
pend on the classes considered. For object detection prob-
lems, using color transformations can improve the general-
izability of the model to identify airplanes and cars which
are invariant to it, but it will reduce the accuracy of classes
that are strongly defined by their colors, such as apples and
oranges. The motivation for this study arose when we ex-
plored the effect of various transforms on the performance of
a classifier trained on a well-studied dataset of soybean leaf
stresses across nine different classes (Ghosal et al. 2018).
Figure 1 shows the performance of a well-trained classifier
across the classes when each transformation is applied. As
shown in the figure, different augmentations show quite dif-
ferent performances across the classes. It can also be seen
that the stresses Bacteria Blight and Bacterial Pustule show
significantly lower accuracies than the rest of the classes.
Moreover, some augmentations, usually color transforma-
tions, make it even harder for a classifier to distinguish be-
tween these two classes, as seen in the figure. This explo-
ration motivated two questions: (a) Can class-specific aug-
mentations be designed to improve mean-per-class accu-
racy? and, (b) do these class-specific augmentations provide
some domain-specific insight?

We deploy a practical method for this problem using ge-
netic algorithms (GA). In our implementation, each set of
augmentations has several choices and probabilities of pos-
sible augmentations for each class. We use GA to find the
best operations choices for training a neural network that
yields the best mean-per-class accuracy on the test dataset.



Figure 1: Effect of Augmentations on various classes

Related Work
Data augmentation has played an important role in improv-
ing the performance of classifiers, especially in image recog-
nition tasks. Mostly, data augmentation for image classifica-
tion has been designed manually. On datasets like ImageNet
and CIFAR10, transformations like horizontal flip, random
crop, rotation, and color transformations have been applied
(Krizhevsky, Sutskever, and Hinton 2017; Sato, Nishimura,
and Yokoi 2015). On datasets like MNIST, most applied
transformations are position and orientation invariances. In
addition, augmentations like Cutout (DeVries and Taylor
2017), Mixup (Zhang et al. 2017), and Cutmix (Yun et al.
2019), which either mask out or replace random patches,
have also improved the performance of modern image clas-
sifiers. However, these methods are manually implemented
and require expert knowledge or require significant manual
exploration.

Several papers have attempted a more automated ap-
proach for finding data augmentation methods from data
and have evolved to overcome the cumbersome task of find-
ing augmentations manually. Smart Augmentation (Lemley,
Bazrafkan, and Corcoran 2017) introduced a network that
learns to generate augmented data by merging two or more
samples in the same class. Another approach by (Shrivas-
tava et al. 2017) employed a generative adversarial network
(GAN) (Goodfellow et al. 2020) that generates new images
that augment datasets.

The rise of AutoML in recent years (Zoph et al. 2018;
Real et al. 2019) has shifted the focus to using augmenta-
tions to determine the data augmentation policy rather than
generating more data with GANs. AutoAugment (Cubuk et
al. 2018), uses reinforcement learning to optimize the ac-
curacy of an image classifier in a discrete search space of

augmentation policies. The augmentation policies in Au-
toAugment showed state-of-the-art performances on various
benchmark datasets with different models. Population based
augmentation, PBA (Ho et al. 2019) proposed a new algo-
rithm that uses population based training to generate aug-
mentation policies. However, the computational complex-
ity of training a classifier from scratch for each augmenta-
tion policy makes it a less feasible option for ordinary im-
age classification problems. Our method aims to alleviate
this problem by only fine-tuning the well-trained classifier
to find the best augmentation policies for a target dataset.
Additionally, our focus is on improving the mean-per-class
accuracy (rather than total accuracy).

Materials and Methods
We develop a computational workflow for the automated
identification of augmentation policies that yields the high-
est mean-per-class accuracy on a target dataset. The work-
flow uses GA based optimization where an augmentation
policy consists of many sub-policies for each class in a target
dataset. The augmentations are randomly chosen for each
image in each mini-batch based on the populations gener-
ated by the GA.

Dataset The dataset consists of 16, 573 RGB images of
soybean leaflets across 9 different classes (8 different soy-
bean stresses and healthy soybean leaflets). These classes
cover a diverse spectrum of biotic and abiotic foliar stresses.
Fig. 2 illustrates the imaging setup and the 9 different soy-
bean stress classes used in our study. The training and test
data consisted of 14, 915 (90 %) and 1658 (10 %) images,
respectively.

Figure 2: Image examples of healthy leaflet and eight differ-
ent soybean stresses

Search Space We consider the augmentation policy
search as a discrete combinatorial optimization problem.
The 15 augmentations used are the same as the ones used
in AutoAugment. The augmentations we searched over are
ShearX, ShearY, TranslateX, TranslateY, Rotate, AutoCon-
trast, Invert, Equalize, Solarize, Posterize, Contrast, Color,
Brightness, Sharpness, and Cutout. The magnitude of aug-
mentations is kept constant as the mean of possible values
throughout the training. For each augmentation, we consider
discrete probabilities 0 to 1 with an increment of 0.1 to be
applied to each class.



Figure 3: workflow

Search Algorithm: The search algorithm we used in our
experiment has two components: An optimizer that uses GA
and child networks which are used to fine-tune the classi-
fier. First, the baseline model, a convolution neural network
(CNN) ResNet50, is trained without using any augmenta-
tions. This model is then used as child networks and fine-
tuned for each population in the GA over many generations.
The GA starts with a population of policies that consists
of the probabilities of augmentations that must be applied
for each class. These per-class augmentation probabilities
are randomly chosen for each image in each mini-batch.
Then the child networks are finetuned on these augmenta-
tions, and the mean-per-class accuracy from each network
is given as the fitness function for the GA. Figure. ?? shows
the flowchart of the workflow.

Optimization using GA: GAs are population based
heuristic solution-search methods. The population of GA is
encoded as numeric string called chromosomes. Here, each
chromosome (i.e. member of the population) represents the
set of probabilities of augmentations to be applied for each
class for training the classifier. The trained classifier then re-
turns the mean-per-class accuracy of the test dataset. Each
chromosome is assigned a fitness value which is the mean-
per-class accuracy of the fine-tuned classifier. Based on the
fitness scores, chromosomes are evolved over generations
using selection. Chromosomes also undergo crossover and
mutation in each generation. The chromosomes will evolve
until the best solution is identified or a termination criterion
is met.

The input chromosome comprises of strings, each rep-
resenting a set of probabilities of augmentations to be ap-
plied for each class in the target dataset. We have nine

Figure 4: Accuracies over 30 generations compared to base-
line model

classes and fifteen augmentations. Therefore, each chro-
mosome is a 9x16 long string with probabilities ranging
from 0 to 1 with an increment of 0.1. The choice of GA
hyper-parameters (population size, selection strategy, muta-
tion/crossover probabilities) were chosen by first perform-
ing an analogous optimization on a canonical pathological
function – the Rastrigin function (Sesha Sarath Pokuri et al.
2018) – with the same dimensionality. Results on the Rasti-
gin function suggested a population size of 100. Steady-state
selection, random mutation, and single-point crossover were
chosen for selection, mutation, and crossover, respectively.

The training of CNN: The baseline model is trained on
a ResNet50 backbone. The CNN is then finetuned for each
population in GA with the set of augmentations defined in
each chromosome. Themean-per-class accuracy from each
model is returned as the fitness score for the corresponding
chromosome.

Experimental Results and Analysis
We deployed the computational workflow on a GPU cluster
available at Iowa State University. The GA was executed on
4 A100 NVIDIA GPUs (80 GB memory). Each GPU was
able to simultaneously fine-tune 3 models. One generation
took around 8 hours to complete. We note that this time can
be significantly reduced by farming out to multiple GPUs.

We compare the overall accuracy and mean-per-class ac-
curacy of the augmented model with that of the baseline
classifier. Figure 4 shows the overall and mean-per-class ac-
curacy of the classifier on the test dataset for each genera-
tion in GA and for the baseline model. It can be seen that the
overall test accuracy of the baseline model increased from
91.20% to 94.9%.

Figure 5: mean-per-class accuracy improvements across GA
generations, for three different GA runs



Figure. 5 shows the fitness values of GA across 30 genera-
tions over 3 iterations. We expect (in time for the actual con-
ference) the results to continue to improve with additional
generations of the GA.

For the model’s performance across all the classes, we
plot the confusion matrix of the baseline model (Figure 6)
and that of the augmented model (Figure 7). As mentioned
earlier, the classifier performs poorly in predicting Bacteria
Blight (class 0) and Bacterial Pustule (class 7) and misclassi-
fies them interchangeably. When we observe the classifier’s
performance on these classes, the confusion matrices show
that the miss-classification on these classes has significantly
reduced, thereby increasing the per-class accuracies. As the
GA has not reached its termination criteria, we expect the
performances in these classes to improve in the next gener-
ations.

Figure 6: Classification accuracy confusion matrix of the
baseline model

Figure 7: Classification accuracy confusion matrix of the op-
timized model

Our workflow improves the performance of the classifier,
especially among confusing and difficult classes.

Conclusion
The main objective of this study is to explore an automated
data augmentation workflow for training deep learning mod-
els that are optimized by GA. GA-based optimization proto-
col using CNN as a classifier was used to find the set of aug-
mentations that delivers the maximum mean-per-class ac-
curacy on the test dataset. This goal has been successfully
achieved as the algorithm can improve the per-class accura-
cies of the difficult classes in the dataset.

References
Cubuk, E. D.; Zoph, B.; Mane, D.; Vasudevan, V.; and Le,
Q. V. 2018. Autoaugment: Learning augmentation policies
from data. arXiv preprint arXiv:1805.09501.
Cubuk, E. D.; Zoph, B.; Shlens, J.; and Le, Q. V. 2020. Ran-
daugment: Practical automated data augmentation with a re-
duced search space. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition work-
shops, 702–703.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, 248–255. Ieee.
DeVries, T., and Taylor, G. W. 2017. Improved regular-
ization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552.
Ghosal, S.; Blystone, D.; Singh, A. K.; Ganapathysubra-
manian, B.; Singh, A.; and Sarkar, S. 2018. An explain-
able deep machine vision framework for plant stress pheno-
typing. Proceedings of the National Academy of Sciences
115(18):4613–4618.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2020. Generative adversarial networks. Communications of
the ACM 63(11):139–144.
Ho, D.; Liang, E.; Chen, X.; Stoica, I.; and Abbeel, P. 2019.
Population based augmentation: Efficient learning of aug-
mentation policy schedules. In International Conference on
Machine Learning, 2731–2741. PMLR.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2017.
Imagenet classification with deep convolutional neural net-
works. Communications of the ACM 60(6):84–90.
Lemley, J.; Bazrafkan, S.; and Corcoran, P. 2017. Smart
augmentation learning an optimal data augmentation strat-
egy. Ieee Access 5:5858–5869.
Lim, S.; Kim, I.; Kim, T.; Kim, C.; and Kim, S. 2019. Fast
autoaugment. Advances in Neural Information Processing
Systems 32.
Real, E.; Aggarwal, A.; Huang, Y.; and Le, Q. V. 2019. Reg-
ularized evolution for image classifier architecture search. In
Proceedings of the aaai conference on artificial intelligence,
volume 33, 4780–4789.



Sato, I.; Nishimura, H.; and Yokoi, K. 2015. Apac: Aug-
mented pattern classification with neural networks. arXiv
preprint arXiv:1505.03229.
Sesha Sarath Pokuri, B.; Lofquist, A.; Risko, C. M.; and
Ganapathysubramanian, B. 2018. Paryopt: A software for
parallel asynchronous remote bayesian optimization. arXiv
e-prints arXiv–1809.
Shorten, C., and Khoshgoftaar, T. M. 2019. A survey on
image data augmentation for deep learning. Journal of big
data 6(1):1–48.
Shrivastava, A.; Pfister, T.; Tuzel, O.; Susskind, J.; Wang,
W.; and Webb, R. 2017. Learning from simulated and un-
supervised images through adversarial training. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 2107–2116.
Yun, S.; Han, D.; Oh, S. J.; Chun, S.; Choe, J.; and Yoo,
Y. 2019. Cutmix: Regularization strategy to train strong
classifiers with localizable features. In Proceedings of the
IEEE/CVF international conference on computer vision,
6023–6032.
Zhang, H.; Cisse, M.; Dauphin, Y. N.; and Lopez-Paz, D.
2017. mixup: Beyond empirical risk minimization. arXiv
preprint arXiv:1710.09412.
Zoph, B.; Vasudevan, V.; Shlens, J.; and Le, Q. V.
2018. Learning transferable architectures for scalable im-
age recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 8697–8710.
Zoph, B.; Cubuk, E. D.; Ghiasi, G.; Lin, T.-Y.; Shlens, J.;
and Le, Q. V. 2020. Learning data augmentation strategies
for object detection. In European conference on computer
vision, 566–583. Springer.


