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Abstract

Reinforcement learning can learn amortised design policies for designing sequences of exper-
iments. However, current methods rely on contrastive estimators of expected information
gain, which require an exponential number of contrastive samples to achieve an unbiased
estimation. We propose the use of an alternative lower bound estimator, based on the
cross-entropy of the joint model distribution and a flexible proposal distribution. This
proposal distribution approximates the true posterior of the model parameters given the
experimental history and the design policy. Our method requires no contrastive samples, can
achieve more accurate estimates of high information gains, allows learning of superior design
policies, and is compatible with implicit probabilistic models. We assess our algorithm’s
performance in various tasks, including continuous and discrete designs and explicit and
implicit likelihoods.

Keywords: Sequential design of experiments, reinforcement learning.

1. Introduction

A key challenge in science is to develop predictive models based on experimental observations.
As far back as Lindley (1956) it has been recognised that experimental designs can be opti-
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mised to be maximally informative, under the assumptions of a Bayesian framework. Since
then optimal experimental design has been applied to a wide variety of fields with different
models and assumptions, including neuroscience (Shababo et al., 2013), biology (Treloar
et al., 2022), ecology (Drovandi et al., 2014) and causal structure learning (Agrawal et al.,
2019).

Under the framework of Bayesian optimal experimental design (BOED), we have a
probabilistic model p(y|θ, d) where d is the design (e.g. where to measure), y is the outcome
(e.g. the measurement value) and θ are parameters over which we have a prior belief p(θ).
The objective is to find the optimal design d∗ that maximises the expected information gain
(EIG), formally:

EIG(d) := Ep(y|d) [H(p(θ))−H(p(θ|y, d))] , (1)

d∗ = argmax
d∈D

EIG(d). (2)

We see that näıve computation of the EIG requires an expectation over the marginal likeli-
hood p(y|d) and estimation of the posterior p(θ|y, d). Since sampling from p(y|d) is typically
intractable and there is usually no closed-form solution for the posterior, minimising this ex-
pression involves estimating a nested expectation numerically, which is challenging (Rainforth
et al., 2018). Furthermore, we are often interested in conducting more than one experi-
ment, in which case optimal designs must incorporate the outcomes of previous experiments
sequentially (Krause and Guestrin, 2007).

In settings where computational or application-specific constraints demand fast deploy-
ment times, amortised methods have proved successful, as they learn an optimal design policy
as a function of the experimental history instead of optimising each design in turn (Blau
et al., 2022; Foster et al., 2021; Ivanova et al., 2021). Once trained, a policy can be reused to
design experiments as many times as desired, thus amortising the cost of training. However,
all amortised methods introduced thus far have the drawback that they rely on maximising
contrastive lower bounds of the objective. To achieve an unbiased estimate of the EIG,
these contrastive bounds require a number of samples that is exponential in its magni-
tude (McAllester and Stratos, 2020; Poole et al., 2019). Thus their performance degrades in
cases where the EIG is large.

To address this limitation, we propose a new amortised method, using reinforcement
learning (RL) and a non-contrastive bound based on the cross-entropy of the joint model
distribution and a flexible proposal distribution. This proposal approximates the true
posterior of the model parameters given the experimental history and the design policy.
Our method does not suffer from exponential sample complexity and is thus able to achieve
higher EIG than prior art, especially in settings where the information gain of the optimal
policy is large. Furthermore, unlike previous amortised methods, our method is generally
applicable to continuous and discrete design spaces, non-differentiable likelihoods, and even
implicit likelihoods. Our experiments show the benefits of our approach when compared to
previous methods in these settings.

2. Amortised design of experiments

In Bayesian optimal experimental design (BOED) the goal is to identify the parameters of a
probabilistic model by sending queries to that model. Let p(y|θ, d) be the model of concern,
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with some prior belief p(θ) regarding the value of parameters θ. As described above, an
optimal design d∗ is one that maximises the EIG as given by Equations (1) and (2), where
computational intractabilities readily appear in the estimation of the marginal likelihood
and the posterior distribution.

Furthermore, more challenging than optimising a single experiment is the problem of
optimising an entire sequence of experiments d1:T where T ∈ N is some fixed budget. One
promising approach for settings under strong computational constraints at deployment time
is to optimise a design policy π : H → D that designs experiments conditioned on a history
ht = (di, yi)

t
i=1. The computational cost of learning such a policy is high, but designing

experiments with a trained policy is computationally efficient, requiring only a single forward
pass of a neural network. Therefore the training cost is amortised over the lifetime of the
policy, and this class of algorithms is known as amortised design of experiments. Current
amortised methods all use contrastive bounds to optimise the policy. However, such bounds
require a number of contrastive samples L that is exponential in the magnitude of the
quantity being estimated (McAllester and Stratos, 2020). In other words, if the EIG of a
policy is large, then computing an accurate contrastive bound is intractable.

3. The sequential cross-entropy estimator

To resolve this limitation of requiring an exponentially large number of samples, we introduce
a proposal distribution q(θ|hT , π) that approximates the true posterior p(θ|hT , π). Using the
cross-entropy of the two, we use the following estimator, which we refer to as the sequential
cross-entropy estimator (sCEE).

sCEE(π, T ) := Ep(θ,hT |π) [log q(θ|hT , π)] +H [p(θ)] . (3)

From Jensen’s inequality it follows that the cross-entropy of two random variables is a lower
bound for the self-entropy of either variable. By extending this to the sequential case, the
following theorem shows that the sCEE is a lower bound of the true EIG:

Theorem 1 Let p(y|θ, d) be a probabilistic model with prior p(θ). For an arbitrary fixed
design policy π and sequence length T , the EIG of using π to design T experiments is
denoted EIG(π, T ). Let q(θ|hT , π) be a proposal distribution over parameters θ conditioned
on experimental history hT , and the sCEE bound is

sCEE(π, T ) := Ep(θ,hT |π) [log q(θ|hT , π)] +H [p(θ)] , (4)

we have that
sCEE(π, T ) ≤ EIG(π, T ). (5)

Proof A sketch of proof follows here, with the full proof in Appendix A.1. The main idea
is to rewrite the EIG as an expectation w.r.t. distribution p(hT , θ|π), and then show that
the difference between EIG and sCEE is an expectation over KL divergences.

It is easy to show that the above bound is tight if and only if q(θ|hT , π) = p(θ|hT , π) and
that the bias of the sCEE estimator is −EhT [kl [p(θ|hT , π) ∥ q(θ|hT , π)]]. In other words,
the quality of the estimation rests on how well the proposal distribution can match the true
posterior, in terms of KL divergence.
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We note here that our sCEE bound is the sequential version of the bound proposed by
Barber and Agakov (2004), who used it for estimating mutual information in the context of
information transmission over noisy channels. This bound is also referred in Foster et al.
(2019) as the variational posterior estimator, who used it for gradient-based experimental
design in a non-sequential setting.

3.1 Proposal parameterization

To evaluate the sCEE, we sample from the joint p(θ, hT |π) simply by rolling out the policy.
Under mild assumptions, it can be shown that this Monte Carlo estimation approaches
the true value of the sCEE at a rate of O( 1√

n
), where n is the number of samples (cf. Ap-

pendix A.3). We will parameterise the proposal distribution by a conditional normalising
flow (Winkler et al., 2019) with parameters κ and, therefore, refer to it using qκ(·). Thus, we
can maximise the sCEE w.r.t. κ using stochastic gradient descent. Note that we only need
to optimise the negative cross-entropy term Ep(θ,hT |π) [log q(θ|hT , π)], since the prior entropy
is constant. Details of the normalising flows used in our experiments are in Appendix F.

4. Experiment design with sCEE and reinforcement learning

We implement the sCEE bound in the context of an RL algorithm by using it in the
formulation of the reward function within the RL framework defined by Blau et al. (2022),

R(st−1, at−1, st, θ) = log q(θ|Bψ,t)− log q(θ|Bψ,t−1), (6)

where the key idea is to map experimental designs to policy actions at−1 = dt, and the
history information to the system states st with a parameterized summary from an encoder
network given by Bψ,t. Details of the RL formulation are given in Appendix C.

4.1 Advantages of sCEE-RL

Our method based on the sCEE lower bound and RL delivers a number of advantages. (i)
Better sample complexity: it does not require the use of contrastive samples, and hence
does not suffer from the exponential sample complexity issue of the sPCE bound. Thus,
sCEE can more closely estimate EIG when the true quantity is large, although estimation
accuracy depends on learning a good posterior network qκ(·). (ii) Applicable to implicit
models: Furthermore, we see that the sCEE estimator, as defined in Equation (3), only
requires sampling of the model distribution and avoids explicit log-likelihood computations
log p(hT |θ, π). This means that our method is compatible with implicit likelihood models
where the likelihood is a black-box or intractable and, therefore, can only be sampled but
not evaluated explicitly. Interestingly, the sCEE bound is closely related to the sACE
bound introduced in the appendices of Foster et al. (2021). We discuss this relationship
in Appendix B. (iii) Suitable for continuous and discrete design spaces: Finally,
similar to the method proposed in Blau et al. (2022), our approach using the sCEE estimator
along with reinforcement learning, as described in Algorithm 1 (in Appendix C), can handle
both continuous and discrete design spaces.
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Table 1: Different estimators for EIG of increasing magnitudes in synthetic data problems
with conjugate priors. Averages computed over 1000 samples. k is the number of
random variable dimensions, σ0 is prior variance, and σ is likelihood variance.

Method k = 10 k = 10 k = 10 k = 10 k = 10 k = 10 k = 20
σ0 = 0.5 σ0 = 0.5 σ0 = 1 σ0 = 2 σ0 = 2 σ0 = 4 σ0 = 4
σ = 5 σ = 1 σ = 1 σ = 1 σ = 0.5 σ = 0.5 σ = 0.5

True EIG 3.47 8.96 11.99 15.22 18.57 21.97 43.94
sCEE 3.40 8.90 11.92 15.07 18.41 20.47 43.89
sPCE(L = 1E4) 3.45 7.92 8.95 9.18 9.21 9.21 9.21
sPCE(L = 1E6) 3.48 8.89 11.45 13.18 13.75 13.81 13.81
sPCE(L = 1E8) 3.48 8.97 11.85 14.35 16.71 18.08 18.42

5. Experimental results

We evaluate our proposed method on (i) synthetic data; (ii) continuous designs and implicit
likelihoods1 in behavioural economics under a constant elasticity of substitution (CES)
problem and a (iii) source location problem; and (iv) discrete designs in a prey population
problem. Description and details of these problems and their mathematical models are given
in Appendix E. We compare our method (RL-sCEE) with a number of baselines, including
RL with the sPCE bound (RL-sPCE; Blau et al., 2022), Deep Adaptive Design (DAD;
Foster et al., 2021), implicit Deep Adaptive Design (iDAD; Ivanova et al., 2021), and a
non-amortised sequential Monte Carlo experiment design approach (SMC-ED; Moffat et al.,
2020).

Results are shown on Tables 1 and 2. We see on Table 1 that, on the synthetic data,
when the EIG is small enough, sPCE can provide a better estimate than sCEE (note
that the sPCE at times slightly overestimates the EIG due to variance in estimating the
expectation with Monte Carlo samples). However, as the EIG becomes large relative to
log(L), the underestimation of sPCE becomes more severe, and for the right-most columns
all sPCE variants have reached their upper limit. Meanwhile, sCEE consistently provides
good estimates regardless of the magnitude of the EIG.

The results on the real datasets on Table 2 show that for both the CES and source
location problem, our proposed RL-sCEE method outperforms all baselines, in spite of
not having access to explicit likelihoods. Furthermore, on the prey population problem
(rightmost column in Table 2), we note that DAD and iDAD cannot optimise over discrete
design spaces and, therefore, we added the sequential Monte Carlo design algorithm proposed
by Moffat et al. (2020) as a baseline. Note that this method is not amortised, and requires
considerable computation time to design each experiment (> 1 minute per design, whereas
amortised policies take milliseconds). We see that RL-sCEE performs similarly to the
baselines while using orders of magnitude less time to compute designs than the SMC-ED
baseline.

1. We simulate an implicit likelihood by withholding the explicit likelihood values p(y|θ, d) from the RL-sCEE
and iDAD agents.
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Table 2: Lower and upper bounds for the EIG computed using the sPCE and sNMC
estimators, respectively. L = 1E8 contrastive samples were used for the CES and
Source Location problems, and L = 1E6 for the Prey Population problem.
Means and standard errors aggregated from 1000 rollouts.

Method CES (T = 10) Source Location (T = 30) Prey Population (T = 10)
Lower bound Upper bound Lower bound Upper bound Lower bound Upper bound

RL-sCEE 15.91± 0.10 20.78± 0.43 13.37± 0.07 13.42± 0.08 4.41± 0.05 4.41± 0.05
RL-sPCE 14.81± 0.12 15.56± 0.17 11.65± 0.06 12.01± 0.07 4.38± 0.05 4.41± 0.04
DAD 10.77± 0.08 13.20± 0.68 11.22± 0.07 11.29± 0.07 N/A N/A
iDAD 9.67± 0.08 10.63± 0.52 10.37± 0.07 10.41± 0.08 N/A N/A
SMC-ED N/A N/A N/A N/A 4.52± 0.07 4.52± 0.06

6. Related work

Considerable work has been done on BOED (Chaloner and Verdinelli, 1995; Ryan et al., 2016),
and particularly on using machine learning to optimise experimental designs (Rainforth
et al., 2023). Greedy algorithms have been developed based on variational bounds (Foster
et al., 2019, 2020) or neural network estimates (Kleinegesse and Gutmann, 2020) of the EIG.
In the active learning literature, the BALD (Houlsby et al., 2011) score is equivalent to EIG,
and can be estimated using Monte Carlo dropout neural networks (Gal et al., 2017). Other
works attempt a non-greedy approach, i.e. they can sacrifice information gain in the current
experiment in exchange for higher information gain in future experiments. Such approaches
include n-step look-ahead (Zhao et al., 2021; Yue and Kontar, 2020) or using batch designs
as a lower bound for the utility of sequential designs (Jiang et al., 2020). Foster et al.
(2021) were the first to propose an amortised method for sequential experiment design, and
showed empirically that the learned policies can exhibit non-myopic behaviour. This was
extended to the case of implicit likelihood models by Ivanova et al. (2021). Blau et al.
(2022) formulated the sequential experimental design (SED) problem as a special Markov
decision process (MDP), and showed that design policies can be learned with RL algorithms.

7. Conclusion

We have introduced the sequential Cross-Entropy Estimator (sCEE), a lower bound estimate
for the EIG of an experiment design policy, as well as a reinforcement learning algorithm
(RL-sCEE) that uses it to optimise policies. Experiments show the sCEE is capable of
estimating large EIGs that are intractable to estimate with contrastive estimators, which
are the state of the art. In tasks where EIG is large, RL-sCEE significantly outperforms
all baselines and learns policies whose lower bound EIG estimates exceed the upper bound
estimate of the strongest alternative. In tasks where EIG is small, RL-sCEE matches the
performance of state-of-the-art baselines.
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Appendix A. Proofs

This appendix enumerates the proofs for the theorems, corollaries and other claims made in
the main paper.

A.1 Proof of Theorem 1

Here we prove the main theorem of the paper, which is restated for convenience

Theorem 1 Let p(y|θ, d) be a probabilistic model with prior p(θ). For an arbitrary fixed
design policy π and sequence length T , the EIG of using π to design T experiments is
denoted EIG(π, T ). Let q(θ|hT , π) be a proposal distribution over parameters θ conditioned
on experimental history hT , and the sCEE bound is

sCEE(π, T ) := Ep(θ,hT |π) [log q(θ|hT , π)] +H [p(θ)] (7)

we have that
sCEE(π, T ) ≤ EIG(π, T ) (8)

Proof From Theorem 1 of Foster et al. (2021) we have that the EIG is:

EIG(π, T ) = Ep(hT ,θ|π) [log p(hT |θ, π)− log p(hT |π)] (9)

This can be rewritten into a more convenient form:

EIG(π, T ) = Ep(hT ,θ|π)
[
log

p(hT |θ, π)
p(hT |π)

]
= Ep(hT ,θ|π)

[
log

p(hT , θ|π)
p(hT |π)p(θ)

]
(10)

= Ep(hT ,θ|π)
[
log

p(θ|hT , π)����p(hT |π)
p(θ)����p(hT |π)

]
= Ep(hT ,θ|π)

[
log

p(θ|hT , π)
p(θ)

]
(11)

= Ep(hT ,θ|π) [log p(θ|hT , π)− log p(θ)] (12)

= Ep(hT ,θ|π) [log p(θ|hT , π)] +H [p(θ)] . (13)

We proceed to show that sCEE lower bounds this form. Consider the KL divergence between
2 conditional distributions given a fixed value y:

kl [p(x|y) ∥ q(x|y)] = Ep(x|y)
[
log

p(x|y)
q(x|y)

]
(14)

If y is not fixed but random we then take an expectation:

Ep(y) [kl [p(x|y) ∥ q(x|y)]] = Ep(x|y)p(y)
[
log

p(x|y)
q(x|y)

]
(15)

= Ep(x,y)
[
log

p(x|y)
q(x|y)

]
(16)

= Ep(x,y) [log p(x|y)− log q(x|y)] (17)

rearranging the sides gives

Ep(x,y) [log q(x|y)] = Ep(x,y) [log p(x|y)]− Ep(y) [kl [p(x|y) ∥ q(x|y)]] (18)

≤ Ep(x,y) [log p(x|y)] (19)
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where the last line exploits the fact that the KL divergence is always non-negative. Plugging
in x = θ; y = (hT ;π) yields the lower bound:

Ep(θ,hT ,π) [log q(θ|hT , π)] ≤ Ep(θ,hT ,π) [log p(θ|hT , π)] (20)

For a known policy π this becomes:

Ep(θ,hT |π) [log q(θ|hT , π)] ≤ Ep(θ,hT |π) [log p(θ|hT , π)] (21)

Adding the prior entropy to both sides yields:

Ep(θ,hT |π) [log q(θ|hT , π)] +H [p(θ)] ≤ Ep(θ,hT |π) [log p(θ|hT , π)] +H [p(θ)] . (22)

Finally, plugging in Equations (7) and (13) completes the proof:

sCEE(π, T ) ≤ EIG(π, T ) (23)

A.2 Proof of corollaries

In the main paper we state 2 corollaries of the above theorem:

Corollary 2 The bound is tight if and only if p(θ|hT , π) = q(θ|hT , π)

Corollary 3 The bias of the sCEE estimator is −EhT [kl [p(θ|hT , π) ∥ q(θ|hT , π)]]

If we subtract the lower bound from the EIG we get the difference:

Ep(θ,hT |π) [log p(θ|hT , π)]− Ep(θ,hT |π) [log q(θ|hT , π)] . (24)

From Equation (18) it follows that this difference is

−EhT [kl [p(θ|hT , π) ∥ q(θ|hT , π)]] (25)

Since the KL divergence is always non-negative, this difference is 0 and the bound is tight if
and only if kl [p(θ|hT , π) ∥ q(θ|hT , π)] = 0 for all realisations of hT . This establishes both
corollaries.

A.3 Proof of convergence

In the main paper we make the claim that a Monte Carlo estimator of the sCEE converges
at a rate of O( 1√

n
), where n is the number of MC samples. Since the prior is known, we

can rely on standard MC convergence proofs for the prior entropy component. Thus we
need only worry about a convergence proof for estimating the cross-entropy component
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Ep(θ,hT |π) [log q(θ|hT , π)]. We denote the cross-entropy as H [p(θ|hT , π), q(θ|hT , π)] and the
MC estimator as

Ĥ [p(θ|hT , π), q(θ|hT , π)] =
1

n

n∑
i=1

− log q(θi|hiT , π) (26)

According to Theorem 5.1 of McAllester and Stratos (2020), if there is a minimum log-
likelihood Fmax such that log q(θ|hT , π) ≥ Fmax, then with probability at least 1− δ we have
that

|H [p(θ|hT , π), q(θ|hT , π)]− Ĥ [p(θ|hT , π), q(θ|hT , π)] | ≤ Fmax

√
log(2δ )

2n
(27)

Thus the MC estimator converges to the true sCEE with high probability at the desired
rate of O( 1√

n
).

Appendix B. Relationship between sCEE and sACE

Foster et al. (2021) propose in the appendices a lower bound EIG estimator that relies on a
parameterised proposal distribution that approximates the posterior p(θ|hT ). They called
this the sequential Adaptive Constrastive Estimation (sACE):

Ep(θ0,hT |π)q(θ1:L;hT )

log p(hT |θ0, π)
1

L+1

∑L
l=0

p(hT |θl,π)p(θl)
q(θl;hT )

 (28)

This is a contrastive bound where the contrastive samples are distributed according to
the proposal distribution θ1:l ∼ q(θ|hT ). The construction and proof assume a minimum of 1
contrastive sample. However, if we set L = 0 in this expression, the sampling of contrastive
samples from q(θ|hT ) disappears and we get:

Ep(θ0,hT |π)

log p(hT |θ0, π)
1

0+1

∑0
l=0

p(hT |θl,π)p(θl)
q(θl;hT )

 = Ep(θ0,hT |π)

log p(hT |θ0, π)
1

0+1
p(hT |θ0,π)p(θ0)

q(θ0;hT )

 (29)

= Ep(θ0,hT |π)

[
log������

p(hT |θ0, π)

������
p(hT |θ0, π)

q(θ0;hT )

p(θ0)

]
(30)

= Ep(θ0,hT |π)

[
log

q(θ0;hT )

p(θ0)

]
, (31)

which is equivalent to the sCEE. Note that by avoiding the need for contrastive samples,
the sCEE gains a considerable computational advantage. In the RL setting, the rewards
depend on q(θ|hT ) and hence need to be recomputed every time q is updated. With the
sACE estimator, this recomputation requires resampling the contrastive samples, increasing
the computational effort by a factor of O(L). Indeed, depending on memory constraints, it
may not be possible to recompute an entire batch of rewards in a single vectorised operation.
With the sCEE, however, reward recomputation requires only a single neural network pass.

In addition to the computational benefits, sCEE has the further advantage that it is
compatible with implicit likelihood models, wherease sACE requires explicit models, since it
includes the term p(hT |θ0, π) in the numerator.
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Algorithm 1: sCEE-RL

Input: M: SED-MDP, Lπ: policy loss function, LC : critic loss function
Initialise replay buffer B
while convergence criterion not reached do
Generate rollouts (s0:T , a0:T , θ)

1:N usingM and π and push to B.
Sample mini-batch of size mb from B
Compute posterior loss Lq = − 1

mb

∑mb
i=1 log qκ(θ

i|Bi
ψ,t)

Take gradient step to minimise ∇κLq
Compute rewards for mini-batch using Equation (6)
Use mini-batch and rewards to compute Lπ and LC
Take gradient step to minimise ∇ϕLπ and ∇χLC

end while

Appendix C. Reinforcement learning algorithm

Blau et al. (2022) have shown that the problem of learning an experiment design policy can
be formulated as a special case of a MDP called the SED-MDP. We follow their formulation
for the reinforcement learning algorithm in this paper, with the main difference being the
use of the sCEE reward and consequently the use of an approximate proposal qκ(θ|hT )
parameterised as a conditional normalising flows neural network (Winkler et al., 2019) with
parameters κ. This posterior network qκ(·) can be updated by using the same mini-batches
to maximise the log-likelihood of the observations under our posterior model. Note that this
means rewards are now no longer fixed but depend on qκ(·), and change with every update
of κ. The computational cost thus incurred can be minimised by lazy evaluation (Bloss
et al., 1988): we only update each reward when we are about to use it to update the policy
and critic networks of the RL agent. The procedure is summarised in Algorithm 1, and we
give more details about this procedure in the following sections.

C.1 Simultaneous policy and reward learning

We propose to learn the design policy network πϕ and the proposal distribution qκ from
data simultaneously. Since the reward function depends on qκ, and the objective function
of qκ in turn depends on πϕ, this leads to inherent instability, similar to the “deadly triad”
that is often observed in value-based reinforcement learning (Van Hasselt et al., 2018). We
therefore apply several stabilisation mechanisms to prevent the neural network estimators
from diverging.

Target posterior network: similar to the use of target Q-networks as introduced
by Lillicrap et al. (2016), we maintain a primary posterior network qκ and a target network
q′κ. The primary network qκ is updated using gradient descent in every iteration of the
algorithm, but is not used directly to compute rewards. Instead, the target network q′κ
is used to compute Equation (6), and its weights are periodically updated to maintain a
moving average:

κ′ ← κ′ · (1− τ) + κ · τ (32)

where τ ∈ (0, 1) is a constant controlling the rate of change.
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Fixed initial posterior: the reward definition of Equation (6) assigns each experiment
its own (estimated) information gain. The return of an entire trajectory is a telescoping
sum that reduces to log q(θ|Bψ,T ) − log q(θ|Bψ,0), and the expected return over infinitely
many trajectories recovers the sCEE. Therefore, the component q(θ|Bψ,0) of the first reward
r0 is the only contributor to the prior entropy term H[p(θ)] of the sCEE. Since this term is
constant w.r.t. all networks, we can simply ignore it when training as it does not change the
optimal policy. Furthermore, learning the correct estimator for q(θ|Bψ,0) that maps the null
inputs to the prior p(θ) can be challenging. Therefore instead of learning this mapping for
the empty first state, we assigned it a fixed value of log q(θ|Bψ,0) := 0.

Appendix D. Normalising flows on the probability simplex

If we have a random variable with support on the canonical (open) simplex ∆k−1 rather
than in Rk, additional caution is required for fitting a normalising flow to this RV. Since
the kth dimension of the RV is fully determined by the first k − 1 dimensions, the NF is
free to fit this dimension with extremely high confidence, leading to an overestimation of
log-likelihood of the entire RV.

The fix to this issue is rather involved. First, we exclude the kth dimension as input to the
NF. Then, at the penultimate layer of a normalising flow, it implements the diffeomorphism
F : Rk−1 → Rk−1 i.e. the base distribution is a standard Gaussian and the resulting
distribution can have support in the entire real space. Now we add a series of bijections that
will produce a map G : Rk−1 → ∆k−1. Note that it is not enough simply to concatenate
1 −

∑k−1
i=1 F(x)i with the intermediate vector F(x) because we are not guaranteed that

0 ≤ F(x)k ≤ 1 ∀k and that
∑k−1

i=1 F(x)i ≤ 1. First we must transform the output to ensure
these properties:

u = F(x) (33)

vi = σ(ui) (34)

wi = vi

1−
i−1∑
j=1

wj

 ∀i ∈ [1, k − 1] (35)

θi =
wi

1− ϵ
. (36)

Equation (34) projects Rk−1 to the semi-open box [0, 1)k−1. Equation (35) projects this
box to the k − 1 dimensional simplex s = {x :

∑k−1
i=1 xi < 1 and 0 ≤ xk < 1 ∀i ∈ [1, k − 1]}.

This non-canonical simplex is in fact the equivalent of projecting the k-dimensional canonical
simplex ∆k−1 down to k − 1 dimensions. The simplex s can be lifted to ∆k−1 by assigning
wk = 1 −

∑k−1
j=1 wj . However, we won’t include this in the mapping G because it makes

the Jacobian low-rank and hence the inverse ill-defined. To avoid floating-point errors,
each element of the RV actually has to be in the range [ϵ, 1 − ϵ] where ϵ is the machine
epsilon. Equation (36) maps between this space and the actual canonical simplex.

The corresponding log-det-Jacobians are:
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k−1∑
i=1

log(0.99 · vi(1− vi)), (37)

k−1∑
i=1

log(1−
i−1∑
j=1

wj), (38)

(1− k) · log(1− ϵ). (39)

The inverse G−1 can be written compactly as:

ui = σ−1

(
(1− ϵ) · θi

1−
∑i−1

j=1(1− ϵ) · θj

)
∀i ∈ [1, k − 1]. (40)

Appendix E. Experiment details

This appendix describes the probabilistic models, hyperparameters, and all other details
relating to the experiment design problems appearing in the paper.

We implemented our algorithm using Pyro (Bingham et al., 2018) and normflows Stimper
et al. (2023) along with the Garage framework (Garage Contributors, 2019) and the REDQ
algorithm (Chen et al., 2021) for reinforcement learning. For complete details about
algorithms and hyperparameters, see Appendix F. To evaluate the EIG we used contrastive
estimators with L = 1E8, a number of contrastive samples that is impractical for learning,
but achieves better estimation than sCEE in most problems we investigated.

E.1 Synhetic data – EIG for conjugate priors

Given the theoretical results about sCEE and contrastive bounds, we expect that sCEE
should perform well in situations where the EIG is large and qκ(·) is easy to learn. To
assess this, we evaluate the estimator on 7 experimental tasks which allow us to know the
true EIG in closed form. The priors are isotropic Gaussians of the form N (µ0, σ0Ik) and
the likelihoods are similarly Gaussian with known isotropic covariance σIk, where k is the
number of dimensions. Each task has an experimental budget of T = 10 experiments. Thus
we can manipulate k, σ0 and σ to create tasks where the EIG of the optimal design is known
exactly.

Table 1 enumerates these tasks, alongside the optimal EIG and the estimates of sCEE
and sPCE with different numbers of contrastive samples. As can be seen from the left-most
columns of the table, when the EIG is small enough, sPCE can provide a better estimate
than sCEE (note that the sPCE at times slightly overestimates the EIG due to variance
in estimating the expectation with Monte Carlo samples). However, as the EIG becomes
large relative to log(L), the underestimation of sPCE becomes more severe, and for the
right-most columns all sPCE variants have reached their upper limit. Meanwhile, sCEE
consistently provides good estimates regardless of the magnitude of the EIG. It should be
noted, however, that this is in part because the posterior is easy to learn from data. A more
complex posterior, or less training, would worsen the underestimation.
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For an isotropic Gaussian prior N (µ0, σ0Ik) and Gaussian likelihood with known isotropic
covariance σIk, the posterior after n observations is an isotropic Gaussian with covariance:

Σpost = (σ−1
0 Ik + nσ−1Ik)

−1 (41)

= (σ−1
0 + nσ−1)−1Ik (42)

The mean of the posterior is unimportant to us as it does not affect the entropy:

Hpost =
k

2
+

k

2
log(2π) +

1

2
log(|Σpost|) (43)

=
k

2
+

k

2
log(2π)− k

2
log(σ−1

0 + nσ−1). (44)

Therefore the entropy is independent of the designs and we can compute the entropy of the
“optimal” policy by subtracting the posterior entropy from the prior entropy:

In(π) = H[N (µ0, σ0Ik)]−Hpost (45)

=
�
��
k

2
+
�
����k

2
log(2π) +

k

2
log(σ0)−

�
��
k

2
−
�
����k

2
log(2π) +

k

2
log(σ−1

0 + nσ−1) (46)

=
k

2
(log(σ0) + log(σ−1

0 + nσ−1)) (47)

=
k

2
log(1 + n

σ0
σ
) (48)

Thus we can create an EIG estimation problem with an EIG of our choice by setting
k, n, σ0 and σ appropriately. In our experiments sCEE was trained for 10, 000 epochs, and
was exposed to 10, 000 data points in each epoch. Each estimator was evaluated using 1, 000
Monte Carlo samples.

E.2 Constant elasticity of substitution

We evaluate a design problem in behavioural economics where we must estimate the param-
eters of a Constant Elasticity of Substitution (CES) utility function Baltas (2001). In this
experiment economic agents compare 2 baskets of goods and give a rating on a sliding scale
from 0 to 1. Each basket consists of k different goods with different value. We set k = 3.

The outcome is the relative preference of a test subject in the range [0, 1], as determined
by the agent’s CES utility function, and the specific values of its parameters θ = {ρ, α, u},
with ρ ∈ [0, 1], α ∈ ∆3 and u > 0.

The designs are vectors d = (x, x′) where x, x′ ∈ [0, 100]k are the baskets of goods. The
latent parameters of the likelihood and their priors are:

ρ ∼ Beta(1, 1) (49)

α ∼ Dirichlet(1k) (50)

log u ∼ N (1, 3). (51)

The probabilistic model is:
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U(x) =

(∑
i

xρiαi

)1/ρ

(52)

µη = (U(x)− U(x′))u (53)

ση = (1 + ||x− x′||)τ · u (54)

η ∼ N (µη, σ
2
η) (55)

y = clip(sigmoid(η), ϵ, 1− ϵ), (56)

In our experiments we used the following hyperparameters:

Parameter Value

k 3
τ 0.005
ϵ 2−22

E.3 Prey population

To evaluate our method in tasks with discrete design spaces, we consider the prey population
problem from Moffat et al. (2020). Designs are the initial population of a prey species,
limited to the discrete interval D = 1, 2, . . . , 300. The outcome is the number of individual
who were consumed by predators at the end of a 24 hour period, based on the attack rate
and handling time of the predators.

In this experiment an initial population of prey animals is left to survive for T hours, and
we measure the number of individuals consumed by predators at the end of the experiment.
The designs are the initial populations d = N0 ∈ 1, 2, . . . , 300. The latent parameters and
priors are:

log a ∼ N (−1.4, 1.35) (57)

log Th ∼ N (−1.4, 1.35), (58)

where a represents the attack rate and Th is the handling time.
The population changes over time according to a Holling’s Type III model, which is a

differential equation:
dN

dτ
= − aN2

1 + aThN2
. (59)

And the population NT is thus the solution of an initial value problem. The probabilistic
model is:

pT =
d−NT

d
(60)

y ∼ Binom(d, pT ). (61)

We used a simulation time of T = 24 hours.
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E.4 Source location

In this experiment there are n sources embedded in k-dimensional space that emit independent
signals. the designs are the co-ordinates at which to measure signal intensity, and we restrict
the space to d ∈ [−4, 4]k. The total intensity at any given co-ordinate d in the plane is given
the sum of individual signals:

µ(θ, d) = b+
∑
i

1

m+ ||θi − d||2
, (62)

where b,m > 0 are the background and maximum signals, respectively, || · ||2 is the squared
Euclidean norm, and θi are the co-ordinates of the ith signal source. The probabilistic model
is:

θi ∼ N (0, I); log y|θ, d ∼ N (log(µ(θ, d), σ), (63)

i.e. the prior is unit Gaussian and we observe the log of the total signal intensity with
some Gaussian observation noise σ. The hyperparameters we used are

Parameter Value

n 2
k 2
b 1E− 1
m 1E− 4
σ 0.5

We trained policies to design sequences of T = 30 experiments. Table 2 shows that the
lower bound estimate for our proposed method exceeds the upper bound estimate for all
other methods. As with the CES problem, we can examine the posteriors obtained from
qκ(θ|hT ). This time, however, we plotted the marginals q(x1, x2) and q(y1, y2), i.e. the x
and y co-ordinates of the 2 signal sources, using x1 (respectively y1) as the X-axis and x2
(respectively y2) as the Y-axis. The sources are exchangeable, i.e. p(y|d, s1 = (x1, y1), s2 =
(x2, y2)) = p(y|d, s1 = (x2, y2), s2 = (x1, y1)). Therefore the marginals of the true Bayesian
posterior, p(x1, x2), should be symmetric w.r.t. the line x2 = x1 in the x1x2-plane. Indeed,
the plots in Appendix I exhibit this symmetry, which has been learned entirely from data,
without providing any inductive bias.

Appendix F. Algorithm experimental details

This appendix provides the implementation details for all design of experiment algorithms
used in the paper.

F.1 RL-sCEE

We used the implementation of REDQ from Blau et al. (2022) as the basis of our algorithm,
although we limited the ensemble size to N = 2. Normalising flows were implemented using
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the normflows Stimper et al. (2023) package, which we extended to create a conditioned
version of realNVP Dinh et al. (2017). In every experiment we used a normalising flow with
6 layers, and the parameter map is a 2-layer neural network with sizes (128, 128). Both
normalising flows and policies use a permutation invariant representation similar to Ivanova
et al. (2021), including a single self-attention layer with 8 attention heads.

Additional hyperparameters are listed in the table below, and are largerly derived
from Blau et al. (2022):

Parameter Source Location CES Prey Population

training iterations 1E5 1E5 2E4
T 30 10 10
γ 0.9 0.9 0.95
τ 1E− 3 5E− 3 1E− 2
policy learning rate 1E− 4 3E− 4 1E− 4
critic learning rate 3E− 4 3E− 4 1E− 3
buffer size 1E7 1E7 1E6

F.2 RL-sPCE

We used the implementation of Blau et al. (2022), which is available at https://github.com/
csiro-mlai/rl-boed. We kept all hyperparameters and network architectures the same,
with the exception of adding a self-attention layer to the policy network. This layer is identical
to the one described in the previous section. We did not find that adding attention lead to
significant change in performance, but included it in order to maintain a fair comparison
with the RL-sCEE implementation.

In particular, we used L = 1E5 contrastive samples for training. Not only is it the value
used by Blau et al. (2022), but is also pushing the limits of the number of samples that can
be used in a reasonable amount of time. Since tens of millions of simulated experiments have
to be run to train a single agent, we must leverage vectorisation over multiple sequences
of experiments in parallel. Although in the evaluation we used L = 1E8 samples, this only
allows a single experiment at a time to fit in a GPU, and requires multiple seconds per
experiment. It would require several years to train a single agent in this manner.

F.3 DAD and iDAD

For these baselines we used the implementations of the original papers, which are available at
https://github.com/ae-foster/dad and https://github.com/desi-ivanova/idad, re-
spectively. We kept the default hyperparameters of those implementations. The only
exception is for iDAD on the source location problem, which we found unstable for a
sequence of T = 30 experiments. We therefore used early stopping, and stopped learning at
40k iterations instead of the original 100k.
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F.4 SMC-ED

We used the implementation made available in https://github.com/csiro-mlai/rl-boed,
which in turn uses the R language implementation of Moffat et al. (2020) and executes it from
within a Python script by using the rpy2 bindings. The original R code is available at https:
//github.com/haydenmoffat/sequential design for predator prey experiments.

Appendix G. Hardware details

SMC-ED experiments were run on a desktop machine with an Intel i7-10610U CPU and
no GPU. All other experiments were run in a high-performance computing cluster, using
a single node each with 4 cores of an Intel Xeon E5-2690 CPU and an Nvidia Tesla P100
GPU.

Appendix H. Ablation Study

To evaluated the stabilisation mechanisms incorporated in the implementation of RL-sCEE,
we conduct an ablation study where we remove either the target posterior network, the fixed
initial posterior, or both. The results can be seen in Figure 1, with each variant replicated
10 times, using common random seeds between different variants (e.g. the blue trendline
labeled ”0” represents the same random seed in all 4 plots).

It is clear that the removal of the target network causes significant degradation in
performance, with many replications converging to a lower final performance or even peaking
early and then decreasing in EIG. On the other hand, the use of a fixed initial posterior
doesn’t seem to offer a clear advantage over a learned one.

Appendix I. Additional results

20

https://github.com/csiro-mlai/rl-boed
https://github.com/haydenmoffat/sequential_design_for_predator_prey_experiments
https://github.com/haydenmoffat/sequential_design_for_predator_prey_experiments


Figure 1: Ablation studies for the stabilisation mechanisms.
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Figure 2: Posterior for the source location problem. Computed from 1E5 samples. Black
rings denote the true co-ordinates of signal sources.
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