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Abstract
Discrete Diffusion and Flow Matching models
have significantly advanced generative modeling
for discrete structures, including graphs. However,
the dependencies between intermediate noisy
states lead to error accumulation and propaga-
tion during the reverse denoising process—a phe-
nomenon known as compounding denoising er-
rors. To address this problem, we propose a
novel framework called Simple Iterative Denois-
ing, which simplifies discrete diffusion and cir-
cumvents the issue by assuming conditional in-
dependence between intermediate states. Addi-
tionally, we enhance our model by incorporating a
Critic. During generation, the Critic selectively re-
tains or corrupts elements in an instance based on
their likelihood under the data distribution. Our
empirical evaluations demonstrate that the pro-
posed method significantly outperforms existing
discrete diffusion baselines in graph generation
tasks.

1. Introduction
Denoising models such as Discrete Diffusion and Discrete
Flow Matching have significantly advanced generative mod-
eling for discrete structures (Austin et al., 2021; Campbell
et al., 2022; 2024; Gat et al., 2024), including graphs (Hae-
feli et al., 2022; Vignac et al., 2023). Despite their success,
these models suffer from a key limitation caused by the
dependencies between intermediate noisy states in the nois-
ing and denoising processes. Errors introduced early in the
process accumulate and propagate, degrading generative
performance. This issue is particularly pronounced in mask
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diffusion, where the noising process progressively masks
elements of an instance. The problem has been observed
in discrete sequence modeling, where techniques such as
corrector sampling have been proposed to mitigate it.

Figure 1: Validity rate (without correction) of generated
molecules trained on Zinc250k as a function of the Num-
ber of Function Evaluations (NFE) for three models: Dis-
crete Diffusion (baseline), Simple Iterative Denoising (ours),
and Critical Iterative Denoising (ours).

In graph modeling, marginal distributions over node and
edge attributes have proven to be a more suitable noise dis-
tribution than the mask distribution, as corroborated by our
experiments. However, we show both theoretically and em-
pirically that compounding denoising errors also affects dis-
crete diffusion and flow matching models when the marginal
distributions are used as the noise.

To address this challenge, we introduce a novel framework
called Iterative Denoising, which simplifies discrete diffu-
sion by assuming that intermediate noisy states depend only
on the clean data, making them conditionally independent
of one another. By removing direct dependence on partially
denoised instances from previous steps, our framework facil-
itates error correction and substantially improves generative
performance.

Furthermore, we show that our model can be interpreted as
selectively corrupting certain elements while leaving others
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untouched. Building on this insight, we introduce a Critic,
which modulates the corruption probability of each element
based on the element’s likelihood under the data distribution.
We provide theoretical motivation for our approach and
demonstrate empirically that the method further enhances
models’ performance.

Our empirical evaluations highlight the effectiveness of the
proposed framework, demonstrating superior performance
over existing discrete diffusion baselines in graph genera-
tion tasks. Notably, our method tackles the challenge of
generating valid molecular structures. In Figure 1, we see
that our method needs only a small number of denoising
steps to reach almost 100% molecule validity, while the
standard Discrete Diffusion tops at 80%.

Our key contributions are as follows:

• We identify compounding denoising errors as a key
limitation in discrete diffusion across various noise
distributions, not just masking, as previously reported.

• To address this issue, we propose a novel, simple, and
effective framework: Simple Iterative Denoising (SID).

• We extend SID with a novel Critic mechanism that
adjusts re-masking probabilities based on the predicted
clean sample.

• Empirically, we show that our approach outperforms
standard discrete denoising in graph generation tasks,
with the Critic providing additional gains, especially
in low-NFE settings.

Our code is available at: github.com/yoboget/sid.

2. Background
Graph diffusion models are powerful methods for generat-
ing discrete graph structures, such as molecules. However,
existing approaches, including Discrete Diffusion Models
and Discrete Flow Matching (DFM), face challenges due
to the temporal dependencies of the noising process. These
dependencies cause error propagation and accumulation,
ultimately degrading generative performance. This section
introduces core concepts, discusses these limitations, and
motivates our approach.

2.1. Notation

We define a graph as a set of nodes and edges, denoted
by G = (V, E). A graph is represented by its adjacency
matrix A ∈ [dA + 1]n×n, where n = |V|, and [dA + 1] =
{1, . . . , dA + 1}, with dA representing the number of edge
types and the additional label corresponding to the absence
of an edge. Node attributes, if present, are encoded as

integers in an annotation vector x ∈ [dX ]n, where dX is the
number of node types.

To facilitate readability and simplify the transferability of
the method to other discrete modalities, such as sequence
modeling, we use z to denote a single element. In graph
modeling, z may refer to either a node or an edge attribute
when the formulation applies to both x(i) and a(i,j). The
corresponding capital symbol Z represents the entire in-
stance, such as a graph G. For simplicity and consistency
with common practice, we use p(x) to denote the Probabil-
ity Mass Function (PMF) P (X = x). The distribution of
a data point element is represented by the Dirac delta dis-
tribution, denoted as δz1(z), with all the mass concentrated
on z1. We sometimes represent the univariate categorical
distribution over the variable p(z) as a vector z, where the
i-th component zi denotes the probability that z belongs to
the category indexed by i.

We refer to mask distribution as the distribution in which all
the probability mass is concentrated on an additional syn-
thetic attribute labeled as Mask, denoted by δMask(z). This
distribution is sometimes referred to as the absorbing-state
distribution (Austin et al., 2021). We define mask diffusion
as the class of diffusion models that employ this distribution
as noise. We use q to refer to the noising distributions and p
to the denoising ones.

2.2. Discrete Diffusion Models

In the forward process of diffusion models (Song & Ermon,
2019; Ho et al., 2020; Song et al., 2021), each element
transitions independently from the data distribution q1(z) =
δz1(z) at time t = 1 to a noise distribution q0(z) at time
t = 0, which contains (or tends to contain) no information
about the original data.

The forward noising process is expressed under a Markovian
assumption as:

qt|1(z | z1) =
∏
r∈τ

qr|r+∆t
(z | zr+∆t), (1)

where τ = {1−∆t, . . . , t+∆t, t}.

The continuous-time case is described by taking
lim∆t→0 qt|1(z | z1), which transforms the product into
a geometric integral.

For categorical (non-ordinal) discrete data, a popular family
of noising distributions is given by:

qt−∆t|t(z | zt) = (1− βt) δzt(z) + βt q0(z). (2)

This formulation includes forward processes leading to a
uniform noise (q0(z) = 1

dZ
∀z), mask noise (q0(z) =

δMask(z)), or a marginal noise (q0(z) = mz , where mz

2

https://github.com/yoboget/sid


Simple and Critical Iterative Denoising

corresponds to the empirical proportion of elements with
attribute z in the dataset.

Under this formulation, the forward process admits a con-
venient closed-form solution to compute qt|1(z | z1) effi-
ciently:

qt|1(z | z1) = αtδz1(z) + (1− αt)q0(z), (3)

where αt =
∏

r∈τ (1− βr).

This noising process has been expressed using transition ma-
trices in prior works, including Austin et al. (2021), Camp-
bell et al. (2022), and Vignac et al. (2023) for graph-based
formulations. We note that standard instantiations of DFM
for categorical data with independent coupling (Gat et al.,
2024) are equivalent to continuous-time discrete diffusion.
Therefore, the statements about discrete diffusion in the fol-
lowing also apply to these standard instantiations of DFM.

By learning a backward process pθs|t(z | Zt) for s = t+∆t
and sampling iteratively from it, we generate data samples
starting from the noise distribution.

z1

Data

... zs zt ... z0

Noise

(a) Discrete Diffusion.

z1

Data

... zs zt ... z0

Noise

(b) Iterative Denoising.

Figure 2: Noising Graphical Models in (a) Discrete Dif-
fusion: zt ∼ qt|s(z | zs); and (b) Iterative Denoising:
zt ∼ qt|1(z | z1)

2.3. Denoising Dependencies and Compounding Error

At the beginning of the discrete diffusion backward process,
Zt contains limited information, resulting in a high-entropy
distribution pθs|t(z | Zt), from which the elements zs of Zs

are independently sampled. At time s, the joint distribution
from the backward process:

pθs|t(Z | Zt) =
∏
z∈Z

pθs|t(z | Zt)

may deviate significantly from the forward distribution due
to early-stage denoising errors. This leads to error accumu-
lation, a phenomenon known as the compounding denoising
error (Lezama et al., 2023).

The compounding denoising error is particularly evident
in mask diffusion, where unmasked elements cannot be
masked again, as the conditional distribution collapses to a
Dirac delta:

pθs|t(z | Zt) = δzt(z), ∀s ≥ t if zt ̸= Mask. (4)

While the issue is particularly pronounced in mask diffusion,
we argue that it also affects other noising distributions q0
such as the uniform and marginal distributions.

In these cases, the compounding denoising error is some-
what less severe as all elements can change at each denoising
step, allowing for corrections. However, due to the direct
dependence of zs on zt (red arrow in Figure 3 (a)) the prob-
ability of correction is low, and the risk of error propagation
and accumulation remains significant. Specifically, Gat et al.
(2024) show that a denoising step in discrete diffusion can
be expressed as:

pt+∆t|t(z | Zt) = δzt(z)+

∆t
α̇t

1− αt

[
p1|t(z | Zt)− δzt(z)

]
, (5)

where α̇t is the αt time-derivative. The second term on the
right-hand side represents the probability of modifying an
element in a denoising step of size ∆t. The scaling factor
∆t

α̇t

1−αt
, in particular, imposes a strong constraint on the

probability of modifying an element. Consequently, com-
pounding denoising errors are not limited to mask diffusion,
but also affects other common noise distributions, such as
uniform and marginal distributions.

2.4. Motivation

We argue that direct dependence on previous intermediate
states in existing models hinders the generative performance
of discrete diffusion models for graph generation. These
models still struggle to consistently generate graphs with
desired structural properties, such as valid molecular graphs
or planar graphs.

In this work, we propose a simple yet effective framework
that mitigates compounding denoising errors by removing
dependencies on previous intermediate states in the noising
process. Unlike standard DDM and DFM, which rely on the
Markovian assumption, our Iterative Denoising approach
(Sec. 3) assumes conditional independence from prior noisy
states, alleviating the problem of error accumulation.

Additionally, we introduce a Critic-Guided Sampling pro-
cedure (Sec. 4), which prioritizes re-noising elements with
lower probabilities under the data distribution, further im-
proving generative performance, especially in molecular
graph generation.
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2.5. Related works

Our work primarily relates to two areas of research: methods
that address compounding denoising errors and generative
models for graphs. In the following, we review relevant
contributions in both fields.

2.5.1. ADDRESSING COMPOUNDING DENOISING
ERRORS

Discrete diffusion approaches to mitigating compound-
ing denoising errors follow two main strategies: corrector
sampling and planning. Corrector sampling (also known
as predictor-corrector sampling) (Campbell et al., 2024;
Lezama et al., 2023) involves alternating denoising (back-
ward) steps with noising (forward) steps to improve conver-
gence. Recent work (Gat et al., 2024) integrates denoising
and corrector sampling by simultaneously performing k
backward and k − 1 forward steps. In the context of mask
diffusion, this method allows for the correction of previ-
ously sampled elements. In Section 3, we show that our
Simple Iterative Denoising process is formally equivalent to
corrector sampling with maximal corrector steps. However,
because elements are randomly re-noised, the efficiency of
this approach remains limited. Extending this framework,
our Critical Iterative Denoising (CID) introduces modulated
re-masking probabilities, effectively acting as a probabilistic
planner for re-masking decisions. Critically, unlike prior
work, CID operates directly on fully denoised predictions.

Planning, as defined by Liu et al. (2025), involves select-
ing which elements to denoise (i.e., unmask) at each iter-
ation. This selection can be guided by confidence scores
from model outputs (Zhao et al., 2024b; Zheng et al., 2024)
or by a dedicated planner (Liu et al., 2025; Kim et al.,
2025*)1. Outside discrete diffusion, confidence-based un-
masking has been explored by Chang et al. (2022). Notably,
planning does not influence the model’s capacity to revise
previously sampled elements. Using mask diffusion, Peng
et al. (2025*) mitigate this issue by jointly deciding which
masked elements to unmask and which unmasked elements
to remask. In contrast, our Simple Iterative Denoising ap-
proach removes the need to explicitly plan a denoising order
by predicting all elements simultaneously at each step.

While our method operates in a discrete setting, it relates to
the general degrade-and-restore strategy developed for im-
age generation by Bansal et al. (2023). In concurrent work,
Nie et al. (2025*) introduce a large language model lever-
aging a mask denoising approach similar to ours. However,
whereas they only briefly outline their sampling procedure,
we provide a comprehensive theoretical foundation, ana-
lytical motivations, and empirical evidence for the method.

1References marked with ’*’ denote concurrent work, meaning
they were published after this article was submitted.

Furthermore, our approach generalizes beyond masking to
support various noising distributions. Nonetheless, their em-
pirical results further support the effectiveness of the Simple
Iterative Denoising framework.

2.5.2. GRAPH GENERATIVE MODELS

A key advantage of discrete denoising methods, including
discrete diffusion, discrete flow matching, and our iterative
denoising, is that they do not depend on a specific element
ordering. This property offers a flexible framework for
sequence infilling and generation of unordered structures
such as sets and graphs. In this work, we focus on the
application of denoising models for graph generation.

Recent denoising generative models for graphs leverage the
order-agnostic nature of denoising processes to maintain
permutation equivariance. Some approaches assume contin-
uous diffusion spaces—such as score-based models (Yang
et al., 2019; Jo et al., 2022), diffusion bridges (Jo et al.,
2024), and flow matching (Eijkelboom et al., 2024)—but
this assumption breaks the discrete nature of graph struc-
tures during noising. Discrete diffusion models, whether in
discrete time (Haefeli et al., 2022; Vignac et al., 2023) or
continuous time (Xu et al., 2024), and discrete flow match-
ing models, have shown strong performance on graph gener-
ation. However, these models are affected by compounding
denoising errors. Our approach mitigates this issue, lead-
ing to improved generative performance. A broader review
of graph generative models, including non-equivariant ap-
proaches, is provided in Appendix C.

z1 ... zs Zt

(a) Discrete Diffusion

z1 ... zs Zt

(b) Simple Iterative Denoising

Figure 3: Denoising Graphical Model for a single denois-
ing step in (a) Discrete Diffusion: ẑs ∼ ps|t(z | Zt) =∑

z1
ps|1,t(z | z1, zt)p1|t(z | Zt); and in (b) Simple It-

erative Denoising ẑs ∼ ps|t(z | Zt) =
∑

z1
qs|1(z |

z1)p1|t(z | Zt).

3. Simple Iterative Denoising
In this section, we introduce Simple Iterative Denoising
(SID), a simple yet effective generative framework for mod-
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eling discrete-state graphs. This approach simplifies existing
denoising models, such as DDM and DFM, while enhancing
generative performance. SID serves as the foundation for
Critical Iterative Denoising (CID), which further improves
the generative performance.

Similar to DDM, SID consists of both noising and denoising
operations. The generative sampling procedure involves
iteratively applying small denoising steps, enabling effective
graph generation.

Notably, if we have access to a pre-trained DDM or DFM
denoiser, i.e., a parameterized model predicting pθ1|t(z | Zt),
the SID method is training-free. Table 3 summarizes the key
differences between SID, DDM, and DFM. In the following,
we present the method in detail.

3.1. Noising

We define a noising process that independently acts on each
element of an instance as follows:

qt|1(z | z1) = αtδz1(z) + (1− αt)q0(z), (6)

where q0(z) represents the noise distribution δz1(z) is the
data distribution, and αt is a non-decreasing scheduling
parameter in [0, 1]. The scheduler αt, which defines the
noise level, depends on a continuous time parameter, which
also takes values in [0, 1].

Unlike standard diffusion models, which compute noise
distributions via a Markov process (Eq. 1) such that
qt|t+∆t,1(z | zt+∆t

, z1) = qt|t+∆t
(z | zt+∆t

), our inter-
mediate noisy distributions are directly parameterized as a
mixture of the noise and the data distribution. Thus, we do
not assume any dependencies in the noising process other
than the dependency on the original data point z1 and on
the noise level. This assumption introduces a significant
simplification over DDM and DFM, leading to beneficial
implications for the SID denoising process. In Figure 2, we
juxtapose the graphical models of our method and DDM at
the noising phase. More formally we assume conditional
independence of the noisy distributions across time given
z1:
Assumption 3.1. The intermediate noisy distribution at
time t is conditionally independent from other intermediate
states such that:

qt|1(z | z1) = qt|1(z | zs, z1) ∀ t ̸= s. (7)

As a result, our noising procedure is not a diffusion process
in the traditional sense, as the state at time t depends only on
the initial state and not on the noising trajectory or previous
intermediate states. Under this assumption, the denoising
phase does not suffer from error propagation and accumu-
lation caused by the direct dependencies to previous states
inherent in standard DDM and DFM (see Section 3.2).

Despite this assumption, we note that the distribution at time
t in our method is identical to that of discrete diffusion, as
formalized in the following proposition:

Proposition 3.2. Given a noise distribution q0 and a sched-
uler α(t), the distribution qSID

t|1 (z | z1) defined by our
noising procedure (Equation 6) is equal to the distribution
qDDM
t|1 (z | z1) obtained by the discrete forward process

distribution defined in Equation 1.

Proof. See Appendix A.1

The proposition follows from the fact that our noising proce-
dure corresponds to the closed-form expression (Eq. 3) used
in discrete diffusion to sample efficiently from qt|1(z | z1).
However, we make no assumption that the noisy distribution
results from a diffusion process.

3.2. Denoising

Denoising progressively refines noisy instances by learning
the distribution ps|t(z | Zt), where s = t+∆t. By leverag-
ing Assumption 3.1, the denoising process is significantly
simplified compared to discrete diffusion, as formalized in
the following proposition:

Proposition 3.3. Given the noising process defined in Equa-
tion 6 and Assumption 3.1, the denoising process is ex-
pressed as:

ps|t(z | Zt) = αsp1|t(z | Zt) + (1− αs)q0(z), (8)

Proof. See Appendix A.3.

Under Assumption 3.1, the denoising process factorizes as:

ps|t(z | Zt) =
∑
z1

p1|t(z1 | Zt)qs|1(z | z1). (9)

Thus, we interpret the denoising as a two-step process: 1.
Predict a clean instance from the noisy data, p1|t(z1 | Zt), 2.
Re-noise the predicted clean instance, qs|1(z | z1). The key
difference from the standard DDM model is that zs in SID
directly depends only on the predicted clean instance, but
not on zt. In Figure 3 we juxtapose the denoising graphical
models of DDM and SID. The fact that zs is generated only
from the predicted clean instance acts as a barrier to error
propagation. This factorization will also prove useful in
Section 4.

At inference time, we define the Number of Function Evalu-
ations (NFE), denoted as T , as a hyperparameter. The time
step size is set to ∆t = 1/T . The whole denoising process
consists of iterating T times the denoising step defined in
Equation 8.
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3.2.1. CORRECTOR SAMPLING INTERPRETATION

The denoising process can also be viewed through the lens
of discrete diffusion corrector sampling. Defining a discrete
diffusion corrector sampling step as applying k∆t backward
steps and (k − 1)∆t forward steps, and noticing that the
maximal size for corrector step at time t is k∆t = 1− t, we
state the following proposition:

Proposition 3.4. A Simple Iterative Denoising step, as de-
scribed in Equation 8, is equivalent to a discrete diffusion
corrector sampling with maximal corrector step sizes.

Proof. See Appendix A.2.

Consequently, the denoising process inherits the properties
of the backward process in discrete diffusion; by iteratively
sampling ps|t(z | Zt) with sufficiently small ∆t, the denois-
ing process gradually transitions from the noise distribution
to the data distribution. Our mask SID also inherits the
time-independence property of mask denoisers shown by
Ou et al. (2025) and Sahoo et al. (2024).

3.3. Parametrization and Learning

As in discrete diffusion, the conditional probability p1|t(z1 |
Zt) is intractable. We model this distribution by parametriz-
ing a neural network fθ(Zt, αt) referred to as the denoiser.
We use Graph Neural Networks (GNNs) to enforce equivari-
ance to node permutations, thereby preserving the structural
invariance of graphs.

Since the training objective matches that of DDM and DFM,
we can adopt any of the training criteria proposed for these
models to train fθ(Zt, αt). Following Digress (Vignac et al.,
2023), we minimize the weighted negative log-likelihood in
our experiments:

L =EG∼pdata,t∼U(0,1),Gt∼(qt|1(x
(i)
t |x(i)

1 ),qt|1(e
(i,j)
t |e(i,j)1 ))

(10)[
γ
∑
x
(i)
1

[
− log(pθ(x

(i)
1 | Gt))

]

+ (1− γ)
∑
e
(i,j)
1

[
− log(pθ(e

(i,j)
1 |Gt))

]]
,

where γ is a weighting factor between nodes and edges. We
use γ = n/(n + m). At inference time, Simple Iterative
Denoising can leverage any pre-trained DDM model.

4. Critical Iterative Denoising
This section introduces Critical Iterative Denoising (CID),
a method designed to improve Simple Iterative Denoising.

As discussed in Section 3, Mask SID can be viewed as a
sequence of denoising steps comprising: (1) unmasking ele-
ments of an instance based on the denoiser’s prediction and
(2) re-masking a random subset of the instance’s elements.

However, in Mask SID, all elements are re-masked with the
same probability. This approach is suboptimal, as not all
elements are equally likely under the data distribution after
the unmasking step.

CID addresses this limitation by dynamically adjusting the
re-noising probability during sampling. Specifically, CID
increases the re-noising probability for predicted denoised
elements overrepresented under the data distribution and
decreases it for those underrepresented. CID serves two
goals: (1) Reducing error propagation by resampling el-
ements that are likely out of the data distribution, and (2)
Accelerating inference by decreasing the number of function
evaluations required during sampling. As shown in Figure 1,
CID achieves a state-of-the-art validity rate on Zinc250k
with only a few dozen of denoising steps.

4.1. Preliminaries

Before describing the method, we recast the definition of
the noise distributions by introducing a Bernoulli random
variable at, whose mean is given by the scheduling param-
eter αt from Equation 6; at indicates whether an element
has been corrupted (at = 0) or not (at = 1). As with z,
we use the capital letter A to denote the set of indicators
for all elements in an instance. This formulation allows
us to interpret the noising process as selectively corrupting
some elements while leaving others untouched. Through
the random variables at, we can identify which elements zt
have been noised. This identification would otherwise be
impossible for any noise distribution sharing support with
the data distribution (i.e., all practical noise distributions
except the mask distribution).

Given the random variable at ∼ pαt
(a) = Bernoulli(a;αt),

we rewrite Equation 6 as:

qt|1(z|z1) = pαt(a)δz1(z) + (1− pαt(a))q0(z). (11)

Similarly, we write the denoising equation as:

p1|t(z | Zt, At) = atδz1(z)+(1−at)p
θ
1|t(z | Zt, At) (12)

Intuitively, when the element is not corrupted (at = 1), it
remains unchanged (δz1(z)); when at = 0 we predict it
using the denoiser. For simplicity, we define pdata(z) :=
δz1(z) and ppred(z) := pθ1|t(z | Zt, At).
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In principle, our method supports any noise distribution and
produces pairs (zt, at), which indicate whether the element
zt was sampled from the noise distribution or corresponds
to the original clean element. However, denoising using
the pair (zt, at) reduces denoising models with any noise
distribution (e.g., marginal, uniform) to a mask denoising
model.

To see this, note that the corruption indicator at acts as a
mask, with at = 0 indicating a masked element. Defin-
ing the set of uncorrupted elements as Za

t = {zt ∈ Zt |
at = 1}, and its complement as Z ā

t , the masked denoiser
can be expressed as pθ1|t(z | Za

t , At). Since Z ā
t carries no

information about Z1, it follows that: pθ1|t(z | Zt, At) =

pθ1|t(z | Za
t , At). Because Critical Iterative Denoising (CID)

explicitly requires At, and any noise distribution under this
configuration collapses to the Mask Simple Iterative Denois-
ing (Mask SID) model, we always use Mask SID within
CID.

4.2. Iterative Denoising with a Critic

We now describe the Critic, which predicts the corruption
state of graph elements during denoising. Let ẑ1|t ∼ p1|t(z |
Zt, At) denote a denoised element at time t. CID trains a
Critic C to estimate α̂t = pϕ(a | Ẑ1|t), the probability that
ẑ originates from pdata rather than ppred. The Critic is trained
by minimizing the negative log-likelihood of the corruption
indicators a(i)t produced during the noising phase (one per
element and time step):

Lϕ = −Et,Ẑ1|t

∑
i

log pϕ(a
(i)
t | Ẑ1|t), (13)

During inference, α̂t parametrizes a Bernoulli distribution
pα̂t(at) = Bernoulli(a; α̂t) which determines the noising
probability 1−α̂t. Recall that αt is the scheduler’s noise rate
at time step t. Thus, the Critic’s output can be interpreted as
an adaptive, element-wise noise schedule.

The following theorem characterizes the optimal critic:

Theorem 4.1. The optimal Critic C∗ is:

C∗(ẑ1|t) =
αtpdata(ẑ1|t)

αtpdata(ẑ1|t) + (1− αt)ppred(ẑ1|t)
(14)

Proof. See Appendix A

From Theorem 4.1, two lemmas follow:

Lemma 4.2. If pdata(ẑ1|t) = ppred(ẑ1|t), the optimal α̂∗
t

coincide with the true αt, that is:

pdata(ẑ1|t) = ppred(ẑ1|t) =⇒ α̂∗
t = αt (15)

Proof. The lemma follows directly from Theorem 4.1.

Lemma 4.3. If pdata(ẑ1|t) > ppred(ẑ1|t), the optimal Critic’s
noising probability α̂∗

t is smaller than the schedule’s noising
rate αt, that is:

pdata(ẑ1|t) > ppred(ẑ1|t) =⇒ αt > α̂∗
t . (16)

Conversely, if pdata(ẑ1|t) < ppred(ẑ1|t), the optimal Critic’s
noising probability α̂∗

t is larger than the schedule’s noising
rate αt:

pdata(ẑ1|t) < ppred(ẑ1|t) =⇒ αt < α̂∗
t . (17)

Proof. See Appendix A.5

Additionally, if ppred(ẑ1|t) = 0, then ẑ1|t will not be masked
(αt = 0). Conversely, if pdata(ẑ1|t) = 0, the element is out
of distribution and will be masked with probability αt = 1.

Thanks to Theorem 4.1 and the following lemmas, the Critic
steers the denoised element toward the data distribution, by
re-noising with higher probability those elements that are
overrepresented under the data distribution, while preserv-
ing underrepresented ones.

4.3. Implementation and Sampling

Since pαt
(a) (Equation 11) does not depend on Ẑ1|t,

EẐ1|t
p(a | Ẑ1|t) = pαt(a) = αt, we actually cast the

Critic as a predictor of the residual logit with respect to the
true αt:

pϕ(a | Ẑ1|t) = σ(fϕ(Ẑ1|t, αt) + σ−1(αt)), (18)

where σ is the sigmoid function and fϕ(Ẑ1|t, αt) is a GNN.
The Critic operates on the outputs of a fixed denoiser and
is trained post hoc, requiring no retraining of the denoiser
itself. We can leverage any denoiser implementing mask
diffusion and no retraining is needed.

During inference, we are interested in α̂t+∆t rather than
α̂t. We therefore use the approximation α̂t+∆t ≈
σ(fϕ(Ẑ1|t, αt) + σ−1(αt+∆t

)).

In summary, each denoising step involves: 1. sampling Ẑ1|t
from the Denoiser, 2. computing α̂t+∆t

via the Critic, 3.
re-noising using Equation 6, with αt replaced by α̂t+∆t

.

5. Evaluation
We evaluate our model on both molecular and synthetic
graph datasets.

For molecular data, we use the QM9 and ZINC250k
datasets. The QM9 dataset contains 133,885 molecules with
up to 9 atoms of 4 types, while the ZINC250k dataset
consists of 250,000 molecular graphs with up to 38 heavy
atoms of 9 types. For generic graphs, we run experiments on
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the Planar and Stochastic Block Model (SBM)
datasets. Both contain 200 unattributed graphs with 64
nodes and up to 200 nodes, respectively. Visualizations of
generated molecules and graphs are available in Appendix
G.

Our objective is to evaluate the proposed method through
direct comparison with Discrete Diffusion Models (DDMs).
To ensure a rigorous comparison, we train two denoisers,
one using the marginal distribution and the other using the
mask distribution. We use these denoisers to compare the
two sampling procedures: Discrete Diffusion and Simple
Iterative Denoising. Additionally, we train a Critic for
the model using the mask distribution. Specifically, the
Marginal DDM and Marginal SID share the same denoiser,
while the Mask DDM, Mask SID, and Mask CID use a
another shared denoiser with identical architecture and pa-
rameters.

This setup ensures a controlled and fair ablation study, iso-
lating the impact of our iterative denoising approach while
maintaining identical model architectures and training con-
ditions across all comparisons. We provide the technical
experimental details and implementation in Appendix E.

We report baseline results from various diffusion models;
GDSS (Jo et al., 2022) is a continuous diffusion model,
DruM (Jo et al., 2024) is a diffusion bridge model, and Di-
Gress (Vignac et al., 2023) is a Discrete Diffusion model.
DiGress uses the marginal distribution as noise. It differs
from our Marginal DDM only by the network architecture,
and hyperparameters. Baseline results are reported from
Jo et al. (2024). Importantly, these baseline results were
obtained using 1000 function evaluation steps during gener-
ation, whereas we use only 500 steps in our experiments.

5.1. Molecule Generation

We report the Frechet ChemNet Distance (FCD) (Preuer
et al., 2018), which measures the similarity between gener-
ated molecules and real molecules in chemical space, as well
as the Neighborhood Subgraph Pairwise Distance Kernel
(NSPDK - NPK) (Costa & Grave, 2010), which evaluates
the similarity of their graph structures. Additionally, we
report the proportion of chemically valid molecules (valid-
ity) without any post-generation correction or resampling.
Table 1 presents the results. The best-performing models
among our experiments are bolded. We also bold the best
baseline if it outperforms ours. We generate 10,000 sam-
ples, compared against 10,000 test molecules. Results are
averaged over five independent sampling runs. Standard
deviations and additional metrics, including uniqueness and
novelty, are reported in Appendix F.

We observe that our Simple Iterative Denoising (SID) mod-
els consistently outperform their Discrete Diffusion Model

Table 1: Molecule generation results on QM9 and
ZINC250k.

QM9 ZINC250K
MODEL VAL.↑ NPK↓ FCD↓ VAL.↑ NPK↓ FCD↓
GDSS 95.72 3.3 2.90 97.01 19.5 14.65
DRUM 99.69 0.2 0.11 98.65 1.5 2.25
DIGRESS 98.19 0.3 0.10 94.99 2.1 3.48
MARG. DDM 95.73 1.92 1.09 80.40 12.96 8.50
MASK DDM 48.38 14.75 3.76 8.96 78.63 24.98
MARG. SID 99.67 1.04 0.50 99.50 2.06 2.01
MASK SID 96.43 1.40 1.80 93.85 11.08 9.05
MASK CID 99.92 1.40 1.76 99.97 2.26 3.46

(DDM) counterparts using identical denoisers on both
datasets and this across both noise distributions: marginal
and mask. Furthermore, the results confirm our analysis of
compounding denoising error, particularly affecting mask-
based discrete diffusion, which performs poorly across both
datasets. SID and CID address the compounding error
successfully. Our experiments confirm that the marginal
distribution is a more effective noise distribution in graph
modeling compared to the mask distribution. While com-
pounding denoising errors are less severe with the marginal
distribution, SID still consistently outperforms marginal
DDM baselines by a wide margin. Finally, we observe
that the Critic further improves the generative performance.
Notably, on ZINC250k, our Critical Iterative Denoising
model reaches a high-level validity rate, producing 50 times
less invalid molecules than the best-performing baseline,
DruM.

5.2. Generic Graphs

For generic graphs, we follow the evaluation protocol intro-
duced by Martinkus et al. (2022) and adopted by Jo et al.
(2022) and Jo et al. (2024), using an 80/20 train–test split
with 20% of the training data reserved for validation.

Table 2: Graph generation results on Planar and SBM
datasets.

PLANAR SBM
MODEL SPECT.↓ V.U.N.↑ SPECT.↓ V.U.N.↑
GDSS 37.0 0 12.8 5
DRUM 6.2 90 5.0 85
DIGRESS 10.6 75 40.0 74
MARG. DDM 83.57 0.0 11.82 0.0
MASK DDM 84.44 0.0 11.38 0.0
MARG. SID 7.62 91.3 5.93 63.5
MASK SID 8.72 67.0 15.05 17.5
MASK CID 6.40 66.0 11.94 19.0

We evaluate graph similarity using the Spectral Maximum
Mean Discrepancy (Spect.), which compares the spectra
of the graph Laplacian between generated and real graphs.
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Unlike other metrics that rely on local structural properties,
such as node degrees or clustering coefficients, the Spectral
MMD captures graph structures at any level. Addition-
ally, we report the proportion of Valid, Unique, and Novel
graphs (V.U.N.). For the Planar dataset, a valid graph
must be both planar and connected. For the Stochastic
Block Model dataset, validity indicates that the gener-
ated graph is likely to follow the block model distribution
used to generate the training data (i.e., an intra-community
edge density of 0.3 and an inter-community edge density of
0.005). Uniqueness represents the fraction of unique graphs
among the generated samples, and novelty the fraction of
unique graphs that do not appear in the training set. In
practice, all generated graphs in our experiments were both
unique and novel; thus, V.U.N. effectively measures validity.
Table 2 reports the results. We average over five sampling
runs, comparing the test set to a generated sample batch of
equal size. Standard deviation and complementary metrics
including MMDs based on degree, clustering coefficient,
and orbits counts are reported in Appendix F.

The results on general graphs align with our findings on
molecular graphs, further reinforcing our conclusions. Our
Simple Iterative Denoising models consistently outperform
their Discrete Diffusion counterparts, demonstrating their
effectiveness across different graph types. Results also con-
firm that mask-based models are not well suited for graph
generation. In particular, on the SBM dataset, their results
are barely significant due to their performances.

While the Critic improves spectral MMD on the Planar
dataset, its contribution is less pronounced for generic
graphs than for molecular graphs. We hypothesize that
this is due to deviations from the data distribution being
less localized in generic graphs, making it more difficult to
discriminate between graph elements. Using the marginal
distribution, our Simple Iterative Denoising model achieves
results significantly superior to the Discrete Diffusion base-
line.

5.3. Ablation

We assess the impact of the Number of Function Evalua-
tions (NFE)—i.e., the number of denoising steps during
sampling—on model performance. Specifically, we investi-
gate how the Critic affects the number of steps required to
achieve high-quality generation.

We generate graphs with varying NFEs in
{16, 32, 64, 128, 256, 512} and evaluate performance
on the ZINC250k dataset for Marginal DDM, Marginal
SID, and Mask CID. Validity is reported in Figure 1, while
additional plots and full numerical results are provided in
Appendix F.

Our findings indicate that the Critic substantially reduces

the number of denoising steps needed to achieve high valid-
ity, Mask CID reaching over 99% validity in just 32 steps.
Notably, in the low-NFE regime (16 steps), Mask CID con-
sistently outperforms all other models across all metrics,
demonstrating its effectiveness in accelerating inference
without sacrificing quality.

6. Conclusion
Discrete diffusion models suffer from the Compounding
Denoising Error issue, which leads to error accumulation
during sampling and negatively affects their performance.
We address this issue by introducing an assumption of con-
ditional independence between intermediate noisy states.
Thus, the resulting method does not rely on a diffusion pro-
cess. We further improve upon our method, and introduce a
Critic, which steers the distribution of generated elements
towards the data distribution, improving sample quality.

Our experimental results demonstrate the effectiveness of
our method. Our Simple Iterative Denoising models con-
sistently outperform their corresponding discrete diffusion
models. Moreover, our mask model with Critic system-
atically improves generative performance over the corre-
sponding Simple Iterative Denoising mask model without
the Critic.

Additionally, we show that Critical Iterative Denoising
significantly reduces the Number of Function Evaluations
(NFE) required for sampling, making the generation process
more efficient. While this work focuses on graph model-
ing, future research should explore the applicability of our
approach to other structured data domains.

Acknowledgments
I am deeply grateful to Prof. Alexandros Kalousis, whose
support has been invaluable—far beyond what co-authorship
could acknowledge.

I acknowledge the financial support of the Swiss National
Science Foundation within the LegoMol project (grant no.
207428). The computations were performed at the Univer-
sity of Geneva on ”Baobab”, ”Yggdrasil”, and ”Bamboo”
HPC clusters.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

9



Simple and Critical Iterative Denoising

References
Austin, J., Johnson, D. D., Ho, J., Tarlow, D., and van den

Berg, R. Structured denoising diffusion models in
discrete state-spaces. In Ranzato, M., Beygelzimer,
A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
volume 34, pp. 17981–17993. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.
cc/paper_files/paper/2021/file/
958c530554f78bcd8e97125b70e6973d-
Paper.pdf.

Bansal, A., Borgnia, E., Chu, H.-M., Li, J., Kazemi, H.,
Huang, F., Goldblum, M., Geiping, J., and Goldstein,
T. Cold diffusion: Inverting arbitrary image transforms
without noise. In Oh, A., Naumann, T., Globerson,
A., Saenko, K., Hardt, M., and Levine, S. (eds.),
Advances in Neural Information Processing Systems,
volume 36, pp. 41259–41282. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.
cc/paper_files/paper/2023/file/
80fe51a7d8d0c73ff7439c2a2554ed53-
Paper-Conference.pdf.

Bergmeister, A., Martinkus, K., Perraudin, N., and Wat-
tenhofer, R. Efficient and scalable graph generation
through iterative local expansion. In The Twelfth In-
ternational Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=2XkTz7gdpc.

Boget, Y., Gregorova, M., and Kalousis, A. Discrete
graph auto-encoder. Transactions on Machine Learn-
ing Research, 2024. ISSN 2835-8856. URL https:
//openreview.net/forum?id=bZ80b0wb9d.

Boget, Y., Strasser, P., and Kalousis, A. Hierarchical
equivariant graph generation, 2025. URL https://
openreview.net/forum?id=uEqOYXtn7f.

Campbell, A., Benton, J., De Bortoli, V., Rainforth, T.,
Deligiannidis, G., and Doucet, A. A continuous time
framework for discrete denoising models. In Koyejo,
S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K.,
and Oh, A. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 35, pp. 28266–28279. Curran
Associates, Inc., 2022.

Campbell, A., Yim, J., Barzilay, R., Rainforth, T., and
Jaakkola, T. Generative flows on discrete state-spaces:
enabling multimodal flows with applications to protein
co-design. In Proceedings of the 41st International Con-
ference on Machine Learning, pp. 5453–5512, 2024.

Chang, H., Zhang, H., Jiang, L., Liu, C., and Freeman, W. T.
Maskgit: Masked generative image transformer. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pp. 11315–11325,
June 2022.

Chen, X., He, J., Han, X., and Liu, L. Efficient and
degree-guided graph generation via discrete diffusion
modeling. In Krause, A., Brunskill, E., Cho, K., En-
gelhardt, B., Sabato, S., and Scarlett, J. (eds.), Pro-
ceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 4585–4610. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/chen23k.html.

Costa, F. and Grave, K. D. Fast neighborhood sub-
graph pairwise distance kernel. In Fürnkranz, J. and
Joachims, T. (eds.), Proceedings of the 27th Interna-
tional Conference on Machine Learning (ICML-10), June
21-24, 2010, Haifa, Israel, pp. 255–262. Omnipress,
2010. URL https://icml.cc/Conferences/
2010/papers/347.pdf.

Eijkelboom, F., Bartosh, G., Naesseth, C. A., Welling, M.,
and van de Meent, J.-W. Variational flow matching for
graph generation, 2024. URL https://arxiv.org/
abs/2406.04843.

Gat, I., Remez, T., Shaul, N., Kreuk, F., Chen, R. T. Q., Syn-
naeve, G., Adi, Y., and Lipman, Y. Discrete flow match-
ing. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=GTDKo3Sv9p.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative Adversarial Nets. In Advances in Neu-
ral Information Processing Systems, volume 27. Curran
Associates, Inc., 2014.

Goyal, N., Jain, H. V., and Ranu, S. Graphgen: A scalable
approach to domain-agnostic labeled graph generation.
In Huang, Y., King, I., Liu, T., and van Steen, M. (eds.),
WWW ’20: The Web Conference 2020, Taipei, Taiwan,
April 20-24, 2020, pp. 1253–1263. ACM / IW3C2, 2020.
doi: 10.1145/3366423.3380201. URL https://doi.
org/10.1145/3366423.3380201.
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A. Proofs
A.1. Proposition 3.2: Noising and Diffusion Forward Process

Given a noise distribution, a data point, and a scheduler, the distribution qIDt|1 (z|z1) defined by our noising procedure
(Equation 6) is equal to the distribution qDDM

t|1 (z|z1) obtained by the discrete forward process distribution defined in
(Equation 1).

Proof. We adopt here the notation of Austin et al. (2021), where the probabilities and probability transition are written as
matrices, and we start with the discrete time case.

We have:

qt|t+∆t
= xQt (19)

where Qt is a transition probability matrix. In our case,

Qt = (1− βt)I + βA, (20)

where A is an idempotent matrix, representing the noise distribution, the mask distribution being Amask1e
T
m, where em is

the one-hot vector indicating the mask and the marginal distribution being Amarg1m
T , with m representing the marginal

distribution.

Using the fact that A2 = A, and denoting α′
t = 1− β, we observe that:

τ∏
i

Qi = (

τ∏
i

α′
i)I + (1− (

τ∏
i

α′
i))A. (21)

With αt =
∏τ

i α
′
i, we get: qt(z|z1) = αtδz1(z) + (1− αt)q0(z).

For the continuous case, we remark that, αt being smooth, we can turn the product into geometric integral.

A.2. Proposition 3.4

An Iterative Denoising step, described in Equation 8, is equivalent to a corrector sampling discrete diffusion step with a
maximal corrector step.

Proof. Corrector sampling in discrete diffusion consists of applying k backward (denoising) steps, i.e., predicting
pt+k∆t|t(z|zt) and k − 1 forward (noising step), qt|t+k∆t

(z|zt+(k−1)∆t
). We call maximal corrector step a corrector

sampling step such that 1− k∆t = t. In this case, a corrector sampling step becomes:

∑
z

p1|t(z|Zt)qt+∆t|1(z|z1) = p(zt+∆t |zt) (22)

= αt+∆tp1|t(z|zt) + (1− αt+∆t)q0(z), (23)

where the second equality follows from Proposition A.3.

A.3. Denoising

Given the random variable at ∼ pαt(a) = Bernoulli(a;αt) (see Section 4.1), we have: ps|1(z|z1, as) = q0(z) if z = 0, and
ps|1(z|z1, as) = δz1(z), otherwise.
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ps|t(z|zt) =
∑
z1

ps|1(z|zt, z1)p1|t(z1|Zt)

=
∑
z1

ps|1(z|z1)p1|t(z1|Zt)

=
∑
z1

∑
a

pαs
(a)ps|1(z|z1, as)p1|t(z1|Zt)

=
∑
z1

(αsδz1(z) + q0(z)(1− αs)) p1|t(z1|Zt)

=
∑
z1

p1|t(z1|Zt)αsδz1(z) +
∑
z1

p1|t(z1|Zt)(1− αs)q0(z)

= αsp1|t(z|Zt) + (1− αs)q0(z)

(24)

A.4. Proposition 4.1: Optimal Critic

The optimal Critic is:

C∗(ẑ1|t) =
αtpdata(ẑ1|t)

αtpdata(ẑ1|t) + (1− αt)ppred(ẑ1|t)
(25)

Proof. The proof is inspired by Goodfellow et al. (2014).

For a single element, from Equation 13, we have:

Lϕ = −Et,Ẑ1|t
log

(
pϕ(a|Ẑ1|t)

)
= −αtEẐ1|t∼pdata

log
(
pϕ(a|Ẑ1|t)

)
− (1− αt)EẐ1|t∼ppred

log
(
1− pϕ(a|Ẑ1|t)

)
= −

∑
z1

αtpdata(ẑ1|t) log
(
pϕ(a|Ẑ1|t)

)
−

∑
z1

(1− αt)ppred(ẑ1|t) log
(
1− pϕ(a|Ẑ1|t)

)
= −

∑
z1

(
αtpdata(ẑ1|t) log

(
pϕ(a|Ẑ1|t)

)
+ (1− αt)ppred(ẑ1|t) log

(
1− pϕ(a|Ẑ1|t)

))
(26)

For any (u, v) ∈ R2 \ {(0, 0)} and y ∈ [0, 1], the function f(y) = ulog(y) + vlog(1− y) reaches its maximum at u
u+v .

Hence, Equation 26 reaches its minimum at:

C∗(ẑ1|t) =
αtpdata(ẑ1|t)

αtpdata(ẑ1|t) + (1− αt)ppred(ẑ1|t)
(27)

A.5. Lemma 4.3: Noising Rate

If pdata(ẑ1|t) > ppred(ẑ1|t), the optimal critic’s noising rate β̂∗
t is smaller that the schedule’s noising rate βt, that is:

pdata(ẑ1|t) > ppred(ẑ1|t) =⇒ αt < α̂t, (28)

and conversely

pdata(ẑ1|t) < ppred(ẑ1|t) =⇒ αt > α̂t. (29)
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Proof. From Theorem 4.1, we have:

α̂t =
αtpdata(ẑ1|t)

αtpdata(ẑ1|t) + (1− αt)ppred(ẑ1|t)
(30)

⇐⇒ α̂−1
t αtpdata(ẑ1|t) = αtpdata(ẑ1|t) + (1− αt)ppred(ẑ1|t) (31)

⇐⇒ α̂−1
t pdata(ẑ1|t) = pdata(ẑ1|t) + (α−1

t − 1)ppred(ẑ1|t) (32)

⇐⇒
pdata(ẑ1|t)

ppred(ẑ1|t)
=

α−1
t − 1

α̂−1
t − 1

(33)

Hence:

pdata(ẑ1|t) > ppred(ẑ1|t) =⇒ α−1
t − 1

α̂−1
t − 1

> 1 =⇒ αt < α̂t (34)

pdata(ẑ1|t) < ppred(ẑ1|t) =⇒ αt > α̂t (35)

B. Comparing Simple Iterative Denoising with Discrete Diffusion and Discrete Flow Matching
In Table 3, we compare Simple Iterative Denoising with Discrete Diffusion and Discrete Flow Matching. For Discrete
Diffusion, we follow the framework of Austin et al. (2021), which uses uniform and mask (absorbing state) noise , and its
extension to the marginal setting by Vignac et al. (2023). For Discrete Flow Matching, we adopt the standard formulation
from Gat et al. (2024), which uses independent coupling and convex interpolants. We use the following shorthand notations:
s = t+∆t and Dt = ∆t

α̇t

1−αt
.

Table 3: Comparing Simple Iterative Denoising, Discrete Diffusion, and Discrete Flow Matching.

SIMPLE ITERATIVE DENOISING DISCRETE DIFFUSION DISCRETE FLOW MATCHING

NOISING CONDITIONAL INDEP. GIVEN z1 MARKOVIAN MARKOVIAN

pt|s,1(z|zs, z1) pt|1(z|z1) pt|s(z|zs) pt|s(z|zs)

qt|1(z|z1) αtδz1(z) + (1− αt)q0(z) αtδz1(z) + (1− αt)q0(z) αtδz1(z) + (1− αt)q0(z)

qs|t(z|Zt, z1) qs|1(z|z1) q(zt|zs) q(zs|z1)
q(zt|z1) (1−Dt)δzt(z) +Dtδz1(z)

ps|t(z|zt) αsp1|t(z | Zt) + (1− αs)q0(z)
∑

z1
qs|t(z|Zt, z1)p1|t(z | Zt) δzt(z) +Dt

(
p1|t(z | Zt)− δzt(z)

)
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Figure 4: Noising and Denoising Processes in Discrete Diffusion and Simple Iterative Denoising

(a) Mask Discrete Diffusion

(b) Mask Simple Iterative Denoising

Unlike standard Discrete Diffusion, in Simple Iterative Denoising, an element that is masked (in forward) or unmasked
(in backward) can be unmasked (in forward) or remasked (in backward). Note that for the sake of illustration, we use the
absence of edge as an absorbing state. In practice, we use three different states for mask SID and mask DDM (mask, edge,
non-edge).

C. Generative Graph Modeling: Related Works
A main challenge in generative graph modeling follows from the n! different ways to represent graphs due to node
permutation. This has motivated two dominant families of approaches: sequential models, which generate graphs step-by-
step, and equivariant models, which preserve equivariance to node permutation by design.

Sequential models construct graphs auto-regressively, adding nodes, edges, or substructures in a predefined order (You
et al., 2018; Shi et al., 2020; Luo et al., 2021; Liao et al., 2019; Kong et al., 2023; Zhao et al., 2024a). To limit the number
of possible sequences representing a single graph, many methods adopt a Breadth-First Search (BFS) traversal strategy. In
specific domains such as molecular graph generation, canonical formats like SMILES have been used to mitigate permutation
issues (Gómez-Bombarelli et al., 2018; Kusner et al., 2017). However, general-purpose canonization strategies (Goyal et al.,
2020) fail for large graphs (see experiments in Bergmeister et al. (2024)). Hierarchical models that aggregate subgraphs (Jin
et al., 2018; 2020) also fall into this category, though they rely on enumerating a predefined vocabulary of substructures and
are thus limited to constrained domains.

Equivariant models aim to preserve permutation symmetry by producing the same output regardless of node ordering.
These models have been instantiated across several generative paradigms, including GANs (Krawczuk et al., 2021; Martinkus
et al., 2022), normalizing flows (Madhawa et al., 2019; Zang & Wang, 2020; Liu et al., 2019), and vector-quantized auto-
encoders (Boget et al., 2024; Nguyen et al., 2024). More recently, equivariant denoising models in continuous spaces as
score-based diffusion (Yang et al., 2019; Jo et al., 2022), diffusion bridges (Jo et al., 2024), and Flow Matching (Eijkelboom
et al., 2024) have significantly improved graph generation for small graphs. Despite their success, these continuous methods
introduce a mismatch between the continuous noise space and the inherently discrete structure of graphs.

To address this, several works have explored discrete denoising processes. Discrete diffusion models in both discrete time
(Haefeli et al., 2022; Vignac et al., 2023) and continuous time (Xu et al., 2024) have demonstrated strong performance
in generating small graphs. Discrete flow matching has also been adapted for graphs, with Qin et al. (2024a) showing
promising results. However, these discrete models suffer from compounding denoising errors. Our proposed method directly
tackles this issue, leading to improved generative performance.
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Scalability. A key limitation of current equivariant models is their reliance on dense representations and pairwise
computations, which hinder scalability to large graphs. To address this, recent works have proposed scalable denoising
architectures and sampling strategies (Qin et al., 2024b; Chen et al., 2023; Karami, 2024; Bergmeister et al., 2024; Boget
et al., 2025). Notably, Qin et al. (2024b) and Boget et al. (2025) propose methods that enable any equivariant model to
scale to large graphs. While these methods could extend our iterative denoising framework to larger graphs, we leave this
exploration for future research.

D. Models
D.1. GNNs architecture

Our denoisers are Graph Neural Network, inspired by the general, powerful, scalable (GPS) graph Transformer.

We implement a single layer as:

X̃(l), Ẽ(l) = MPNN(X(l),E(l)), (36)

X(l+1) = MultiheadAttention(X̃(l) +X(l)) + X̃(l) (37)

E(l+1) = Ẽ(l) +E(l) (38)

where, X(l) and E(l) are the node and edge hidden representations after the lth layer. The Multihead Attention layer is the
classical multi-head attention layer from Vaswani et al. (2017), and MPNN is a Message-Passing Neural Network layer
described hereafter.

The MPNN operates on each node and edge representations as follow:

hl
i,j = ReLU(W l

srcx
l
i +W l

trgx
l
j +W l

edgee
l
i,j) (39)

el+1
i,j = LayerNorm(fedge(h

l
i,j) (40)

xl+1
i = LayerNorm

xl
i +

∑
j∈N (i)

fnode(h
l
i,j)

 , (41)

where W l
src, W l

trg, and W l
edge are matrices of parameters and fnode, and fedge are small neural networks.

The node hidden representation, i.e., the xi’s and the hidden representation of fnode are of dimensions dh, an hyperparameter
(see Table 4). The edge hidden representation, i.e., the ei,j’s, hl

i,j’s, and the hidden representation of fedge are of dimensions
dh/4.

Inputs and Outputs In the input, we concatenate the node attributes, extra features, and time step as node features,
copying graph-level information (e.g., time step or graph size) to each node. The node and edge input vectors are then
projected to their respective hidden dimensions, dh for nodes and dh/4 for edges.

Similarly, the outputs of the final layer are projected to their respective dimensions, dx for nodes and de for edges (or to a
scalar in the case of the Critic). To enforce edge symmetry, we compute ei,j =

ei,j+ej,i

2 . Finally, we ensure the outputs can
be interpreted as probabilities by applying either a softmax or sigmoid function, as appropriate.

D.2. hyperparameters

As explained here above, the node hidden representation has size dh and the edge representation dh/4. We use dh = 64
with the QM9 dataset and dh = 256 with all the other datasets.
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Table 4: Hyperparameters

MPNN layers 4
Layers in MLPs 3
Diffusion steps 500
Learning rate 0.0002
Optimizer Adam
Betas parameters for Adam (0.9, 0.999)
Scheduler cosine (Nichol & Dhariwal, 2021)

D.3. Extra Features

Following a common practice (Vignac et al., 2023; Qin et al., 2024a; Boget et al., 2025), we enhance the graph representation
with synthetic extra node features. We use the following extra features: eigen features, graph size, molecular features (for
molecular datasets such as QM9 and ZINC250k), and cycle information (for the Planar datasets). All these features are
concatenated to the input node attributes.

Spectral features We use the eigenvectors associated with the k lowest eigenvalues of the graph Laplacian. Additionally,
we concatenate the corresponding k lowest eigenvalues to each node.

Graph size encoding The graph size is encoded as the ratio between the size of the current graph and the largest graph in
the dataset, n/nmax. This value is concatenated to all nodes in the graph.

Molecular features For molecular datasets, we use the charge and valency of each atom as additional features.

Cycles Following Vignac et al. (2023), we count the number of cycles of size 3, 4, and 5 that each node is part of, and use
these counts as features.

E. Evaluation
E.1. Molecular Benchmark

For molecular graphs, we adopt the evaluation procedure followed by Jo et al. (2024), from which we took the baseline
model results, and which was originally established in Jo et al. (2022).

Datasets The QM9 dataset (Wu et al., 2017) consists of 133,885 organic molecules with up to 9 heavy atoms, including
carbon (C), oxygen (O), nitrogen (N), and fluorine (F). In contrast, the ZINC250k dataset (Irwin et al., 2012) contains
250,000 molecules with up to 38 atoms spanning 9 element types: C, O, N, F, phosphorus (P), sulfur (S), chlorine (Cl),
bromine (Br), and iodine (I). Both datasets are divided into a test set (25,000 molecules), a validation set (25,000 molecules),
and a training set (the remaining molecules).

For our experiments, we preprocess the datasets following standard procedures (Jo et al., 2022; 2024). Molecules are
kekulized using RDKit, and explicit hydrogen atoms are removed from the QM9 and ZINC250k datasets.

We evaluate the models using three metrics:

1. Validity: The percentage of chemically valid molecules among the generated samples, determined using RDKit’s
Sanitize function without applying post-hoc corrections, such as valency adjustments or edge resampling.

2. Fréchet ChemNet Distance (FCD) (Preuer et al., 2018): Measures the distance between feature distributions of
generated molecules and test set molecules, using ChemNet to capture their chemical properties.

3. Neighborhood Subgraph Pairwise Distance Kernel (NSPDK) MMD (Costa & Grave, 2010): Assesses the quality of
graph structures by computing the maximum mean discrepancy (MMD) between the generated molecular graphs and
those from the test set.
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E.2. Generic Graphs

We assess the quality of the generated graphs using three benchmark datasets from Martinkus et al. (2022).

Planar Graph Dataset: This dataset consists of 200 synthetic planar graphs, each containing 64 nodes. A generated graph is
considered valid if it is connected and planar.

Stochastic Block Model (SBM) Dataset: This dataset consists of 200 synthetic graphs generated using the Stochastic Block
Model (SBM). The number of communities is randomly sampled between 2 and 5, and the number of nodes per community
is sampled between 20 and 40. The edge connection probabilities are set as follows:

• Intra-community edges: 0.3 (probability of an edge existing within the same community).

• Inter-community edges: 0.005 (probability of an edge existing between different communities).

A generated graph is considered valid if it satisfies the statistical test introduced in (Martinkus et al., 2022), which assess it
corresponds to to the SBM structure.

We adopt the evaluation framework proposed by (Liao et al., 2019), utilizing total variation (TV) distance to measure the
Maximum Mean Discrepancy (MMD). This approach is significantly more computationally efficient than using the Earth
Mover’s Distance (EMD) kernel, particularly for large graphs.

Additionally, we employ the V.U.N. metric as introduced by Martinkus et al. (2022), which evaluates the proportion of
valid, unique, and novel graphs among the generated samples. A graph is considered valid if it satisfies the dataset-specific
structural properties described earlier.

F. Complementary Experimental Results
Results on QM9 As additional metrics, we report uniqueness, defined as the fraction of unique molecules among the
generated samples, and novelty, the fraction of unique molecules that are not present in the training dataset. Furthermore, all
models achieve 100% validity with valency correction.

Table 5: Results on QM9

AVERAGE VALID UNIQUE NOVEL NSPDK FCD
MARGINAL DDM 95, 73± 0, 24 97, 52± 0, 16 79, 55± 0, 28 1, 922± 0, 054 1, 090± 0, 035
MARGINAL ID 99, 67± 0, 06 95, 66± 0, 28 72, 57± 0, 52 1, 041± 0, 049 0, 504± 0, 010
MASK DDM 48, 38± 0, 47 78, 47± 0, 65 75, 21± 0, 88 14, 750± 0, 509 3, 760± 0, 035
MASK ID 96, 43± 0, 16 98, 02± 0, 14 86, 79± 0, 31 1, 395± 0, 015 1, 797± 0, 027
MASK CID 99, 92± 0, 02 96, 93± 0, 13 80, 74± 0, 26 1, 402± 0, 034 1, 757± 0, 035

Results on ZINC250k As additional metrics, we report uniqueness, defined as the fraction of unique molecules among
the generated samples, and novelty, the fraction of unique molecules that are not present in the training dataset. Furthermore,
all models achieve 100% validity with valency correction.

Table 6: Results on ZINC250k

VALID UNIQUE NOVEL NSPDK FCD
MARGINAL DDM 80, 40± 0, 31 95, 93± 0, 02 99, 98± 0, 03 12, 96± 0, 25 8, 50± 0, 09
MARGINAL ID 99, 50± 0, 06 99, 84± 0, 02 99, 97± 0, 00 2, 06± 0, 05 2, 01± 0, 01
MASK DDM 8, 96± 0, 36 99, 37± 0, 00 100, 00± 0, 24 78, 63± 2, 41 24, 98± 0, 24
MASK ID 93, 85± 0, 25 100, 00± 0, 01 100, 00± 0, 02 11, 08± 0, 17 9, 05± 0, 16
MASK CID 99, 97± 0, 01 99, 98± 0, 01 99, 98± 0, 01 2, 26± 0, 09 3, 46± 0, 01

Results on Planar We provide additionally the results using the degree, clustering and orbit MMD.
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Table 7: Results on Planar

SPECTRAL V.U.N. DEGREE CLUSTERING ORBIT

MARGINAL DDM 83, 57± 2, 56 0, 0± 0, 0 53, 83± 0, 80 300, 32± 3, 15 1441, 45± 83, 57
MARGINAL ID 7, 62± 1, 34 91, 3± 4, 1 5, 93± 1, 26 163, 40± 31, 86 19, 08± 4, 14
MASK DDM 84, 44± 2, 72 0, 0± 0, 0 57, 07± 2, 15 297, 75± 2, 50 1397, 94± 34, 17
MASK ID 8, 72± 1, 37 67, 0± 6, 5 2, 30± 0, 67 78, 48± 13, 12 11, 68± 4, 78
MASK CID 6, 40± 1, 20 66, 0± 5, 5 2, 11± 0, 62 85, 86± 10, 74 14, 18± 5, 54

Results on SBM We provide additionally the results using the degree, clustering and orbit MMD.

Table 8: Results on SBM

SPECTRAL V.U.N. DEGREE CLUSTERING ORBIT

MARGINAL DDM 11, 82± 0, 85 0, 0± 0, 0 0, 96± 0, 73 85, 66± 6, 26 72, 37± 5, 51
MARGINAL ID 5, 93± 1, 18 63, 5± 3, 7 11, 54± 2, 72 51, 41± 1, 49 123, 14± 5, 35
MASK DDM 11, 38± 1, 04 0, 0± 0, 0 3, 81± 1, 79 83, 13± 2, 27 123, 00± 3, 73
MASK ID 15, 05± 4, 29 17, 5± 5, 7 70, 12± 21, 99 55, 63± 0, 66 127, 05± 17, 95
MASK CID 11, 94± 2, 71 19, 0± 4, 9 43, 13± 12, 31 55, 06± 2, 29 92, 80± 16, 96

NFE Ablation on ZINC250 We present here addition figures and tables ablating the effect of the NFE.

Figure 5: NSPDK and FCD as a function of the Number of Function Evaluations (NFE) for three models: Discrete Diffusion
(baseline), Iterative Denoising (ours), and Critical Iterative Denoising (ours).

Table 9: Validity vs NFE

NFE 16 32 64 128 256 512
MASK ID 36,34 56,60 70,94 81,78 89,37 93,57
MASK DDM 9,35 8,84 9,05 9,14 9,06 8,49
MASK CID 92,51 99,17 99,78 99,91 99,98 99,96
MARG. DDM 57,31 69,33 76,80 78,09 80,15 80,37
MARG. ID 38,25 73,66 92,71 97,69 99,06 99,58
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Table 10: NSPDK vs NFE

NFE 16 32 64 128 256 512
MASK ID 30,05 24,90 20,03 15,68 13,10 10,49
MASK DDM 78,27 79,66 77,94 79,59 79,11 77,97
MASK CID 11,10 5,66 3,55 2,64 2,30 2,26
MARG. DDM 47,22 27,35 20,23 15,74 13,75 13,46
MARG. ID 27,86 7,18 1,80 1,30 1,53 2,11

Table 11: FCD vs NFE

NFE 16 32 64 128 256 512
MARG, DDM 18,81 13,85 11,21 9,73 8,87 8,71
MARG ID 14,70 6,37 3,06 2,15 1,89 2,03
MASK DDM 25,23 25,35 24,73 25,09 24,96 24,69
MASK ID 15,80 14,16 12,43 10,80 9,80 9,01
MASK CID 9,42 6,63 5,05 4,09 3,77 3,40
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G. Visualizations
G.1. Molecular graphs

-

Figure 6: QM9

Generated molecules Real molecules

Figure 7: ZINC250K

Generated molecules Real molecules
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G.2. Generic Graphs

-

Figure 8: Planar

Generated graphs Real graphs

Figure 9: SBM

Generated graphs Real graphs

All generated graphs comes from the Marginal Iterative Denoising model.
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