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ABSTRACT

Quantizing Mixture-of-Experts (MoE) language models is challenging since
router errors cascade into expert selection and dominate accuracy loss. We study
this effect and show that preserving router decisions of the selected experts yields
the largest gains, with most errors arising as near-neighbor rank flips around
the top-k experts. Motivated by these observations, we present ExpertQuant,
a training-free, calibration-only post-training quantization (PTQ) framework tai-
lored to MoE. ExpertQuant combines (i) Expert-Aware Scale to accommodate het-
erogeneous activation ranges and two router-alignment objectives between quan-
tized and full-precision models: (ii) Rank-Aware Jaccard Loss, which aligns the
top-k expert rank, and (iii) Gap Hinge Loss, which preserves score margins be-
tween consecutive experts to suppress rank flipping. Across OLMoE, DeepSeek-
MoE, and Qwen3-MoE, ExpertQuant consistently reduces perplexity on C4 and
WikiText-2 and improves zero-shot accuracy under W4A4 and W4A8, with sim-
ilar trends at lower bit-widths. The framework requires no retraining, integrates
seamlessly with existing MoE, and demonstrates that stabilizing router rankings
during calibration is key to accurate low-bit MoE inference.

1 INTRODUCTION

Large language models (LLMs) continue to advance rapidly and reshape modern natural language
processing (Achiam et al., 2023; Grattafiori et al., 2024; Guo et al., 2025; Yang et al., 2025). As
parameter counts and training corpora grow, Mixture-of-Experts (MoE) architectures emerge as a
scalable design that raises effective capacity without proportional compute (Shazeer et al., 2017;
Fedus et al., 2022; Dai et al., 2024b; Muennighoff et al., 2025). An MoE layer comprises a learned
router and a pool of experts; for each input token, the router computes routing scores, activates
the top-k experts, and aggregates their outputs. Variants include shared experts that capture com-
mon knowledge across tokens, while routed experts specialize. As model size and MoE adoption
increase, deployment becomes constrained by memory and latency, so low-precision inference via
quantization becomes essential for practical serving.
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Figure 1: Controlled study on W4A4 OLMoE,
where w/o denotes the unquantized module. The
percentages on the x-axis indicate the proportion
of the whole parameters.

Quantizing MoE models differs fundamentally
from quantizing dense transformers because the
router determines which experts are activated.
When the router selects suboptimal experts, the
entire forward pass is affected, leading to accu-
racy loss. This makes router performance more
critical in MoE than in dense architectures. To
validate this, we conduct controlled studies in
which a module is kept in full-precision and
others are quantized. Importantly, across all
settings, the experts’ FFNs are always quan-
tized. As shown in Figure 1, preserving router
performance consistently yields the highest per-
formance, confirming that router accuracy is
the dominant factor in MoE quantization. We
further analyze router errors and find that, after
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Figure 2: Confusion matrices at layer 0 comparing FP16 vs. EAQuant top-k indices under W4A4.

quantization, the router typically selects experts that are close in rank to the full-precision choices,
with mistakes concentrated near the top-k experts rather than spread arbitrarily. This is evident in the
confusion matrix of Figure 21, where errors cluster near the diagonal, showing near-neighbor expert
flips. These findings suggest that effective PTQ of MoE must explicitly stabilize router rankings.

Existing PTQ methods primarily target dense models and do not directly address these MoE-specific
issues (Frantar et al., 2022; Lin et al., 2024b; Xiao et al., 2023; Lin et al., 2024a). Although MoE-
Quant reweights expert calibration by router weights, it does not handle the quantization-induced
router discrepancy (Chen et al., 2025). While EAQuant calibrates the router with KL divergence (Fu
et al., 2025), this aligns score distributions but does not preserve the margin between adjacent experts
and therefore fails to reduce rank inversions. To close this gap, we introduce two router-alignment
objectives that directly compare the quantized and full-precision routers: Rank-Aware Jaccard Loss
(RAJ), which aligns their rank of top-k experts, and Gap Hinge Loss (GH), which keeps score mar-
gins between adjacent experts to suppress rank flips. In addition, we propose an Expert-Aware Scale
(ES) that assigns each expert its own channel-wise scale to match per-expert activation and weight
ranges, preventing heavy-tailed experts from dominating shared scales. Together, these objectives
form an MoE-aware PTQ framework that improves low-bit accuracy.

Our main contributions are as follows:

• We demonstrate that the PTQ accuracy of MoE is primarily determined by router perfor-
mance, which accounts for the majority of performance degradation.

• We identify a router failure, i.e., near-neighbor rank flips, and propose Rank-aware Jaccard
Loss and Gap Hinge Loss to stabilize expert selection and preserve margins.

• We validate our framework on OLMoE, DeepSeek-MoE, and Qwen3-MoE, achieving
lower perplexity on C4 and WikiText-2 and higher accuracy on diverse reasoning tasks,
all within a training-free, calibration-only pipeline.

2 RELATED WORK

2.1 MIXTURE-OF-EXPERTS LARGE LANGUAGE MODELS

Early studies propose using gating networks to adaptively route each input to specialized sub-
networks (Jacobs et al., 1991; Jordan & Jacobs, 1994), and subsequent work extends this idea to
a variety of domains (Deisenroth & Ng, 2015; Aljundi et al., 2017). In LLMs, an MoE layer places
expert MLPs behind a lightweight gate (linear projection plus softmax) and routes each token to the
top-k experts with load-balancing regularization (Shazeer et al., 2017); systems advance scale MoE
transformers with automated sharding and parallelism (Lepikhin et al., 2021).

1Confusion matrices for additional OLMoE layers are shown in Figures 9 and 10.
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Large-scale instances vary in routing. Switch transformer uses top-1 gating to reduce activation cost
(Fedus et al., 2022); GLaM shows that top-2 improves the accuracy, an efficiency trade-off at trillion
parameter scale (Du et al., 2022); Mixtral 8×7B activates two experts per token and rivals dense
peers at similar cost (Jiang et al., 2024). DeepSeek-MoE increases expert granularity, keeps a few
active experts per token, and adds always-on shared experts to capture global knowledge (Dai et al.,
2024b); DeepSeek-V2/V3 further refine routing, optimization, and systems (Liu et al., 2024a;b).

Unlike dense transformers, which apply all parameters to every token, MoE models rely on a router
to decide which subset of experts is activated. This router is therefore central to both efficiency and
accuracy: small perturbations in its outputs directly change expert selection and propagate through
the entire forward pass. Our work focuses on this router behavior and its interaction with expert
heterogeneity, distinguishing MoE-specific challenges from those in dense architectures.

2.2 POST-TRAINING QUANTIZATION FOR LLMS

PTQ is a standard route to deploy LLMs efficiently, reducing memory and bandwidth without re-
training. In dense transformers, PTQ minimizes layerwise reconstruction error while preserving
numerical structure relevant to generation. GPTQ casts weight-only quantization as a blockwise
least-squares problem with Hessian-aware error compensation, delivering strong 4-bit accuracy at
negligible calibration cost (Frantar et al., 2022). AWQ accounts for activation statistics during cali-
bration, preserves high-saliency channels, and uses data-aware scaling to control outliers (Lin et al.,
2024b). DuQuant redistributes activation outliers via a dual transformation that rebalances ranges in
both activation and weight, enabling competitive W4A4 across dense LLMs (Lin et al., 2024a).

In MoE architectures, the router is the most critical component as its outputs determine which ex-
perts are activated; even small quantization errors can cascade into misrouted tokens and domi-
nate accuracy loss. Existing MoE-specific PTQ methods only partially address this challenge. Al-
though MoEQuant reweights expert calibration by router weights, it does not directly correct the
quantization-induced discrepancy in router decisions (Chen et al., 2025). EAQuant applies an ad-
ditional KL-divergence objective to align router logit distributions, but this merely matches score
distributions and does not explicitly address rank inversions or prevent expert flipping (Fu et al.,
2025). In contrast, our approach directly targets router stability: we aim to preserve the ranking of
selected experts while also preserving score margins between them, thereby reducing the likelihood
of rank flips and improving robustness during inference.

3 METHODOLOGY

PTQ of MoE is challenging since experts have heterogeneous statistics, and the router’s top-k se-
lection is brittle to small logit noise. We address these issues with three objectives. First, §3.2
introduces an Expert-Aware Scale that assigns each expert its own channelwise factor, balancing
activation and weight ranges per channel. Second, §3.3 proposes a Rank-Aware Jaccard Loss that
preserves the ranking of experts between the quantized and full-precision routers. Third, §3.4 in-
troduces a Gap Hinge Loss that preserves score margins to stabilize expert ordering. As illustrated
in Figure 3, the Expert-Aware Scale calibrates per-expert quantization, while the two router losses
align selection with FP16, together enabling robust MoE quantization.

3.1 PRELIMINARIES

Mixture of Experts. An MoE layer comprises a router and a pool of experts. Given a token
representation, the router produces routing scores and activates only a small subset of experts (sparse
gating), typically the top-k with the highest scores. Each selected expert processes the same input
in parallel, and the layer aggregates their outputs with router-derived weights. In language models,
experts are usually lightweight position-wise feed-forward networks (FFNs/MLPs), enabling high
capacity with limited compute by keeping activation sparse across tokens (Shazeer et al., 2017;
Fedus et al., 2022). Formally, the MoE output aggregates selected expert outputs as

y =
∑

j∈top -k
(
g(x)

)πj(x) Ej(x), (1)

3
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Figure 3: The overview of ExpertQuant.

where the router produces scores via router g, top -k selects the active experts, πj(x) denotes the
normalized routing weight for expert j, and Ej denotes the expert function. This design yields
conditional computation that scales model capacity while preserving inference efficiency.

Post-Training Quantization. PTQ converts a floating-point network into a low-precision model
without gradient updates. Given a small calibration set, PTQ estimates activation ranges, chooses
a quantization scheme (e.g., uniform affine, symmetric or asymmetric), and assigns scales at ap-
propriate granularities. In transformer blocks, linear-layer weights typically use per-channel quan-
tization for stronger error control, while activations use per-token or per-tensor scales for amortized
overhead. Runtime inserts integer arithmetic on the quantized path and dequantizes only at layer
boundaries needed by residual connections or mixed-precision kernels. A generic b-bit uniform
affine quantizer with scale s > 0 and integer zero-point z reconstructs a dequantized tensor x̂ from
a real-valued tensor x as

x̂ = s
(
clip

(⌊x
s

⌉
+ z, qmin, qmax

)
− z

)
, (2)

where qmin and qmax denote the integer bounds (e.g., −2b−1 to 2b−1 − 1 for symmetric b-bit), and
⌊·⌉ is the rounding function. Practical refinements include bias correction, range smoothing for
outliers, and rounding optimization to minimize the reconstruction error of salient channels (Jacob
et al., 2018; Frantar et al., 2022; Xiao et al., 2023; Lin et al., 2024b).

3.2 EXPERT-AWARE SCALE (ES)

Prior work in the multi-expert setting first computes a per-channel scale for each expert and then
takes the maximum across experts, which forces all experts in the same layer to share one scale
per channel (Fu et al., 2025); this max-aggregation is dominated by a few heavy-tailed experts
and therefore either clips light-tailed experts or wastes quantization levels on the majority. This
can be observed from the activation landscapes in Figure 4 that experts exhibit markedly different
activation and weight statistics.2 We therefore choose to assign each expert its own channel-wise
scale and implement it through an exact diagonal reparameterization. Let an MoE MLP take input
x ∈ Rd, and let expert i ∈ {1, . . . , E} use weights W i ∈ Rm×d with column W i

j for channel j.
Following the scaling strategy of SmoothQuant (Xiao et al., 2023), we introduce a positive diagonal
matrix Di = diag(s i), where s i = (s i

1, . . . , s
i
d), and rewrite the expert matrix multiplication as

W ix = (W iDi) (D
−1
i x) ≜ W̃ i x̃ i, (3)

which is algebraically exact in full precision; we then quantize W̃ i per channel and x̃ i per token.
The key is to choose s i to balance the ranges of the two operands for each expert and channel. Let

2Expert activations for additional layers for each model can be found from Figures 11 to 14.
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(a) OLMoE (b) DeepSeek-MoE (c) Qwen3-MoE

Figure 4: Expert activations in the last layer for each model.

|xj | be the magnitude of the j-th input activation observed on a small calibration set, and |W i
j |, the

absolute values of the corresponding weight column. We set the ES by

s i
j =

max(|xj |)α

max(|W i
j |) 1−α

, j = 1, . . . , d, i = 1, . . . , E, α ∈ [0, 1], (4)

to trade off how much normalization burden is placed on activations versus weights. In practice, the
maxima in Equation 4 can be replaced by high-percentile statistics for robustness and s i

j is clipped
to [smin, smax] to avoid extreme rescaling; both choices keep the form of Equation 4 unchanged.
Compared with the max-aggregation baseline (one shared sj across experts), the expert-aware de-
sign adapts to each expert’s local statistics, reduces activation clipping without destabilizing weight
quantization, preserves expert outputs that the router relies on, and thus improves MoE quantization
with negligible runtime cost (see Table 13).

3.3 RANK-AWARE JACCARD LOSS (RAJ)

As shown in Figure 2, quantization errors in the router are not arbitrary: the quantized router usually
selects experts that are close in rank to the FP16 choices, with most mistakes occurring near the top-
k experts. This suggests that aligning the set and order of selected experts is more important than
matching all experts, including those not selected. In particular, correcting which experts appear
in the top-k list, especially at higher ranks, can recover most of the lost accuracy. To capture this
phenomenon, we design a rank-weighted similarity objective. Let the FP16 and quantized router
logits be r(fp), r(q) ∈ RE , and denote their ordered top-k expert indices as

I = (i1, . . . , ik) = top -k(r(fp)), J = (j1, . . . , jk) = top -k(r(q)),

where I and J are the ordered sets of the selected expert indices for the full-precision and quantized
models, respectively. We assign geometric weights wr = β r−1 with β ∈ (0, 1] so that higher ranks
receive larger emphasis. Using these, we define affinity vectors Afp, Aq ∈ RE :

Afp(e) =

{
wr, e = ir,

0, otherwise,
Aq(e) =

{
wr, e = jr,

0, otherwise.

The RAJ similarity is then

JW (I, J) =

∑E
e=1 min

(
Afp(e), Aq(e)

)∑E
e=1 max

(
Afp(e), Aq(e)

) ∈ [0, 1], (5)

and the corresponding loss is LRAJ = 1− JW (I, J).

This design directly measures the agreement between FP16 and quantized top-k experts while pri-
oritizing higher ranks. Unlike logit-based losses, it is invariant to affine transformations of r that
preserve ordering, and becomes lower whenever a near-miss occurs (e.g., swapping rank-k and rank-
(k+1) experts). In this way, LRAJ focuses optimization exactly where MoE routers are most brittle
around the top-k experts.

5
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3.4 GAP HINGE LOSS (GH)

While RAJ aligns the top-k expert order, it does not control how close the router scores are between
adjacent experts. If two experts have nearly equal scores, even small quantization noise can flip
their ranks and destabilize routing. To address this, we explicitly encourage larger gaps between
consecutive experts, making the selection more robust to perturbations.

Formally, we extract paired FP16 and quantized scores on the fixed FP16 top-k index set:

r(fp)r = r
(fp)
ir

, r̃(q)r = r
(q)
ir

, r = 1, . . . , k, (6)
and define consecutive FP16 and quantized gaps as

∆(fp)
r = r(fp)r − r

(fp)
r+1, ∆(q)

r = r̃(q)r − r̃
(q)
r+1, r = 1, . . . , k − 1. (7)

The GH loss penalizes quantized gaps that shrink below the FP16 reference (up to γ ≥ 0):

LGH =
1

k − 1

k−1∑
r=1

[
∆(fp)

r −∆(q)
r + γ

]
+
, where [x]+ = max(0, x). (8)

Since our target is to preserve the margins, we simply set γ to 0. By preserving the logit gaps, LGH

reduces the probability of rank inversions caused by quantization.

Finally, we combine RAJ and GH into a unified router-consistency objective:
Lrouter = λRAJLRAJ + λGHLGH, λRAJ, λGH ≥ 0, (9)

where RAJ pulls the correct FP16 experts into the quantized top-k, and GH preserves the gaps that
keep them there. Together, they jointly mitigate routing errors induced by quantization. We also
provide a theoretical analysis in Section E explaining how RAJ and GH improve router stability
from the perspective of output differences.

4 EXPERIMENTS

4.1 SETTINGS

We conduct all experiments on a single NVIDIA A100 (80 GB) GPU using PyTorch and fix the
random seed across runs. For post-training calibration, we sample 256 sequences from the C4
corpus with a sequence length of 2048 tokens (Raffel et al., 2020). We use DuQuant (Lin et al.,
2024a) as our underlying quantization framework and apply per-token activation quantization and
per-channel weight quantization, following prior work (Fu et al., 2025). We configure the router with
8-bit weights and 8-bit activations (W8A8) in all experiments and ablation studies unless otherwise
specified. The hyperparameters are set to α = 0.6, β = 0.95, λRAJ = 1 and λGH = 1 throughout
all experiments. We evaluate our method on state-of-the-art MoE models: OLMoE (Muennighoff
et al., 2025), DeepSeek-MoE (Dai et al., 2024a), and Qwen3-MoE (Yang et al., 2025).

4.2 DATASET

We evaluate perplexity on WikiText-2 (Merity et al., 2017) and C4 (Raffel et al., 2020). For zero-
shot accuracy, we use ARC-Challenge, ARC-Easy (Clark et al., 2018), BoolQ (Clark et al., 2019),
HellaSwag (Zellers et al., 2019), OpenBookQA (Mihaylov et al., 2018), RTE (Dagan et al., 2005),
and WinoGrande (Sakaguchi et al., 2021). We follow the standard zero-shot protocol (no in-context
examples) and score multiple-choice options by their average token log-likelihood.

4.3 EVALUATION METRICS

We evaluate models using token-level perplexity, zero-shot accuracy, and router consistency. Per-
plexity measures the model’s average surprise over the evaluation corpus, where lower values indi-
cate better language modeling; accuracy measures the fraction of correct predictions on downstream
tasks, where higher values are better. We compute perplexity with each model’s native tokenizer
and measure accuracy under the standard zero-shot protocol. For zero-shot benchmarks, we use the
open-source lm-evaluation-harness (v0.4.9.1) to standardize prompting and scoring under
its default configuration (Gao et al., 2024). Router consistency is quantified by the Match Score
defined in Appendix A, and complete per-task results appear in Appendix B.
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Table 1: Main results under W4A4. DuQuant serves as the baseline; the comparison includes
MoEQuant, EAQuant, and ExpertQuant on OLMoE, DeepSeek-MoE, and Qwen3-MoE.

Model Method Perplexity ↓ Accuracy ↑

Wiki2 C4 ARC-C ARC-E BoolQ HellaS OBQA RTE Wino. Average

OLMoE

FP16 6.65 10.86 46.59 77.10 70.09 58.47 32.60 71.12 68.51 60.64
DuQuant 8.28 12.20 40.96 72.26 63.88 54.99 30.20 60.43 64.72 55.35 (-)

MoEQuant 8.03 12.02 40.70 73.44 66.30 55.69 29.60 62.09 63.38 55.89 (+0.97%)
EAQuant 7.75 11.75 41.38 73.65 66.97 56.05 31.00 62.45 65.43 56.70 (+2.45%)

ExpertQuant 7.73 11.73 43.17 72.85 65.57 56.21 32.00 69.31 65.67 57.83 (+4.48%)

DeepSeek

FP16 6.51 9.10 45.14 75.88 72.69 58.10 32.40 62.82 70.32 59.62
DuQuant 7.66 10.52 39.25 71.33 64.89 53.54 25.00 57.04 64.64 53.67 (-)

MoEQuant 7.55 10.24 39.08 70.83 66.67 53.54 26.60 58.24 64.09 54.15 (+0.89%)
EAQuant 7.34 10.07 38.40 71.00 68.44 54.68 26.80 57.04 65.82 54.60 (+1.73%)

ExpertQuant 7.31 10.06 40.19 72.01 68.65 55.12 28.80 59.93 64.40 55.59 (+3.57%)

Qwen3

FP16 8.70 12.31 52.56 79.34 88.75 59.52 34.00 83.03 70.32 66.79
DuQuant 9.86 13.62 46.33 73.44 86.67 56.71 32.60 80.51 64.25 62.93 (-)

MoEQuant 9.85 13.58 47.18 73.99 86.64 55.29 31.80 80.14 65.82 62.98 (+0.08%)
EAQuant 9.59 13.29 49.15 75.29 86.48 56.72 30.40 77.62 66.46 63.16 (+0.37%)

ExpertQuant 9.58 13.28 49.66 75.84 86.64 56.69 32.40 79.78 66.61 63.95 (+1.61%)

Table 2: Main results under W4A8. DuQuant serves as the baseline; the comparison includes
MoEQuant, EAQuant, and ExpertQuant on OLMoE, DeepSeek-MoE, and Qwen3-MoE.

Model Method Perplexity ↓ Accuracy ↑

Wiki2 C4 ARC-C ARC-E BoolQ HellaS OBQA RTE Wino. Average

OLMoE

FP16 6.65 10.86 46.59 77.10 70.09 58.47 32.60 71.12 68.51 60.64
DuQuant 7.30 11.41 43.60 73.53 65.93 56.98 31.20 62.09 66.54 57.12 (-)

MoEQuant 7.22 11.30 43.94 75.21 65.47 56.52 31.00 66.45 66.85 57.92 (+1.39%)
EAQuant 7.27 11.25 41.78 73.24 67.22 56.52 31.80 67.51 66.92 57.86 (+1.28%)

ExpertQuant 7.14 11.25 41.89 72.85 67.68 57.16 31.40 68.59 67.09 58.09 (+1.70%)

DeepSeek

FP16 6.51 9.10 45.14 75.88 72.69 58.10 32.40 62.82 70.32 59.62
DuQuant 7.02 9.70 41.47 73.44 70.37 56.21 29.20 60.28 67.32 56.90 (-)

MoEQuant 6.90 9.58 41.47 73.19 72.08 56.75 28.60 59.21 67.96 57.04 (+0.24%)
EAQuant 6.89 9.58 41.89 74.07 71.38 56.34 29.20 60.29 67.96 57.30 (+0.71%)

ExpertQuant 6.88 9.56 42.83 74.28 73.12 56.68 29.20 61.37 68.27 57.96 (+1.87%)

Qwen3

FP16 8.70 12.31 52.56 79.34 88.75 59.52 34.00 83.03 70.32 66.79
DuQuant 9.20 12.69 52.13 79.42 86.35 58.07 33.40 79.03 66.98 65.05 (-)

MoEQuant 9.19 12.67 51.28 77.78 88.87 58.17 33.80 80.51 67.88 65.47 (+0.64%)
EAQuant 9.13 12.62 51.54 78.20 85.85 58.52 35.00 80.87 67.32 65.33 (+0.42%)

ExpertQuant 9.01 12.61 52.99 78.54 87.95 58.53 35.40 82.67 69.14 66.46 (+2.16%)
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79.6% 14.1% 3.7% 1.3% 0.5% 0.3% 0.2% 0.1%

14.4% 59.1% 16.7% 5.4% 2.1% 1.0% 0.5% 0.3%

3.7% 17.0% 49.9% 17.0% 6.2% 2.6% 1.3% 0.7%

1.2% 5.5% 17.3% 44.2% 16.9% 6.8% 3.2% 1.7%

0.5% 2.0% 6.3% 17.0% 39.3% 16.7% 7.5% 3.8%

0.2% 0.9% 2.6% 6.9% 16.7% 34.5% 16.2% 8.2%

0.1% 0.5% 1.2% 3.2% 7.5% 16.2% 29.8% 15.7%

0.1% 0.3% 0.7% 1.6% 3.8% 8.2% 15.7% 25.4%

1 2 3 4 5 6 7 8
ExpertQuant Rank

1
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3
4

5
6

7
8

82.4% 12.8% 3.0% 0.9% 0.4% 0.2% 0.1% 0.1%

13.0% 63.3% 15.7% 4.6% 1.6% 0.7% 0.4% 0.2%

3.0% 16.1% 54.3% 16.5% 5.5% 2.2% 1.0% 0.5%

0.9% 4.6% 16.8% 48.6% 16.6% 6.2% 2.7% 1.4%

0.3% 1.6% 5.6% 16.8% 43.7% 16.7% 6.9% 3.3%

0.1% 0.7% 2.1% 6.2% 16.7% 38.8% 16.6% 7.8%

0.1% 0.3% 1.0% 2.7% 6.9% 16.5% 33.9% 16.4%

0.0% 0.2% 0.5% 1.3% 3.3% 7.7% 16.2% 29.1%

(a) W4A4
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86.9% 10.4% 1.9% 0.5% 0.2% 0.1% 0.0% 0.0%

10.4% 71.1% 13.7% 3.2% 0.9% 0.3% 0.1% 0.1%

1.9% 13.7% 62.9% 15.1% 4.1% 1.3% 0.5% 0.2%

0.5% 3.2% 15.0% 57.4% 15.7% 4.8% 1.8% 0.7%

0.2% 0.9% 4.1% 15.6% 52.4% 16.4% 5.7% 2.3%

0.1% 0.3% 1.3% 4.9% 16.3% 47.1% 16.8% 6.7%

0.0% 0.1% 0.5% 1.8% 5.7% 16.8% 41.7% 17.1%

0.0% 0.1% 0.2% 0.7% 2.4% 6.7% 17.1% 36.4%

1 2 3 4 5 6 7 8
ExpertQuant Rank

1
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3
4

5
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7
8

88.3% 9.5% 1.6% 0.4% 0.1% 0.0% 0.0% 0.0%

9.5% 73.7% 12.8% 2.7% 0.7% 0.3% 0.1% 0.1%

1.6% 12.8% 66.0% 14.2% 3.5% 1.1% 0.4% 0.2%

0.4% 2.8% 14.1% 60.8% 14.9% 4.2% 1.5% 0.6%

0.1% 0.8% 3.6% 14.8% 56.2% 15.7% 5.0% 2.0%

0.0% 0.3% 1.1% 4.3% 15.5% 51.3% 16.3% 6.0%

0.0% 0.1% 0.4% 1.5% 5.0% 16.1% 46.1% 16.9%

0.0% 0.0% 0.2% 0.6% 2.0% 6.0% 16.6% 40.7%

(b) W4A8
Figure 5: Layer-averaged confusion matrices of router top-k indices versus FP16 on OLMoE; Ex-
pertQuant shows stronger on-diagonal alignment than DuQuant.

4.4 RESULTS

Main Results. Tables 1 and 2 summarize PTQ performance on OLMoE, DeepSeek-MoE, and
Qwen3-MoE. Across both bit settings, ExpertQuant attains the best average accuracy among PTQ
baselines and closes the perplexity gap to full precision. Relative to DuQuant, ExpertQuant improves
the average zero-shot accuracy at W4A4 by +4.48% on OLMoE, +3.57% on DeepSeek-MoE, and
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Table 4: Ablation of ExpertQuant objectives on OLMoE (W4A4).

ES RAJ GH ARC-C ARC-E BoolQ HellaS OBQA RTE Wino. Avg. ↑
40.96 72.26 63.88 54.99 30.20 60.43 64.72 55.35

✓ 41.30 73.36 65.96 56.40 31.00 64.62 66.06 56.96 (+2.91%)
✓ ✓ 41.89 72.84 65.38 56.25 31.00 67.51 65.87 57.25 (+3.43%)
✓ ✓ 43.09 73.32 65.42 56.15 31.60 68.23 65.52 57.62 (+4.10%)
✓ ✓ ✓ 43.17 72.85 65.57 56.21 32.00 69.31 65.67 57.83 (+4.48%)

+1.61% on Qwen3-MoE, and at W4A8 by +1.70% on OLMoE, +1.87% on DeepSeek-MoE, and
+2.16% on Qwen3-MoE. It also yields the lowest perplexity among quantized methods under W4A4
and W4A8. Overall, ExpertQuant consistently strengthens accuracy while preserving perplexity
across diverse MoE backbones and bit budgets, supporting our design of expert-specific scaling and
router-consistency losses for robust PTQ of MoE. We also provide the weight-only quantization
comparison in Section C.

Table 3: Match Score under W4A4 and
W4A8 across different methods.

Bits Method Match Score ↑
OLMoE DeepSeek Qwen3

W4A4

DuQuant 63.71 56.11 51.68
MoEQuant 64.25 57.38 52.23
EAQuant 65.02 58.11 52.45

ExpertQuant 66.95 59.24 53.97

W4A8

DuQuant 72.87 62.56 66.17
MoEQuant 73.69 62.88 66.97
EAQuant 73.54 63.96 66.86

ExpertQuant 75.25 65.00 68.13

Router Consistency (Match Score). Table 3 re-
ports the agreement between FP16 routing and each
PTQ method, while the layer-averaged confusion
matrices in Figure 5 visualize the same trend. Across
OLMoE, DeepSeek-MoE, and Qwen3-MoE, Ex-
pertQuant achieves the highest match scores under
both W4A4 and W4A8, indicating that its quantized
router decisions remain closest to the full-precision
baseline. Notably, these improvements in routing
consistency directly parallel the accuracy gains re-
ported in Tables 1 and 2: methods that better pre-
serve router behavior deliver stronger accuracy at the
same bit level. This reinforces our design principle
that stabilizing router rankings is essential for low-bit MoE inference and translates into downstream
performance improvements.

4.5 ABLATION STUDY

Objective-wise Impact. We quantify the contribution of each objective on OLMoE at W4A4
(Table 4). Starting from the DuQuant baseline, ES alone raises the average to 56.96. On top of
ES, RAJ lifts performance to 57.25, and GH to 57.62, with GH providing the larger incremental
gain. Enabling all three objectives yields the best result, 57.83. The monotonic gains from ES →
ES+RAJ/GH → ES+RAJ+GH align with the match-score trends in Table 3, supporting our design
that directly targets router consistency.

Lower-Precision Robustness. Pushing weights to 3-bit while keeping activations at 8-bit stresses
the MoE pipeline, yet ExpertQuant remains the most robust. All methods experience a drop in
accuracy relative to FP16, yet ExpertQuant shows the smallest gap and attains the best average
accuracy (Table 5). The trend aligns with our routing hypothesis: lower weight precision amplifies
rank flips and narrows score margins, making router consistency increasingly critical. ES stabilizes
per-expert activation ranges, and RAJ/GH improve the match score by preserving rankings and
margin gaps, which in turn sustains downstream accuracy under the more aggressive W3A8 setting.

Table 5: W3A8 results on the OLMoE.

Method Wiki2 ↓ C4 ↓ Avg. ↑

FP16 6.65 10.86 60.64
DuQuant 10.78 14.33 51.90

MoEQuant 8.89 12.74 53.64
EAQuant 8.79 12.66 53.58

ExpertQuant 8.75 12.65 54.96

Rank-Decay Sensitivity (β). We study the
weighting parameter β in RAJ (Figure 6), which
controls how importance decays across expert ranks:
β = 1 assigns uniform weight to all top-k ranks,
while a smaller β applies an exponential decay
that emphasizes higher-ranked experts. Sweeping
β ∈ {0.85, 0.90, 0.95, 1.00}, we find that β = 0.95
consistently yields the best average accuracy under
both W4A4 and W4A8. β ≤ 0.90 overemphasize
the top-1 and top-2 experts and amplify noise from
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β Value

56

57

58
A

v
g.

 A
cc

.

57.37

57.83
57.58

57.24

58.0858.09
57.8357.78

W4A4

W4A8

Figure 6: Average accuracy of different β on OL-
MoE under W4A4 and W4A8.

1:4 1:2 1:1 2:1 4:1
λRAJ : λGH Ratio
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Figure 7: Effect of λRAJ:λGH on OLMoE under
W4A4 and W4A8.

Table 6: RAJ compared with KL divergence and cosine similarity on OLMoE (W4A4).

Method ARC-C ARC-E BoolQ HellaS OBQA RTE Wino. Avg. ↑
ES+GH+KL 41.98 71.59 67.92 55.87 29.00 67.87 66.30 57.22
ES+GH+Cosine 42.66 71.17 67.13 55.77 30.60 66.79 65.43 57.08
ES+GH+RAJ 43.17 72.85 65.57 56.21 32.00 69.31 65.67 57.83

minor rank flips, whereas β = 1.00 spreads weight too uniformly and under-penalizes lower-rank
mismatches. The peak at β = 0.95 indicates that a mild exponential decay strikes the right balance,
prioritizing the top of the FP16 ranking while still regularizing lower ranks, thereby improving
router consistency and downstream accuracy.

Balancing Rank and Margin. The router-loss is Lrouter (Figure 7) is controlled by λRAJ and λGH

to balance between rank and margin preservation. A sweep over ratios {1:4, 1:2, 1:1, 2:1, 4:1} on
OLMoE shows that 1:1 attains the highest average accuracy under both W4A4 and W4A8. Skew-
ing the weights toward RAJ (e.g., 4:1) over-penalizes benign rank shuffles and dampens margins,
while favoring GH (e.g., 1:4) prioritizes separation but becomes less sensitive to near ties within
the top-k. The symmetric setting aligns the objectives, improving match score and yielding the best
downstream accuracy at the same bit budget.

DuQuant MoEQuant EAQuant ExpertQuant

56

57

58

A
v
er

a
ge

 A
cc

u
ra

cy

+3.43%

+2.63%

+1.71%

+1.42%
Original

Perfect Match

Figure 8: Average accuracy with “Perfect Match”
routing, where the quantized model follows the
FP16 top-k selections.

Perfect-Match Routing. To isolate the effect
of routing on downstream accuracy, the quan-
tized model is executed under a perfect-match
scheme in which the selected top-k experts
at every token exactly follow the FP16 router
while all experts remain quantized. On OL-
MoE at W4A4, this scheme boosts average ac-
curacy across methods, +3.43% for DuQuant,
+2.63% for MoEQuant, +1.71% for EAQuant,
and +1.42% for ExpertQuant, validating that
routing mismatches are a principal source of
PTQ degradation (Figure 8). The smaller head-
room for ExpertQuant is consistent with its
higher match score, showing that RAJ and GH
already recover much of the routing fidelity.

RAJ Alignment. To assess the role of our alignment choice, we replace RAJ with KL diver-
gence and cosine similarity alignment, all computed strictly on the top-k experts. Although these
alternatives align logits within the selected set, they remain magnitude- or angle-based and are not
inherently sensitive to ordering changes. RAJ, by contrast, directly compares the ordered top-k sets
with geometric rank weights and is invariant to affine logit transformations, making it responsive to
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Table 7: Results on VLM benchmarks. The comparison includes MoEQuant, EAQuant, and Ex-
pertQuant on Qwen3-VL-MoE (W4A4).

Method Accuracy ↑
GQA ChartQA ScienceQA RWQA K-DTC OCR MMMU ai2d Average

FP16 64.04 85.28 93.63 66.14 83.33 84.80 52.00 86.08 76.91
DuQuant 59.42 79.52 90.71 63.22 79.21 81.28 48.19 82.36 72.99 (-)

MoEQuant 60.26 80.28 91.93 63.22 80.55 82.31 48.22 83.97 73.84 (1.17%)
EAQuant 61.92 82.44 91.56 63.82 80.73 82.58 49.13 83.16 74.42 (1.96%)

ExpertQuant 62.08 84.17 92.17 64.08 81.19 82.98 50.90 83.16 75.09 (2.88%)

the near-neighbor rank flips that dominate MoE routing errors. As a result, KL and cosine provide
weaker guidance for stabilizing router rankings under quantization.

5 EXTENDING TO MULTIMODAL MOES

To further demonstrate that our proposed quantization framework generalizes beyond language-only
MoE models, we additionally evaluate it on a state-of-the-art multimodal architecture. Specifically,
we conduct experiments on the Qwen3-VL-30B-A3B-Instruct model (Yang et al., 2025) to assess
whether the same quantization strategies remain effective in vision–language settings.

For post-training calibration, we sample image–text pairs from the Flickr30k dataset (Plummer et al.,
2015), following an analogous setup to our experiments. We quantize the model using the same con-
figuration as in prior sections, with per-token activation quantization and per-channel weight quan-
tization, and we evaluate W4A4 variant. Multimodal performance is assessed using lmms-eval
(v0.5) under its default evaluation protocol. We test across a wide range of benchmarks covering
visual reasoning, document understanding, scientific question answering, and real-world perception:
GQA (Hudson & Manning, 2019), ChartQA (Masry et al., 2022), ScienceQA (Lu et al., 2022), Re-
alWorldQA (Zhang et al., 2025), K-DTCBench (Ju et al., 2024), OCRBench (Liu et al., 2024c),
MMMU (Yue et al., 2023), and AI2D Kembhavi et al. (2016).

Across all datasets, we observe that the W4A4 version of our method consistently outperforms
competing quantization baselines. Notably, the gap is especially clear on multimodal reasoning and
knowledge-intensive tasks. These findings validate that the proposed approach is not only effective
for large MoE language models but also transfers robustly to more complex multimodal systems,
highlighting its versatility and practical utility across diverse architectures.

6 CONCLUSION AND FUTURE WORK

This paper studies PTQ of MoE models and establishes that router performance governs low-bit ac-
curacy, with errors concentrating as near-neighbor flips near the top-k experts and arising from small
score margins. We present ExpertQuant, a training-free, calibration-only framework that combines
ES with RAJ and GH objectives to stabilize expert rankings and preserve margins; Empirically, the
framework yields lower perplexity on C4 and WikiText-2 and higher zero-shot accuracy on OLMoE,
DeepSeek-MoE, and Qwen3-MoE under W4A4 and W4A8. Looking ahead, we plan to extend our
framework to multimodal MoE settings, where heterogeneous modalities may amplify router insta-
bility under quantization. We also aim to study adaptive precision guided by observed rank gaps and
load patterns, as well as dynamic top-k routing under quantization, to further enhance robustness
and generalization across diverse tasks.

REPRODUCIBILITY STATEMENT

We provide our implementation to ensure the reproducibility of our results in https://
anonymous.4open.science/r/expert_quant-code/.
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A MATCH SCORE FOR ROUTER CONSISTENCY

We quantify the agreement between FP16 and quantized routing with a Match Score that evaluates
whether the quantized router preserves both the membership and the order of the FP16 top-k experts.
For each MoE layer ℓ ∈ {1, . . . , L}, let

I(ℓ) = (i
(ℓ)
1 , . . . , i

(ℓ)
k ) = top -k(r(fp)ℓ , k), J (ℓ) = (j

(ℓ)
1 , . . . , j

(ℓ)
k ) = top -k(r(q)ℓ , k),

denote the ordered top-k expert indices from FP16 and quantized router logits, respectively, where
top -k(·, k) returns the indices sorted by descending scores. Define the quantized rank function

ρ
(q)
ℓ (e) =

{
s, if e = j

(ℓ)
s for some s ∈ {1, . . . , k},

∞, if e /∈ J (ℓ),

so that an FP16-selected expert missing from the quantized top-k receives infinite rank (and thus
zero credit). The layerwise agreement is then averaged over the k FP16-selected experts and over
all L layers:

S =
1

kL

L∑
ℓ=1

k∑
r=1

1

1 +
∣∣ r − ρ

(q)
ℓ

(
i
(ℓ)
r

)∣∣ , (10)

with the convention 1/(1 + ∞) = 0. By construction, S ∈ [0, 1]; S = 1 if and only if the
quantized top-k exactly matches FP16 including ranks in every layer, and S approaches 0 when
FP16-selected experts are consistently absent from the quantized top-k or appear only at much lower
ranks. We compute r(fp)ℓ and r

(q)
ℓ for each input token and then report the dataset-level Match Score

by averaging Equation (10) over tokens in a held-out set. Equivalently, if S(t) denotes Equation (10)
evaluated on token t, the reported score is

S̄ =
1

T

T∑
t=1

S(t),

where T is the number of evaluated tokens. This metric is sensitive to both rank inversions within
the selected set and omissions of FP16-selected experts, which makes it a faithful proxy for router
consistency under quantization.

B COMPREHENSIVE RESULTS

This appendix compiles the complete numerical results that support the figures and claims in the
main text. Table 8 presents a module-wise ablation for OLMoE under W4A4, where leaving
the router unquantized yields the largest average gain over fully W4A4, while without quantiz-
ing the attention projections (q/k/v) has only marginal effects, indicating that routing is the most
quantization-sensitive module in this setting. Table 9 reports results under W3A8 across OLMoE,
DeepSeek-MoE, and Qwen3-MoE; on OLMoE, ExpertQuant attains the lowest perplexities and the
highest average accuracy, improving over DuQuant by +5.89% and outperforming MoEQuant and
EAQuant.

Sweeping the RAJ sharpness parameter β in Table 10 shows performance peaking near β=0.95 for
both W4A4 and W4A8, suggesting that moderately sharp rank penalties best stabilize router order-
ings without overfitting. Balancing the loss weights in Lrouter = λRAJLRAJ + λGHLGH (Table 11)
indicates that a 1:1 ratio between λRAJ and λGH consistently yields the best or near-best averages
under both bit settings, highlighting the complementarity of rank and margin preservation. Finally,
Table 12 evaluates an oracle “Perfect Match” that replaces each quantized router’s top-k expert in-
dices with the FP16 selections at inference time while keeping all other modules unchanged; all
methods benefit, reinforcing that preserving FP16 routing decisions is a principal driver of down-
stream accuracy and that our rank- and margin-aware objectives address the key failure mode.

C ADDITIONAL EXPERIMENTS

Runtime Efficiency. We evaluate end-to-end decoding throughput (Tokens/Sec.) on a single
NVIDIA A100 with batch size 1, using prompts of 1024 tokens and generating 128 tokens, and
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Table 8: W4A4 on OLMoE; w/o leaves that module unquantized.

Method ARC-C ARC-E BoolQ HellaS OBQA RTE Wino. Avg.

W4A4 40.96 70.75 66.85 55.66 29.40 64.28 64.56 56.07

w/o q 39.24 70.45 66.54 56.05 29.40 66.06 65.27 56.14 (+0.14%)
w/o k 39.76 70.26 66.38 55.84 29.40 66.06 65.19 56.13 (+0.11%)
w/o v 40.96 70.75 66.85 55.57 30.80 64.32 64.56 56.26 (+0.34%)

w/o router 42.49 71.17 66.42 55.97 30.60 65.70 65.98 56.90 (+1.50%)

Table 9: Results under W3A8. DuQuant serves as the baseline; the comparison includes MoE-
Quant, EAQuant, and ExpertQuant on OLMoE, DeepSeek-MoE, and Qwen3-MoE.

Model Method Perplexity ↓ Accuracy ↑
Wiki2 C4 ARC-C ARC-E BoolQ HellaS OBQA RTE Wino. Average

OLMoE

FP16 6.65 10.86 46.59 77.10 70.09 58.47 32.60 71.12 68.51 60.64
DuQuant 10.78 14.33 36.00 66.71 61.74 50.76 27.60 61.37 59.12 51.90 (-)

MoEQuant 8.89 12.74 37.28 68.73 66.91 54.35 28.20 57.04 62.98 53.64 (+3.36%)
EAQuant 8.79 12.66 37.12 68.73 62.08 54.46 28.60 59.57 64.48 53.58 (+3.23%)

ExpertQuant 8.75 12.65 38.48 70.79 63.85 54.58 30.60 60.65 65.75 54.96 (+5.89%)

Table 10: β in RAJ on OLMoE (W4A4 and W4A8).

Bits β-value ARC-C ARC-E BoolQ HellaS OBQA RTE Wino. Avg. ↑

W4A4

0.85 42.22 72.22 65.38 56.08 32.20 66.72 65.88 57.24
0.90 42.58 72.81 66.12 56.33 31.00 68.95 65.27 57.58
0.95 43.17 72.85 65.57 56.21 32.00 69.31 65.67 57.83
1.00 42.06 72.60 65.84 56.19 31.60 66.72 66.61 57.37

W4A8

0.85 41.81 72.98 67.71 57.13 31.00 66.06 67.80 57.78
0.90 41.89 73.02 67.71 57.07 31.00 66.43 67.72 57.83
0.95 41.89 72.85 67.68 57.16 31.40 68.59 67.09 58.09
1.00 41.89 72.98 67.71 57.16 30.80 68.95 67.09 58.08

Table 11: λRAJ:λGH on OLMoE (W4A4 and W4A8).

Bits λRAJ:λGH ARC-C ARC-E BoolQ HellaS OBQA RTE Wino. Avg. ↑

W4A4

1:4 42.41 73.57 65.05 55.95 31.20 67.15 65.04 57.20
1:2 41.17 72.85 65.57 56.21 32.00 69.31 65.57 57.53
1:1 43.17 72.85 65.57 56.21 32.00 69.31 65.67 57.83
2:1 43.17 72.85 65.57 56.21 32.00 69.31 65.67 57.83
4:1 43.17 72.85 65.57 56.21 32.00 69.31 65.67 57.83

W4A8

1:4 41.81 73.06 67.68 57.13 30.80 66.79 67.80 57.87
1:2 41.55 72.98 67.89 57.13 31.20 68.95 66.77 58.07
1:1 41.89 72.85 67.68 57.16 31.40 68.59 67.09 58.09
2:1 41.89 72.98 67.71 57.16 30.80 68.95 67.09 58.08
4:1 41.89 72.98 67.71 57.16 30.80 68.95 67.09 58.08
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Table 12: “Perfect” replaces each quantized router’s top-k expert indices with the indices selected
by the FP16 router at inference time, while keeping all other modules unchanged.

Method ARC-C ARC-E BoolQ HellaS OBQA RTE Wino. Avg.

FP16 46.59 77.10 70.09 58.47 32.60 71.12 68.51 60.64

DuQuant 40.96 72.26 63.88 54.99 30.20 60.43 64.72 55.35
DuQuant (perfect) 42.66 74.75 66.88 55.69 31.80 64.98 64.01 57.25

MoEQuant 40.70 73.44 66.30 55.69 29.60 62.09 63.38 55.89
MoEQuant (perfect) 42.58 75.38 64.65 55.87 30.60 65.70 66.77 57.36

EAQuant 41.38 73.65 66.97 56.05 31.00 62.45 65.43 56.70
EAQuant (perfect) 43.09 74.54 66.91 55.93 31.60 64.98 66.61 57.67

ExpertQuant 43.17 72.85 65.57 56.21 32.00 69.31 65.67 57.83
ExpertQuant (perfect) 43.40 74.20 65.66 56.26 32.80 70.32 67.88 58.65

we report the mean ± std over five runs with the router fixed to W8A8. The Table 13 shows that
DuQuant, MoEQuant, and EAQuant achieve similar runtimes with small standard deviations, indi-
cating that ExpertQuant remains comparable even when incorporating heterogeneous expert scaling.
This parity is expected because ES introduces only a lightweight per-expert scaling that is applied
once during quantization and reduces to a constant multiplication at inference, incurring negligible
overhead. Similarly, RAJ and GH are optimization objectives that are invoked only in the calibra-
tion stage to adjust quantization parameters, and thus do not alter the forward pass or add runtime
cost. As a result, the inference computation graph and memory traffic remain identical to the base-
line, ensuring that ExpertQuant preserves runtime efficiency while providing superior accuracy and
perplexity.

Table 13: Tokens-per-second throughput under W4A8. Values are reported as mean±std over 5
runs.

Model Tokens-per-second ↑
OLMoE DeepSeek Qwen3

DuQuant 6.52 ± 0.01 23.88 ± 0.05 1.17 ± 0.01
MoEQuant 6.84 ± 0.03 24.56 ± 0.06 1.21 ± 0.02
EAQuant 6.72 ± 0.05 24.14 ± 0.07 1.20 ± 0.01

ExpertQuant 6.49 ± 0.03 23.79 ± 0.06 1.16 ± 0.01

Weight-only quantization (W4A16). The main experiments in the paper primarily focus on sce-
narios where both weights and activations are quantized (W4A4, W4A8). To assess whether our
method remains effective without activation quantization, we further conduct evaluations under the
weight-only setting (W4A16). Compared against strong baselines such as AWQ (Lin et al., 2024b)
and GPTQ (Frantar et al., 2022), our method consistently achieves large gains in zero-shot accuracy
(See Table 14). This demonstrates that our approach not only addresses activation outliers but also
provides robust improvements when only the weight domain is quantized.

Varying calibration samples. Throughout the main experiments, the number of calibration sam-
ples is fixed at 256. To examine the sensitivity of our method to this choice, we additionally conduct
experiments with 128 and 512 calibration samples (see Table 15 and 16). In both cases, our method
continues to outperform all baselines by a clear margin. These results suggest that our method is
robust across different calibration budgets and does not rely on a carefully chosen sample size to
deliver improvements.

Alternative calibration dataset. The primary results in the paper adopt C4 as the calibration
dataset. To evaluate whether our method generalizes to other corpora, we also perform calibration
on WikiText-2 (see Table 17). Even under this shift in data distribution, our method maintains
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consistent advantages over all competing approaches. This highlights that our improvements are not
tied to a specific calibration corpus and confirms the general applicability of our design.

Table 14: Zero-shot accuracy under W4A16 quantization.

Model Method Accuracy ↑
ARC-C ARC-E BoolQ HellaS OBQA RTE Wino. Average

OLMoE

FP16 46.59 77.10 70.09 58.47 32.60 71.12 68.51 60.64
AWQ 41.55 74.49 66.67 56.69 31.40 63.90 65.43 57.16
GPTQ 42.66 75.21 67.34 57.33 31.80 62.82 67.72 57.84

ExpertQuant 45.22 75.21 70.00 57.66 32.60 62.82 68.27 58.83

DeepSeek

FP16 45.14 75.88 72.69 58.10 32.40 62.82 70.32 59.62
AWQ 41.38 72.22 65.66 55.73 28.40 57.04 66.61 55.29
GPTQ 42.49 73.61 67.55 56.21 29.40 60.43 65.67 56.48

ExpertQuant 44.45 74.37 73.82 56.62 30.00 64.62 68.75 58.95

Qwen3

FP16 52.56 79.34 88.75 59.52 34.00 83.03 70.32 66.79
AWQ 45.73 73.53 86.48 56.51 33.60 80.51 67.80 63.45
GPTQ 48.81 76.94 87.95 57.01 32.80 77.98 68.82 64.33

ExpertQuant 53.07 79.25 88.69 58.66 32.80 81.23 68.98 66.10

D ADDITIONAL VISUALIZATIONS

To complement the analyses in the main text, we provide extended visualizations for both router
behavior and expert activations. First, confusion matrices for additional OLMoE layers are shown
in Figures 9 and 10. These figures confirm our earlier observation that router errors after quan-
tization are highly localized: most mis-selections occur between neighboring experts, with errors
clustering near the diagonal rather than spreading arbitrarily. This further supports the claim that
router performance is the dominant factor for MoE quantization.

Second, we present detailed activation distributions across experts at different depths. As shown
in Figures 11 to 14, experts within the same layer exhibit markedly heterogeneous activation ranges.
This reinforces the motivation behind our Expert-Aware Scale, which assigns each expert its own
scaling factor instead of relying on max-aggregation across experts. These visualizations clearly
illustrate why per-expert scaling avoids over-clipping light-tailed experts and prevents wasted quan-
tization levels on the majority of channels.

Table 15: Zero-shot accuracy under W4A4 quantization with 128 calibration samples from C4.

Model Method Accuracy ↑
ARC-C ARC-E BoolQ HellaS OBQA RTE Wino. Average

OLMoE

FP16 46.59 77.10 70.09 58.47 32.60 71.12 68.51 60.64
DuQuant 40.53 70.24 65.20 55.20 29.80 62.82 63.06 55.26

MoEQuant 39.85 71.59 65.81 54.86 29.60 62.82 65.43 55.71
EAQuant 39.24 71.00 65.66 55.01 31.00 63.54 63.93 55.63

ExpertQuant 39.76 71.00 65.66 55.81 31.80 66.79 64.17 56.43

Table 16: Zero-shot accuracy under W4A4 quantization with 512 calibration samples from C4.

Model Method Accuracy ↑
ARC-C ARC-E BoolQ HellaS OBQA RTE Wino. Average

OLMoE

FP16 46.59 77.10 70.09 58.47 32.60 71.12 68.51 60.64
DuQuant 38.74 69.74 65.66 55.20 29.80 63.54 63.85 55.22

MoEQuant 40.53 72.10 63.67 54.96 28.40 65.70 64.56 55.70
EAQuant 41.72 72.85 65.90 55.92 30.60 67.51 66.56 57.29

ExpertQuant 42.66 74.62 65.63 55.91 31.60 69.31 66.46 58.03
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Table 17: Zero-shot accuracy under W4A4 quantization with 256 calibration samples from
WikiText-2.

Model Method Accuracy ↑
ARC-C ARC-E BoolQ HellaS OBQA RTE Wino. Average

OLMoE

FP16 46.59 77.10 70.09 58.47 32.60 71.12 68.51 60.64
DuQuant 39.16 69.82 64.37 55.01 27.40 62.45 62.19 54.34

MoEQuant 39.60 72.18 67.80 55.30 28.40 63.18 65.75 56.03
EAQuant 41.72 73.86 65.81 55.93 28.20 62.85 64.17 56.08

ExpertQuant 42.49 73.95 68.01 56.02 28.60 63.18 65.90 56.88
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Layer 7

Figure 9: Confusion matrices at layer 0-7 comparing FP16 vs. EAQuant top-k indices under W4A4.
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Figure 10: Confusion matrices at layer 8-15 comparing FP16 vs. EAQuant top-k indices under
W4A4.
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(a) OLMoE (b) DeepSeek-MoE (c) Qwen3-MoE

Figure 11: Expert activations in the 2nd layer for each model.

(a) OLMoE (b) DeepSeek-MoE (c) Qwen3-MoE

Figure 12: Expert activations in the 6th layer for each model.

(a) OLMoE (b) DeepSeek-MoE (c) Qwen3-MoE

Figure 13: Expert activations in the 10th layer for each model.

(a) OLMoE (b) DeepSeek-MoE (c) Qwen3-MoE

Figure 14: Expert activations in the 14th layer for each model.
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E THEORETICAL MOTIVATION FOR ROUTER STABILITY

In this section, we provide a theoretical explanation for why the Rank-Aware Jaccard (RAJ) and
Gap Hinge (GH) losses are effective in solving the router stability issue.

Recall. An MoE layer with E experts and top-k routing computes, for an input x:

y(x) =
∑

j∈top -k

πj(x) Ej(x), (11)

where πj(x) are (normalized) routing weights derived from r(x), and Ej denotes the j-th expert.
We consider a full-precision router r(fp) and its quantized counterpart r(q). Let:

I = (i1, . . . , ik) = top -k
(
r(fp)(x)

)
, (12)

J = (j1, . . . , jk) = top -k
(
r(q)(x)

)
(13)

be the ordered top-k expert indices for the full-precision and quantized routers, respectively. The
corresponding MoE outputs are y(fp)(x) and y(q)(x).

Quantizing router logits perturbs both the set and the order of the selected experts, as well as their
routing weights. We show that the resulting MoE output error decomposes into: (i) a term that
depends on how many top-k ranks disagree between the full-precision and quantized routers, and
(ii) a term that depends on weight discrepancies for experts whose ranks are preserved. This makes
explicit why rank-aware alignment (RAJ) and margin enforcement (GH) directly targets the two
components that govern quantization robustness.

E.1 RANK-AWARE MOE ERROR DECOMPOSITION

We first define the number of rank mismatches:

drank(I, J) :=

k∑
r=1

1[ ir ̸= jr ]. (14)

Lemma 1 (Rank-aware MoE error decomposition). Assume supj ∥Ej(x)∥2 ≤ C(x) for some

C(x) > 0, and let π(fp)
j and π

(q)
j denote the routing weights computed from r(fp) and r(q). Then:

∥∥y(q)(x)− y(fp)(x)
∥∥
2

≤ C(x)

2 drank(I, J) +
∑

j∈I∩J

∣∣π(q)
j − π

(fp)
j

∣∣ . (15)

Proof. We expand the difference:

y(q)(x)− y(fp)(x) =
∑
j∈J

π
(q)
j Ej(x) −

∑
j∈I

π
(fp)
j Ej(x) (16)

=

E∑
j=1

(
π
(q)
j 1[j ∈ J ]− π

(fp)
j 1[j ∈ I]

)
Ej(x). (17)

Apply the triangle inequality and the bound ∥Ej(x)∥2 ≤ C(x):

∥∥y(q)(x)− y(fp)(x)
∥∥
2
≤ C(x)

E∑
j=1

∣∣π(q)
j 1[j ∈ J ]− π

(fp)
j 1[j ∈ I]

∣∣. (18)

Define the disjoint sets:

S1 := I \ J, S2 := J \ I, S3 := I ∩ J.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Then the scalar sum in Equation (18) becomes:

E∑
j=1

∣∣π(q)
j 1[j ∈ J ]− π

(fp)
j 1[j ∈ I]

∣∣ (19)

=
∑
j∈S1

π
(fp)
j +

∑
j∈S2

π
(q)
j +

∑
j∈S3

∣∣π(q)
j − π

(fp)
j

∣∣. (20)

Because routing weights satisfy 0 ≤ π
(·)
j ≤ 1, we have:∑

j∈S1

π
(fp)
j +

∑
j∈S2

π
(q)
j ≤ |S1|+ |S2| = |I△J |, (21)

where I△J is the symmetric difference. Since I and J are ordered lists of length k, each rank
mismatch ir ̸= jr can contribute at most two elements to the symmetric difference (one from I , one
from J). Hence:

|I△J | ≤ 2 drank(I, J). (22)

Substituting into Equation (18) gives:

E∑
j=1

∣∣π(q)
j 1[j ∈ J ]− π

(fp)
j 1[j ∈ I]

∣∣ ≤ 2 drank(I, J) +
∑

j∈I∩J

∣∣π(q)
j − π

(fp)
j

∣∣.
Multiplying by C(x) yields the desired bound.

Lemma 1 shows that router quantization error is governed by two factors:

1. Rank disagreement: number of top-k positions differs between full-precision and quantization.

2. Weight disagreement: score perturbations for experts whose rank positions remain stable.

RAJ explicitly targets (1) by penalizing rank mismatches in a scale invariant way, while GH targets
(2) by enforcing inter-rank margins that stabilizes the ordering under quantization noise.

E.2 RAJ AS A RANK DISAGREEMENT

We now show that the Rank-Aware Jaccard (RAJ) loss directly targets the first term in Lemma 1,
i.e., the rank disagreement between the full-precision and quantized routers.

Definition. Recall that (wr)
k
r=1 be a decreasing sequence of positive rank-weights (e.g., wr =

βr−1 with 0 < β ≤ 1) and define affinity vectors A(fp), A(q) ∈ RE by:

A(fp)(e) :=

{
wr, e = ir,

0, otherwise,
A(q)(e) :=

{
wr, e = jr,

0, otherwise.
(23)

The rank-aware Jaccard similarity is:

JW (I, J) :=

∑E
e=1 min

(
A(fp)(e), A(q)(e)

)∑E
e=1 max

(
A(fp)(e), A(q)(e)

) , LRAJ(I, J) := 1− JW (I, J). (24)

By construction, JW (I, J) = 1 (hence LRAJ = 0) if and only if I and J are identical ordered lists.

We also define a rank-weighted disagreement similar to Equation (14):

drank,w(I, J) :=

k∑
r=1

wr 1[ir ̸= jr], (25)

which penalizes mismatches at higher ranks more strongly.
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Proposition 1 (RAJ controls rank-weighted disagreement). Let S0 :=
∑k

r=1 wr and assume wr ∈
[wmin, wmax] with 0 < wmin ≤ wmax. Then there exist constants c1, c2 > 0 depending only on wr

such that:
c1 drank,w(I, J) ≤ LRAJ(I, J) ≤ c2 drank,w(I, J). (26)

Proof. Let:

Smin :=

E∑
e=1

min
(
A(fp)(e), A(q)(e)

)
, Smax :=

E∑
e=1

max
(
A(fp)(e), A(q)(e)

)
. (27)

Each list contributes a total weight S0; hence the union has total weight between S0 (when I = J)
and 2S0 (when they are disjoint), i.e.:

S0 ≤ Smax ≤ 2S0. (28)
We can therefore rewrite:

LRAJ = 1− Smin

Smax
=

Smax − Smin

Smax
, (29)

which implies:
Smax − Smin

2S0
≤ LRAJ ≤ Smax − Smin

S0
. (30)

We now relate Smax − Smin to the rank-wise mismatches. Observe that at rank r we either have
ir = jr (match) or ir ̸= jr (mismatch):

• If ir = jr, then both lists assign weight wr to the same expert at that position, so this contributes
wr to both the intersection and the union at that location; it does not increase Smax − Smin.

• If ir ̸= jr, then at least one of the lists assigns weight wr to an expert that the other does not assign
weight wr to at that rank. In the worst case, these two experts are distinct and appear only once in
each list; then this mismatch contributes at least wr to Smax − Smin (the union counts both, while
the intersection counts none). Conversely, because each position carries a weight at most wr on
each side, the contribution of rank r to Smax − Smin is at most 2wr.

Thus there exist constants a1, a2 > 0 (in fact a1 = 1, a2 = 2 suffice) such that the contribution of
rank r to Smax − Smin lies in [a1wr1[ir ̸= jr], a2wr1[ir ̸= jr]]. Summing over r gives:

a1 drank,w(I, J) ≤ Smax − Smin ≤ a2 drank,w(I, J). (31)
Combining Equation (30) and Equation (31), and using Smax ∈ [S0, 2S0], we obtain:

a1
2S0

drank,w(I, J) ≤ LRAJ(I, J) ≤ a2
S0

drank,w(I, J). (32)

Setting c1 = a1/(2S0) and c2 = a2/S0 completes the proof.

From rank-weighted mismatch to the Lemma 1 term. Recall that the rank-unweighted mis-
match is drank(I, J) =

∑k
r=1 1[ir ̸= jr]. Because wr ≥ wmin for all r, we have:

drank,w(I, J) =

k∑
r=1

wr1[ir ̸= jr] ≥ wmin

k∑
r=1

1[ir ̸= jr] = wmin drank(I, J), (33)

i.e.:
drank(I, J) ≤ 1

wmin
drank,w(I, J) ≤ 1

wminc1
LRAJ(I, J), (34)

where we used the lower bound in Proposition 1.

Substituting this into Lemma 1, we obtain:∥∥y(q)(x)− y(fp)(x)
∥∥
2

≤ C(x)

 2

wminc1
LRAJ(I, J) +

∑
j∈I∩J

∣∣π(q)
j − π

(fp)
j

∣∣ . (35)

Thus, up to a constant factor depending only on the rank-weights (wr), the RAJ loss directly upper-
bounds the rank disagreement term in the MoE error decomposition. Minimizing LRAJ therefore
provably reduces the part of the quantization error that is due to misrouted experts and incorrect
ordering of the top-k list.
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E.3 GH AS A SURROGATE FOR WEIGHT DISAGREEMENT

We now connect the Gap Hinge (GH) loss to the second term in Lemma 1, i.e., the routing weight
disagreement

∑
j∈I∩J |π(q)

j − π
(fp)
j |.

Definition. Let:
r(fp)r := r

(fp)
ir

, r(q)r := r
(q)
ir

, r = 1, . . . , k, (36)
be the logits of the top-k experts under the two routers, restricted to the common index sequence I .
Define the consecutive margins

∆(fp)
r := r(fp)r − r

(fp)
r+1, ∆(q)

r := r(q)r − r
(q)
r+1, r = 1, . . . , k − 1. (37)

For the theoretical argument, it is convenient to consider the margin discrepancy:

dgap(I) :=

k−1∑
r=1

|∆(fp)
r −∆(q)

r |. (38)

Our GH loss is defined as a scaled surrogate of dgap:

LGH =
1

k − 1

k−1∑
r=1

[
∆(fp)

r −∆(q)
r − γ

]
+
, (39)

with margin parameter γ ≥ 0; when γ = 0 and the hinge is active near 0, LGH is proportional to the
average margin discrepancy.

Logit reconstruction from margins. Up to an additive constant, the logit vectors r(fp) and r(q)

are fully determined by their consecutive margins. Since the softmax is invariant to adding a constant
shift, we may, without loss of generality, recenter both vectors so that:

r
(fp)
k = r

(q)
k = 0. (40)

Then:

r(fp)r =

k−1∑
s=r

∆(fp)
s , r(q)r =

k−1∑
s=r

∆(q)
s , r = 1, . . . , k. (41)

Let εs := ∆
(fp)
s −∆

(q)
s denote the margin errors. The logit error at rank r is therefore:

er := r(fp)r − r(q)r =
k−1∑
s=r

εs, r = 1, . . . , k. (42)

By the triangle inequality, we have:

|er| ≤
k−1∑
s=r

|εs|. (43)

Let:

M := max
1≤r≤k

k−1∑
s=r

|εs|. (44)

Then |er| ≤ M for all r, and hence:

∥e∥22 =

k∑
r=1

e2r ≤
k∑

r=1

M2 = kM2. (45)

Taking square roots gives:

∥e∥2 ≤
√
kM =

√
k max

1≤r≤k

k−1∑
s=r

|εs|. (46)
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Since for every r the tail sum satisfies:
k−1∑
s=r

|εs| ≤
k−1∑
s=1

|εs|, (47)

we obtain:

∥e∥2 ≤
√
k

k−1∑
s=1

|εs|. (48)

By definition dgap(I) =
∑k−1

s=1 |εs|, so:∥∥r(q) − r(fp)
∥∥
2
≤

√
k dgap(I). (49)

Softmax Lipschitzness. Assume that the routing weights over the top-k experts are obtained by a
softmax over the logits restricted to I:

π(fp) = softmax(r(fp)), π(q) = softmax(r(q)), (50)

where both vectors are in Rk and we identify π
(·)
r := π

(·)
ir

.

The softmax mapping is smooth with a bounded Jacobian; in particular, there exists a constant
lsm > 0 (depending only on k and the logit range) such that:∥∥π(q) − π(fp)

∥∥
1

≤ lsm
∥∥r(q) − r(fp)

∥∥
2
. (51)

Combining Equation (49) and Equation (51) yields:∑
j∈I

∣∣π(q)
j − π

(fp)
j

∣∣ = ∥∥π(q) − π(fp)
∥∥
1

≤ lsm
√
k dgap(I). (52)

From dgap to LGH. If we choose the GH loss to be proportional to the average margin discrepancy,
i.e., γ = 0 and:

LG =
1

k − 1

k−1∑
r=1

|∆(q)
r −∆(fp)

r |, (53)

then dgap(I) = (k − 1)LGH, and Equation (52) becomes:∑
j∈I

∣∣π(q)
j − π

(fp)
j

∣∣ ≤ lsm
√
k(k − 1)LG. (54)

In particular, whenever I = J , the weight disagreement term in Lemma 1 is upper-bounded as:∑
j∈I∩J

∣∣π(q)
j − π

(fp)
j

∣∣ = ∑
j∈I

∣∣π(q)
j − π

(fp)
j

∣∣ ≤ lsm
√
k(k − 1)LG. (55)

More generally, if we use the hinged version of Equation (39) with γ > 0, then as long as we
operate in the regime were the hinge is active near 0 (so that

[
∆

(q)
r −∆

(fp)
r − γ

]
+

is comparable to

|∆(q)
r −∆

(fp)
r |), the same conclusion holds up to multiplicative constants.

Connection to Lemma 1. Combining Equation (54) with Lemma 1, and using RAJ to ensure
I ≈ J (and in particular I = J on most tokens), we obtain:∥∥y(q)(x)− y(fp)(x)

∥∥
2

≲ C(x)
(
2 drank(I, J) + lsm

√
k(k − 1)LGH

)
, (56)

where the first term is controlled by RAJ (Sec. E.2) and the second term is controlled by GH through
the margin discrepancies. Intuitively, GH keeps the relative gaps between consecutive experts close
to their full-precision counterparts; by softmax smoothness, this directly limits how much the routing
weights over the shared top-k experts can change, thereby addressing the second source of error in
Lemma 1.

F USE OF LLMS

In preparing this paper, we used LLMs solely to aid in polishing the writing and improving clarity.
The models were employed for grammar checking, smoothing sentence flow, and rephrasing for
readability. All research ideas, methodological designs, experiments, and analyses were conceived
and conducted entirely by the authors without reliance on LLMs.
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