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ABSTRACT

Multi-task learning aims to improve the overall performance of a set of tasks by
leveraging their relatedness. When training data is limited using priors is pivotal,
but currently this is done in ad-hoc ways. In this paper, we develop variational
multi-task learning - VMTL, a general probabilistic inference framework for si-
multaneously learning multiple related tasks. We cast multi-task learning as a
variational Bayesian inference problem, which enables task relatedness to be ex-
plored in a principled way by specifying priors. We introduce Gumbel-softmax
priors to condition the prior of each task on related tasks. Each prior is represented
as a mixture of variational posteriors of other related tasks and the mixing weights
are learned in a data-driven manner for each individual task. The posteriors over
representations and classifiers are inferred jointly for all tasks and individual tasks
are able to improve their performance by using the shared inductive bias. Exper-
imental results demonstrate that VMTL is able to tackle challenging multi-task
learning with limited training data well, and it achieves state-of-the-art perfor-
mance on four benchmark datasets consistently surpassing previous methods.

1 INTRODUCTION

Multi-task learning ( , ) is a fundamental learning paradigm for machine learning, which
aims to simultaneously solve multiple related tasks to improve the performance of the individual
tasks by sharing knowledge The crux of multi-task learnlng is how to explore task relatedness (

, ), which is non-trivial since the underlying relationship
among tasks can be complicated and highly nonlinear. This has been extensively investigated in pre-
vious work by learning shared features, designing regularizers imposed on parameters ( ,

; s ; ) ; s ) or exploring prrors over param-
eters ( s ;
). Recently, deep neural networks have been developed learnrng shared representat1ons in the
feature layers while keeping the classifier layers independent (
, ). It would be beneficial to learn them jointly by fully leveragmg the
shared knowledge related tasks, which however remains an open problem.

In our work, we consider a particularly challenging setting, where each task contains limited training
data. Even more challenging, we have only a handful of related tasks to gain shared knowledge from.
This is in stark contrast to few-shot learning (

) that also suffers from limited data for each task, but usually have a large number of related
tasks. Therefore, in our scenario, it is drfﬁcult to learn a proper model for each task independently
without overfitting ( , ) and it is crucial to leverage the inductive
bias ( , ) provided by various other related tasks that are learned simultaneously. To do
so, we employ the Bayesian framework as it is able to deliver uncertainty estimates on predictions
and automatic model regularization ( s ; , ), which makes it well suited for
multi-task learning with limited training data. The major motivation of our work is to leverage the
Bayesian learning framework to handle the great challenges of limited data in multi-task learning.

In this paper, we introduce variational multi-task learning - VMTL, a novel variational Bayesian
inference approach that can explore task relatedness in a principled way. In order to fully utilize the
shared knowledge from related tasks, we explore task relationships in both the feature representation
and the classifier by placing prior distributions over them in a Bayesian framework. Thus, multi-task
learning is cast as a variational inference problem for feature representations and classifiers jointly.
The introduced variational inference allows us to specify the priors by depending on variational pos-
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teriors of related tasks. To further leverage the shared knowledge from related tasks, we introduce
the Gumbel-softmax prior to each task, which is a mixture of variational posteriors of other related
tasks. We apply the optimization technique ( , ) to learn the mixing weights jointly
with the probabilistic modelling parameters by back-propagation. The Gumbel-softmax priors are
incorporated into the inference of posteriors over representations and classifiers, which enable them
to leverage the shared knowledge. We validate the effectiveness of the proposed VMTL by exten-
sive evaluation on four challenging benchmarks for multi-task learning. The results demonstrate
the benefit of variational Bayesian inference for modeling multi-task learning. VMTL consistently
outperforms previous methods in terms of the average accuracy of all tasks.

2 METHODOLOGY

In this work, we tackle the challenging multi-task learning setting where only a few training sam-
ples are available for each task, and only a limited number of related tasks to share knowledge.
We investigate multi-task learning under the Bayesian learning framework, where we learn the task
relationship in a principled way by exploring priors. We cast multi-task learning as a variational
inference problem, which offers a unified framework to learn task relatedness in both feature repre-
sentations and task-specific classifiers.

2.1 MULTI-TASK VARIATIONAL INFERENCE

In our setting the tasks are classification problems which share the same label space, but where
the samples are drawn from different data distributions. Given a set of related tasks {D;}7_, and
each task D; = {x},y} }n 1> Nt is the number of training samples in the ¢-th task, the goal under
this setting is to predict the label y of the test sample x for all tasks simultaneously, using the
shared information extracted from other related tasks. We note that the main challenge is the limited
number of labeled samples for each task, which makes it difficult to learn a proper model for each
task independently ( , ; s ).

Under this multi-task learning setting, we consider the Bayesian treatment. For a single task without
knowledge sharing from related tasks, we place a prior over its classifier parameter w, which gives
rise to the following data log-likelihood to maximize:

log p(D) = log /p(DIW)p(W)dW- (1)

For multi-task learning, we solve 7' tasks simultaneously with knowledge sharing among tasks.
Thus, after observing data from all T tasks, the true posterior p(w;|D;) of a single task ¢ becomes
p(w¢|D1.7). Using Bayes’ rule, we have the posterior for task ¢ as follows:

T
p(wWi|Drr) o p(wy) [ [ p(Dilwi) o p(wi| Dior\ Dy )p(Dyw). )
i=1
We introduce a variational distribution q(wy; 6;) parameterized by 6; for current task ¢ to approxi-
mate the true posterior, which involves minimizing the Kullback-Leibler (KL) divergence between
the variational distribution and the true posterior:

0" = argemin Dk [Q(Wt; 9t)‘|p<wt‘,D1:T)} - 3)
Generally, the approximate posterior is deﬁned as a fully- factorlzed Gaussian distribution, i.e.
q(wi;0;) = N (e, o) ( ) ). By ap-
plying Eq. (2) into (3) and extending them to all tasks, we obtaln an evidence lower bound (ELBO)
for multi-task learning:

T
1
LrLpo(0) = T Z |:Ewt~q [log p(D; ‘Wt)} — DkL [Q(Wﬁ 0:)|[p(we D1:T\Dt)H N C))
t=1
where 6 = {6, }]_, is the set of parameters for all task-specific classifiers. We maximize the ELBO
to optimize the model parameters for multi-task learning. It is worth noting that for MTL the prior of
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Fig. 1. A graphical illustration of the proposed model, variational multi-task learning (VMTL). The
two dashed lines show the prior of current task depends on the posteriors of other tasks for classifiers
and representations. VMTL offers a principled way to explore task relationships: for each task, the
priors over the classifiers and feature representations are conditioned on other tasks.

each task is conditioned on other tasks which allows knowledge sharing between them, in contrast to
single-task learning without knowledge sharing where uninformative Gaussian priors are generally
applied. Actually, this multi-task ELBO in Eq. (4) provides a general probabilistic inference frame-
work that enables task relatedness to be explored in a principled way by leveraging the inductive bias
provided by other related tasks ( , ). For each task, the conditional prior p(w¢|D1.7\D;)
will serve as a regularizer for the posterior inference.

In order to fully leverage the shared knowledge from related tasks to improve each individual task, in
addition to the classifiers, we would also like to share knowledge among the feature representations
of samples from different tasks. To this end, we introduce the conditional prior p(z}|x}") over the
feature representation z;' for each sample xi in task ¢. In doing so, we are able to explore task
relatedness among feature representations in a unified way, as we do for classifiers.

To this end, we rewrite the log-likelihood as a sum over the marginal likelihoods of individual data

points as follows:
Ny

1
log p(Di|w) = N, Zlogp(YFIWt,X?)- o)
n=1

The variational Bayesian inference framework developed in Eq. (4) allows the latent representation
to be seamlessly incorporated into the log-likelihood in Eq. (5). Under the assumption that w; and
zy are conditionally independent, we therefore obtain a new marginal conditional log-likelihood as
follows:

log p(y}|we, x) = log / p(y? 2 Wi, x2)dzf = log / p(y7 |20, wi)p(al |x2)dzl . (6)

The posterior p(z}'|x}, y}') of latent representations z; is intractable. Therefore, like VAEs (

, ) we introduce again a variational posterior namely ¢(z¢|x;; ¢), which is made
conditional on the sample x}'. We note that ¢ is the parameters of the inference network for latent
representations, which is optimized jointly with other parameters in our model. By introducing
q(z}|x}; ¢) into Eq. (6) and applying Jensen’s inequality, we have

log p(y7 W1, X) = Egpn,y [logp(y7lzy', wi)| = Dt a(z I @)l Ip(zxi) | (D)

After integrating Eq. (4) and (7), we obtain the following variational objective for multi-task learn-
ing:

1 1 -
Lyvmre(8,9) = > { > {Eqthng [log p(y7 |z, w)] — Dk [a(z7'[x7'; ¢)||P(Z?|X?)H
" n=1

- Dic atwes 6 wi Prcr\ D) |
3)

The objective function provides a general probabilistic inference framework for multi-task learning,
which allows us to jointly explore shared knowledge among representations and classifiers in a
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unified way by specifying priors. The detailed derivation of the ELBO for z and w is given in the
Appendix A.1. The graphical illustration of our VMTL is shown in Fig. 1.

2.2 LEARNING TASK RELATEDNESS VIA GUMBEL-SOFTMAX PRIORS

The proposed variational multi-task inference framework enables the relationship among tasks to be
explored by designing priors for both latent representations and classifiers. In Bayesian inference,
priors serve as regularisation, which provides a principled way of sharing information across multi-
ple tasks. We introduce the Gumbel-softmax prior for each task, which is a mixture of variational
posteriors of other related tasks. In the case of latent representations, we define the prior by using
other tasks posteriors of latent representations:

plzelxe) = Y Auq(zilmg; ), ©))
i€{1,- T\t
where m; is the mean feature representation of samples from the same class in the i-th task. The

mixing weight Ay; is defined as a binary value to indicate whether two tasks are correlated or not. To
enable learning this binary A;; with back propagation, we introduce the Gumbel-softmax technique

( b

exp((log me; + gri)/7)
exp((log mei + gei) /7) + exp((log(1 — mei) + g,;)/7)
where g¢; and g;i are samples taken from a Gumbel distribution, using inverse transform sampling by
drawing u ~ Uniform(0, 1) and computing g = — log(— log(u)). m; is the learnable parameter in

the Gumbel-softmax technique, which denotes the probability of two tasks are correlated. Parameter
T is the softmax temperature.

Ay =

(10)

Likewise, we specify the prior over classifier parameters wy in the same way as in z;:

p(wilDir\Dy) = Y AN q(wii0)), (an

ie{l,--- T\t

where A( is obtained in a similar way as in Eq. (10). Note that we use different mixing weights in
de31gn1ng the priors for representations and classifiers, which gave better results than a shared one
in our preliminary experiments. This is likely due to the fact that the representations and classifiers
leverage different correlation patterns among different tasks.

It worth mentioning that the fundamental assumption in multi-task learning is that tasks are related
and there is always positive transfer among them. Since tasks share the same label space in our
setting, the case with only task interference would hardly happen. In case of only task interference,
the KL term in Eq. (8) will degenerate to an ¢, regularization on the representation and classifiers.

2.3 AMORTIZED INFERENCE

We leverage an amortization technique ( , ), in which we amortize the
computational cost of inferring the posterior of the latent representation, as done in VAEs (

, ). In effect, the amortized inference can also be adopted to learn classifier parameters
similar to the probabilistic prediction in few-shot learning ( , ).

To this end, we design the variational posterior ¢(w|D;) in a context-independent manner such that
each weight vector w{ depends only on samples from class c of the current task ¢:

q(we|Dy) = Hq wi|Dy) = HN (w5, diag((af)%), (12)

where D¢ are the samples from the c-th class, C'is the size of the shared label space, and each poste-
rior is parameterized as a diagonal Gaussian distribution. The amortized 1nference of these posterlors
is implemented by multi-layer perceptrons (MLPs) ( ,

, ) and the parameters of the inference networks are jointly optlmlzed in
the end-to-end learning. For a given task, we use the amortized inference to generate the classi-
fier weight for each specific class by using the mean feature representations in this class. Thus,
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the weight for different classes are drawn from different distributions. In contrast to the amortized
inference for latent representations, the amortized classifier inference enables the cost to be shared
across classes, which reduces the overall cost. Therefore, it offers an effective way to handle a huge
number of object classes and can still produce competitive performance even in the existence of the
amortization gap ( , ).

2.4 EMPIRICAL OBJECTIVE FUNCTION

In our implementation for the variational objective for multi-task learning Eq. (8), we adopt Monte
Carlo sampling, and obtain the empirical objective function as follows:

Tem[1 A7 1 &
~ n,(¢ m
Ear0.60)= A3 [ 57 [1 5" 3" [losptrlet @ i)

t=1 n=1 =1 m=1 (13)

- Duc [ata? it (e x)] ] D aCwis 0w D1\ D) |

where z?’(l) ~ q(z}|x}; b), wgm) ~ g(w¢;0). L and M are the number of Monte Carlo samples.

In practice, L and M are set to 10, which performs well while being computationally efficient. We
maximize this empirical function to optimize the model’s parameters: the log-likelihood term is im-
plemented as the cross-entropy loss and the K L terms can be computed in closed forms. To sample
from the variational posteriors, we adopt the reparameterization trick ( , ). In
the posterior inference of classifiers without amortization, we use the local reparameterization trick
to reduce the gradient variance ( , ). The priors p(z}|x}) and p(w¢|D1.7\D:)
are implemented with Gumbel-softmax priors provided in Eq. (9) and Eq (11), respectively. For
amortized classifiers, the variational posterior ¢(wy; #) is implemented using Eq. (12).

3 RELATED WORKS

Multi-task learning ( , ) is a machine learning paradigm that aims to leverage shared
knowledge from multiple related tasks to improve the generalization performance of all the tasks
simultaneously. The core of multi-task learning is how to explore the task relationship, which has
been extensively investigated in the literature.

Early works design feature-based or parameter-based regularizations to explore task relationships
( ) ; ) ; ) ; , ; ;

( ) are the first

to study the multi-task feature selection (MTFS) problem based on the I5 ; norm. ( )
propose to use the [, ; norm with the objective function to select important features.
( ) design multiple task clusters, aiming to minimize the squared trace norm of the classifier

parameters in each cluster.

Bayesian methods ( R ; , ; s ; R

; ; , ) are de-
Veloped for multi-task learning under probablhstrc frameworks where the regularization usually
corresponds to a prior. ( ) proposes a Bayesian neural network for multi-task learning
and analyse it with an empirical Bayesian framework. ( ) investigate Gaussian pro-
cesses for multi-task learning assuming that all models are sampled from a common prior.

( ) reformulate the [, , norm regularizer as a matrix-variate generalized normal prior
and utilize the prior information to explore task relations. ( ) explores tensor normal
distribution as priors of network parameters in different layers, which explicitly models the positive
and negative relations across features and tasks. ( ) proposes a non-parametric hi-
erarchical Bayesian model to avoid the high complexity of model parameters and are implemented
with a deterministic inference method. Further, ( ) adopt a variational information
bottleneck method ( , ) with an uninformative prior distribution to improve the latent
probabilistic representation. An important conclusion drawn by ( , ) is that, under ad-
versarial attacks, variational latent representations are regularized and thereby expected to be more
robust to noise than deterministic latent representations. The idea of conditioning priors on poste-
riors is also amenable to continual learning in that the posterior of the previous task can be used
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as the prior of the current task to reduce catastrophic forgetting (

, ). In addition, ( ) for the first time apply the Gumbel—
Softmax to learn task relatedness in multi-task learning. Although these methods are also applicable
to the data setting in this work and achieve encouraging improvements, they under-perform with
very limited training data.

Deep learning has recently been explored for multi-task learning ( , ;

, ; , ; s ) by designing different deep architectures
to explore task relationships. ( ); ( ) use a hard parameter-sharing
encoder to extract the shared representations, while learning a task-specific decoder to obtain the
pixel-level predictions. Based on soft parameter sharing, ( ) propose cross-stitch
units to allow the model to leverage the shared knowledge from another task. ( ) fol-
low the soft parameter sharing mechanism and incorporate neural architecture search into general-
purpose multi-task learning. ( ); ( );

( ); ( ) develop flexible soft-ordering approaches to enable more effec-
tive sharing among tasks. Instead of learning the structure of sharing, ( ) propose
to weight multiple loss functions by considering the homoscedastic uncertainty of each task.

( ) present a gradient normalization algorithm that automatically balances training in deep
multi-task models by dynamically tuning gradient magnitudes.

In our work, we address multi-task learning in a probabilistic inference framework by casting it
as a variational Bayesian inference problem. We explore task relationships in a principled way by
specifying priors conditioned on other tasks, which enables the model to share knowledge among
related tasks for learning both representations and classifiers.

4 EXPERIMENTS

We conduct experiments on four benchmark datasets for multi-task learning with limited training
data. The results demonstrate the benefits of variational Bayesian approximation to representations
and classifiers for multi-task learning. Our VMTL achieves the best performance and consistently
surpasses previous methods. We provide more experimental results in the Appendix B.

4.1 DATASETS

We evaluate the proposed VMTL under a challenging multi-task learning setting, where each task
has limited training data and only a handful of related tasks that can be learned simultaneously
to leverage the shared knowledge. To benchmark our model with previous methods, we conduct
experiments on four benchmark datasets, where tasks are defined as classification problems from
distinctive domains with a shared label space.

Office-Home ( , ) contains images from four domains/tasks: Artistic (A),
Clipart (C), Product (P) and Real-world (R). Each task contains images from 65 object categories
collected in the office and home settings. There are about 15,500 images in total.

Office-Caltech ( , ) was constructed by selecting the ten categories shared between
Office-31 ( , ) and Caltech-256 datasets ( , ). One task consists of
data from Caltech-256 (C), and the other three tasks consist of data from Office-31 whose images
were collected from three distinct domains/tasks, e.g., Amazon (A), Webcam (W) and DSLR (D).
There are 8-151 samples per category per task, and 2,533 images in total.

ImageCLEF ( , ), the benchmark for the ImageCLEF domain adaptation challenge,
contains 12 common categories shared by four public datasets/tasks: Caltech-256 (C), ImageNet
ILSVRC 2012 (I), Pascal VOC 2012 (P), and Bing (B). There are 2,400 images in total.

DomainNet ( , ), is a large-scale dataset with approximately 0.6 million images dis-
tributed among 345 categories. It contains 6 distinct domains: Clipart (C), Infograph (I), Painting
(P), Quickdraw (Q), Real (R) and Sketch (S). This dataset provides an extremely challenging bench-
mark, which has never been introduced for multi-task learning

We follow the standard evaluation protocol ( ; , ) for multi-
task learning and randomly select 5%, 10%, and 20% of samples from each task as the training set
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Fig. 2. The performance under different proportions of training data on the Office-Home dataset.

Table 1. Effectiveness of variational Bayesian approximation for representations and classifiers.

Representation (z)  Classifier (w) \ 5% 10% 20%
X X 50.4£0.1 59.5+0.1 65.6%0.1
v X 51.3+£0.2 60.440.1 66.74+0.2
X v 56.8+0.1 63.7£0.1 68.540.1
v v 58.2+0.2 65.0£0.0 69.1+0.1

Table 2. Performance comparison of VMTL with different priors. The detailed results on each indi-
vidual task are provided in the Appendix B.3. Our Gumbel-softmax produces the best performance.

Priors \ 5% 10% 20%
Mean 57.2+0.1 64.5+£0.2 68.6+£0.2

Learnable weighted | 57.0+0.2 64.4+0.1 68.6%0.1
Gumbel-softmax | 58.24+0.2 65.0+0.0 69.1+0.1

and use the remaining samples as the test set ( , ). Note that when we use 5%, 10%
and 20% labeled data for training, there are on average respectively 3, 6 and 12 samples per category
per task. Hence, each task is provided with a limited amount of labeled data, which is insufficient
for building reliable classifiers without overfitting. In order to maintain this data setting of limited
training data, for the large-scale dataset DomainNet, we set the split to 1%, 2% and 4%, which
results in an average of 3, 6 and 12 samples per category per task, respectively. This poses great
challenges due to the huge number of object categories.

4.2 EXPERIMENTAL SETTINGS

Implementation Details Following the experimental settings in ( , ), we remove the
final classifier layer of VGGnet ( , ) and apply the remaining model to
extract the feature representation x for each sample, from which we infer the latent representation z
using amortized inference by MLPs ( , ). In our experiments, the temperature
is annealed using the same schedule as applied in ( , ): we start with a high temperature
and gradually anneal it to a small but non-zero value. For the KL-divergence we use the annealing
scheme from ( , ), increasing the weight of the KL-divergence by a rate of le-6
per iteration. The dimension of the latent variable is set to 512. We adopt Adam optimizer (

, ) with a learning rate of le-4 for training. All the results are obtained based on the 95%
confidence interval from five runs.

Comparison Methods We compare our method with single-task learning (STL) as well as a vari-
ational version of STL (VSTL) implemented by introducing variational Bayesian inference to repre-
sentations and classifiers without using task relationship (Details can be found in the Appendix A.2).
We also define a basic multi-task learning (bMTL) model, which is a deep learning model with
a shared feature extractor and task-specific classifiers. The bMTL serves as a baseline model to
demonstrate the benefits of the probabilistic modeling of multi-task learning based on variational
Bayesian inference. VMTL is our basic proposed method. VMTL-AC is our proposed method with
amortized classifiers. We compare with multilinear relationship network (MRN) ( , ),
which holds the best performance among previous methods on the four benchmarks.
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4.3 EXPERIMENTAL RESULTS

Effectiveness in Handling Limited Data We conduct ablation studies to demonstrate the benefits
of the proposed variational multi-task learning in exploring task relatedness. We conduct exper-
iments under a large range of train-test splits from 5% to 50%. The results on the Office-Home
dataset for different tasks and the average accuracy of all tasks are illustrated in Fig. 2. More de-
tailed experimental results are provided in the Appendix B.1. The performance advantage of our
VMTL is larger in the settings with less training data (< 20%), which demonstrates its effectiveness
in handling challenging scenarios with very limited training data.

Effectiveness of Variational Bayesian Approximation We investigate the effect of variational
Bayesian inference for representations and classifiers, separately. We conduct these experiments on
the Office-Home dataset. The results with different train-test splits are shown in Table 1. More
detailed experimental results are provided in the Appendix B.2. As can be seen, both variational
Bayesian representations and classifiers can benefit performance. This benefit becomes more sig-
nificant when training data is very limited, which indicates the effectiveness of leveraging shared
knowledge by conditioning priors on related tasks in our VMTL. In addition, in Fig. 2, the VSTL is
shown to be a strong learning model, which again demonstrates the benefits of variational Bayesian
representations and classifiers compared to STL.

Table 3. Performance comparison of different methods on the Office-Home dataset for multiple
tasks: Artistic (A), Clipart (C), Product (P) and Real-world (R).

\ 5% 10%
Methods  |—— C P R Ae [ A C P R Ave.
STL 36.7 308 675 61.7 492 504 408 744 67.5 583
VSTL 37.9 333 69.0 64.0 511 52.0 4301 76.2 69.4 60.2
MRN 533 364 705 67.7 57.0 59.9 427 763 73.0 63.0

bMTL 37.6+04 31.5+03 68.5+0.2 63.84+0.2 50.4+0.1 | 51.0+£0.2 41.6+£0.1 76.0+£0.3 69.2+0.3 59.5+0.1
VMTL-AC | 523+04 37.5£0.5 70.1£03 66.7+£0.2 56.7£0.2 | 58.4+0.5 46.5+£0.3 76.9+0.2 73.1+£0.3 63.7+£0.1
VMTL 53.8+0.6 38.6+0.2 71.4+03 68.84+0.2 58.2+0.2 | 60.3+£0.5 47.5+£0.2 78.1+£0.2 74.24+0.1 65.0£0.0

Table 4. Performance comparison of different methods on the Office-Caltech dataset for multiple
tasks: Amazon (A), Webcam (W), DSLR (D) and Caltech-256 (C).

| 5% 10%
Methods  |—— W D C Ae A W D C Ave.
STL 874 87.9 96.4 8238 88.6 923 977 878 843 907
VSTL 883 89.1 97,0 814 89.0 931 96.6 90.0 845 o1l
MRN 927 943 97.1 892 934 95.0 98.1 950 913 048

bMTL 90.0+£0.7 89.44+0.8 95.0+£1.1 83.5+0.5 89.5£0.3 | 93.6+£0.1 97.0+0.6 92.1+£0.7 86.3+:0.4 92.3£0.2
VMTL-AC | 932403 95.0+03 96.1£0.3 89.7+£0.5 93.5£0.1 | 948403 96.8+0.4 97.7£0.3 90.1£0.3 94.9£0.2
VMTL 93.840.3 955404 96.44+04 90.0+0.3 93.9+0.2 | 95.54+0.1 97.0+0.1 97.9+0.3 91.0+0.1 95.3+0.1

Effectiveness of Gumbel-Softmax Priors The introduced Gumbel-softmax prior provides an ef-
fective way to learn data-driven task relationships. To demonstrate their effectiveness, we compare
with several alternatives, including the mean and the learnable weighted posteriors of other tasks.
The comparison results are shown in Table 2. The proposed Gumbel-softmax priors perform the
best, consistently surpassing other alternatives. It is also worth noting that the advantage of Gumbel-
softmax priors is ever larger for very limited training data, e.g., 5%, a challenging scenario where it
is crucial to leverage task relatedness.

Comparison with other methods The comparison results on the small-scale datasets Office-
Home, Office-Caltech,lmageCLEF datasets and large-scale DomainNet datasets are shown in Ta-
bles 3, 4, 5 and 6, respectively. The average accuracy of all tasks is used for performance measure-
ment. The best results of average accuracy are marked in bold, while the second-best by underline.
Due to the space limitation, we show the experimental results with more data accessible in Table 15
and Table 16 of the Appendix B.4. A comprehensive comparison with more other methods is pro-
vided in the Appendix B.4.

Our VMTL consistently achieves the best performance on all small-scale and large-scale datasets
with all the defined train-test split settings. It is worth highlighting that on the most challenging set-
ting of 5% training data, our VMTL shows a large performance advantage over compared methods.



Under review as a conference paper at ICLR 2021

— VMTL

40 —— VMTL-AC

w
o

Training loss
N
o

=
(=} o
—

A

0 250 500 750 1000 1250 1500 1750 2000
Iteration

Fig. 3. The illustration of training loss with iterations. VMTL-AC converges faster than VMTL,
which demonstrates its computation benefit by amortized learning.

Table 5. Performance comparison of different methods on the /mageCLEF dataset for multiple
tasks: Caltech-256 (C), ImageNet ILSVRC 2012 (I), Pascal VOC 2012 (P), and Bing (B).

| 5% 10%
Methods  —¢ T P B Ag [ C T P B Avg.
STL 85.4 714 577 360 62.6 88.9 778 643 476 69.7
VSTL 87.0 732 60.5 39.0 64.9 89.6 79.1 66.6 480 708
MRN 90.1 76.5 728 549 73.7 933 83.2 70.4 563 75.8

bMTL 88.3+0.5 73.2+0.5 61.2+09 40.0+£0.8 65.7+£0.4 | 90.6+0.8 79.3+£0.2 66.3+0.5 51.9+£0.6 72.0+0.3
VMTL-AC | 89.1+04 814409 71.24+04 56.5+1.1 74.5+0.5 | 92.3+04 83.9+0.8 71.8+0.8 58.94+0.8 76.7£0.2
VMTL 91.1+0.3 83.24+0.6 71.4+04 583+0.8 76.0+£0.2 | 93.7+04 86.5+0.4 71.8+04 59.5+0.6 77.9+0.2

Table 6. Performance comparison of different methods on the large-scaled dataset DomainNet for
multiple tasks: Clipart (C), Infograph (I), Painting (P), Quickdraw (Q), Real (R) and Sketch (S).

\ 1%
Methods  |——¢ T P Q R S Avg.
STL 15.0 4.0 19.7 75 50.6 9.6 17.7
VSTL 18.9 5.4 23.5 152 54.5 122 21.6
DMTL | 183+0.1 52402 223+0.1 150+0.1 533+0.1 11.84£02 21.0+0.1
VMTL-AC | 186403 57402 23.0+£02 127+0.1 516402 125402 20.7%0.1
VMTL | 248+0.1 85+0.1 299400 127402 569+0.1 16.94+0.1 25.0+0.0

Specifically, on ImageCLEF, under the 5% setting, our VMTL surpasses the second best by a phe-
nomenal margin up to 2.3%. This demonstrates the effectiveness of VMTL in exploring relatedness
to improve the performance of each task. In addition, our VMTL-AC can also produce compara-
ble performance and is better than most previous methods. It is worth mentioning that VMTL-AC
demonstrates computation advantages with faster convergence compared to VMTL due to the amor-
tized learning as shown in Fig. 3. Besides, we found that VMTL-AC demonstrates good robustness
against adversarial attacks. This could be due to that amortized learning applies the mean feature
representations to generate classifiers, which is more robust to attacks. The detailed discussions are
given in Appendix B.5. Finally, the improvement of VSTL over STL also indicates the benefits of
variational Bayesian approximation for representations and classifiers.

5 CONCLUSION

In this paper, we address the multi-task learning problem and tackle a challenging setting where each
task has a very limited amount of training data, with only a handful of related tasks. To this end,
we develop variational multi-task learning - VMTL, a general probabilistic inference framework
for simultaneously learning multiple tasks. We cast multi-task learning as a variational inference
problem, which enables task relationships to be explored in a principled way by specifying priors.
Specifically, we introduce the Gumbel-softmax priors, which offer an effective way to learn the
task relatedness in a data-driven manner for each task. We evaluate VMTL on four benchmark
datasets for multi-task learning. Results demonstrate that our VMTL consistently achieves better or
comparable performance with state-of-the-art multi-task learning approaches.
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A DERIVATION

A.1 DERIVATION OF EVIDENCE LOWER BOUND FOR MULTI-TASK LEARNING

We provide a derivation of the evidence lower bound with z and w jointly. The log-likelihood of
task ¢ is conditioned on the data from other related tasks.

IOgP(Yt‘Xle:T\'Dt) = log//p(yhztawta |Xt7D1:T\Dt)dwtdZt (14)

Under the assumption that w; and z; are conditionally independent, we therefore obtain
log p(y¢|x¢, D1.7\Dy)
= log / /P(Yt|zt, Wi )p(2¢|x¢)p(We | D17\ Dy ) dwdze

= log/ [/P(Yt\zt,Wt)p(zt\Xt)dzt]p(wtml:T\Dt)th

. [fp(YtlzhWt)p(zt‘Xt)dzt]p(wt|D1:T\Dt)Q(Wt)
B log/ q(we)

> —KL[g(w:)|[p(w¢|D1.7\Dt)] + Eg(w,) [10g/p(Yt|Zt7Wt)p(zt|xt)dzt]

th

> —KL[g(w)|[p(w:|D1.0\Dp)] + Eqw) [log/ p(}’t|zt,W;)(];;Z;L))(t)Q(ZﬂXt)dzt]

> —KL[g(w¢)||p(w¢|D1.7\Ds)] — KL[q(2¢ %) |[p(2¢ [%¢)] + Eg(we)Eq(z,|x,) 108 P(yi|Ze, Wi)]
(15)

A.2 DERIVATION OF EVIDENCE LOWER BOUND FOR SINGLE-TASK LEARNING

Generally, the proposed Bayesian inference framework which infers the posteriors of presentations
z and classifiers w jointly can be widely applied in other research fields. To be simple, we introduce
a variational version of single-task learning (VSTL), and provide the derivation of its evidence lower
bound. It is worth noting that single-task learning does not share knowledge among tasks. Thus, the
log-likelihood for single-task learning is not conditioned on the data from other related tasks.

log p(y|x) = log / / (3,2, w, [x)dwdz

—tog [ / ply|z, w)p(w)p(z/x)dwdz

—to5 | [ plylz.wiplalx)dap(w)dw

_1op [ 1 PO1Z W)p(zx)dz]p(W)a(w)
=1 g/ q(w)

(16)

dw

> —KL(a(w) (%)) + o 0g [ (vl wip(zbe)d
> —KLig(w) o) + By o | 0O gy
> —KL{g(w)lp(w)] ~ KLIg(zl) [p(2])] + By Eqgapo lozp(ylz, W)

Usually, the approximate posteriors ¢(w) and ¢(z|x) are defined as a fully-factorized Gaussian
distribution. Due to lack of extracted information offered by other related tasks, the priors p(w) and
p(z|x) are set to a standard Gaussian distribution, as applied in ( , ; ,

; , )-

14
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B EXTRA EXPERIMENTAL RESULTS

B.1 EFFECTIVENESS IN HANDLING LIMITED DATA

We further provide detailed information in Table 7 about average accuracy in Fig. 2. Our pro-
posed probabilistic models, i.e., VMTL and VMTL-AC outperform the deterministic baseline multi-
task learning model (bMTL), which demonstrates the benefits of our proposed variational Bayesian
framework. Given a limited amount of training data, STL and VSTL can not train a proper model for
each task. As the training data decreases, our methods based on the variational Bayesian framework
are able to better handle this challenging case by incorporating the shared knowledge into the prior
of each tasks. The best results of average accuracy are marked in bold, while the second-best by
underline.

Table 7. Performance of average accuracy under different proportions of training data on Office-
Home.

Methods | 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

STL 49.2 58.3 61.3 64.9 66.4 67.7 68.3 70.3 70.4 71.9

VSTL 51.1 60.2 63.0 65.8 67.9 69.6 70.3 724 72.3 73.8
bMTL 50.4+0.1 59.5+0.1 624401 65.6+0.1 66.8+0.1 683+0.2 68.94+0.1 70.5+£0.1 70.7+£0.2 72.3+0.2

56.6+£0.2 63.740.1 654402 68.1£0.1 68.7+£0.1 69.440.2 70.0+£0.1 70.9+0.1 70.4+£0.1 71.540.1
58.2+0.2 65.0+0.0 66.4+0.1 69.1+0.1 69.9+0.1 70.4+0.1 71.3+0.1 722+0.1 72.0+£0.1 73.340.1

VMTL-AC
VMTL

B.2 EFFECTIVENESS VARIATIONAL BAYESIAN APPROXIMATION

The comparison results on performance of Bayesian approximation for representations z and clas-
sifiers w on the Office-Home, Office-Caltech and ImageCLEF datasets are shown in Tables 8, 9
and 10, respectively. Both variational Bayesian representations and classifiers can benefit perfor-
mance. And we find that Bayesian classifiers in the variational inference framework contribute more
to the performance than Bayesian representations. It is likely due to the fact that Bayesian classifiers
can better improve the model’s discriminative ability. Our method jointly infers the posteriors over
feature representations and classifiers in a Bayesian framework, which consistently outperforms its
variants on three benchmarks.

B.3 EFFECTIVENESS OF GUMBEL-SOFTMAX PRIORS

The performance comparison of the proposed VMTL with different priors on the Office-Home,
Office-Caltech and ImageCLEF datasets is shown in Tables 11, 12 and 13, respectively. “Mean”
denotes that the prior of the current task is the mean of variational posteriors of other related tasks.
“Learnable weighted” denotes that weights of mixing the variational posteriors of other related tasks
are learnable. Our Gumbel-softmax Priors apply the Gumbel-softmax technique to learn the mixing
weights, which introduces uncertainty to the relationships among tasks in order to explore sufficient
transferable information from other tasks. In the three datasets, our designed priors outperform other
methods consistently.

B.4 A COMPREHENSIVE COMPARISON WITH OTHER METHODS

The comprehensive comparison with state-of-the-art methods, including multi-task feature learning
(MTFL) ( , ), robust multi-task learning (RMTL) ( , ), multi-task
relationship learning (MTRL) ( ), deep multi-task learning with tensor factor-
ization (DMRL-TF) ( , ) and multilinear relationship network (MRN) (

s ) is shown in Table 14. The results of the above state-of-the-art methods are taken from
paper ( , ). The results of three datasets under the 20% train-test split and the results
of DomainNet under the 2% and 4% train-test split are is provided in Table 15 and Table 16, re-
spectively. The proposed VMTL consistently achieves the best performance on all datasets with
all train-test split settings. VMTL with amortized classifiers (VMTL-AC) can produce competitive
performance better than most of previous methods.
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B.5 ROBUSTNESS OF OUR METHODS

We conduct some experiments to show the robustness of our methods against adversarial attacks. In
our experiments, the adversarial attack is implemented by the fast gradient sign method (Goodfellow
et al.,, 2014) where e denotes the noise level. We evaluate our proposed VMTL, VMTL-AC, and the
basic multi-task learning(bMTL) on the Office-home dataset. As shown in Fig. 4, under different
noise levels, VMTL outperforms bMTL. As the noise level increases, the variant of our method
VMTL-AC is more robust and significantly outperforms the baseline multi-task learning model.
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Fig. 4. The performance for each task under different noise level on the Office-Home dataset.
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Under review as a conference paper at ICLR 2021
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