Skeleton-Guided-Translation: A Benchmarking Framework for
Code Repository Translation with Fine-Grained Quality Evaluation

Anonymous ACL submission

Abstract

Code translation benchmarks are crucial for
evaluating the accuracy and efficiency of LLM-
based translation systems. However, exist-
ing ones focus on individual functions, ne-
glecting repository-level challenges like inter-
module coherence and dependency manage-
ment. While some recent repository-level
benchmarks attempt to address these issues,
they suffer from poor maintainability and
coarse evaluation granularity, limiting their
usefulness to developers. = We introduce
Skeleton-Guided-Translation, a framework for
repository-level Java-to-C# translation with
fine-grained quality evaluation. It follows a
two-step process: first translating repository
“skeletons,” then refining the full repository
guided by these skeletons. Building on this, we
present TRANSREPO-BENCH , a benchmark of
high-quality Java repositories with correspond-
ing C# skeletons, including matching unit tests
and build configurations. Our adaptive unit
tests, supporting multiple or incremental trans-
lations without manual adjustments, enhancing
automation and scalability. Additionally, we
introduce fine-grained metrics that assess trans-
lation quality at the test-case level, addressing
traditional binary metrics’ limitations in dis-
tinguishing build failures. Evaluations using
TRANSREPO-BENCH reveal issues like broken
cross-file references, showing that our struc-
tured approach reduces dependency errors and
preserves interface consistency.

1 Introduction

Large language models (LLMs) are reshaping soft-
ware development, driving system modernization
and legacy code migration. For example, migrating
C to Rust improves safety (Matsakis and Klock,
2014), and frameworks like TensorFlow require
synchronized multi-language updates. Evaluating
LLMs in migration tasks is key to assessing reli-
ability. Benchmarks provide quantitative insights
for comparison and improvement, but existing ones

Partially Correct

< Method1 @
AN
¢ Method2 @ L g4 railed €
<> Method3 Q Score: 0
Translated

Repo
We expect a more detailed score, for
example, 66.7% would be more appropriate.

Figure 1: A more fine-grained quality evaluation to
evaluate translated repositories is needed.

focus on function-level tasks or competition-style
problems (Yan et al., 2023; Lu et al., 2021; Khan
et al., 2024), ignoring real-world complexities.
Repository-level translation is essential for man-
aging dependencies, structure, and interconnected
components (Jiao et al., 2023), requiring reliable
benchmarks to assess model performance.

A major challenge in repository-level code trans-
lation is the absence of a systematic framework
that enables fine-grained control over maintainabil-
ity. For instance, updating part of a Java-based
SDK often requires re-translating large portions
of the corresponding C++ codebase, making small
changes costly. Without fine-grained control, main-
tainability suffers. A robust framework must sup-
port partial updates, minimizing overhead and en-
abling efficient multi-language code maintenance
without constant full-scale retranslation.

A major challenge is the lack of repository-level
parallel corpora, complicating automated verifica-
tion. Line-by-line metrics like codeBLEU (Ren
et al., 2020) lack functional validation, and auto-
matic test generation remains unreliable (Eniser
et al., 2024). A practical alternative is translating
unit tests from the source library for systematic
validation. However, ensuring test accuracy and
consistency with translated code interfaces is cru-
cial for reliable verification.

The third challenge is that current metrics often
miss nuanced translation outcomes, reducing us-

import java.util.Arrays;

public class FrameBuffer implements Buffer {
public static final int WIDTH = 10;
public static final int HEIGHT = 8;

private final Pixel[] pixels = new Pixel[WIDTH * HEIGHT];

@0verride
public void draw(int x, int y) {

using System;
namespace DoubleBuffer
{
public class FrameBuffer : Buffer {
public static readonly int WIDTH = 10;
public static readonly int HEIGHT = 8;

private readonly Pixel[] pixels = new Pixel[WIDTH * HEIGHT];

public void Draw(int x, int y) {

pixels[getIndex(x, y)] = Pixel.BLACK;e

return;

Replace the function body with a return }
statement that matches the return type.

@0verride
public Pixel[] getPixels() {
return pixels; ¢

¥

private int getIndex(int x, int y) {
return x + WIDTH * y; ¢

public Pixel[] GetPixels() {
D return new Pixel[0];

}

private int GetIndex(int x, int y) {
return 0;

¥
}

}

} Note: Red shows deletions, green shows
} additions from Java source to C# target skeleton.

Extraction and Translation

(a) Example of a File in the Source Java Repository

» (b) Example of a File in the Target C# Repository Skeleton

of Repository Skeletons

Figure 2: Example Code Snippets of Translation Input with Corresponding Skeleton

ability. RepoTransBench (Wang et al., 2024), for
example, uses a binary build success metric, ignor-
ing partial successes. As Figure 1 shows, this over-
simplifies performance by neglecting cases where
some components translate correctly while others
fail. Schaeffer et al. (Schaeffer et al., 2023) warn
that threshold-based metrics can create misleading
performance leaps. In contrast, continuous met-
rics, such as the percentage of successfully trans-
lated modules (e.g., 66.7%), improve usability by
identifying failures, guiding fixes, and providing
smoother, more reliable insights.

Our Contributions

To address these challenges, we introduce Skeleton-
Guided-Translation, a framework for repository-
level code translation with fine-grained quality eval-
uation. Our two-step process first translates the
repository skeleton to define structure and inter-
faces, then populates it while indexing dependen-
cies for unit tests. This ensures consistency, en-
ables targeted evaluation, and validates translations
structurally and functionally. Based on this, we
present TRANSREPO-BENCH , a benchmark that
leverages our skeleton-based framework to provide
precise evaluation, overcoming limitations of exist-
ing benchmarks. Specifically:

* Framework for Repository Translation and Fine-
Grained Evaluation: We introduce Skeleton-
Guided-Translation,! a novel framework for
repository-level code translation with fine-
grained evaluation metrics. Skeleton-Guided-
'The source code implementing Skeleton-Guided-

Translation, along with all code samples in our bench-

mark TRANSREPO-BENCH , are available at https:
//anonymous . 4open.science/r/TransRepo-bench.

Translation employs a two-step process to ex-
tract and translate repository skeletons, preserv-
ing structure and ensuring consistency across
dependencies and module interactions. Com-
plementing this, our benchmark TRANSREPO-
BENCH provides detailed evaluation by scoring
individual test cases based on unit tests and their
associated code, offering more meaningful feed-
back than binary metrics.

* High-Quality Open-Source Repository Bench-
mark: TRANSREPO-BENCH features high-
quality open-source Java libraries and their C#
translations, including unit tests and configura-
tions. Designed for translation and fine-grained
evaluation, it enables researchers to assess mod-
els in realistic repository-level scenarios.

 Evaluation of Advanced Models: TRANSREPO-
BENCH is validated through extensive evaluations
of classic and state-of-the-art models, offering
detailed performance analysis. This highlights
key challenges in repository-level translation and
reveals strengths and weaknesses of models.

2 Motivation

In this section, we use an example to illustrate
the challenges involved in building a repository-
level code translation benchmark and explain our
solutions more effectively.

2.1 Challenges in Repository Translation

Lack of a Systematic Translation Framework. Fig-
ure 2 illustrates the challenges of incremental up-
dates in LLM-based Java-to-C# translation, empha-
sizing the need for a systematic framework. In Fig-
ure 2(a), the FrameBuffer class correctly handles

https://anonymous.4open.science/r/TransRepo-bench
https://anonymous.4open.science/r/TransRepo-bench

(YFacilitating Maintainability

Tested LLM Translated Result

Input

@ Enhancing Testability
Evaluation System

Output Score

D source
<[>| Repo
Target
Skeleton

LLM

L 5

Translated Extracted
Target Relevant
Repo Methods

</>Method1]

AN
</>Method2]
<> Method3

Unit Test 2 | Failed x

- -
Target Unit Test 3 | Failed x
i Skeleton

\ Testing Environment

Improving Usability

o Reflection with Reported Errors

Figure 3: Framework of Our Evaluator.

indexing and rendering. However, without a struc-
tured approach, adding a new method can disrupt
type inference, method resolution, or dependencies.
Since LLM-based translation lacks fine-grained in-
cremental updates, even small changes may require
re-translating the entire class or its dependencies.

Lack of Parallel Corpora. Repository-level trans-
lation struggles with misaligned source and target
files, complicating cross-language verification. For
example, translating Java code (Figure 2(a)) to C#
is challenging without corresponding tests, espe-
cially for complex logic or edge cases. One so-
lution is translating high-coverage Java tests into
C#, but preserving intent, coverage, and reliabil-
ity remains difficult. Testing inconsistencies may
undermine confidence in the translation.

Lack of a Fine-Grained Evaluation Metric. Re-
lying on coarse metrics (e.g., whether a repository
builds) limits developers’ ability to diagnose trans-
lation issues. For instance, if Draw is mistranslated
by calling getIndex instead of GetIndex, the com-
pilation will fail, making it impossible to evalu-
ate correctly translated functions like GetPixels.
This binary pass/fail approach obscures partial suc-
cesses and forces manual debugging. Granular met-
rics—such as module-level correctness or function
fidelity—would help pinpoint errors, streamlining
debugging and refinement.

2.2 Solution: Standardizing Code Repository
Translation with Fine-Grained Evaluation

Figure 3 illustrates our solution. To align transla-
tion with testing and enable fine-grained evaluation,
we introduce a target repository “skeleton” during
translation. This guides LLMs to focus on accurate
dependencies and interfaces. The skeleton is incre-
mentally populated with partial results, allowing
execution-based assessment of translation quality.

Facilitating Maintainability. Figure 2(b) illus-
trates our Skeleton-Guided-Translation framework,

where C# serves as a “target repository skeleton.”
Unlike the fully translated Java code in Figure
2(a), this skeleton defines interfaces while leaving
method bodies mostly empty. This approach im-
proves maintainability: the C# skeleton enables
incremental updates by aligning interfaces first,
avoiding full re-translation. Without it, signature or
dependency inconsistencies may require complete
re-translation.

Enhancing Testability. Building unit tests on
these skeletons significantly improves testability.
Because the structural and interface definitions in
both repositories match, any unit tests originally de-
signed for the Java code—especially those focusing
on API behavior—can be adapted to validate the
C# skeleton. Even if a method’s implementation
in C# is just a placeholder, the test environment
can still verify that calls are made correctly and
interfaces remain consistent.

Improving Usability. The framework’s fine-
grained control improves usability by enabling tar-
geted verification. If Draw is mistranslated and fails
to compile, unit tests for GetPixels and GetIndex
can still run within the skeleton (Figure 3). This
ensures their correctness despite errors elsewhere.
Unlike coarse build-or-fail metrics, skeleton-based
testing reveals partial successes, streamlining de-
bugging and evaluation.

3 TRANSREPO-BENCH Benchmark

As shown in Figure 3, users receive the source
repository and target skeleton, guiding LLMs to
generate a complete target repository. Correct-
ness is verified using the target’s unit tests within
the testing environment. This section presents the
benchmark content, details TRANSREPO-BENCH ’s
construction, and introduces our fine-grained eval-
uation design.

Source

Repositories
(T \ (TTTTTTT T |
\ Extraction ! | Separation !
Source Skeletons SoUICE

Unit Tests

[2. Translate skeletons and unit tests with]
3 the mapping b

Initial Translated
Target Skeletons

Initial Translated
Target Unit Tests

] Automated Static Fixing and
h Manual Fixing

Target Skeletons Target Unit Tests

Figure 4: Benchmark construction workflow from ex-
traction to final target skeletons and unit tests via map-
ping, translation, and fixing.

3.1 Benchmark Overview

Each TRANSREPO-BENCH translation task in-
cludes a source repository and its evaluation setup,
structured as <source repository, target skeleton,
target unit tests, testing environment>. Currently,
we focus on Java-to-C# translation, with plans to
support more language pairs.

As shown in Figure 2, the translation task input
includes Java source repositories for translation
and a target repository skeleton, which serves as a
interface “contract” for evaluation. This skeleton
retains the original file structure, dependencies, and
static values but replaces all functions with trivial
implementations (e.g., a single return statement)
to ensure successful compilation. The evaluation
setup consists of unit tests for the target repository
and the required testing configuration files.

TRANSREPO-BENCH includes 13 tasks for trans-
lating code repositories. Appendix A.1 provides
details on repository features like class, method,
and line counts, plus test coverage. The data high-
lights diverse complexities, from small repositories
to large ones with extensive methods and coverage,
ensuring robust evaluation.

3.2 Benchmark Construction

This section details the benchmark construction
process (Fig. 4). We first describe source dataset
collection (§3.2.1), then outline skeleton extraction
and translation (§3.2.2). Next, we explain unit
test acquisition (§3.2.3) and conclude with testing

environment setup (§3.2.4).

3.2.1 Source Repository Collection

The source dataset is curated from open-source
GitHub projects meeting these criteria: (1) 100+
stars, (2) a testing workflow, and (3) locally passing
tests. We chose a mature and well-tested collection
of repositories from java-design-patterns, a Java
library featuring comprehensive design pattern im-
plementations and reliable test execution.

3.2.2 Skeleton Extraction and Translation

Repository skeletons are simplified versions where
all function implementations (except in test files)
are replaced with trivial return statements, ensuring
successful compilation while preserving file struc-
ture, dependencies, interfaces, and static values.

Function bodies return type-matching placehold-
ers (e.g., return @; for int, return null; for
objects). Constructors are left empty, and static
blocks retain only assignments.

Skeletons are translated into the target language
using GPT-40, but most fail to compile, requiring
extensive manual fixes. As shown in the Appendix
A.1, “Skeleton Fix Time” quantifies this effort.

3.2.3 Unit Test Translation

We translate source repository unit tests into the
target language using GPT-40 and NUnit. However,
most fail to compile, requiring extensive manual
fixes to ensure correct validation of the source code.
To verify semantic consistency, we ran Java tests
on the Java skeleton and translated C# tests on the
C# skeleton, observing identical results.

3.2.4 Testing Environment Construction

We set up a testing environment by defining a
Docker image, installing dependencies, and run-
ning unit tests. For our process, we create a YAML
build configuration file for the translated C# project,
based on the original Java build file.

This step is mostly manual, using the translated
C# skeleton as a reference. A large language model
(e.g., GPT-40) assists in converting the Java build
file to C#, which is then refined for functionality.

To reduce manual effort and expand our frame-
work’s usability, we provide supporting resources:
static repair scripts for skeletons and unit tests,
along with automated configuration scripts for C#
projects. These tools enhance efficiency, but their
limitations required notable manual intervention.

Model Build Rate (%) Unit Test Pass Rate (%)

Iterationl Iteration2 Iteration3 | Iterationl Iteration2 Iteration3
GPT-4-turbo 60.54 66.31 50.00 15.59 18.16 11.25
GPT-40 58.17 57.34 57.34 17.97 14.32 16.03
GPT-40-mini 49.31 41.13 44.98 10.16 12.03 12.03
GPT-01-mini 50.00 59.18 52.06 17.35 17.35 15.70
DeepSeek-v3 52.88 71.14 71.14 16.06 17.56 17.56
DeepSeek-rl 59.83 72.13 73.32 15.59 19.83 19.83
Claude-3.5 54.92 51.64 44.26 15.66 15.13 10.01
Qwen-plus 59.32 59.53 56.73 17.31 18.08 16.68

Table 1: Build rates (%) and Unit test pass rates (%) for
different repositories across various models.

3.3 Fine-Grained Evaluation Metrics Design

To refine user-translated code evaluation, we use
unit tests for scoring. Prior attempts to translate en-
tire repositories often failed at compilation, prevent-
ing test execution. Pan et al. (Pan et al., 2024) re-
port 77.8% of large-model translation failures stem
from compilation errors, obscuring correct trans-
lations and hindering evaluation. To mitigate this,
we extract and execute test-relevant code within a
guaranteed-compilable skeleton. Translated func-
tions are inserted, then built and tested using dotnet
build and dotnet test, ensuring granular scoring
unaffected by unrelated errors.

Our evaluation uses two metrics: build success
rate, the fraction of compilable unit tests, and
unit test success rate, the fraction of passing tests
among those that compile. We average these scores
across libraries for an overall performance measure.
The core challenge is extracting relevant source
code for each test. We instrument Java source code
at the function level to track invoked code, then
map it structurally to the corresponding C# code,
ensuring accurate test execution.

4 Evaluation

We first analyze LLLM performance on our bench-
mark, then highlight our framework’s effectiveness
in using repository skeletons for translation and
fine-grained evaluation.

4.1 Model Performance on
TRANSREPO-BENCH

We evaluate the performance of state-of-the-art
LLMs on the task of translating code repositories
from Java to C#. Next, we conduct a failure analy-
sis based on the experimental results.

4.1.1 Model Selection

To assess state-of-the-art LLMs in code repository
translation, we selected six models: GPT-40, GPT-
40-mini, GPT-4-turbo, Qwen-plus-1220, Claude-

3.5-sonnet-20240620, DeepSeek-v3, DeepSeek-
rl, and GPT-ol-mini. GPT-40 variants are ver-
satile general-purpose models optimized for effi-
ciency. Qwen-plus-1220 and Claude-3.5-sonnet-
20240620 balance general and specialized reason-
ing. Deepseek-v3 is fine-tuned for code-related
tasks, emphasizing programming language under-
standing and transformation. DeepSeek-rl is a
compact model that prioritizes efficiency while
maintaining solid reasoning depth. GPT-o1-mini
is a lightweight yet well-rounded model, designed
for structured thinking and balanced performance.

4.1.2 LLMs Performance

Table 1 compares LLM performance over three
iterations using Build Rate and Unit Test Pass Rate.
DeepSeek-v3 improves consistently, achieving the
highest Build Rate (71.14%) and a competitive
Unit Test Pass Rate (17.56%) in Iteration 3. GPT-4-
turbo starts strong (60.54%) but declines to 50.00%,
with its Unit Test Pass Rate dropping to 11.25%.
GPT-40 remains stable at 57.34% Build Rate, with
minor fluctuations in Unit Test Pass Rate (16.03%).
GPT-40-mini and Claude-3.5 underperform, with
declining Build Rates and inconsistent trends.

DeepSeek-r1 outperforms DeepSeek-v3, achiev-
ing the highest Build Rate (73.77%) and Unit Test
Pass Rate (19.83%) in Iteration 3. GPT-ol-mini
also improves, peaking at 59.18% Build Rate and
maintaining a solid 15.7% Unit Test Pass Rate.
Overall, DeepSeek-r1 is the most robust, followed
by DeepSeek-v3, while other models struggle to
maintain performance.

The results show that iterative refinement doesn’t
always improve performance, likely due to error
propagation. Errors from earlier iterations can accu-
mulate rather than correct, especially if models fail
to distinguish constructive feedback from noise.

Build Rates. Table 2 shows DeepSeek-
rl (73.32%) and DeepSeek-v3 (71.14%) lead-
ing, followed by GPT-o1-mini (68.52%), GPT-4-
turbo (66.31%), and Qwen-plus (65.70%). GPT-
40 (65.03%) and Claude-3.5 (63.23%) perform
slightly lower, with GPT-40-mini (57.00%) trail-
ing. DeepSeek-rl’s strong performance suggests
robust translation capabilities. Performance varies
by repository—decorator and producer-consumer
challenge most models, while converter and unit-
of-work consistently achieve 100%.

Unit Test Pass Rates. DeepSeek-rl (26.65%)
leads, followed by DeepSeek-v3 (22.32%), GPT-
ol-mini (22.42%), and GPT-40 (21.50%). Claude-

Repo Name Build Success Rate (%)

Unit Test Pass Rate (%)

GPT-40 GPT-40-mini GPT-4-turbo Qwen-plus Claude-3.5 DeepSeek-v3 DeepSeek-rl GPT-ol-mini GPT-40 GPT-4o-mini GPT-4-turbo Qwen-plus Claude-3.5 DeepSeek-v3 DeepSeek-rl GPT-ol-mini

promise 44.4 44.4 0.0 44.4 44.4 44.4 44.4 222 11.1 0.0 1.1 11.1 1.1 333 222
table-module 952 76.2 100.0 100.0 76.2 100.0 100.0 100.0 48 4.8 9.5 9.5 4.8 9.5 9.5 4.8

double-buffer 57.1 57.1 57.1 100.0 57.1 85.7 929 57.1 57.1 57.1 429 57.1 T1.4 85.6 71.4
decorator 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 333 0.0 0.0 0.0 0.0 0.0

producer-consumer 0.0 0.0 100.0 0.0 100.0 100.0 100.0 0.0 0.0 333 0.0 333 333 333 0.0

double-dispatch 70.8 12.5 45.8 100.0 12.5 95.8 95.8 12.5 0.0 12.5 16.7 0.0 333 333 12.5
partial-response 100.0 100.0 100.0 60.0 100.0 60.0 70.0 100.0 20.0 0.0 20.0 0.0 20.0 0.0 20.0 20.0
converter 100.0 80.0 100.0 100.0 100.0 100.0 100.0 20.0 0.0 20.0 20.0 20.0 20.0 20.0 20.0
caching 100.0 100.0 50.0 90.0 50.0 50.0 50.0 10.0 0.0 0.0 40.0 0.0 10.0 10.0 40.0
unit-of-work 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 50.0 50.0 30.0 50.0 50.0 50.0 50.0 50.0
game-loop 71.8 88.9 100.0 7.8 100.0 88.9 100.0 55.6 333 1.1 333 333 333 333 333
type-object 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

bytecode 100.0 81.8 9.1 81.8 81.8 100.0 100.0 27.3 9.1 9.1 273 273 18.2 18.2 273
Average 65.03 57.00 66.31 65.70 63.23 71.14 73.32 68.52 21.50 1272 18.15 19.29 19.76 22.32 26.65 2242

Table 2: Build rates (%) and Unit test pass rates (%) for different repositories across various models.

700
172 =

600 66
|
500 64 57

400

Error Count

300

200

100

0
Iteration 1

Iteration 2
Iteration Progress

Iteration 3

Error Types
m Runtime Error C51016: The modifier is not valid for this item

C51061: Object does not contain a definition BN CS0103: The name does not exist in the current context
BB CS0246: The type or namespace name could not be found Others

Figure 5: Changes in Error Proportions

3.5 (19.76%) and Qwen-plus (19.29%) perform
slightly lower, with GPT-40-mini (12.72%) at the
bottom. DeepSeek-rl1 and GPT-ol-mini show
stronger runtime behavior preservation. Double-
buffer and unit-of-work often exceed 50%, while
producer-consumer and decorator remain near
zero, highlighting the challenge of ensuring func-
tional correctness.

4.1.3 Failure Analysis

Figure 5 shows error distribution and reduction
over three iterations, demonstrating iterative refine-
ment. The most frequent category, Runtime Errors,
dropped from 439 in Iteration 1 to 428 in Iteration
3, reflecting ongoing improvements. Other com-
mon errors, including CS0246 (missing type/names-
pace), CS1061 (missing member), and CS0103 (un-
defined variable/name), also declined, indicating
effective correction. For instance, CS0106 fell from
23 to 16, and CS1061 from 23 to 17. The incon-
sistent decrease in CS@103 and CS0246 may result
from newly introduced variables or dependencies
lacking definitions. The total error count fell from
747 to 619, showing improved resolution of syntac-
tical and logical errors. Common failure patterns
are detailed in Appendix A.2.

Repo Build Score (%) Unit Test Score (%)
RepoTransBench ~ Ours ‘ RepoTransBench Ours
bytecode 100 44.4 81 22.2
caching 0 95.2 0 4.8
converter 0 57.1 0 57.1
decorator 0 0.0 0 0.0
double-buffer 0 0.0 0 0.0
double-dispatch 0 70.8 0 12.5
game-loop 0 100.0 0 20.0
partial-response 0 100.0 0 20.0
producer-consumer 0 100.0 0 10.0
promise 0 100.0 0 50.0
table-module 0 71.8 0 55.6
type-object 0 0.0 0 0.0
unit-of-work 100 100.0 30 273

Table 3: Comparison of RepoTransBench and FineEval
evaluation methods on each repository.

B Total Tests
[Tests that Cannot Find All Dependencies

25 4 67%

82%
100% 100%

Number of Tests

Repository

Figure 6: Missing Dependencies in Unit Tests Due to
the Absence of Skeletons

4.2 TRANSREPO-BENCH Effectiveness

This section aims to validate (1) the fineness and
comprehensiveness of our evaluation mechanism,
(2) the necessity of incorporating skeletons in the
translation process, and (3) the fulfillment of the
three previously mentioned requirements.

4.2.1 Validating Evaluation Fineness

Our evaluation provides a finer, more comprehen-
sive assessment of repository translation. Unlike
RepoTransBench (Wang et al., 2024), which evalu-
ates entire projects without skeletons, our method
scores components individually, preventing single
errors from invalidating correct translations. As

Iteration Time Build Rate (%) Unit Test Pass Rate (%)
With Skeletons ~ Without Skeletons ‘ With Skeletons ~ Without Skeletons
Tteration1 58.17 33 17.97 33
Iteration2 57.34 33 14.32 33
Iteration3 57.34 33 16.03 33

Table 4: Comparison of Build Rate and Unit Test Pass
Rate of GPT-40 with and without Skeleton

Iteration Time Build Rate (%) Unit Test Success Rate (%)
Coarse-Grained Feedback ~ Ours ‘ Coarse-Grained Feedback ~ Ours
Iteration-1 39.34 58.17 9.09 17.97
Iteration-2 50.00 57.34 13.94 14.32
Tteration-3 45.45 57.34 13.16 16.03

Table 5: Comparative Experiment on Coarse-Grained vs.
Our Fine-Grained Feedback for Usability Validation.

Table 3 shows, RepoTransBench scores 0 on most
tasks, successfully evaluating only two of thirteen.
In contrast, our approach assigns scores even when
compilation fails, achieving 100% success for unit
test-related segments. This fine-grained evaluation
recognizes partial successes rather than dismissing
them due to isolated errors.

4.2.2 Proving Skeleton Necessity

The second experiment validates the necessity of
providing target repository skeletons during trans-
lation. As shown in Table 4, omitting skeletons
significantly degrades both build success and unit
test pass rates across all iterations.

This degradation arises from unresolved inter-
file dependencies and predefined interfaces, pre-
venting the identification of functions under test.
As illustrated in Figure 6, missing skeletons lead
to numerous unresolved dependencies, causing all
build and test scores to drop to zero. For certain
libraries, the absence of skeletons makes dependen-
cies entirely unresolvable, as shown by the high
proportion of failed tests. This underscores the
critical role of skeletons in ensuring dependency
resolution and enabling accurate evaluation.

4.3 Validating Three Key Requirements for
Repository-Level Translation

As proposed in Section 2.2, our Skeleton-Guided-
Translation meets three requirements. Testability
is validated through large model evaluation, so we
focus on maintainability and usability.
Maintainability. Our maintainability experiment
evaluates how Skeleton-Guided Translation aids
LLMs in incremental translation for Java project
updates, enhancing library-level code maintainabil-
ity. It translates only necessary updates, avoiding
unnecessary C# modifications. We evaluated the

Build Success and Code Attributes Over Updates

Successf = " With Skeletom
A =~ Without-Skeleton - 350

=

Build Success
y
\
-
G
=)
Code Attributes

£ - 100

§ -
k= ,—"- #Added Classes
Failure = i —#- # Code Lines -0

2 4 6 8 10
Cumulative Update Count

Figure 7: Build Success Rates for Incremental Transla-
tion with/without Skeleton

bytecode repository by measuring cumulative build
success rates across ten incremental translation
tasks over five trials. The first approach updated
the Skeleton before translating Java to C#, while
the second directly translated Java without Skele-
ton guidance. Figure 7 shows that the method with
skeletons can still maintain a successful build even
after eight cumulative updates and 45 newly added
functions, whereas the method without skeletons
fails around the third update. This demonstrates
the effectiveness and maintainability of skeletons
in incremental translation.

Usability. Table 5 compares coarse- and fine-
grained feedback for improving translated libraries.
Coarse feedback relies on holistic build and test
evaluations, while fine-grained feedback provides
targeted error insights. Results show that fine-
grained feedback consistently improves build rates
and unit test success, validating its effectiveness in
model-guided code refinement.

Summary. These experiments collectively estab-

lish that our method is superior in two key aspects:

¢ QOur evaluation mechanism is more granular and
comprehensive, capturing the quality of transla-
tion even when partial failures occur.

» Skeletons are crucial for dependency resolution
and accurate evaluation.

* Our Skeleton-Guided-Translation meets three
key requirements for repository-level code trans-
lation: maintainability, testability, and usability.

5 Related Work

5.1 Code Translation

Code translation preserves semantics while con-
verting languages. Rule-based compilers (e.g., Ba-
bel, Roslyn) handle simple cases but fail on com-
plex constructs. Al-driven methods use neural net-

works, including seq2seq models (Luong et al.,
2016), transformers (Vaswani et al., 2017), and pre-
trained models like CodeBERT (Feng et al., 2020),
CodeT5 (Wang et al., 2021).

Many studies (Tang et al., 2023; Roziere et al.,
2020; Roziere et al., 2022; Yin et al., 2024; Yang
et al., 2024; Jiao et al., 2023; Jana et al., 2024;
Di et al., 2024; Tipirneni et al., 2024; Yan et al.,
2023) focus on short code from competitive pro-
gramming (Puri et al., 2021; Lu et al., 2021), edu-
cational platforms (Yan et al., 2023; Ahmad et al.,
2023), or custom tasks (Liu et al., 2023; Chen et al.,
2021). Some (Pan et al., 2024; Eniser et al., 2024,
Zhang et al., 2023) tackle longer code (100+ lines)
but with limited success. Novel training strate-
gies (Roziere et al., 2020; Roziere et al., 2022;
Szafraniec et al., 2023; Jana et al., 2024; Tipirneni
et al., 2024) may enhance our approach, alongside
prompting (Tang et al., 2023) and repair methods
(Yin et al., 2024). Adapting automated program
repair (Xia et al., 2023; Kong et al., 2024) could
help with translation-specific I/O errors. SYZYGY
(Shetty et al., 2025) translates C to safe Rust using
LLM-driven code generation and dynamic analysis.
Bhattarai et al. (Bhattarai et al., 2024) proposed a
few-shot retrieval-based translation method, while
Tao et al. (Tao et al., 2024) used an intermediary
language (Go) to aid translation.

AlphaTrans (Ibrahimzada et al., 2024) is a neuro-
symbolic framework for repository-level code
translation, using program analysis and dynamic
testing for validation. Shiraishi et al. (Shiraishi
and Shinagawa, 2024) improved C-to-Rust transla-
tion with context-aware segmentation and prompts,
while Oxidizer (Zhang et al., 2024) ensures func-
tionality via feature mapping, type checks, and
unit test-based validation. However, AlphaTrans
struggles with semantic alignment in test transla-
tion and rigid rules for special syntax (e.g., Java
annotations). Our approach addresses the first by
validating unit tests on both source and target repos-
itory skeletons and the second by leveraging LLMs
to translate skeletons directly.

5.2 Code Translation Benchmarks

Benchmarks are crucial for evaluating code trans-
lation. Early ones used small, manually curated
function pairs, while modern benchmarks cover
large datasets across diverse languages. AdvBench
(Robey et al., 2021) evaluates TransCoder on Java,
C++, and Python using BLEU, Exact Match (EM),
and Execution Accuracy. CodeNet (Puri et al.,

2021) provides 14 million samples in 50 languages
for training and evaluation. Task-specific bench-
marks like CodeXGLUE (Lu et al., 2021) ensure
functional correctness but often miss niche lan-
guages and system-level complexities. RustRe-
poTrans (Ou et al., 2024) first includes repository-
level Rust dependencies, revealing a 41.5%-56.2%
performance drop, highlighting real-world chal-
lenges in dependency and cross-file handling.

RepoTransBench (Wang et al., 2024) bench-
marks repository-level translation with 100 repos-
itories and automated tests, addressing configura-
tion, resource handling, and test migration. How-
ever, our approach overcomes its limitations: (1)
No Skeleton Framework — Lacking skeletons, it
struggles with interface constraints, leading to mis-
alignments. Our skeleton-based method ensures
better control and adaptability. (2) No Test Verifica-
tion — It lacks robust test result checking, while we
validate unit tests on both source and target skele-
tons for reliable evaluation. (3) Coarse-Grained
Evaluation — It executes tests without isolating de-
pendencies, compounding errors. Our approach
isolates dependencies, enabling finer-grained as-
sessment and reducing error propagation.

6 Conclusions

We present Skeleton-Guided-Translationand the
TRANSREPO-BENCH benchmark to tackle the real-
world challenges of repository-level code transla-
tion. By first translating “skeletons” that preserve
file structures and interfaces, then populating them
with full implementations, our approach mitigates
cross-module dependency issues and supports in-
cremental updates. This structured workflow is
further strengthened by comprehensive unit tests,
providing detailed error localization rather than a
single pass/fail outcome.

Our evaluation on TRANSREPO-BENCH —com-
prising high-quality, test-covered Java reposito-
ries—shows that leading LLLM-based translators
frequently fail at compilation or introduce depen-
dency mismatches. With skeletons, however, par-
tial errors do not invalidate correct modules, boost-
ing both build success and test pass rates. This evi-
dences the advantage of a skeleton-based methodol-
ogy for maintaining interface consistency, reducing
error propagation, and guiding iterative refinement
in multi-language codebases.

7 Limitations

This study primarily focuses on evaluating
repository-level translations between Java and C#
using Skeleton-Guided-Translation, and does not
confirm its generalizability to other language pairs
(e.g., C++, Python, Rust). . Moreover, the exper-
imental data is drawn from open-source projects
with relatively high test coverage. While this offers
some insight into how the approach might func-
tion in real-world scenarios, performance may de-
grade in extremely large or complex codebases with
highly customized dependencies. Additionally, in
order to maintain automation and control, we re-
quire the use of skeletons (and subsequent manual
fixes) in the evaluation process, which may not
fully capture more dynamic environments involv-
ing multi-user collaboration or frequent version up-
dates. Lastly, certain unit tests still required manual
patches before execution, somewhat limiting both
efficiency and objectivity. Future research might
explore automated repair techniques or adaptive
testing configurations to further enhance evaluation
reliability.

References

Wasi Uddin Ahmad, Md Golam Rahman Tushar, Saikat
Chakraborty, and Kai-Wei Chang. 2023. Avatar: A
parallel corpus for java-python program translation.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 2268-2281, Toronto,
Canada. Association for Computational Linguistics.

Manish Bhattarai, Javier E. Santos, Shawn Jones, Ayan
Biswas, Boian Alexandrov, and Daniel O’Malley.
2024. Enhancing code translation in language mod-
els with few-shot learning via retrieval-augmented
generation. Preprint, arXiv:2407.19619.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya

Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. Preprint,
arXiv:2107.03374.

Peng Di, Jianguo Li, Hang Yu, Wei Jiang, Wenting
Cai, Yang Cao, Chaoyu Chen, Dajun Chen, Hongwei
Chen, Liang Chen, Gang Fan, Jie Gong, Zi Gong,
Wen Hu, Tingting Guo, Zhichao Lei, Ting Li, Zheng
Li, Ming Liang, Cong Liao, Bingchang Liu, Jiachen
Liu, Zhiwei Liu, Shaojun Lu, Min Shen, Guangpei
Wang, Huan Wang, Zhi Wang, Zhaogui Xu, Jiawei
Yang, Qing Ye, Gehao Zhang, Yu Zhang, Zelin Zhao,
Xunjin Zheng, Hailian Zhou, Lifu Zhu, and Xiany-
ing Zhu. 2024. Codefuse-13b: A pretrained multi-
lingual code large language model. In Proceedings
of the 46th International Conference on Software En-
gineering: Software Engineering in Practice, ICSE-
SEIP *24, page 418-429. ACM.

Hasan Ferit Eniser, Valentin Wiistholz, and Maria Chris-
takis. 2024. Automatically testing functional prop-
erties of code translation models. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 38, pages 21055-21062. AAAI Press.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan,
Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020.
Codebert: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536-1547. Association for Computational Linguis-
tics.

Ali Reza Ibrahimzada, Kaiyao Ke, Mrigank Pawagi,
Muhammad Salman Abid, Rangeet Pan, Saurabh
Sinha, and Reyhaneh Jabbarvand. 2024. Repository-
level compositional code translation and validation.
Preprint, arXiv:2410.24117.

Prithwish Jana, Piyush Jha, Haoyang Ju, Gautham
Kishore, Aryan Mahajan, and Vijay Ganesh. 2024.
Cotran: An llm-based code translator using reinforce-
ment learning with feedback from compiler and sym-
bolic execution. In Frontiers in Artificial Intelligence
and Applications, volume 392, pages 4011-4018.
IOS Press.

Mingsheng Jiao, Tingrui Yu, Xuan Li, Guanjie Qiu,
Xiaodong Gu, and Beijun Shen. 2023. On the eval-
uation of neural code translation: Taxonomy and
benchmark. In Proceedings of the 38th IEEE/ACM
International Conference on Automated Software En-
gineering, pages 1529-1541. IEEE.

Mohammad Abdullah Matin Khan, M Saiful Bari,
Do Long, Weishi Wang, Md Rizwan Parvez, and
Shafiq Joty. 2024. Xcodeeval: An execution-based
large scale multilingual multitask benchmark for
code understanding, generation, translation and re-
trieval. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics, pages
6766-6805. Association for Computational Linguis-
tics.

https://doi.org/10.18653/v1/2023.findings-acl.143
https://doi.org/10.18653/v1/2023.findings-acl.143
https://doi.org/10.18653/v1/2023.findings-acl.143
https://arxiv.org/abs/2407.19619
https://arxiv.org/abs/2407.19619
https://arxiv.org/abs/2407.19619
https://arxiv.org/abs/2407.19619
https://arxiv.org/abs/2407.19619
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/3639477.3639719
https://doi.org/10.1145/3639477.3639719
https://doi.org/10.1145/3639477.3639719
https://doi.org/10.1609/aaai.v38i19.30097
https://doi.org/10.1609/aaai.v38i19.30097
https://doi.org/10.1609/aaai.v38i19.30097
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://arxiv.org/abs/2410.24117
https://arxiv.org/abs/2410.24117
https://arxiv.org/abs/2410.24117
https://doi.org/10.3233/FAIA240968
https://doi.org/10.3233/FAIA240968
https://doi.org/10.3233/FAIA240968
https://doi.org/10.3233/FAIA240968
https://doi.org/10.3233/FAIA240968
https://doi.org/10.1109/ASE56229.2023.00114
https://doi.org/10.1109/ASE56229.2023.00114
https://doi.org/10.1109/ASE56229.2023.00114
https://doi.org/10.1109/ASE56229.2023.00114
https://doi.org/10.1109/ASE56229.2023.00114
https://doi.org/10.18653/v1/2024.acl-long.367
https://doi.org/10.18653/v1/2024.acl-long.367
https://doi.org/10.18653/v1/2024.acl-long.367
https://doi.org/10.18653/v1/2024.acl-long.367
https://doi.org/10.18653/v1/2024.acl-long.367
https://doi.org/10.18653/v1/2024.acl-long.367
https://doi.org/10.18653/v1/2024.acl-long.367

Jiaolong Kong, Mingfei Cheng, Xiaofei Xie, Shangqing
Liu, Xiaoning Du, and Qi Guo. 2024. Contrastre-
pair: Enhancing conversation-based automated pro-
gram repair via contrastive test case pairs. Preprint,
arXiv:2403.01971.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and
Lingming Zhang. 2023. Is your code generated by
ChatGPT really correct? rigorous evaluation of large
language models for code generation. In Proceed-
ings of the 37th International Conference on Neural
Information Processing Systems, page 943. Curran
Associates Inc.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-
daresan, Shao Kun Deng, Shengyu Fu, and Shujie
Liu. 2021. CodeXGLUE: A machine learning bench-
mark dataset for code understanding and generation.
In Proceedings of the Neural Information Process-
ing Systems Track on Datasets and Benchmarks, vol-
ume 1.

Minh-Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2016. Multi-task se-
quence to sequence learning. In Proceedings of the
4th International Conference on Learning Represen-
tations.

Nicholas D. Matsakis and Felix S. Klock. 2014. The
rust language. In Proceedings of the 2014 ACM
SIGAda Annual Conference on High Integrity Lan-
guage Technology, HILT ’14. Association for Com-
puting Machinery.

Guangsheng Ou, Mingwei Liu, Yuxuan Chen, Xin
Peng, and Zibin Zheng. 2024. Repository-level
code translation benchmark targeting rust. Preprint,
arXiv:2411.13990.

Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna,
Divya Sankar, Lambert Pouguem Wassi, Michele
Merler, Boris Sobolev, Raju Pavuluri, Saurabh Sinha,
and Reyhaneh Jabbarvand. 2024. Lost in transla-
tion: A study of bugs introduced by large language
models while translating code. In Proceedings of the
IEEE/ACM 46th International Conference on Soft-
ware Engineering, ICSE 24, page 1-13. ACM.

Ruchir Puri, David Kung, Geert Janssen, Wei Zhang,
Giacomo Domeniconi, Vladimir Zolotov, Julian
Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker,
Veronika Thost, Luca Buratti, Saurabh Pujar, Shyam
Ramji, Ulrich Finkler, Susan Malaika, and Frederick
Reiss. 2021. CodeNet: A large-scale Al for code
dataset for learning a diversity of coding tasks. In
Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks, vol-
ume 1.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio

10

Blanco, and Shuai Ma. 2020. Codebleu: a method
for automatic evaluation of code synthesis. Preprint,
arXiv:2009.10297.

Alexander Robey, Luiz F. O. Chamon, George J. Pap-
pas, Hamed Hassani, and Alejandro Ribeiro. 2021.
Adversarial robustness with semi-infinite constrained
learning. Advances in neural information processing
systems.

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanus-
sot, and Guillaume Lample. 2020. Unsupervised
translation of programming languages. In Ad-
vances in Neural Information Processing Systems,
volume 33. Curran Associates, Inc.

Baptiste Roziere, Jie Zhang, Francgois Charton, Mark
Harman, Gabriel Synnaeve, and Guillaume Lample.
2022. Leveraging automated unit tests for unsuper-
vised code translation. In Proceedings of the 10th
International Conference on Learning Representa-
tions.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo.
2023. Are emergent abilities of large language mod-
els a mirage? In Advances in Neural Information
Processing Systems, volume 36. Curran Associates,
Inc.

Manish Shetty, Naman Jain, Adwait Godbole, Sanjit A.
Seshia, and Koushik Sen. 2025. Syzygy: Dual code-
test C to (safe) Rust translation using LLMs and
dynamic analysis. Preliminary version accepted at
LLM4Code 2025. arXiv preprint arXiv:2412.14234.

Momoko Shiraishi and Takahiro Shinagawa. 2024.
Context-aware code segmentation for c-to-rust trans-
lation using large language models. Preprint,
arXiv:2409.10506.

Marc Szafraniec, Baptiste Roziere, Hugh Leather,
Frangois Charton, Patrick Labatut, and Gabriel Syn-
naeve. 2023. Code translation with compiler repre-
sentations. In International Conference on Learning
Representations. In-Person Oral Presentation, Top
25% Paper.

Zilu Tang, Mayank Agarwal, Alexander Shypula, Bailin
Wang, Derry Wijaya, Jie Chen, and Yoon Kim. 2023.
Explain-then-translate: an analysis on improving pro-
gram translation with self-generated explanations. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023. Association for Computa-
tional Linguistics.

Qingxiao Tao, Tingrui Yu, Xiaodong Gu, and Beijun
Shen. 2024. Unraveling the potential of large lan-
guage models in code translation: How Far Are We?
In 31st Asia-Pacific Software Engineering Confer-
ence, APSEC °24. To appear.

Sindhu Tipirneni, Ming Zhu, and Chandan K. Reddy.
2024. Structcoder: Structure-aware transformer for
code generation. Preprint, arXiv:2206.05239.

https://arxiv.org/abs/2403.01971
https://arxiv.org/abs/2403.01971
https://arxiv.org/abs/2403.01971
https://arxiv.org/abs/2403.01971
https://arxiv.org/abs/2403.01971
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c16a5320fa475530d9583c34fd356ef5-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c16a5320fa475530d9583c34fd356ef5-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c16a5320fa475530d9583c34fd356ef5-Paper-round1.pdf
http://arxiv.org/abs/1511.06114
http://arxiv.org/abs/1511.06114
http://arxiv.org/abs/1511.06114
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1145/2663171.2663188
https://arxiv.org/abs/2411.13990
https://arxiv.org/abs/2411.13990
https://arxiv.org/abs/2411.13990
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1145/3597503.3639226
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/a5bfc9e07964f8dddeb95fc584cd965d-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/a5bfc9e07964f8dddeb95fc584cd965d-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/a5bfc9e07964f8dddeb95fc584cd965d-Paper-round2.pdf
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297
https://proceedings.neurips.cc/paper_files/paper/2020/file/ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf
https://openreview.net/forum?id=cmt-6KtR4c4
https://openreview.net/forum?id=cmt-6KtR4c4
https://openreview.net/forum?id=cmt-6KtR4c4
https://proceedings.neurips.cc/paper_files/paper/2023/file/adc98a266f45005c403b8311ca7e8bd7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/adc98a266f45005c403b8311ca7e8bd7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/adc98a266f45005c403b8311ca7e8bd7-Paper-Conference.pdf
https://arxiv.org/abs/2412.14234
https://arxiv.org/abs/2412.14234
https://arxiv.org/abs/2412.14234
https://arxiv.org/abs/2412.14234
https://arxiv.org/abs/2412.14234
https://arxiv.org/abs/2409.10506
https://arxiv.org/abs/2409.10506
https://arxiv.org/abs/2409.10506
https://arxiv.org/abs/2207.03578
https://arxiv.org/abs/2207.03578
https://arxiv.org/abs/2207.03578
https://doi.org/10.18653/v1/2023.findings-emnlp.119
https://doi.org/10.18653/v1/2023.findings-emnlp.119
https://doi.org/10.18653/v1/2023.findings-emnlp.119
https://arxiv.org/abs/2410.09812
https://arxiv.org/abs/2410.09812
https://arxiv.org/abs/2410.09812
https://arxiv.org/abs/2206.05239
https://arxiv.org/abs/2206.05239
https://arxiv.org/abs/2206.05239

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 31 (NeurlPS 2017). Curran Asso-
ciates, Inc.

Yanli Wang, Yanlin Wang, Suiquan Wang, Daya Guo,
Jiachi Chen, John Grundy, Xilin Liu, Yuchi Ma,
Mingzhi Mao, Hongyu Zhang, and Zibin Zheng.
2024. Repotransbench: A real-world benchmark
for repository-level code translation. Preprint,
arXiv:2412.17744.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.
Hoi. 2021. CodeT5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing. Association for Computational Linguis-
tics.

Chunqiu Steven Xia, Yuxiang Wei, and Lingming
Zhang. 2023. Automated program repair in the
era of large pre-trained language models. In 2023
IEEE/ACM 45th International Conference on Soft-
ware Engineering (ICSE).

Weixiang Yan, Yuchen Tian, Yunzhe Li, Qian Chen,
and Wen Wang. 2023. CodeTransOcean: A compre-
hensive multilingual benchmark for code translation.
In Findings of the Association for Computational
Linguistics: EMNLP 2023. Association for Computa-
tional Linguistics.

Aidan Z. H. Yang, Yoshiki Takashima, Brandon Paulsen,
Josiah Dodds, and Daniel Kroening. 2024. Vert:
Verified equivalent rust transpilation with large
language models as few-shot learners. Preprint,
arXiv:2404.18852.

Xin Yin, Chao Ni, Tien N. Nguyen, Shaohua Wang, and
Xiaohu Yang. 2024. Rectifier: Code translation with
corrector via llms. Preprint, arXiv:2407.07472.

Hanliang Zhang, Cristina David, Meng Wang, Brandon
Paulsen, and Daniel Kroening. 2024. Scalable, vali-
dated code translation of entire projects using large
language models. Preprint, arXiv:2412.08035.

Jiyang Zhang, Pengyu Nie, Junyi Jessy Li, and Milos
Gligoric. 2023. Multilingual code co-evolution using
large language models. In Proceedings of the 31st
ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2023. Association for Com-
puting Machinery.

A Appendix

A.1 Detailed Information of
TRANSREPO-BENCH

Table 6 summarizes the key characteristics of our
benchmark repositories, highlighting their diversity,

11

Repo Name Classes Methods Lines Unit Test Coverage Skeleton Fix Time (min)

36 789 93.70% 270
8 494 100.00% 70
16 489 98.30% 25
10 351 96.50% 60
8 372 96.40% 30
55 985 98.60% 90
5 382 90.10% 130
8 367 98.80% 100
63 1605
16 460
18 730
20 704
17 624

o

promise
table-module
double-buffer
decorator
producer-consumer
double-dispatch
partial-response
converter

caching
unit-of-work

WG AW WL

S

93.30%
98.30%
94.90%
96.20%
94.70%

270
30
60
120
150

game-loop
type-object
bytecode

ENICNENIES

Table 6: Resulting Benchmark

high test coverage, and moderate adaptation costs.
The selected repositories cover a wide range of soft-
ware design patterns, ensuring a comprehensive
evaluation of translation performance. The number
of classes, methods, and lines of code varies sig-
nificantly across repositories, reflecting different
levels of complexity and structural diversity.

Additionally, unit test coverage is consistently
high across the benchmark, demonstrating the ro-
bustness of the evaluation setup and ensuring that
translated code can be rigorously tested. The skele-
ton fix time, while necessary to adapt the repos-
itory skeletons for evaluation, remains moderate
across all repositories, indicating a reasonable ef-
fort in preparing the benchmark without excessive
overhead. Overall, this benchmark provides a well-
balanced dataset, offering diverse software struc-
tures, strong test coverage, and a practical adapta-
tion cost, making it suitable for assessing transla-
tion performance across different codebases.

A.2 Common Failure Patterns

We explore the most common failure patterns en-
countered during large model-based code transla-
tion, focusing on their underlying causes, how they
manifest in practice, and the strategies needed to
address them. By analyzing these recurring issues,
we aim to provide actionable insights for improv-
ing the accuracy and reliability of cross-language
code conversion processes.

Static Variable Misalignment. A common trans-
lation issue is inconsistent static variable naming.
For example:

public void Stop (){
status GameStatus . Stopped ;

}

The C# code raised error CS@117 due to in-
correct translation of the enum member Stopped,
which should follow C#’s uppercase convention,
e.g., STOPPED. This mismatch stems from Java’s
mixed-case style. To prevent such errors, transla-
tors should apply capitalization-aware mappings.

https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/2412.17744
https://arxiv.org/abs/2412.17744
https://arxiv.org/abs/2412.17744
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.1109/ICSE48619.2023.00129
https://doi.org/10.1109/ICSE48619.2023.00129
https://doi.org/10.1109/ICSE48619.2023.00129
https://doi.org/10.18653/v1/2023.findings-emnlp.337
https://doi.org/10.18653/v1/2023.findings-emnlp.337
https://doi.org/10.18653/v1/2023.findings-emnlp.337
https://arxiv.org/abs/2404.18852
https://arxiv.org/abs/2404.18852
https://arxiv.org/abs/2404.18852
https://arxiv.org/abs/2404.18852
https://arxiv.org/abs/2404.18852
https://arxiv.org/abs/2407.07472
https://arxiv.org/abs/2407.07472
https://arxiv.org/abs/2407.07472
https://arxiv.org/abs/2412.08035
https://arxiv.org/abs/2412.08035
https://arxiv.org/abs/2412.08035
https://arxiv.org/abs/2412.08035
https://arxiv.org/abs/2412.08035
https://doi.org/10.1145/3611643.3616350
https://doi.org/10.1145/3611643.3616350
https://doi.org/10.1145/3611643.3616350

Unresolved Names and Contextual Misinterpre- underscoring the need for robust runtime testing to
tations. Translation errors often stem from missing detect logical flaws in translated code.
imports of contextual elements, causing errors like
CS0103 (“The name does not exist in the current
context”). For example:

private int RandomInt(int min, int max){
return ThreadLocalRandom. Current.Next(min, max +
1)

In this case, the C# compiler failed because
ThreadLocalRandom is not recognized in C#. In-
stead, C# provides a Random class with similar func-
tionality. Translators must correctly identify equiv-
alent libraries and methods in the target language
or include necessary imports automatically.

Undefined Methods. Errors such as CS1061 oc-
cur when the translated code references methods or
properties that are undefined in the target language.
For instance:

_wizards[wizard]. SetWisdom (amount);

This snippet assumes a SetWisdom method in
the Wizard class, but the translator didn’t verify it.
Enhancing cross-referencing and generating warn-
ings can help resolve such semantic gaps.

Namespace and Duplicate Definitions. Another
common error (CS@101) occurs when namespaces
contain duplicate definitions due to repetitive code
generation. Consider the following Java snippet:

public class Candy
{

}

public Candy(string flavor) { }

If the translator generates multiple constructors
with identical signatures for this class in C#, the
compiler will flag a conflict, as C# enforces unique
member definitions within a namespace or class.
The solution involves ensuring that constructors or
methods with overlapping signatures are merged or
disambiguated during translation.

Runtime Logical Failures. Even after fixing com-
pilation errors, logical inconsistencies in the trans-
lation can still cause runtime issues. For example:

private void Register (Weapon weapon, string
operation){
if (!_context.TryGetValue(operation, out var
weaponsToOperate))

{
}

weaponsToOperate . Add(weapon) ;
_context[operation] = weaponsToOperate;

weaponsToOperate = new List <Weapon>();

A null reference error occurs because the
_context dictionary was uninitialized. Such run-
time errors are hard to catch via static analysis,

12

	Introduction
	Motivation
	Challenges in Repository Translation
	Solution: Standardizing Code Repository Translation with Fine-Grained Evaluation

	TransRepo-bench Benchmark
	Benchmark Overview
	Benchmark Construction
	Source Repository Collection
	Skeleton Extraction and Translation
	Unit Test Translation
	Testing Environment Construction

	Fine-Grained Evaluation Metrics Design

	Evaluation
	Model Performance on TransRepo-bench
	Model Selection
	LLMs Performance
	Failure Analysis

	TransRepo-bench Effectiveness
	Validating Evaluation Fineness
	Proving Skeleton Necessity

	Validating Three Key Requirements for Repository-Level Translation

	Related Work
	Code Translation
	Code Translation Benchmarks

	Conclusions
	Limitations
	Appendix
	Detailed Information of TransRepo-bench
	Common Failure Patterns

