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Abstract
Cell types and states can be reprogrammed by
activating combinations of transcription factors
(TFs). However, the TF sets that reprogram cells
from one state to another are unknown in the gen-
eral case. There are > 1016 plausible TF sets in
the human genome, making experimental search
intractable and motivating in silico approaches to
search this hypothesis space. Here, we describe a
probabilistic model to design reprogramming in-
terventions trained on a large corpus of single cell
reprogramming data. Our model achieves strong
performance on cell state and function prediction
tasks and performance exhibits a data scaling law.
Using our model in a simulated lab-in-the-loop,
we were able to design successful reprogramming
interventions significantly faster than pure experi-
mental approaches.

1. Introduction
All cells in the human body contain the same DNA code, yet
they perform a wide variety of functions. Through diverse
epigenetic codes, human cells execute distinct programs
from a common genome, analogous to the control flow
that guides the execution of specific functions in a large
software codebase. Reprogramming the epigenetic code to
elicit desired cell functions is both an important therapeutic
challenge and a fundamental problem in molecular biology.
Activating “payloads” of only 1-6 TFs is one approach to
dramatically reprogram cell type and state, sufficient to
convert adult cells to embryonic stem cells, skin cells to
neurons, or restore youthful features in old cells (Takahashi
& Yamanaka, 2006; Vierbuchen et al., 2010; Roux et al.,
2022). However, the payloads that evoke a mapping between
two arbitrary cell statesA andB are unknown in most cases.

Even if payloads are limited to ≤ 6 TFs, there are ≈ 1016

combinations within the 2,000 TFs encoded by the human
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Figure 1. Ambrosia learns a probabilistic model to predict the ef-
fect or reprogramming payloads on cell state by transfer learning
from molecular foundational models. Given a target cell state, Am-
brosia then designs new payloads through a generative procedure
that navigates a massive design space.

genome. The highest throughput experimental methods use
single cell genomics to evaluate the effect of 102 − 103 pay-
loads in parallel, yielding a gene expression measurement
for each (Norman et al., 2019; Joung et al., 2023). Here, our
goal is to develop in silico reprogramming models that can
design payloads S that achieve a desired cell state y given
data from these single cell screens.

In particular, we focus on the case of combinatorial pre-
dictions where the individual TFs si in a payload S =
(s(1), . . . , s(K)) may have been observed experimentally.
Our task can be viewed as a special case of the more general
problem of predicting the effects of genetic perturbations
on cell state (Ji et al., 2021). Prior work has addressed the
general perturbation problem with a variety of discrimina-
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tive and generative methods (Appendix A) trained on small
data sets where few combinations are observed (≈ 102). In
practice, trivial baseline approaches demonstrate the best
performance in this setting, suggesting that an effective
framework has yet to be invented and existing data may be
too small for highly parameterized models (Ahlmann-Eltze
& Huber, 2024; Li et al., 2025).

Here, we develop a probabilistic modeling approach to de-
sign TF payloads to achieve desired cell states and func-
tions. Our approach takes advantage of transfer learning
from protein foundation models (Lin et al., 2023) and learns
to generate payloads given only a sparse sampling of the
combinatorial TF space. We take advantage of a unique
combinatorial reprogramming dataset that is an order of
magnitude larger in scale than those previously available.
We experimentally demonstrate that our method is superior
to existing baselines for multiple cell state prediction tasks,
performance scales with the size of our training set, and an
active learning campaign can accelerate payload design in a
retrospective campaign.

2. Approach
2.1. Task construction

We consider the scenario where we are given a dataset
D = {Si, yi}Ni=1 where Si = (s(1), . . . , s(K)) are TF pay-
loads composed of 1, . . . ,K TFs s ∈ Ω, where Ω is the
set of observed individual TFs, and yi is a scalar or vector
representation of cell state. In particular, we focus on the
combinatorial prediction scenario where all of the effects
for individual TFs are observed, such that all sets containing
a single TF are in the training set ({{s}, | s ∈ Ω} ∈ D).
We wish to perform two distinct tasks: (1) estimate the dis-
tribution p(y|S) to predict the effect of TF payloads on cell
state and (2) design TF payloads to achieve a desired cell
state by sampling from the posterior S ∼ p(S|y).

For the first payload prediction task, we perform classic 5-
fold cross-validation across TF payloads in our dataset and
evaluate the performance of models on an unseen test set.
Cross validation folds are constructed so that all payloads
are included in exactly one test set. We measure perfor-
mance using both absolute prediction error (control scaled
error, CSE; Pearson correlation coefficient, PCC) and rank-
based measures (AUPRC). For a lab-in-the-loop setting, it’s
common to interrogate the top M payloads where M is set
by experimental bandwidth, so the ability to rank payloads
and assign binary “hit” labels is the most realistic task.

For the second payload design task, we construct an active
learning benchmark where we perform successive exper-
iments, each testing a group of payloads S attempting to
achieve a target cell state y∗. We use models at each stage
to recommend the payloads S to test in the next round and

measure the fraction of “hits” that achieve a desired cell
state y∗ discovered with the goal of discovering more hits
in fewer rounds with a strong model and sampling method
for S ∼ p(S|y).

2.2. Ambrosia in silico reprogramming models

Here, we introduce a probabilistic in silico reprogramming
model we call Ambrosia. Ambrosia leverages transfer learn-
ing from a pre-trained protein language model ψ : l → s
to generate TF representations s from protein sequences
l (Lin et al., 2023). To represent multi-TF payloads, Am-
brosia aggregates TFs within a set S using an aggregation
operation ξ = α(s(1), . . . , s(K)), where ξ is a latent vector
representation of the set S and α is an aggregation opera-
tion. This approach is inspired by work on deep set learning
(Zaheer et al., 2017). In practice, we implemented α as a
sum operation over TF representations, though in principle,
any permutation invariant operator could be used, includ-
ing attention mechanisms. This allows Ambrosia models
to initialize from rich representations of TF biology, reduc-
ing subsequent tasks to learning a distribution of cell states
conditioned on payload representations.

We learn the conditional distribution

pθ(y|S) = fθ(S)

where fθ is implemented as a neural network with Monte
Carlo dropout for uncertainty estimation (Gal & Ghahra-
mani, 2016). Practically, we implemented fθ using a 3-layer
neural network with hidden layers of sizes {512, 128}. Each
layer is paired with a ReLU activation and a dropout layer to
allow for regularization and uncertainty estimation. We opti-
mize models with Adam to minimize a mean-squared error
(MSE) loss, approximating the optimization of a Gaussian
log-likelihood for pθ(y|S) in this setting (Fig. 1). For uncer-
tainty estimation, we perform 100 forward passes through
the model with dropout active and parametrize pθ(y|S) as
an empirical Gaussian distribution from these samples.

2.3. Payload design

We employ the trained model pθ(y|S) to design new pay-
loads S using two schemes. In the following, we assume
y is a scalar value. In the first constrained setting, we
model the scenario where a researcher has a small and finite
number of TF payloads S that they can evaluate in the next
round of experiments. Here, we nominate payloads S∗ to
achieve a desired cell state y∗ through exhaustive evaluation
S∗ = argmaxS p(y

∗|S). In practice, we define y∗ as a
region of the cell state variable y > τ , or y∗y>τ .

In the second unconstrained setting, we model the sce-
nario where a researcher has an unconstrained set of TF
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payloads to test, or an intractably large finite set. Here, we
nominate payloads S∗ by sampling S ∼ p(S|y) through
a Markov Chain Monte Carlo (MCMC) approach with a
Metropolis-Hasting optimization procedure. We assume
a simple uniform prior p(S) across the discrete set of TF
payloads where |S| ≤ 3 (up to 3-TFs combinations). This
is a practical expedient as our datasets do not include any
payloads with more than 3 TFs, but relaxing this assump-
tion is trivial. Algorithmically, we propose TF payloads by
sampling p(S) and draw samples S ∼ p(S|y∗) using the
following Metropolis-Hasting acceptance rule:

A(S → S′) =
p(S′|y∗)
p(S|y∗)

where S is the last sampled payload and S′ is a payload
sampled at the current iteration. We estimate p(S|y∗) ∝
p(y∗|S) · p(S) by Bayes rule given that we sample with
a uniform prior p(S) ∝ 1. We use Monte Carlo dropout
to sample y ∼ p(y|S), allowing us to estimate p(y∗y>τ |S)
empirically (Algorithm 1). This procedure is readily ex-
tensible to the case of arbitrarily large TF payloads, or the
incorporation of synthetic TF sequences.

Algorithm 1 Ambrosia payload design algorithm
Input: Dataset D = {(Si, yi)}ni=1, threshold τ , num-
ber of iterations N , set of observable TFs Ω, maximum
payload size K, number of payloads to generate M

Fit model pθ(y | S) on D
Define payload space S =

⋃K
i=1

(
Ω
i

)
Define proposal distribution ϕ(S′ | S) = U(S)
Define scoring function π(S, τ) := pθ(y > τ | S)
Initialize state S ∼ ϕ(S)
for t = 1 to N do

Sample S′ ∼ ϕ(S′ | S)
α← min

(
1, π(S

′,τ)
π(S,τ)

)
Sample u ∼ U(0, 1)
if u < α then
S ← S′

end if
Record St ← S, and pt ← π(S, τ)

end for
Sort {St} by pt in descending order

Construct pool Φ ⊂ Ω from the top-ranked samples
i = 0
while |Φ| < M do
Φ← Φ ∪ {s(j) ∈ St}i
i← i+ 1

end while
Output: Φ

2.4. Baselines

We selected baseline methods based on recent benchmarking
studies for cell perturbation prediction (Ahlmann-Eltze &
Huber, 2024; Li et al., 2025). The Additive and Mean
methods below were reported as the state-of-the-art across
both studies.

Additive model: The current best performing baseline for
combinatorial prediction is an additive model, simply de-
noted as f(S) =

∑K
i ysi where ysi is the observed value

of y for TF si. In our probabilistic notation, this model can
be expressed as p(y|S) = 1[

∑K
i ysi ] where 1[·] is a Dirac

delta distribution.
Mean model: A constant model that predicts the mean
of the training data values for y is likewise reported as a
strong baseline for predicting unseen perturbation effects,
fMean(S) =

1
|D|

∑|D|
i yi. In our probabilistic notation, this

can be expressed as p(y|S) = 1[Ey∼Dtrain
[y]].

2.5. Ablations

Ambrosia-Linear: We train a linear model to predict
reprogramming effects from protein embeddings of TFs:
f(S) = WξS where W is a matrix of weights and ξS is a
matrix of ESM2 embeddings. Again, in our probabilistic
notation such a model can be framed as p(y|S) = 1[WξS ].
This is an ablation of our Ambrosia model eliminating the
non-linear logic and uncertainty estimation components.

2.6. Datasets

We trained in silico reprogramming models on two datasets.

K562: We first used a public combinatorial CRISPR inhi-
bition screening dataset (“K562”) in K562 cells covering
236 genetic perturbations including 105 unique gene targets
to offer an accessible comparison (Norman et al., 2019).
To our knowledge, this is the most commonly used dataset
for benchmarking perturbation prediction models (Roohani
et al., 2024; Lotfollahi et al., 2023).

NLMT-cx0001: We also used NLMT-cx0001, a propri-
etary dataset activating 6503 TF sets containing 580 unique
TFs across 3.6M primary human T cells with single cell
RNA-seq read-outs. Reprogramming payloads in NLMT-
cx0001were transiently activated, mimicking the “dose” of
reprogramming that is typically achieved with an mRNA
medicine. Data were generated in primary cells because
they a more reliable model of human biology than the im-
mortalized cell lines that are common in public domain
datasets.

NLMT-cx0001 is more than an order-of-magnitude larger
than any other existing single cell perturbation datasets in
primary cells, providing us an opportunity to measure the
performance of perturbation prediction models in a much
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larger data regime (Peidli et al., 2024). All TF sets in NLMT-
cx0001 are tested across ≥ 5 unique human donors and
represented in ≥ 50 cells. NLMT-cx0001 contains not
only gene expression profiles induced by each payload, but
also a functional measure of each payload’s impact on T
cell growth in culture. NLMT-cx0001 was collected across
several screening rounds. As a result, we detail our strategy
to mitigate experimental batch effects during modeling in
section B.8.

3. Experiments
3.1. Ambrosia predicts reprogramming of cell state &

function

We first measured the performance of Ambrosia and base-
line methods on the payload prediction task using multiple
distinct representations of cell state y. In both datasets, we
predicted a compressed 50-dimensional PCA representation
of gene expression yE and scalar “gene set scores” yG that
represent target cell states of interest. For the K562 dataset,
we predicted a gene set related to cell growth (“mTOR activ-
ity”) and for the NLMT-cx0001dataset, we predicted a stem
central memory T cell score (Tscm) that has been associ-
ated with stronger T cell responses in cancer and infectious
disease settings (Gattinoni et al., 2017). Maximizing the
Tscm score represents a task highly relevant to therapeutics
development.

For the NLMT-cx0001 dataset, we also predicted a fitness
score yF that measures the ability of T cells to respond
to stimulation and grow in culture. We constructed a rank
based metric for the gene set and function tasks by desig-
nating the top 25% of all scores as “hits” and measuring
the area under the precision recall curve (AUPRC) for each
model on each score.

We found that Ambrosia and the ablated variants were the
best performing methods in both datasets across all of the
tasks reported here (Table 1, 2, 3). As previously reported,
the Additive baseline also demonstrated meaningful per-
formance across tasks. Ambrosia models performed well
across datasets and across gene expression and cell function
tasks. Given that the function measurements were collected
with an orthogonal measurement system, these results ar-
gue that the Ambrosia method is generally applicable. We
found that Ambrosia models excelled at predicting large,
non-additive effects in combinatorial payloads (Fig. 2A).
For example, Ambrosia models provided significantly more
accurate predictions for the effect of payloads containing
three “Yamanaka Factors” (OCT4, SOX2, KLF4; OSK)
than baseline methods (Fig. 2B).

Model K562 NLMT-cx0001

CSE [↓] Cosine [↑] CSE [↓] Cosine [↑]
Mean 0.86 0.60 1.23 0.43
Additive 0.42 0.86 0.93 0.68
Ambrosia-Linear 0.22 0.95 0.47 0.80
Ambrosia 0.21 0.92 0.37 0.79

Table 1. Performance comparison on the cell state task across
datasets.

Model K562 NLMT-cx0001

CSE [↓] PCC [↑] AUPRC [↑] CSE [↓] PCC [↑] AUPRC [↑]
Mean 0.44 0.00 0.27 0.84 0.00 0.27
Additive 0.31 0.80 0.87 0.86 0.78 0.82
Ambrosia-Linear 0.12 0.86 0.87 0.33 0.83 0.84
Ambrosia 0.11 0.85 0.88 0.20 0.90 0.89

Table 2. Performance comparison on the gene set task across
datasets.

3.2. Ablation experiments

Ambrosia consists of three key components relative to base-
lines: (1) transfer learning from a protein language model
(pLM), (2) a learned non-linear mapping from pLM rep-
resentations to cell state effects, and (3) an uncertainty
estimation procedure implemented through dropout. We
performed ablation experiments to disentangle the bene-
fits of the core components. Our Ambrosia-Linear model
contains only the first component, replacing the latter two
with a linear and deterministic mapping. We found that
the Ambrosia-Linear model was superior to external base-
line methods, indicating that transfer learning from pLMs
provides value even with a low capacity model. The full
Ambrosia model was superior to the ablated variant, suggest-
ing that a high capacity model and uncertainty estimation
improve in silico reprogramming performance.

We also trained models using ProtT5 pLM representations
(Elnaggar et al., 2020) rather than ESM2 embeddings and
found that performance was strong in both cases (Fig. 8).
This result suggests that Ambrosia is not overly dependent
on the properties of one particular foundation model’s TF
representation.

Model CSE [↓] PCC [↑] AUPRC [↑]
Mean 0.95 0.00 0.27
Additive 2.26 0.62 0.70
Ambrosia-Linear 0.56 0.71 0.73
Ambrosia 0.23 0.80 0.79

Table 3. Performance comparison on the function prediction task
in the NLMT-cx0001dataset. The full Ambrosia model demon-
strates superior performance to baselines and ablated models.
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Figure 2. Payload prediction performance: (A) Performance of the additive baseline and Ambrosia in silico reprogramming models
on the Tscm task. Each point is one payload. Data shown are for the NLMT-cx0001dataset. (B) Ambrosia models provide superior
predictions of combinatorial payload effects relative to ablated approaches (Ambrosia-Linear) and the top baseline method (Additive).
Payloads containing the Yamanaka Factor combination OSK alongside other factors are shown as an example (****: p < 10−4; Mann
Whitney U-test). (C) Ambrosia models provide higher fidelity predictions on the cell state task relative to the best baseline (Additive).
Predictions are shown in a UMAP embedding where each point represents the predicted effect of one payload. Inset panels and color
coded arrows highlight regions of perturbation space where Ambrosia models offer superior predictions.

3.3. In silico reprogramming exhibits a data scaling law

Generative models have been shown to exhibit scaling laws
in other data domains, including natural language and com-
puter vision. As the amount of training data available grows,
model performance tends to increase (Kaplan et al., 2020).
The scale of NLMT-cx0001 provides us one of the first op-
portunities to test if these laws are present in the single cell
genomics perturbation prediction domain. To investigate,
we trained Ambrosia models on data subsetsDp ⊂ D where
p ∈ [0, 1] is a proportion of the data used and measured per-
formance on the payload prediction task. We constructed
an initialization dataset DI ⊂ D containing all single TF
payloads and joined it with each data subset Dp.

We discovered that Ambrosia model performance improves
as a function of data scale across multiple metrics (Fig. 3).
Performance follows a log-linear trend with high correla-

tion (r > 0.8), mirroring behavior in other domains. We
imagine that this behavior may have been overlooked in
earlier studies due to the small scale of public datasets. We
hypothesize that these trends will extrapolate to larger data
scales for TF payloads, and likewise emerge for other types
of genetic perturbations in single cell genomics data.

3.4. Designing reprogramming interventions

Given a trained in silico reprogramming model pθ(y|S), we
wish to design payloads S∗ that optimize for a target cell
state y∗. To evaluate Ambrosia on this task, we trained mod-
els on the NLMT-cx0001 dataset to design payloads that
maximized a therapeutically relevant Tscm score. We then
designed payloads in the constrained setting through ex-
haustive computation of pθ(y|S)∀S ∈ Dtest and subsequent
ranking. Ambrosia models nominated “hit” payloads that
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Figure 3. Scaling law: In silico reprogramming prediction perfor-
mance exhibits a data scaling law across multiple metrics (control-
scaled error, left; AUPRC for hit detection, right). Each point
represents a single training and prediction run for an Ambrosia
model at a particular data scale Dp.

Figure 4. Designing payloads: (Left) In silico reprogramming
models were evaluated on a payload design task to maximize a
Tscm score in the NLMT-cx0001dataset. Ambrosia models outper-
formed ablated versions (Ambrosia-Linear) and the top baseline
(Additive). (Right) Payload rankings from an Ambrosia model
with 95% confidence intervals. Many payloads have similar rank
when uncertainty is considered, empowering researchers to build
more rationale experimental designs.

maximized the Tscm score more effectively than baselines
(Fig. 4A).

Unlike baseline approaches, Ambrosia models provide un-
certainty estimates for predicted effects. Qualitatively, many
payload designs within the top 100 for the Tscm task are pre-
dicted to have effectively equal performance when account-
ing for uncertainty (Fig. 4B). These uncertainty estimates al-
low researchers to make more effective experimental design
decisions. For example, researchers hoping to maximize ac-
tivity may be more interested in ranking perturbations by the
upper confidence bound, rather than the maximum posterior
estimate. In other scenarios, researchers may use uncer-
tainty estimates to weight the amount of effort expended
to test each hypothesis in the ranked list, with more certain
hypotheses receiving more resourcing. We explore the first
of these scenarios in an active learning campaign below.

3.5. Ambrosia accelerates reprogramming discoveries
with a lab-in-the-loop

In silico reprogramming methods have the potential to ac-
celerate payload discoveries through a lab-in-the-loop work-
flow. In this setting, a model is trained on a set of data
Dt, then used to prioritize the payloads to test in the next
experimental round Dt+1. At each iteration t, the number
of “hits” or desirable payloads discovered is used as a met-
ric of success. The model pθ(y|S) is retrained after each
round of new data is collected. This scenario is analogous
to active learning or Bayesian Optimization. If successful, a
lab-in-the-loop workflow will improve upon the discovery
rate of a random baseline.

We deployed Ambrosia in an active learning campaign
across the NLMT-cx0001 dataset to optimize a therapeu-
tically relevant T stem central memory (Tscm) cell state
y∗y>τ . We constructed this task to represent a realistic exper-
imental setting where the researcher must design a pool of
individual TFs Φ to test in each experimental iteration t. We
assume that the experimental system allows the researcher
to then test all k-TF combinations containing s ∈ Φ. This
reflects the most common experimental methods in the field
where payloads are constructed using either pooled molecu-
lar cloning or pooled delivery (Norman et al., 2019; Roux
et al., 2022).

We initialized models with a dataset D0 ⊂ D containing
all single TF perturbations and 10% of multi-TF payloads.
At each iteration t ∈ [1, 5], we constructed a pool for the
next experimental round Φt by designing payloads with
Ambrosia models. Ambrosia was used to estimate the top
payloads that remain to be tested S ∈ D \Dt to maximize
the target state y∗. We then assembled the pool Φt by greed-
ily adding unique TFs within the top ranked combinations
until |Φt| = 70. We constructed a set of payloads DΦt

composed of TFs in the pool, then built the training dataset
for the next round as Dt+1 = Dt ∪DΦt Intuitively, we add
all payloads that contain only TFs in the chosen pool to the
dataset for the next round. We then measured the cumulative
fraction of hits in the dataset recovered by iteration t. The
sampling procedure for Ambrosia to estimate top payloads
S was varied across two settings.

We first evaluated performance in the constrained setting
where we designed payloads in each cycle through exhaus-
tive likelihood estimation across a small, finite set of pos-
sible payloads where we have ground truth data. This
best represents a scenario where researchers have a lim-
ited hypothesis space of payloads to test due to experimen-
tal constraints (Methods 2.3). We designed payloads us-
ing two different acquisition strategies a(S) to rank pay-
load candidates: (1) the maximum predicted effect (MPE;
aMPE(S) = µy(S) or (2) the upper confidence bound
(UCB; aUCB(S) = µy(S) + σy(S)).
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We found that Ambrosia models enabled active learning
in the constrained setting with performance superior to a
random baseline (Fig. 5). The UCB acquisition function
performed modestly better than the MPE function. In future
work, we hope to explore if learning the conditional distribu-
tion p(y|S) may improve payload design performance over
a simple point estimate E[y|S].

We next performed active learning in the unconstrained
setting where we design payloads by sampling the pos-
terior S ∼ pθ(S|y) with an MCMC approach. This rep-
resents the scenario where researchers have an infinite or
intractably large hypothesis space, as is the case for syn-
thetic TF design or searching payloads that contain many
unique TFs. For this setting, we defined our target cell state
as the top 10% of the Tscm score distribution up to that
iteration (τ = Q90%(yt)). We restricted our MCMC proce-
dure to only 10,000 samples to model the realistic scenario
where exhaustively computing p(y|S) estimates across the
entire search space is intractable. There are > 106 payloads
possible in our experimental setup (Methods 2.3), so this
represents sampling < 1% of the possible payloads.

We used our method described in Algorithm 1 and found
that Ambrosia models were likewise sufficient to accelerate
the discovery of hit payloads in this setting (Fig. 5). Per-
formance was in fact comparable to MPE ranking in the
constrained setting, suggesting that our MCMC procedure
is quite efficient. It’s difficult to assess the quality of all
samples generated by our model, as we only have ground
truth data for a small fraction of the payload space. These
results nonetheless suggest that our generative procedure is
sufficient to accelerate biological discoveries in a lab-in-the-
loop setting and many generated designs are high quality.
All of these results were recapitulated using a second T
effector gene set score (Gattinoni et al., 2017) computed
in NLMT-cx0001. The T effector score contains low gene
set overlap with our primary Tscm score and the two are
poorly correlated, suggesting that our active learning results
are reproducible across multiple, orthogonal design tasks
(Fig. 10).

4. Conclusions
Here, we introduce a modeling approach (Ambrosia) for in
silico reprogramming, a special case of the more general
perturbation prediction problem in single cell genomics. We
demonstrate that Ambrosia models produce performant pre-
dictions of reprogramming effects on cell state and function
by transfer learning from protein language models, with
results superior to leading baseline methods. Leveraging a
unique single cell reprogramming dataset (NLMT-cx0001)
with a much larger scale than prior reports, we discovered
that in silico reprogramming exhibits a data scaling law,
similar to other emerging biological domains such as nu-

Figure 5. Active learning: Active learning campaigns using Am-
brosia models relative to a random baseline. (Left) Ambrosia
models accelerate the discovery of payloads S∗ that achieve a
target cell state y∗ (“hits”). All Ambrosia design strategies are
superior to a random baseline. Upper confidence bound (UCB)
sampling is modestly superior to maximum posterior estimates
(MPE) in the constrained setting. Markov Chain Monte Carlo
(MCMC) demonstrated performance close to UCB/MPE even in
the unconstrained setting. (Right) Ambrosia methods had signif-
icantly higher area under the curve (AUC) than the baseline (*:
p < 0.05, **: p < 0.01; Mann Whitney U-test).

cleic acid and protein sequence modeling. We believe this
phenomenon is likely to emerge in other cases of the pertur-
bation prediction problem in single cell genomics as well,
but has likely been difficult to observe due to the small
scale of public datasets. Our results suggest that larger scale
single cell perturbation datasets and transfer learning from
molecular foundation models will unlock meaningful per-
formance in perturbation prediction (“virtual cell”) models
(Bunne et al., 2024).

The ultimate goal of building in silico reprogramming mod-
els is to design payloads that induce target cell states. We
found that Ambrosia models were able to improve the rate
of designing hit payloads in multiple lab-in-the-loop set-
tings. Reprogramming payload design space is too large
for exhaustive in silico ranking procedures to be used ab-
sent some a priori constraint on the space (e.g. number of
unique TFs, payload size). As experimental methods im-
prove, these constraints cease to be a laboratory requirement,
motivating in silico design approaches that can address the
full extent of payload opportunities. Through a generative
MCMC sampling procedure, Ambrosia models accelerated
payload design in this emerging unconstrained setting as
well. This generative approach opens the door to the design
of reprogramming payloads within intractably large spaces,
and even the design of entirely synthetic TFs.

In this work, we have demonstrated only a single possi-
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ble implementation of a more general approach: transfer
learning from molecular foundation models to design re-
programming payloads. In the future, we hope to explore
models that incorporate a diversity of molecular representa-
tions learned in foundation models across the central dogma
(DNA, RNA, protein). Likewise, we plan to extend the
underlying Ambrosia architecture to employ inductive bi-
ases like attention operations to build more effective models.
While we have constrained our work here to designing pay-
loads composed of pre-defined, natural TFs, our modeling
approach generalizes in principle to future synthetic TF de-
sign tasks. Our results to date support the conclusion that
deploying in silico reprogramming models has the potential
to accelerate payload discovery, unlocking the ability to
rationally engineer cell states.

Impact Statement
This work employs machine learning tools to expedite the
design of genetic interventions to engineer cell state and
function. We imagine that these tools can accelerate the
design of therapeutics to treat diseases. Today, epigenetic
reprogramming is recognized as a powerful technology, but
the design of therapeutics has been limited by the largely
trial-and-error process. These applications could provide
meaningful health benefits for society in the long-term. We
believe there are few negative impacts of accelerating the
design of reprogramming payloads.
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A. Related Work
Predicting the effect of combinatorial perturbations in single-cell screens has been the focus of recent work. Variational
autoencoder (VAEs) (Lotfollahi et al., 2023; Lopez et al., 2023) and graph neural network (GNNs) (Roohani et al., 2024)
architectures have been employed to predict the outcome of unseen chemical and genetic perturbations at the single-cell
level. Recently, single-cell foundation models (scFMs) have been used to leverage the large corpus of public single-cell
data and learn powerful gene representations that allow fine-tuning of models for perturbation prediction (Cui et al., 2024;
Hao et al., 2024). However, recent benchmarking efforts have highlighted that most of these approaches fail to outperform
simple baselines and linear models (Ahlmann-Eltze & Huber, 2024; Li et al., 2025). These results taken together highlight
the need for thorough benchmarking of proposed models versus simple approaches, across datasets of various sizes and
diverse prediction tasks (Szałata et al., 2024).

The problem of iterative experimental design for perturbation screens has also been tackled in the past, often through the
lens of active learning (Bertin et al., 2023; Huang et al., 2023). However, these approaches have been typically limited to
either studying model loss improvements or prioritizing a list of combinatorial perturbations for testing in lower-throughput,
arrayed-format screens. The problem of pooled screen design – particularly relevant for combinatorial genetic screens
(Replogle et al., 2020)– has received limited attention, in part because of data acquisition constraints.

B. Methods
B.1. Generating gene set scores

We computed gene set scores from the gene expression data by using the procedure described in (Tirosh et al., 2016) and
implemented in (Wolf et al., 2018). We obtained gene sets from the Molecular Signature Database (MSigDB) (Liberzon
et al., 2015). We used an mTOR gene set (M5924) for the K562 dataset, and constructed a Tscm score for the NLMT-cx0001
dataset as the difference between gene set scores of up- and down-regulated genes in T stem cell memory vs T effector
memory (M8429, M8441). As an additional validation, we used a T effector score (M8428), ensuring that it is orthogonal to
the Tscm score (Fig. 10).

B.2. Generating cell state representations

To generate cell state representations, we followed standard single cell RNA-seq best practices to produce PCA embeddings
(Wolf et al., 2018). We first performed library size normalization and log-transformed the normalized data using the standard
log(x+ 1) transform. We selected the top 5000 genes using a coarse grained normalized variance estimation procedure
(Wolf et al., 2018) and generated PCA representations from these genes alone. We compressed our representation to the top
k = 50 PCs.

B.3. Generating fitness scores for the NLMT-cx0001dataset

We derived fitness effects for the payloads in NLMT-cx0001by computing the average log2 fold-change (log2fc) of read or
cell counts between pre- and post-reprogramming conditions in our reprogramming experiments. For some experiments in
NLMT-cx0001, the fitness score is derived from read counts in a bulk DNA-seq assay. In others, the fitness score is derived
from single cell counts in single cell RNA-seq. We have found the two measurements are strongly correlated and treat them
as interchangable for the purposes of modeling in this work.

B.4. Aggregation of cells at the perturbation level

To derive a perturbation-level representation of our expression-based prediction targets, we performed pseudo-bulking by
averaging cells for a given perturbation. The average control value from each experimental batch was then subtracted from
the resulting averages, to derive control-centered perturbation effects.

B.5. Defining target cell states

For rank based evaluation metrics (AUPRC), we defined target cell states as the top 25% of our gene set score and fitness
distributions. We then evaluated the model predictions as a binary classification task. This reflects the most realistic
laboratory scenario where researchers are interested in detecting “hit” payloads to interrogate in subsequent experiments.

11



In silico design of reprogramming payloads

Figure 6. Binary target cell states y∗ were defined by thresholding the top 25% of scores for each of the gene set and fitness prediction
tasks. Black dotted lines indicate the threshold used for each score.

B.6. UMAP projection of cell state predictions

We performed qualitative inspection of payload predictions using UMAP projections. To construct embeddings, we used
the mean cell state embeddings in our PCA representation and generated a UMAP projection from the ground truth data.
We then fit a distance weighted nearest neighbors regression model to the ground truth data. Each prediction point was
embedded using the distance weighted nearest neighbors regression model to allow qualitative comparison of the predicted
and true data points.

B.7. Evaluation metrics

We used the following metrics to evaluate model performance.

CSE: We introduce the Control-Scaled mean squared Error, defined as the MSE of the model divided by the effect size of
the perturbation (MSE of systematically predicting the control value). This metric is motivated by the observation that many
of perturbations have small effects, and that a simple model predicting the control value could in practice achieve relatively
low MSE in a large fraction of perturbations (Ahlmann-Eltze & Huber, 2024).

CSE(y, ŷ, yctrl) =
1

n

n∑
i

(yi − ŷi)2

(yi − yctrl)2

PCC: Pearson correlation coefficient, defined as:

PCC(y, ŷ) =

∑n
i (yi − ȳ)(ŷi − ¯̂y)√∑n

i (yi − ȳ)2
√∑n

i (ŷi − ¯̂y)2

AUPRC: Area under the precision-recall curve, where pi, ri are the precision and recall at a given threshold i respectively,
computed as:

AUPRC =

n∑
i=1

(ri − ri−1) · pi

Cosine: The cosine similarity between true and predicted cell state vectors:
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Cosine(y, ŷ) =
y · ŷ
∥y∥∥ŷ∥

Fraction of hits discovered: For a number of hits discovered at the active learning round i, Ni and a total number of hits
to discover Ntot, the fraction of hits discovered Fi is defined as Ni

Ntot

B.8. Learning representation of batch effects in NLMT-cx0001

The NLMT-cx0001dataset consists of multiple tranches collected across several screening rounds, leading to the presence of
batch effects. For the benchmarking experiment summarized in Table 1, 2, 3, we condition all models (including baselines)
on experimental batches.

Mean model: We learn the conditional mean of each experimental batch b, fMean(S, b) =
1

|Db|
∑|Db|

i yi, where Db denotes
the set of samples in batch b.

Additive model, Ambrosia-Linear: Experimental batches are encoded as one-hot vectors. In the case of Ambrosia-Linear,
those one-hot vectors are concatenated to the payload representation.

Ambrosia: Experimental batches are represented as learnable embeddings of size d = 8, which are concatenated to the
payload representation.

In the active learning experiments, we did not condition the Ambrosia models on experimental batch, mimicking the realistic
scenario of unknown (future) experimental batch effects.

C. Experiments
C.1. Qualitative inspection of payload prediction performance

Figure 7. Qualitative inspection of payload prediction performance across models and combinatorial screening datasets on the cell state
task. Cell state effects were predicted in the PCA representation for each payload, then projected for each dataset using UMAP (B)
Ambrosia models show a higher fidelity of predicted effects to the ground truth data.
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C.2. Evaluating generality across protein language model embeddings

We asked whether the sequence representations derived from larger pLMs provide benefits in the context of the perturbation
prediction tasks presented in this work. We compared the performance of our Ambrosia model trained on embeddings from
ProtT5 (Elnaggar et al., 2020) (3B parameters, d = 1024) with models trained on embeddings from the more recent ESM2
model (Lin et al., 2023) (15B parameters, d = 5120). We observed that performance was stable across pLM representations,
with a slight gain in performance when using ESM2 representations in the cell state prediction task (Fig.8).

Figure 8. Ambrosia models trained using protein embeddings from multiple protein foundation models are capable of achieving strong
performance. Transfer learning from protein foundation models appears to be a general principle, rather than a special case of emergent
properties in the ESM2 embeddings we ultimately employed.

C.3. Generation of reprogramming payloads by Markov Chain Monte Carlo

During generative design experiments, we performed burn-in for 1000 iterations prior to collecting samples from our Markov
chains. We subsequently logged the conditional likelihood pθ(y > τ |S) of all proposed payloads in the chain. Our chain
demonstrated stationary behavior with a useful diversity of payload qualities.
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Figure 9. Generative design with Markov Chain Monte Carlo sampling: The likelihood of proposed payloads demonstrated useful
variation across the sampling chain.

Figure 10. Active learning campaigns on the T effector score: (Left) The T effector score shows no correlation with the Tscm score
(r = 0.04), serving an orthogonal prediction target for our active learning campaigns. Each point represents a single pseudobulk sample
in our dataset. (Right) Ambrosia methods have significantly higher area under the curve (AUC) than the baseline when performing active
learning campaigns on the T effector score (*: p < 0.05, **: p < 0.01; Mann Whitney U-test).

C.4. Active learning campaigns on an orthogonal T effector score

We repeated our active learning experiment on a different gene set score (T effector score) computed on NLMT-cx0001. We
ensured this new gene set has little overlap with the Tscm gene set (Jaccard index: 0.02), and the score has low correlation
(r = 0.04) with the Tscm score, providing orthogonal validation of Ambrosia’s performance in the active learning setting.
We found similarly that the Ambrosia methods were sufficient to accelerate hit discovery.
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