
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Fully Anonymous Decentralized Identity Supporting Threshold
Traceability with Practical Blockchain

Anonymous Author(s)
Submission Id: 2625

ABSTRACT
Decentralized identity (DID) holds significant potential for appli-
cations in the Web3, such as digital markets and financial systems.
Traditional DID paradigms offer a degree of privacy but struggle to
prevent the link analysis on user behaviours and repeated public
key usage. Anonymity is not fully achieved, as users’ real iden-
tities or public keys are exposed to the issuing authority, while
introducing high public key management complexity. Besides, ex-
isting anonymous credential schemes lack effective mechanisms
for threshold traceability, not meeting the Web3’s distributed gov-
ernance requirements. In this paper, we propose FADID-TT, a Fully
Anonymous DID system supporting Threshold Tracing with prac-
tical blockchain, to tackle the above challenges. Firstly, we propose
a distributed identity registration scheme based on secret shar-
ing. A committee composed of distributed issuing authorities is
responsible for issuing user’s secret key shares and no single en-
tity in the system can obtain a user’s real identity or public key,
achieving anonymity to authority. Moreover, we design a fully
anonymous DID system combined with anonymous signatures and
decentralized anonymous credentials (DAC). A service provider can
only use the committee public key to verify a user identity, elim-
inating the need for user public keys, fully resisting link attacks,
and reducing the user public key management complexity from
𝑂 (𝑛) to 𝑂 (1). Furthermore, we design a public verifiable threshold
tracing mechanism that enables committee members to collabora-
tively trace the identity of a malicious user without compromising
privacy guarantees. FADID-TT realizes publicly verifiable tracing
via zero-knowledge proofs. Finally, we give comprehensive secu-
rity analysis and concrete performance evaluation. In addition to
evaluate each part of proposal, we also deploy FADID-TT on two
well-known blockchain platforms including Hyperledger Fabric
(permissioned) and Ethereum (permissionless) to demonstrate the
practical feasibility of FADID-TT.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols; Cryp-
tography; • Information systems→World Wide Web.

KEYWORDS
decentralized identity, full anonymity, threshold traceability, blockchain

1 INTRODUCTION
Decentralized Identity (DID) is a new paradigm in digital identity
management, allowing users to have greater control over their
personal identity data and credentials through a decentralized in-
frastructure [1, 4]. DID improves security by reducing the risks of
identity theft, privacy breaches, and data monopolization.

Owing to these remarkable properties, DID is regarded as a key
element of the emerging Web3 ecosystem [18] and holds promise

for a broad range of applications, including the secure digital asset
ownership verification in the digital markets [12], the trust manage-
ment in the financial system [7], the privacy-preserving personal
data showcasing in the social medias [22], etc.

To support these diverse applications, the DID system relies
on two key components: Decentralized Identifiers (DIDs) and Cre-
dentials. The DIDs, serving as unique identifiers for entities, are
self-generated by users without relying on a central authority. The
credential, consisting of verifiable claims, is a statement used to
prove that an entity has some specific attributes, qualification, or
identity [5]. These components work together to facilitate secure
authentication and authorization, ensuring users are recognized
and granted appropriate permissions in various applications.

As the application of DID is expanding, ensuring powerful pri-
vacy protection in DID systems becomes a critical concern. Notably,
Fractal ID, a decentralized identity provider, experienced a signif-
icant breach of identity privacy data in July 2024, despite of its
decentralized architecture1. This underscores the importance and
urgency of protecting user privacy in DID systems.

Anonymity is one of the important privacy protection require-
ments in DID systems, which aims to prevent the disclosure of
a user’s real identity, thereby protecting users interests. Given
stringent privacy regulations such as the GDPR [28], even a user’s
behavioral patterns are considered as personal data that needs to be
protected. Thereby, we introduce the concept of full anonymity to
meet high privacy standards. Specifically, full anonymity includes
two key conditions: First, no party (including the verifier and issu-
ing authority) can learn a user’s real identity. Second, unlinkability
must be guaranteed across multiple service interactions, preventing
users from being profiled based on their behavior patterns. Besides,
anonymous DID should support traceability, allowing authorities to
reveal the true identity of users in cases of misconduct. For example,
in the financial sector, anti-money laundering (AML) regulations
require mechanisms to track suspicious activities while preserving
user privacy. Additionally, the management of DID system is cru-
cial, including the storage of user identities. However, existing DID
solutions still face the following issues.
Loss of full anonymity. As shown in Figure 1, primary DID so-
lutions like W3C DID [29] use an unique and fixed identifier to
maintain the user’s real identity from direct exposure. Nevertheless,
they completely cannot resist the link analysis between different
services via the same public key usage. Some existing researches,
such as Pairwise DIDs [9] and CanDID [19], have already attempted
to address this issue by generating distinct identifiers across dif-
ferent services, but the link analysis still occurs within a single
application via the same public key usage, failing to achieve unlink-
ability. Although adopting the strawman one-time pseudonyms (i.e,

1https://www.biometricupdate.com/202407/data-breach-raises-questions-about-
fractal-ids-decentralized-identity-architecture

1

https://www.biometricupdate.com/202407/data-breach-raises-questions-about-fractal-ids-decentralized-identity-architecture
https://www.biometricupdate.com/202407/data-breach-raises-questions-about-fractal-ids-decentralized-identity-architecture

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW’25, April 2025, Sydney, Australia Anon. Submission Id: 2625

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Public Key of

DID Committee

⋯
⋯

⋯

Existing Anonymous DID Solutions FADID-TT(Our Solutions)

User’s Real

Identity S

⋯
⋯

⋯

⋯
⋯

⋯

⋯
⋯

⋯

Primary DID Solutions Strawman One-Time DID Pseudonym

DID

Committee

User

User’s Pseudonym Identifiers

And Public Keys Used in

Service Access Authentication

Sensitive Personal Information

(User’s Service Access Records)
Records Linkage Via

Same Key Usage
The Services

Providers

The Secret

Shares of S

Uses User’s/Committee

Public Key To Authenticate

Service Access Request

Figure 1: Comparison between different DID schemes on full anonymity

registering a new identifier for each service access) could achieve
complete unlinkability, such method incurs significant overhead
on DID committee. Each committee member needs to store and
manage the whole mapping between the user real identity and
pseudonyms, making it impractical for real-world deployment and
losing anonymity to authorities.
Lack of support for threshold traceability. To maintain the
user’s real identity and attributes from direct exposure, decentral-
ized anonymous credentials (DACs) [14] are proposed to achieve
anonymity and unlinkability through cryptography mechanisms.
DACs allow users to get verified without showing their real identi-
ties and attributes in an unlinkable way at the decentralized setting.
However, most of existing DACs [27][24] ignore the accountability
and traceability, failing to support the real-world governance re-
quirements, let alone achieve threshold tracing in distributed Web3.
In the limited work trying to achieve both privacy and traceabil-
ity, TMAC [17] introduces a centralized tracing authority, making
it vulnerable to the abuse of the tracing power and lack of trans-
parency. While TABC [26] realizes threshold tracing, it exposes
users’ real identities during the registration process , which under-
mines anonymity to the authority and raises privacy concerns.
Highmanagement complexity.Additionally, in existing schemes,
the registration authority needs to maintain a mapping between
user real identity and their public key for authentication purposes.
Consequently, it need store and manage at least 𝑂 (𝑛) user public
keys for 𝑛 users. This cost becomes considerable as the number of
users in the system continues to increase, bringing high overhead.

Therefore, a burning question arise:Canwe achieve full anonymity
in DID systems efficiently while enabling threshold tracing mecha-
nisms for both privacy and accountability?
Our works. To address the above issues, we propose FADID-TT,
a Fully Anonymous Decentralized IDentity system supporting
ThresholdTracing with practical blockchains. Through introducing
an anonymous DID committee of multiple issuing authorities called
ADID committee, FADID-TT provides a distributed registration
mechanism to offer stronger privacy for user’s real-world identities
and data. As shown in Figure 1, the user’s real identity shares
are distributed and managed among committee members via secret
sharing, so as to realize anonymity of the real identity for all roles in
the system, which means that even the ADID committee members
less than threshold can not learn the real-world identity of the user
(Table 1, Row 6, Column “Anonymity to authority”).

Furthermore, we incorporate anonymous signatures and DACs
to achieve the full anonymity in a decentralized setting. Upon regis-
tration, the user receives a secret key bound to their real identity and
the committee’s secret key, enabling anonymous signing. During
the authentication process for service access, the service provider
can only use the ADID committee’s public key to verify the user
identity even for different users, which eliminates the need for user
public keys and fully resists link attacks (Table 1, “Anonymity to
verifiers” & “Unlinkability”). Meanwhile, the cost of maintaining
the mapping between the user’s public key and the real identity is
eliminated (Table 1, “User pk management complexity”, 𝑂 (1)).

Moreover, FADID-TT supports publicly verifiable threshold trac-
ing, while retaining essential DAC properties such as selective
disclosure, unlinkability, and anonymity, so that the identity and
behavior patterns of the user can be protected. The main idea is
introducing a distinct unlinkable tag during the presentation, which
is derived from the one-time token and user’s registration secret
key, and can only be traced to the user’s real identity through collab-
orative efforts of the ADID committee. By distributing the tracing
power in ADID committee and setting a threshold, we prevent any
single entity from compromising user privacy. Meanwhile, ADID
committee could generate zero-knowledge proofs for tracing pro-
cess, making it public verifiable and auditable (Table 1, “Threshold
tracing”& “Verifiable traceability”). Furthermore, ADID committee
can be deployed on practical blockchains [2, 30] to be compatible
with existing distributed infrastructure.
Contributions. The contributions of our work are as follows.
• We propose a distributed identity registration scheme based on

secret sharing, ensuring that no single entity in the system can
obtain the user’s real identity except the user himself. This regis-
tration only issues the user’s registration secret key shares in a
distributed manner and achieve anonymity to authority.

• We design a fully anonymous DID system combined with anony-
mous signature and DAC. Registered user’s access can only be
authenticated by the same committee public key, meanwhile the
user attributes required for specific services can be hidden by
DAC and each service access generates a one-time show token,
completely resisting link analysis based on user’s public keys or
specific person data and achieving full anonymity. Simultane-
ously, we eliminate user’s public key usage and decrease user’s
public key management overhead from 𝑂 (𝑛) to 𝑂 (1).

• We design a public verifiable threshold tracing mechanism. Thresh-
old tracing is supported by the distributed ADID committee with-
out compromising the privacy properties of DAC, preventing

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Fully Anonymous Decentralized Identity Supporting Threshold Traceability with Practical Blockchain WWW’25, April 2025, Sydney, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 1: Comparison between FADID-TT and other related work

System
Full Anonymity Traceability Management

Anonymity to verifiers1 Anonymity to authority2 Unlinkability4 Threshold tracing 5 Verifiable traceability User pk management complexity6

CanDID[19] ✔ ✔ ✘ ✔ ✔ 𝑂 (𝑚𝑛)
Coconut[27] ✔ ✔✗3 ✔ ✘ ✘ 𝑂 (𝑛)
zk-creds[24] ✔ ✔✗3 ✔ ✘ ✘ 𝑂 (𝑛)
TMAC[17] ✔ ✘ ✔ ✔✗ ✘ 𝑂 (𝑛)
TABC[26] ✔ ✘ ✔ ✔ ✘ 𝑂 (𝑛)

FADID-TT (Our work) ✔ ✔ ✔ ✔ ✔ 𝑂 (1)
1 Anonymity to verifiers means verifiers can not learn the user real identity.
2 Anonymity to authority means the user’s real identity remains hidden to the authority even when user register with real identity considering regulatory.
3 Coconut and zk-creds satisfy anonymity to authority when not considering tracing.
4 Unlinkability means different accesses of the same user cannot be linked.
5 In the column “Threshold tracing”, ✔✗ represents centralized tracing, ✘ represents tracing is not supported.
6 User pk management complexity means the number of user public keys that the authority needs to store, manage, and maintain, where 𝑛 is the number of users in the system,𝑚 is the number of server providers, 𝑘 denotes the
access count of a user per service.

the abuse of tracing power. Meanwhile, the tracing process is
public verifiable via zero-knowledge proof, making it applicable
to certain scenarios where accountability is important.

• Weprovide security analysis, implementation on practical blockchains,
and performance evaluation. We give specific security definition
and proof to illustrate our proposal satisfies the security goals.
Concurrently, we conduct performance evaluation on the pro-
posed schemes. Furthermore, we deploy FADID-TT on two well-
known blockchain platforms including Hyperledger Fabric and
Ethereum to demonstrate the practical feasibility.

2 PRELIMINARIES AND BUILDING BLOCKS
In this section, we briefly illustrate the foundational blocks nec-
essary for FADID system construction including decentralized
anonymous credentials, bilinear pairings, secret sharing, and Non-
Interactive Zero-Knowledge Proof.

2.1 Decentralized Anonymous Credentials
Decentralized anonymous credential (DAC) schemes [14, 31] offer
robustness and privacy for user-centered identity management in
DID systems. DACs enable users to possess credentials issued by
decentralized entities, thereby removing the need for online verifi-
cation intermediaries. Moreover, DACs allow selective disclosure of
personal attributes and empower users to anonymously authenti-
cate themselves without revealing their actual identity or sensitive
personal information. Meanwhile, the user can rerandomize its
credentials independently to achieve unlinkability and ensure that
the user cannot be traced. A general DAC scheme utilized in this
work is formalized as the following algorithms:
• 𝐷𝐴𝐶.𝐼𝑠𝑠𝑢𝑒 (𝑟𝑒𝑞, 𝑖𝑠𝑘) → 𝑐𝑟𝑒𝑑 : This algorithm handles the anony-

mous credential issuance process. Given a user’s request 𝑟𝑒𝑞,
decentralized issuers collaboratively sign the user’s identity at-
tributes using their issuing secret keys 𝑖𝑠𝑘 . It returns the anony-
mous credential 𝑐𝑟𝑒𝑑 to the user.

• 𝐷𝐴𝐶.𝑆ℎ𝑜𝑤 (𝑐𝑟𝑒𝑑) → 𝑠𝑡𝑜𝑘𝑒𝑛 : This algorithm abstracts how
anonymous credentials are used. The user (credential owner)
inputs the issued credential 𝑐𝑟𝑒𝑑 , and outputs an one-time show
token 𝑠𝑡𝑜𝑘𝑒𝑛. 𝑠𝑡𝑜𝑘𝑒𝑛 serves as a proof that the user owns a valid
credential approved by the issuers without revealing actual iden-
tity information. 𝐷𝐴𝐶.𝑆ℎ𝑜𝑤 (𝑐𝑟𝑒𝑑) is non-deterministic which
means the same credential can derive multiple different tokens. It
ensures unlinkability across verification processes and allows the
user to reuse credentials independently and maintain privacy.

• 𝐷𝐴𝐶.𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝑠𝑡𝑜𝑘𝑒𝑛, 𝑖𝑝𝑘) → 0/1 : This verification algorithm
checks the validity of the show token 𝑠𝑡𝑜𝑘𝑒𝑛 using the issuers’
public key 𝑖𝑝𝑘 . It returns 1 if the token is valid, and 0 otherwise.

2.2 Bilinear Pairing
Bilinear pairing is a kind of binary mapping on two cyclic groups.
Let G, G̃, and GT be three finite groups of prime order 𝑝 . 𝑔 and 𝑔
are the generators of G and G̃, respectively. A bilinear pairing is a
map 𝑒: G × G̃→ GT with the following properties [20].
• Bilinearity: For all 𝑔1 ∈ G, 𝑔2 ∈ G̃ and 𝑢, 𝑣 ∈ Z∗𝑞 , 𝑒 (𝑔𝑢1 , 𝑔2

𝑣) =
𝑒 (𝑔1, 𝑔2)𝑢𝑣 ;
• Non-degeneracy: 𝑒 (𝑔1, 𝑔2) ≠ 1;
• Computability: There exists an efficient algorithm to compute
𝑒 (𝑔1, 𝑔2) for all 𝑔1 ∈ G, 𝑔2 ∈ G̃.

2.3 Secret Sharing
The (𝑛, 𝑡)-threshold secret sharing technique allows a secret 𝑠 to
be divided into 𝑛 parts called shares and the secret 𝑠 can only
be reconstructed when at least correct 𝑡 shares are gathered. The
Shamir secret sharing scheme (denoted as 𝑆𝑆𝑆) [25], which can
achieve information-theoretical security is the most well-known
and widely-used secret sharing method through Lagrange polyno-
mial interpolation. The (𝑛, 𝑡) − 𝑆𝑆𝑆 is comprised of two algorithms:
• 𝑆ℎ𝑎𝑟𝑒 (𝑠, 𝑛, 𝑡) → {𝑠𝑖 }𝑛𝑖=1 : The holder of secret 𝑠 selects 𝑡 − 1

random coefficients 𝑎1, 𝑎2, . . . , 𝑎𝑡−1 over a finite field F𝑝 and
construct polynomial 𝑓 (𝑥) = 𝑠 +∑𝑡−1

𝑖=1 𝑎𝑖𝑥
𝑖 . The secret 𝑠 satisfies

𝑓 (0) = 𝑠 . For each participant 𝑖 , a corresponding share 𝑠𝑖 = 𝑓 (𝑖)
is computed and securely distributed to the participant 𝑖 .

• 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 ({𝑠𝑖 }𝑖∈𝑇) → 𝑠 : Given any index subset 𝑇 of size
greater than or equals to 𝑡 , the secret 𝑠 can be reconstructed uti-
lizing Lagrange interpolation. For each 𝑖 ∈ 𝑇 , the corresponding
Lagrange coefficient 𝜆𝑖 is computed as:

𝜆𝑖 =

∏
𝑗∈𝑇,𝑗≠𝑖 𝑗∏

𝑗∈𝑇,𝑗≠𝑖 (𝑗 − 𝑖)
Then through Lagrange interpolation, the secret 𝑠 can be recon-
structed by computing 𝑠 =

∑
𝑖∈𝑇 𝜆𝑖𝑠𝑖 .

2.4 Non-Interactive Zero-Knowledge Proof
In a zero-knowledge proof (ZKP) system, there are two principal
entities: the prover and the verifier. The prover’s goal is to con-
vince the verifier that a statement 𝑅 related to a secret value𝑤 is

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW’25, April 2025, Sydney, Australia Anon. Submission Id: 2625

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

true, without revealing any additional knowledge about 𝑤 . Non-
Interactive Zero-Knowledge (NIZK) can achieve the following three
fundamental properties [15] without interactive communication
between the prover and verifier.
• Completeness. If the statement is true, an honest prover will be

able to convince the verifier of its correctness.
• Soundness. If the statement is false, a dishonest prover cannot

successfully convince the verifier of the statement’s truth.
• Zero-knowledge. The interaction between the prover and the

verifier reveals only that the statement is true, without disclosing
any additional knowledge about the secret.
In the NIZK scheme, two core algorithms are involved: the prover

generates a valid proof 𝜋 using the proving algorithm Prove, and the
verifier checks the validity of 𝜋 with the corresponding verification
algorithm Verify [13]. In the FADID-TT design, we adopt a non-
interactive Sigma protocol [6]. We use the following notation to
represent a NIZK proof 𝜋 generated for a secret value 𝑤 and a
statement 𝑅 about𝑤 : 𝜋 ← 𝑁𝐼𝑍𝐾𝑆𝑃 {𝑤 : 𝑅}.

3 PROBLEM FORMULATION
In this section, we first outline the design goals to clearly demon-
strate the problem our system is intended to solve or the specific
outcomes we aim to achieve. Then, we introduce the main roles
within the system and descripe the system’s workflow, showing
how they interact together to reach the desired outcome. After-
ward, we summarize the system’s main functionalities through
giving corresponding algorithm definition, providing a high-level
understanding of the system’s operational logic.

3.1 Design Goal
• Decentralization. The system must ensure decentralized trust

and prevent single point of failure, thus enhancing fault tolerance
and robustness. To achieve this, both the registration process
and the tracing mechanism need operate in a distributed manner,
ensuring that no centralized authority holds unilateral control,
and the system remains resilient even if parts of it fail.

• Full Anonymity. The system aims to archive full anonymity
which includes two key properties: anonymity to all parties
within the system and unlinkability of different accesses to the
service. The anonymity is to protect the user’s real-world iden-
tity from being revealed to both verifiers and authorities within
the system even during the registration. Meanwhile, the unlink-
ability is to ensure that a user’s actions remain unlinkable across
multiple interactions with the services so that users cannot be
profiled based on analysis of their previous activities. Together,
by achieving anonymity and unlinkability, the system can realize
full anonymity to provide strong privacy.

• Accountability.While anonymity is important, the system also
needs to support mechanisms for tracing and auditing under
regulated conditions. If the user misuses the service, the system
need be able to trace the user and reveal its real identity while
ensure that user privacy is only compromised in compliance
with legal or regulatory frameworks.
• Security. A primary focus of security in this system is to prevent

identity forgery. The system must ensure that no entity can
impersonate a user or forge credentials associated with the user’s

real identity. This mainly includes the unforgeability of both
identity secret key and credential.

3.2 System Model
Roles. There are four main actors in our system: users, ADID
committee, verifiers (service providers) and credential issuers (au-
thorities), as depicted in Figure 2.
• Users. Users are those individuals that want to access to services

offered by online service providers. The users set in the system
grows continuously. We consider that each user is associated
with a unique identifier that already exists in the real world, such
as an ID card number in CHN or a Social Security Number (SSN)
in USA. For practical considerations, we assume that users may
misbehave within the application after they obtain access to the
service provided by the verifiers.

• ADID Committee. ADID Committee is a decentralized com-
mittee composed of distributed authorities which is responsible
for user identity managment and satisfies the basic distributed
threshold security assumptions. It is in charge of anonymous and
decentralized registration of users, the audit accountability of
users’ real identities, and the threshold tracing of user’s anony-
mous credentials. Given realistic privacy needs, it is assumed to
be honest but curious.

• Verifiers. Verifiers are those entities that need to verify a user’s
identity information and credentials for authentication and au-
thorization in Internet services, such as web service providers
(Google, for example) and decentralized applications. We assume
verifiers honest but curious, during the verification with the user.

• Credential Issuers. Credential issuers serve as decentralized
authorities responsible for issuing credentials to users.

① register

request

② register

response

③ secret key

reconstruction

④ request credential

⑤ issue credential

⑦ verification⑦ verification

User

Credential Issuers

ADID Committee

Verifier 1

Verifier 2

Verifier 3

⑥ show⑥ show

show token

⑦ verification

⑥ show

⑧ trace

request
⑧ trace

detect

malicious

behaviors

Setup

1 2 3

①②③ Registration Phase ④⑤⑥⑦ Presentation PhaseSetup Phase ⑧ Trace Phase



① register

request

② register

response

③ secret key

reconstruction

④ request credential

⑤ issue credential

⑦ verification⑦ verification

User

Credential Issuers

ADID Committee

Verifier 1

Verifier 2

Verifier 3

⑥ show⑥ show

show token

⑦ verification

⑥ show

⑧ trace

request
⑧ trace

detect

malicious

behaviors

Setup

1 2 3

①②③ Registration Phase ④⑤⑥⑦ Presentation PhaseSetup Phase ⑧ Trace Phase



Figure 2: Workflow of our FADID-TT system

Work Flow. Figure 2 shows the basic workflow of the system,
where the credentials component we instantiate by existing anony-
mous credential system. It can be divided into four main phases:
setup, registration, presentation, and tracing.

Setup. Initially, setting global cryptography parameters essential
for operation in the system, the ADID committee distributedly
generate it implicit secret key and public verification key without
relying on a trusted third party (Figure 2, step 0○).

Registration. Given the situation that a new user Alice wants to
access a verifier’s (e.g. YouTube) services, she first anonymously
sends an identity registration request to the ADID committee, which

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Fully Anonymous Decentralized Identity Supporting Threshold Traceability with Practical Blockchain WWW’25, April 2025, Sydney, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

is bound to her unique identifier that already exists in the real world
(Figure 2, step 1○). Then, the ADID committee verifies the user’s
identity information and the uniqueness of the registration through
local data table. After confirming that the information is both legit-
imate and unique, the ADID committee distributedly computes the
share of user’s registration secret key, which is associated with the
user’s real identity and the committee’s secret key. This key share
is subsequently distributed to the user (Figure 2, step 2○). Next,
upon collecting enough key shares that meet the reconstruction
conditions, the user reconstructs the complete registration secret
key locally and uses ADID committee’s verification key to validate
its legitimacy (Figure 2, step 3○). After successful verification, the
registration process is completed, and it is worth noting that the
user only obtains the user’s private key after registration, but not
the user’s public key.

Presentation. Afterward, the user can apply for an anonymous
credential from the credential issuers (Figure 2, step 4○). Once the
credential issuers verifies the legitimacy of the user’s identity at-
tributes, it will issue the anonymous credential to the user in a
distributed manner (Figure 2, step 5○). After that, the user random-
izes the received credential locally to generate a one-time show
token, which is to proves to the verifier (service provider) that her
identity attributes have been certified by the credential issuers (au-
thorities), in a unlikable way between different verification process.
Meanwhile, the user signs the show token using the previously
registered secret key and sends it along with the signature to ver-
ifier (Figure 2, step 6○). And then, the verifier verifies the show
token without contacting the credential issuers directly and utilizes
ADID committee’s public verification key to verify the legitimacy
of the signature (Figure 2, step 7○). Upon successful verification,
the legitimacy of the user’s identity can be confirmed, allowing the
user to receive the corresponding services from the verifier.

Tracing. Besides, considering the potential for malicious use of
anonymous credentials or post-audit scenarios to trace the real iden-
tity of credential holders, the ADID committee, based on credential
tracing requests that may be proposed by verifier, can conduct iden-
tity threshold tracing to reveal the real identity of the holder and
generate a proof so that this tracing process can be publicly verified.
And then, this tracing record will be publicly uploaded on-chain to
warn against malicious behavior (Figure 2, step 8○).

4 FADID DESIGN
In this section, we detail our design of the system FADID-TT.

4.1 Concrete Construction
Our scheme operates through four phases: setup, registration, pre-
sentation, and tracing. We omit the processes of anonymous cre-
dential issuance and obtaining, as these are not the primary focus
of our work, which has been extensively covered in existing litera-
ture [11, 14, 21, 24, 27]. Moreover, our FADID system is designed
to flexibly integrate with various multi-show anonymous creden-
tials systems. Each of the four phases comprises several algorithms,
which we detail below. Figure 7 in appendix illustrates the interac-
tions among parties utilizing these algorithms within our system.

4.1.1 Setup Phase.
To set up the system initially, first the GlobalSetup function

determines global cryptographic parameters essential for opera-
tion in the system, then the ADID committee employs the CKGen
function to distributedly generate key without relying on a trusted
third party. The algorithms are implemented as follows.

• GlobalSetup(1𝜆) → 𝑝𝑝 . Given the input of a security param-
eter 𝜆, the algorithm generates a bilinear pairing description
𝑏𝑝 = (𝑝,G, G̃,G𝑇 , 𝑒, 𝑔, 𝑔), where G, G̃,G𝑇 are finite groups with
large prime order 𝑝 . The mapping 𝑒 : G × G̃→ G𝑇 represents a
type-3 bilinear mapping, with 𝑔 and 𝑔 as the generators of group
G and G̃ respectively. In addition, it sets up the threshold param-
eters for the ADID committee with (𝑛, 𝑡), where 𝑛 is the number
nodes in ADID committee and 𝑡 denotes the threshold for ADID
committee participants. The output global public parameters are
given by 𝑝𝑝 = (𝑏𝑝, (𝑛, 𝑡)).

• CKGen(𝑝𝑝) → ({𝑐𝑠𝑘𝑖 }𝑛𝑖=1, 𝑐𝑣𝑘). Taking the global public pa-
rameters 𝑝𝑝 as input, the ADID committee runs a the distributed
key generation (DKG) protocol [16]. Through the DKG protocol,
all 𝑛 nodes of the ADID committee collectively generate a group
public key 𝑐𝑣𝑘 (with an implicit group secret key 𝑐𝑠𝑘 which is
never computed explicitly) and satifies the relation 𝑐𝑣𝑘 = 𝑔𝑐𝑠𝑘 .
Also, each node 𝑖 within the ADID committee gets its individual
secret key 𝑐𝑠𝑘𝑖 , which constitutes a share of 𝑐𝑠𝑘 in (𝑛, 𝑡) Shamir
secret sharing scheme.

4.1.2 Registation Phase.
To register in the system, the user invokes PrepareReg func-

tion using her unique identifier 𝑠 which may be an identity card
number, a SSN, or a Decentralized Identifier (DID) in other DID
systems. Subsequently, this registration request is distributed to
the ADID committee by the user. After that, the ADID committee
executes UKeyIssue algorithm to first verify the legitimacy and
uniqueness of the request and then collaborately issue shares of the
user’s secret key, denoted as 𝑢𝑟𝑠𝑘𝑖 . Upon receiving a sufficient set
of registration secret key shares that fulfill reconstruction criteria,
the user employs UKeyRecon to derive the user’s complete regis-
tered secret key 𝑢𝑟𝑠𝑘 . Finally the user runs UKeyVerify locally to
confirm the correctness of the reconstructed secret key. Detailed
implementations of these algorithms are provided below.

• PrepareReg(𝑠) → 𝑟𝑒𝑔𝑅𝑒𝑞. The user inputs her unique identifier
𝑠 , which already exists in the real world (e.g. a government-issued
ID number). Then it runs {𝑠𝑖 }𝑛𝑖=1 ← 𝑆ℎ𝑎𝑟𝑒 (𝑠, 𝑛, 𝑡) to distribute
the user’s real-world identity 𝑠 among theADID committee nodes
using a Shamir threshold secret sharing scheme. Meanwhie, the
user makes a Feldman commitment to her indentity in the form
of 𝑔𝑠 , which is sent to the ADID committee. So after that, each
node within the ADID committee receives a share of the user’s
identity and the corresponding commitment. Crucially, this en-
sures that the ADID committee, even if partially compromised,
cannot deduce the user’s real identity. The algorithm outputs
the registration request information 𝑟𝑒𝑔𝑅𝑒𝑞 = ({𝑠𝑖 }𝑛𝑖=1, 𝑔

𝑠) sent
to the ADID committee.

• UKeyIssue({𝑐𝑠𝑘𝑖 }𝑛𝑖=1, 𝑟𝑒𝑔𝑅𝑒𝑞) → {𝑢𝑟𝑠𝑘𝑖 }
𝑛
𝑖=1. The ADID com-

mittee parses the registration request information 𝑟𝑒𝑔𝑅𝑒𝑞 of a
new user as ({𝑠𝑖 }𝑛𝑖=1, 𝑔

𝑠). The identity commitment 𝑔𝑠 , included
in the registration request, is checked against the locally recorded
data table T𝑖 on each node 𝑖 of the ADID committee. This table

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW’25, April 2025, Sydney, Australia Anon. Submission Id: 2625

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

T𝑖 of node 𝑖 stores the registration information for all legal users
who had been registered on the ADID committee. Initially these
tables an empty, i.e T𝑖 = ∅ for 𝑖 = 1, . . . , 𝑛. If the identity com-
mitment 𝑔𝑠 is not found in any local data table across all ADID
committee nodes, i.e., 𝑔𝑠 ∉ T𝑖 for 𝑖 = 1, . . . , 𝑛, the uniqueness of
the new user’s identity is confirmed. Otherwise, it aborts.
Afterward, the ADID committee proceeds to issue a secret key to
be registered, 𝑢𝑟𝑠𝑘 = (𝑔

1
𝑠+𝑐𝑠𝑘 , 𝑔

1
𝑠+𝑐𝑠𝑘), to the user in a distributed

manner. This user secret key is derived in form of a distributed
verifiable random function’s output (DY-VRF) [10], bound to both
the user’s real identity 𝑠 and the ADID committee’s secret key
𝑐𝑠𝑘 . The process leverages the linear homomorphism of Shamir
secret sharing and the multiplication protocol for Shamir secret
sharing [3].
Specifically, the distributed computation of the user secret key
proceeds as follows: (1) Each node 𝑖 of the ADID committee com-
putes 𝜇𝑖 = 𝑐𝑠𝑘𝑖 + 𝑠𝑖 using the user identity share 𝑠𝑖 and its secret
key 𝑐𝑠𝑘𝑖 . (2) A random number 𝜌 is implicitly generated among
the 𝑛 nodes of the ADID committee in a distributed manner, that
is, each node 𝑖 only gets its corresponding share 𝜌𝑖 . (3) Runing
the Shamir secret sharing multiplication protocol [3], each node
𝑖 gets the share of the product of 𝜌 and 𝜇, represented as (𝜇𝜌)𝑖 ,
using 𝜇𝑖 and 𝜌𝑖 without revealing the full value of 𝜇 or 𝜌 . (4)
The ADID committee collectively recovers 𝜇𝜌 using Lagrange
interpolation: 𝜇𝜌 =

∑𝑡
𝑖=1 (𝜆𝑖 (𝜇𝜌)𝑖), where 𝜆𝑖 is the Lagrange co-

efficient. And the value 𝜇𝜌 is exposed publicly among the ADID
committee. (5) Each node 𝑖 computes locally its share of the
inverse of 𝜇, denoted as (1𝜇)𝑖 =

𝜌𝑖
𝜇𝜌 . (6) Each node 𝑖 computes

its corresponding share of user secret key: 𝑢𝑟𝑠𝑘𝑖 = (𝑢𝑠𝑘𝑖 , 𝑢𝑠𝑘𝑖),
where 𝑢𝑠𝑘𝑖 = 𝑔 (

1
𝜇
)𝑖 , 𝑢𝑠𝑘𝑖 = 𝑔

(1
𝜇
)𝑖 .

Finally, each node 𝑖 of the ADID committee respectively sends
its share of the user’s registered secret key 𝑢𝑟𝑠𝑘𝑖 to the user,
ensuring the secure and distributed generation of the registration
secret key. And each node 𝑖 updates its recorded registration data
table T𝑖 off chain by adding the registered and verified request
𝑟𝑒𝑔𝑅𝑒𝑞 to T𝑖 .
• UKeyRecon({𝑢𝑟𝑠𝑘𝑖 }𝑡𝑖=1) → 𝑢𝑟𝑠𝑘 . The user parses the received

secret key share 𝑢𝑟𝑠𝑘𝑖 from node 𝑖 as (𝑢𝑠𝑘𝑖 , 𝑢𝑠𝑘𝑖). Upon collect-
ing a sufficient set of registration secret key shares of size up
to the threshold 𝑡 , the user aggregates them into user’s secret
key 𝑢𝑟𝑠𝑘 = (𝑢𝑠𝑘,𝑢𝑠𝑘) = (∏𝑡

𝑖=1 (𝑢𝑠𝑘𝑖)𝜆𝑖 ,
∏𝑡

𝑖=1 (𝑢𝑠𝑘𝑖)𝜆𝑖 This ag-
gregation leverages Lagrange interpolation, and 𝜆𝑖 represents
the Lagrange coefficient.

• UKeyVerify(𝑐𝑣𝑘,𝑢𝑟𝑠𝑘) → 0/1. For the reconstructed user’s
secret key 𝑢𝑟𝑠𝑘 parsed as (𝑢𝑠𝑘,𝑢𝑠𝑘), the user verifies its validity
using the ADID committee’s verification key 𝑐𝑣𝑘 . The verification
is performed by checking the following equations:

𝑒 (𝑐𝑣𝑘 · 𝑔𝑠 , 𝑢𝑠𝑘) = 𝑒 (𝑔,𝑔) (1a)

𝑒 (𝑢𝑠𝑘, 𝑔) = 𝑒 (𝑔,𝑢𝑠𝑘) (1b)

Equation (1a) verifies the correctness of𝑢𝑠𝑘 , equation (1b) verifies
the consistency between 𝑢𝑠𝑘 and 𝑢𝑠𝑘 . Together, these conditions
validate the reconstructed secret key 𝑢𝑟𝑠𝑘 . It returns 1 if both
equations hold, indicating 𝑢𝑟𝑠𝑘 is valid; otherwise, it outputs 0.

4.1.3 Presentation Phase.
After successful registration, the user gets her registered secret

key 𝑢𝑟𝑠𝑘 . Notably, there is no associated user public key; instead,
our system utilizes the committee’s verification key 𝑐𝑣𝑘 . As outlined
earlier, we assume the deployment of a Decentralized Anonymous
Credential (DAC) system, where the user has already obtained
a valid anonymous credential 𝑐𝑟𝑒𝑑 , issued by credential issuers
through the function 𝐷𝐴𝐶.𝐼𝑠𝑠𝑢𝑒 (𝑟𝑒𝑞, 𝑖𝑠𝑘) → 𝑐𝑟𝑒𝑑 . Hence, during
the presentation phase, the user invokes TokenPresent algorithm
to show the 𝑐𝑟𝑒𝑑 for the verifier. Then the verifier runsVerPresent
to verify this presentation.

• TokenPresent(𝑢𝑟𝑠𝑘, 𝑐𝑟𝑒𝑑) → (𝑠𝑡𝑜𝑘𝑒𝑛,𝑇𝑠 , 𝜋𝑇𝑠). The user calls
𝐷𝐴𝐶.𝑆ℎ𝑜𝑤 (𝑐𝑟𝑒𝑑) → 𝑠𝑡𝑜𝑘𝑒𝑛 function to generate a one-time
show token 𝑠𝑡𝑜𝑘𝑒𝑛 of her owned credential 𝑐𝑟𝑒𝑑 . Then, the user
signs 𝑠𝑡𝑜𝑘𝑒𝑛 using the previously registered secret key 𝑢𝑟𝑠𝑘 . To
be specific, parsing 𝑢𝑟𝑠𝑘 into (𝑢𝑠𝑘,𝑢𝑠𝑘), the user computes the
tag 𝑇𝑠 = 𝑒 (𝑠𝑡𝑜𝑘𝑒𝑛,𝑢𝑠𝑘), which operates as a verifiable unpre-
dictable function. After that, the user constructs the proof 𝜋𝑇𝑠
to demonstrate the well-formedness of 𝑇𝑠 without leaking the
secret key 𝑢𝑟𝑠𝑘 , using the method similar to the anonymous sig-
nature scheme SyRA [8]. It is noticeable that, for a user, although
the output tag 𝑇𝑠 is deterministically derived from 𝑠𝑡𝑜𝑘𝑒𝑛, yet
the onre-time show token 𝑠𝑡𝑜𝑘𝑒𝑛 is pseudorandom and appears
different across multiple presentations. Thus this still guarantees
the unlinkability of multiple uses of the same credential, prevent-
ing any correlation between them. Besides, this design contrasts
with SyRA [8], where the tag takes the form 𝑇 = 𝑒 (𝑐𝑥𝑡,𝑢𝑠𝑘),
making different presentations of the credential under the same
context 𝑐𝑥𝑡 linkable.

• VerPresent(𝑐𝑣𝑘, 𝑠𝑡𝑜𝑘𝑒𝑛,𝑇𝑠 , 𝜋𝑇𝑠) → 0/1. The verifier employs
the algorithm 𝐷𝐴𝐶.𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝑠𝑡𝑜𝑘𝑒𝑛, 𝑖𝑝𝑘) → 0/1 to verify the
received show token 𝑠𝑡𝑜𝑘𝑒𝑛. If the token is valid (the result is 1),
then the verifier proceeds to verify the corresponding tag𝑇𝑠 and
proof 𝜋𝑇𝑠 the assistance of the ADID committee’s verification
key 𝑐𝑠𝑘 , using the method in SyRA [8]. Only if both verifications
succeed it returns 1; 0 otherwise.

4.1.4 Tracing Phase.
Upon the presentation is successfully verified, the authenticity of

the user’s identity is confirmed. Thereby the user is granted access
to the services provided by the verifier. However, certain scenarios
necessitate credential tracing. For instance, when anonymous cre-
dentials are misused, or post-audit investigations require revealing
the credential owner’s real identity, it becomes crucial to identify
users who exploit the service or engage in misconduct after gaining
access. In such cases, the service provider must be able to identify
the credential holder. Therefore, to address this, the credential trac-
ing requestor (such as the verifier in the example above or other
relevant parties) invokes PrepareTrace function to generate an
anonymous credential tracing request. This request is submitted to
the ADID committee for further action. Upon receiving the request,
the ADID committee executes the Trace algorithm to validates it
and then threshold-open the real identity of the credential holder.
At the same time, a publicly verifiable proof 𝜋𝑡𝑟𝑎𝑐𝑒 is generated.
Any participant in the system can subsequently employs TraceVer
to verify the correctness of the tracing process.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Fully Anonymous Decentralized Identity Supporting Threshold Traceability with Practical Blockchain WWW’25, April 2025, Sydney, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

• PrepareTrace(𝑠𝑡𝑜𝑘𝑒𝑛,𝑇𝑠 , 𝜋𝑇𝑠) → 𝑐𝑜𝑚𝑝𝑙𝑎𝑖𝑛𝑅𝑒𝑞. The verifier, when
detecting malicious behavior exhibited by the user after service
access is granted, can initiate a tracing process. Using the cor-
responding show token 𝑠𝑡𝑜𝑘𝑒𝑛, tag 𝑇𝑠 and proof 𝜋𝑇𝑠 from the
previous presentation, the verifier creates a complaint request,
𝑐𝑜𝑚𝑝𝑙𝑎𝑖𝑛𝑅𝑒𝑞, which includes a description of the requestor’s
identifying information and potential evidence of credential mis-
use. Then, the verifier sends the package 𝑐𝑜𝑚𝑝𝑙𝑎𝑖𝑛𝑅𝑒𝑞, 𝑠𝑡𝑜𝑘𝑒𝑛,𝑇𝑠 , 𝜋𝑇𝑠
to the ADID committee for tracing.

• Trace({𝑐𝑠𝑘𝑖 }𝑡𝑖=1, 𝑐𝑜𝑚𝑝𝑙𝑎𝑖𝑛𝑅𝑒𝑞, 𝑠𝑡𝑜𝑘𝑒𝑛,𝑇𝑠) → (𝑠, 𝜋𝑡𝑟𝑎𝑐𝑒). TheADID
committee first checks the received complaint request 𝑐𝑜𝑚𝑝𝑙𝑎𝑖𝑛𝑅𝑒𝑞.
After conforming its legitimacy, 𝑡 nodes from ADID committee
collaborate using their secret keys {𝑐𝑠𝑘𝑖 }𝑡𝑖=1 to trace the creden-
tial holder associated with the show token 𝑠𝑡𝑜𝑘𝑒𝑛 and tag 𝑇𝑠 .
The specific tracing process is as follows: (1) Every node within
the ADID committee computes𝑇𝑡𝑘 = 𝑒 (𝑠𝑡𝑜𝑘𝑒𝑛,𝑔). (2) Each node
𝑖 of the ADID committee retrieves in its registration data table
T𝑖 one by one for an entry that satisfies specific conditions. For
better description of the algorithm process, we assume the ta-
ble is indexed. When checking the entry ⟨𝑘⟩ in the registration
data table, it does: (i) Each node 𝑖 of the ADID committee com-

putes 𝑇 ⟨𝑘 ⟩
𝑡𝑘,𝑖

= 𝑇
𝑠
⟨𝑘⟩
𝑖
+𝑐𝑠𝑘𝑖

𝑠 and broadcasts 𝑇 ⟨𝑘 ⟩
𝑡𝑘,𝑖

to the committee.
(ii) Using the Lagrange interpolation where 𝜆 𝑗 represents the La-
grange coefficient, each node 𝑖 computes 𝑇 ⟨𝑘 ⟩ =

∏𝑡
𝑗=1 (𝑇𝑡𝑘,𝑗)𝜆 𝑗 .

(iii) Each node 𝑖 checks whether the equation 𝑇 ⟨𝑘 ⟩ = 𝑇𝑡𝑘 holds
or not. If the equality is true for all the 𝑡 nodes, the searching
loop ends. If not, ADID nodes continue to check the next entry.
We denote the entry which satisfies above condition as ⟨∗⟩. By
the way, if no such entry exists, the algorithm aborts. Once identi-
fied, the ADID committee executes 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 ({𝑠 ⟨∗⟩

𝑖
}𝑖∈[𝑡]) →

𝑠 ⟨∗⟩ to reconstruct the real indentity of the credential holder.
And each node 𝑖 computes proof 𝜋𝑇𝑡𝑘,𝑖 = 𝑁𝐼𝑍𝐾𝑆𝑃 {(𝑠

⟨∗⟩
𝑖
, 𝑐𝑠𝑘𝑖) :

𝑇
⟨∗⟩
𝑡𝑘,𝑖

= 𝑇
𝑠
⟨∗⟩
𝑖
+𝑐𝑠𝑘𝑖

𝑠 }, which is to ensure the well-formedness of

𝑇
⟨∗⟩
𝑡𝑘,𝑖

in the tracing process, preventing malicious adversary fab-
ricating intermediate evidence. The result is 𝑠 = 𝑠∗ and 𝜋𝑡𝑟𝑎𝑐𝑒 =

({𝑇 ⟨∗⟩
𝑡𝑘,𝑖
}𝑡
𝑖=1,𝑇𝑡𝑘 , {𝜋𝑇𝑡𝑘,𝑖 }

𝑡
𝑖=1).

• TraceVer(𝑐𝑣𝑘, 𝜋𝑡𝑟𝑎𝑐𝑒) → 0/1. Parsing the tracing proof 𝜋𝑡𝑟𝑎𝑐𝑒
as ({𝑇 ⟨∗⟩

𝑡𝑘,𝑖
}𝑡
𝑖=1,𝑇𝑡𝑘 , {𝜋𝑇𝑡𝑘 ,𝑖 }

𝑡
𝑖=1), it verifies the 𝜋𝑇𝑡𝑘 ,𝑖 using the ver-

ification algorithm of sigma protocol for 𝑖 = 1, . . . , 𝑡 . The algo-
rithm outputs 1 if the proof is valid, 0 otherwise.

4.2 Security Analysis
4.2.1 Security Definition.
We first give a definition of security properties in FADID-TT.
Definition 1 (Full Anonymity.) A DID system is said to provide full
anonymity if and only if the following properties are satisfied:
• Anonymity to authorities and verifiers. Users remain completely

anonymous with respect to both registration authorities and
verifiers. Registration authorities cannot learn the user’s true
identity during registration, and verifiers are unable to extract
any identifying information during verification. Thus, the user’s
identity is hidden from all system actors.

• Unlinkability. Users can engage with multiple verifiers without
those verifiers being able to link the interactions to the same

identity. This prevents different verification interactions, even
when involving the same verifier, from being traced back to a
single user or credential.

Definition 2 (Traceability.) Cooperation among threshold honest
ADID nodes can always correctly trace the owner of the credentials
through a valid credential show token, by executing the tracing
algorithm.
Definition 3 (Public Verifiability of Tracing.) Without revealing
sensitive information or violating privacy, any party can verify
whether a specific tracing process has been correctly executed.
This ensures that an honest user cannot be wrongly accused in the
tracing process.
Definition 4 (Unforgeability.) This includes: (1) Unforgeability of
registration: An adversary cannot forge a valid registration secret
key for a user without knowledge of the ADID committee’s secret
key. (2) Unforgeability of presentation: Users who have not a valid
user secret key 𝑢𝑟𝑠𝑘 issued by by the ADID committee in registra-
tion phase, along with a valid credential from the credential issuers,
cannot forge a valid presentation that pass verification.
Definition 5 (Correctness.) Our scheme is correct if (1) the user’s
registration secret key𝑢𝑟𝑠𝑘 should be accepted provided that𝑢𝑟𝑠𝑘 is
reconstructed from the shares issued by 𝑡 honest nodeswithin ADID
committee; (2) a presentation generated by legitimate users using
the TokenPresent algorithm should be accepted by the VerPresent
algorithm, provided the 𝑐𝑟𝑒𝑑 is valid; (3) by running the tracing
algorithm, any 𝑡 honest tracers in committee should output the
same user’s real identity 𝑠 and a valid proof 𝜋𝑡𝑟𝑎𝑐𝑒 that can be
accepted by the TraceVer algorithm.

4.2.2 Security Proof. We now provide a brief security proof of
FADID-TT and illustrate how it satisfies the security properties
defined above.

• Full Anonymity. The anonymity to registration authorities is
guaranteed by the perfect secrecy of the Shamir’s secret sharing.
And the anonymity to verifiers follows from the anonymity of
DACs and anonymous signature that do not require the user’s
public key. In addition, the unlinkability is ensured by the ran-
domization of credential during the presentation phase and the
pseudo-randomness of the associated tag.

• Traceability. The one-time token owner (malicious user) in-
evitably meets the matching criteria in tracing process, and the
registration phase ensures each user in the system has unique
corresponding real identity through duplication, so the tracing
algorithm can accurately trace the one-time token owner.

• Public Verifiability of Tracing. This property is supported by
the zero-knowledge property and soundness of non-interactive
zero-knowledge proofs, allowing verification of the correctness
of a tracing process without compromising privacy.

• Unforgeability. This follows from the unforgeability properties
of the verifiable random function, DACs, and the signature.

• Correctness. This is satisfied by the correctness of each algo-
rithm of our design. Roughly speaking, every output generated
by an honest execution according to the design specifications
will be accepted by the corresponding verification algorithm.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW’25, April 2025, Sydney, Australia Anon. Submission Id: 2625

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(n,t)=(10,7) (n,t)=(13,9) (n,t)=(16,11)
0

50

100

150

200

250

21212121212

T
im

e
(m

s)

Trace Phase
Registration Phase
Presentation Phase

Figure 3: Runtime of different
phases of the system.

5 7 9 11 13 15
0

25

50

75

100

Threshold t

T
im

e
(m

s)

UKeyIssue
UKeyRecon
UKeyVerify

Figure 4: Runtime of algorithms
with different 𝑡 .

10 12 14 16 18 20
0

20

40

60

80

100

Committee Size (n)

T
im

e
(m

s)

UKeyIssue

UKeyVerify

UKeyRecon

Figure 5: Runtime of algorithms
with different 𝑛.

10 30 50 70
0

200

400

600

800

1000

Number of Users

T
ra

ce
T

im
e

(m
s)

Figure 6: Tracing time for different
number of users.

5 IMPLEMENTATION AND EXPERIMENTS
Experimental Settings. All experiments were conducted on a vir-
tual machine on a personal computer, which operates with Ubuntu
22.04.4 LTS as its operating system, featuring an 11th Gen Intel(R)
Core(TM) i7-11800H CPU @ 2.30GHz and 4GB of RAM.
Performance Evaluation. We first implement the functionalities
described in section 4.1 in Golang using the PBC2 library, where
the bilinear pairing is the D-type pairing defined in PBC. For the
DAC component, we instantiate it with a threshold issuance ver-
sion of the anonymous credential scheme proposed in [23], where
the user credential is fixed to 10 attributes. And we test the perfor-
mance at approximately the ECC-200-bit security level. We conduct
performance evaluation on each part of our proposal.

Figure 3 shows the runtime of the main phase in our system,
under different size of ADID committee with fixed fault tolerance
ratio of 𝑛 = 3𝑓 + 1, 𝑡 = 2𝑓 + 1 (𝑓 is fault node number). Setup phase
is excepted due to it is only executed once at the initialization of
the system. The result in Figure 3 illustrates that: (1) Although the
time for registration and tracing phase increases with the growth
of ADID committee, the running time of the main phases in our
system is within the millisecond range and acceptable for common
personal devices. (2) The execution time of the presentation phase
remains stable with varying of the ADID committee size, because
the verifier only needs to use the fixed ADID committee public key
to authenticate the user who accesses services with the credential.

Figure 4 and Figure 5 depict the relationship between the key
algorithms in the registration phase and two parameters including
the number of ADID committee nodes 𝑛 and the threshold 𝑡 . In
Figure 4 𝑛 is fixed at 20, and in Figure 5 𝑡 is fixed at 10. From
these figures, we can make the following observation : (1) The
UKeyIssue computation time exhibits a linear increase with the 𝑛,
but remains stable by 𝑡 . (2) The UKeyRecon computation time is
independent of 𝑛 but increases linearly with 𝑡 . (3) The UkeyVerify
computation time is invariant with respect to both 𝑛 and 𝑡 . The
reason is that all the committee nodes participate in the distributed
user registration key issuance process UKeyIssue, requiring 𝑛
individual computation of key shares. However, users only need to
gather 𝑡 key shares to reconstruct the full secret key inUKeyRecon.
Meanwhile, the user only need verify one reconstructed key in
UkeyVerify which has no relation to both 𝑛 and 𝑡 .

Figure 6 illustrates the time consumption for tracing a random
malicious user under different total numbers of registered users in
the system, with the ADID committee’s threshold set to (𝑛, 𝑡) =
(10, 7). The results demonstrate that although the tracing time

2https://github.com/Nik-U/pbc

fluctuates for individual cases, the tracing time increases as the
growth of registered users in terms of the overall trend. This can be
attributed to the fact that the search space expands with the scale
of the system. But the longest tracing time is less than 1 second.
Deployment on Blockchain. We deploy FADID-TT on two well-
known blockchain platforms including Hyperledger Fabric (permis-
sioned setting) and Ethereum (permissionless setting) to demon-
strate the practical feasibility with existing distributed infrastruc-
ture. In deployment on Hyperledger Fabric, we deploy ADID com-
mittee nodes as Fabric peers and establish a consortium chain. In de-
ployment on Ethereum, we implement system operations as smart
contracts. The ADID committee’s threshold in both deployment is
set to (𝑛, 𝑡) = (10, 7).

As Table 2 shows, in registration and presentation phase test, the
ADID committee members work off-chain, so the result is similar
to Figure 3. The main on-chain cost happens in the setup phase
(because the ADID committee public verification key 𝑐𝑣𝑘 needs
to be recorded on the blockchain) and the trace phase (because
the ADID committee records the real identity of malicious users
and public verifiable proof on the blockchain). For Hyperledger
Fabric, the time cost of on-chain operations is approximately 2
seconds. On Ethereum, the gas consumption of on-chain operations
is around 90,000 (about $3.5). The results illustrates that our FADID-
TT system is highly practical.

Table 2: FADID-TT time/gas cost on the Fabric/Ethereum

Operation Setup Registration Presentation Trace

Fabric (time) 2.29362s 40ms (Off-chain) 190ms (Off-chain) 2.06799s
Ethereum (gas) 92470 92652

6 CONCLUSION
In DID, achieving powerful privacy protection practically while
enabling accountability is challenging. We present FADID-TT, a
fully anonymous decentralized identity system supporting thresh-
old tracing with practical blockchain implementations. By utiliz-
ing DACs and anonymous signatures, FADID-TT achieves full
anonymity to offer strong privacy protection for users while main-
taining accountability through a publicly verifiable threshold trac-
ing mechanism. Besides, our solution effectively reduces the com-
plexity of user public key management. Experiment indicates the
practical feasibility of our system. Future work can further build
on these insights.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Fully Anonymous Decentralized Identity Supporting Threshold Traceability with Practical Blockchain WWW’25, April 2025, Sydney, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Morteza Alizadeh, Karl Andersson, and Olov Schelén. 2022. Comparative Analy-

sis of Decentralized Identity Approaches. IEEE Access 10 (2022), 92273–92283.
[2] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-

nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady
Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh
Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula
Stathakopoulou, Marko Vukolic, Sharon Weed Cocco, and Jason Yellick. 2018.
Hyperledger fabric: a distributed operating system for permissioned blockchains.
In Proceedings of the Thirteenth EuroSys Conference, EuroSys 2018, Porto, Portugal,
April 23-26, 2018. ACM, 30:1–30:15.

[3] Gilad Asharov and Yehuda Lindell. 2017. A Full Proof of the BGW Protocol for
Perfectly Secure Multiparty Computation. J. Cryptol. 30, 1 (2017), 58–151.

[4] Oscar Avellaneda, Alan Bachmann, Abbie Barbir, Joni Brenan, Pamela Dingle,
Kim Hamilton Duffy, Eve Maler, Drummond Reed, and Manu Sporny. 2019.
Decentralized Identity: Where Did It Come From and Where Is It Going? IEEE
Commun. Stand. Mag. 3, 4 (2019), 10–13.

[5] David Bauer, Douglas M. Blough, and David Cash. 2008. Minimal information
disclosure with efficiently verifiable credentials. In Proceedings of the 4th Work-
shop on Digital Identity Management, Alexandria, VA, USA, October 31, 2008. ACM,
15–24.

[6] Melissa Chase, Chaya Ganesh, and Payman Mohassel. 2016. Efficient Zero-
Knowledge Proof of Algebraic and Non-Algebraic Statements with Applications
to Privacy Preserving Credentials. In Advances in Cryptology - CRYPTO 2016 -
36th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
14-18, 2016, Proceedings, Part III (Lecture Notes in Computer Science, Vol. 9816).
Springer, 499–530.

[7] Hanfang Chen, Niankun Wei, Leyao Wang, Wael Fawzy Mohamed Mobarak,
Marwan Ali Albahar, and Zaffar Ahmed Shaikh. 2024. The Role of Blockchain
in Finance Beyond Cryptocurrency: Trust, Data Management, and Automation.
IEEE Access 12 (2024), 64861–64885.

[8] Elizabeth C. Crites, Aggelos Kiayias, and Amirreza Sarencheh. 2024. SyRA: Sybil-
Resilient Anonymous Signatures with Applications to Decentralized Identity.
IACR Cryptol. ePrint Arch. (2024), 379.

[9] DIF. 2024. Peer DID Method Specification (identity.foundation). https://identity.
foundation/peer-did-method-spec/

[10] Yevgeniy Dodis and Aleksandr Yampolskiy. 2005. A Verifiable Random Function
with Short Proofs and Keys. In Public Key Cryptography - PKC 2005, 8th Interna-
tional Workshop on Theory and Practice in Public Key Cryptography, Les Diablerets,
Switzerland, January 23-26, 2005, Proceedings (Lecture Notes in Computer Science,
Vol. 3386), Serge Vaudenay (Ed.). Springer, 416–431.

[11] Jack Doerner, Yashvanth Kondi, Eysa Lee, Abhi Shelat, and LaKyah Tyner. 2023.
Threshold BBS+ Signatures for Distributed Anonymous Credential Issuance. In
44th IEEE Symposium on Security and Privacy, SP 2023, San Francisco, CA, USA,
May 21-25, 2023. IEEE, 773–789.

[12] Paul Dunphy and Fabien A. P. Petitcolas. 2018. A First Look at Identity Manage-
ment Schemes on the Blockchain. IEEE Secur. Priv. 16, 4 (2018), 20–29.

[13] Uriel Feige, Amos Fiat, and Adi Shamir. 1987. Zero Knowledge Proofs of Identity.
In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987,
New York, New York, USA, Alfred V. Aho (Ed.). ACM, 210–217.

[14] Christina Garman, Matthew Green, and Ian Miers. 2014. Decentralized Anony-
mous Credentials. In 21st Annual Network and Distributed System Security Sym-
posium, NDSS 2014, San Diego, California, USA, February 23-26, 2014. The Internet
Society.

[15] Oded Goldreich and Yair Oren. 1994. Definitions and Properties of Zero-
Knowledge Proof Systems. J. Cryptol. 7, 1 (1994), 1–32.

[16] Jens Groth and Victor Shoup. 2024. Fast Batched Asynchronous Distributed
Key Generation. In Advances in Cryptology - EUROCRYPT 2024 - 43rd Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Zurich, Switzerland, May 26-30, 2024, Proceedings, Part V (Lecture Notes in
Computer Science, Vol. 14655). Springer, 370–400.

[17] Chloé Hébant and David Pointcheval. 2022. Traceable Constant-Size Multi-
authority Credentials. In Security and Cryptography for Networks - 13th Inter-
national Conference, SCN 2022, Amalfi, Italy, September 12-14, 2022, Proceedings
(Lecture Notes in Computer Science, Vol. 13409), Clemente Galdi and Stanislaw
Jarecki (Eds.). Springer, 411–434.

[18] Yizhong Liu, Boyu Zhao, Zedan Zhao, Jianwei Liu, Xun Lin, Qianhong Wu, and
Willy Susilo. 2024. SS-DID: A Secure and Scalable Web3 Decentralized Identity
Utilizing Multilayer Sharding Blockchain. IEEE Internet Things J. 11, 15 (2024),
25694–25705.

[19] Deepak Maram, Harjasleen Malvai, Fan Zhang, Nerla Jean-Louis, Alexander
Frolov, Tyler Kell, Tyrone Lobban, Christine Moy, Ari Juels, and Andrew Miller.
2021. Candid: Can-do decentralized identity with legacy compatibility, sybil-
resistance, and accountability. In 2021 IEEE Symposium on Security and Privacy
(SP). IEEE, 1348–1366.

[20] Victor S. Miller. 2004. The Weil Pairing, and Its Efficient Calculation. J. Cryptol.
17, 4 (2004), 235–261.

[21] Omid Mir, Balthazar Bauer, Scott Griffy, Anna Lysyanskaya, and Daniel Slamanig.
2023. Aggregate Signatures with Versatile Randomization and Issuer-Hiding
Multi-Authority Anonymous Credentials. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2023, Copenhagen,
Denmark, November 26-30, 2023, Weizhi Meng, Christian Damsgaard Jensen, Cas
Cremers, and Engin Kirda (Eds.). ACM, 30–44.

[22] Hye-young Paik, Yue Liu, Qinghua Lu, and Salil S Kanhere. 2023. Decentralized
Identity Management and Blockchains: Design Patterns and Architectures. In
Blockchains: A Handbook on Fundamentals, Platforms and Applications. Springer,
465–491.

[23] David Pointcheval and Olivier Sanders. 2016. Short Randomizable Signatures.
In Topics in Cryptology - CT-RSA 2016 - The Cryptographers’ Track at the RSA
Conference 2016, San Francisco, CA, USA, February 29 - March 4, 2016, Proceedings
(Lecture Notes in Computer Science, Vol. 9610), Kazue Sako (Ed.). Springer, 111–126.

[24] Michael Rosenberg, Jacob D. White, Christina Garman, and Ian Miers. 2023.
zk-creds: Flexible Anonymous Credentials from zkSNARKs and Existing Identity
Infrastructure. In 44th IEEE Symposium on Security and Privacy, SP 2023, San
Francisco, CA, USA, May 21-25, 2023. IEEE, 790–808.

[25] Adi Shamir. 1979. How to Share a Secret. Commun. ACM 22, 11 (1979), 612–613.
[26] Rui Shi, Huamin Feng, Yang Yang, Feng Yuan, Yingjiu Li, HweeHwa Pang, and

Robert H. Deng. 2023. Threshold Attribute-Based Credentials With Redactable
Signature. IEEE Trans. Serv. Comput. 16, 5 (2023), 3751–3765.

[27] Alberto Sonnino, Mustafa Al-Bassam, Shehar Bano, Sarah Meiklejohn, and
George Danezis. 2019. Coconut: Threshold Issuance Selective Disclosure Cre-
dentials with Applications to Distributed Ledgers. In 26th Annual Network and
Distributed System Security Symposium, NDSS 2019, San Diego, California, USA,
February 24-27, 2019. The Internet Society.

[28] Damian A. Tamburri. 2020. Design principles for the General Data Protection
Regulation (GDPR): A formal concept analysis and its evaluation. Inf. Syst. 91
(2020), 101469.

[29] W3C. 2024. Decentralized Identifiers (DIDs) v1.0. https://www.w3.org/TR/did-
core/

[30] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 2014 (2014), 1–32.

[31] Rupeng Yang, Man Ho Au, Qiuliang Xu, and Zuoxia Yu. 2018. Decentralized
Blacklistable Anonymous Credentials with Reputation. In Information Security
and Privacy - 23rd Australasian Conference, ACISP 2018, Wollongong, NSW, Aus-
tralia, July 11-13, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 10946).
Springer, 720–738.

A FUNCTIONALITIES
In order to illustrate the system functionalities more clearly, we
present the formal definition of the main algorithms to realize these
functionalities below:

• GlobalSetup(1𝜆) → 𝑝𝑝 . The algorithm takes as input the se-
curity parameter 𝜆, and outputs the global public parameters
𝑝𝑝 . The public parameters 𝑝𝑝 are implicit inputs to all other
algorithms.

• CKGen(𝑝𝑝) → ({𝑐𝑠𝑘𝑖 }𝑛𝑖=1, 𝑐𝑣𝑘). This algorithm is executed by
the ADID committee, where 𝑛 is the number of ADID committee
nodes and 𝑡 is the threshold of ADID committee. Taking public
parameters 𝑝𝑝 as input, it outputs secret key 𝑐𝑠𝑘𝑖 for each com-
mittee node, and a joint verification key 𝑐𝑣𝑘 among the ADID
committee.

• PrepareReg(𝑠) → 𝑟𝑒𝑔𝑅𝑒𝑞. The user takes as input her unique
identifier 𝑠 , which already exists in the real world. The algorithm
outputs the registration request information 𝑟𝑒𝑔𝑅𝑒𝑞 sent to the
ADID committee.
• UKeyIssue({𝑐𝑠𝑘𝑖 }𝑛𝑖=1, 𝑟𝑒𝑔𝑅𝑒𝑞) → {𝑢𝑟𝑠𝑘𝑖 }

𝑛
𝑖=1. Each node of the

ADID committee utilizes its secret key 𝑐𝑠𝑘𝑖 and the registration
request 𝑟𝑒𝑔𝑅𝑒𝑞 to generate the share of the user’s secret key
𝑢𝑟𝑠𝑘𝑖 .
• UKeyRecon({𝑢𝑟𝑠𝑘𝑖 }𝑡𝑖=1) → 𝑢𝑟𝑠𝑘 . The reconstruction opera-

tion is performed by the user, which takes 𝑡 shares of user’s
registration secret key as input and aggregates them into user’s
registered secret key 𝑢𝑟𝑠𝑘 .

9

https://identity.foundation/peer-did-method-spec/
https://identity.foundation/peer-did-method-spec/
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/did-core/

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW’25, April 2025, Sydney, Australia Anon. Submission Id: 2625

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

VerPresent(𝑐𝑣𝑘, 𝑠𝑡𝑜𝑘𝑒𝑛, 𝑇𝑠, 𝜋𝑇𝑠) → 0/1

UserVerifier

CKGen(𝑝𝑝) → (𝑐𝑠𝑘𝑖 𝑖=1
𝑛 , 𝑐𝑣𝑘)

ADID

Committee

PrepareReg(𝑠) → 𝑟𝑒𝑔𝑅𝑒𝑞

TokenPresent(𝑢𝑟𝑠𝑘, 𝑐𝑟𝑒𝑑) → (𝑠𝑡𝑜𝑘𝑒𝑛, 𝑇𝑠 , 𝜋𝑇𝑠)

𝑠𝑡𝑜𝑘𝑒𝑛, 𝑇𝑠 , 𝜋𝑇𝑠

𝑐𝑜𝑚𝑝𝑙𝑎𝑖𝑛𝑅𝑒𝑞, 𝑠𝑡𝑜𝑘𝑒𝑛, 𝑇𝑠 , 𝜋𝑇𝑠

Trace 𝑐𝑠𝑘𝑖 , 𝑐𝑜𝑚𝑝𝑙𝑎𝑖𝑛𝑅𝑒𝑞, 𝑠𝑡𝑜𝑘𝑒𝑛, 𝑇𝑠
→ (𝑠, 𝜋𝑡𝑟𝑎𝑐𝑒)

PrepareTrace 𝑠𝑡𝑜𝑘𝑒𝑛, 𝑇𝑠 , 𝜋𝑇𝑠

→ 𝑐𝑜𝑚𝑝𝑙𝑎𝑖𝑛𝑅𝑒𝑞

𝑟𝑒𝑔𝑅𝑒𝑞

TraceVer 𝑐𝑣𝑘, 𝜋𝑡𝑟𝑎𝑐𝑒 → 0/1

Setup Phase

Registration Phase

Presentation Phase

Trace Phase

Credential

Issuers

DAC. ISSUE (𝐷𝐴𝐶𝑅𝑒𝑞, 𝑖𝑠𝑘) → 𝑐𝑟𝑒𝑑

𝐷𝐴𝐶𝑅𝑒𝑞

UKeyRecon 𝑢𝑟𝑠𝑘𝑖 𝑖=1
𝑡 → 𝑢𝑟𝑠𝑘

UKeyVerify 𝑐𝑣𝑘, 𝑢𝑟𝑠𝑘 → 0/1

{𝑢𝑟𝑠𝑘𝑖}

UKeyIssue 𝑐𝑠𝑘𝑖 𝑖=1
𝑛 , 𝑟𝑒𝑔𝑅𝑒𝑞 → 𝑢𝑟𝑠𝑘𝑖 𝑖=1

𝑛

𝑐𝑟𝑒𝑑

① register request

② register response

③ secret key

reconstruction

④ request credential

⑤ issue credential

⑥ show token⑦ verification

⑧ trace request

⑧ trace

Figure 7: Concrete phases and steps of FADID-TT

• UKeyVerify(𝑐𝑣𝑘,𝑢𝑟𝑠𝑘) → 0/1. The algorithm is run by the user,
which takes as input the committee’s verification key 𝑐𝑣𝑘 and
the reconstructed user’s registered secret key 𝑢𝑟𝑠𝑘 . It outputs 1
if 𝑢𝑟𝑠𝑘 is valid, 0 otherwise.

• TokenPresent(𝑢𝑟𝑠𝑘, 𝑐𝑟𝑒𝑑) → (𝑠𝑡𝑜𝑘𝑒𝑛,𝑇𝑠 , 𝜋𝑇𝑠). The user inputs
her registered secret key 𝑢𝑟𝑠𝑘 and the credential 𝑐𝑟𝑒𝑑 obtained
from the credential issuers. The output consists of the show
token 𝑠𝑡𝑜𝑘𝑒𝑛 of the credential and an anonymous signature of
the show token which includes a tag 𝑇𝑠 and its corresponding
proof 𝜋𝑇𝑠 .

• VerPresent(𝑐𝑣𝑘, 𝑠𝑡𝑜𝑘𝑒𝑛,𝑇𝑠 , 𝜋𝑇𝑠) → 0/1. The algorithm is run
by the verifier, which takes as input the committee’s verification
key 𝑐𝑣𝑘 , the received show token 𝑠𝑡𝑜𝑘𝑒𝑛, the corresponding tag
𝑇𝑠 and proof 𝜋𝑇𝑠 . It output 1 if the presentation is verified, 0
otherwise.

• PrepareTrace(𝑠𝑡𝑜𝑘𝑒𝑛,𝑇𝑠 , 𝜋𝑇𝑠) → 𝑐𝑜𝑚𝑝𝑙𝑎𝑖𝑛𝑅𝑒𝑞. The algorithm
is executed when the verifier detects malicious behavior exhib-
ited by the user after the show token is validated and the ser-
vice has been rendered. The verifier creates a complaint request
𝑐𝑜𝑚𝑝𝑙𝑎𝑖𝑛𝑅𝑒𝑞 to trace the credential holder responsible for the
malicious actions, using the corresponding show token 𝑠𝑡𝑜𝑘𝑒𝑛,
tag 𝑇𝑠 and proof 𝜋𝑇𝑠 from the previous presentation.

• Trace({𝑐𝑠𝑘𝑖 }𝑡𝑖=1, 𝑐𝑜𝑚𝑝𝑙𝑎𝑖𝑛𝑅𝑒𝑞, 𝑠𝑡𝑜𝑘𝑒𝑛,𝑇𝑠) → (𝑠, 𝜋𝑡𝑟𝑎𝑐𝑒). The al-
gorithm is run by the ADID committee. It verifies the complaint
request 𝑐𝑜𝑚𝑝𝑙𝑎𝑖𝑛𝑅𝑒𝑞. Then 𝑡 nodes from ADID committee col-
laborate using their secret keys {𝑐𝑠𝑘𝑖 }𝑡𝑖=1 to trace the credential
holder associated with the show token 𝑠𝑡𝑜𝑘𝑒𝑛 and tag 𝑇𝑠 . It re-
turns the corresponding user’s real identity 𝑠 along with the
proof 𝜋𝑡𝑟𝑎𝑐𝑒 that verifies the correctness of the tracing process.

• TraceVer(𝑐𝑣𝑘, 𝜋𝑡𝑟𝑎𝑐𝑒) → 0/1. This algorithm can be executed
by any party. It takes as public input the ADID committee’s

verification key 𝑐𝑣𝑘 and the tracing proof 𝜋𝑡𝑟𝑎𝑐𝑒 , returning 1 if
the proof is valid, 0 otherwise.

B USE CASE
We will give a use case on FADID-TT system in decentralized fi-
nance application (Defi) of Web3. For a financier in Defi, he should
prove to an investor that he has a certain identity and that the
identity has corresponding asset collateral. But at the same time,
the financier would be unwilling to disclose his private informa-
tion including specific collateral amount and identity to investor.
Furthermore, when the investor discovers malicious or unpurposed
behavior by the financier, such as money laundering or market
manipulation, financier identity can be found out by the investor.

As shown in Figure 7, an on-chain ADID committee has executed
setup operations to generate system private key and public key. Af-
ter that, the ADID committee can provide the identity registration
functions. Besides, we assume the trusted distributed credential
issuers can issue DAC for the financier. The financier (performing
as user in FADID-TT) and the investor (performing as verifier in
FADID-TT) can trust the ADID committee and DAC issuers. The
financier first executes registration operation and interacts with
ADID committee to get𝑢𝑟𝑠𝑘 . Then the financier requires credentials
to prove his collateral amount by ZKP from credential issuers. After
that, the financier rerandomizes the credential to generate 𝑠𝑡𝑜𝑘𝑒𝑛.
Through verifying 𝑠𝑡𝑜𝑘𝑒𝑛, the investor can make sure that the fi-
nancier is registered by ADID committee and has enough collateral.
When the investor discovers malicious behavior by financier, it can
send trace request to ADID committee and the tracing result can be
recorded on the blockchain as further evidence of accountability.

10

	Abstract
	1 Introduction
	2 Preliminaries And Building Blocks
	2.1 Decentralized Anonymous Credentials
	2.2 Bilinear Pairing
	2.3 Secret Sharing
	2.4 Non-Interactive Zero-Knowledge Proof

	3 Problem Formulation
	3.1 Design Goal
	3.2 System Model

	4 FADID Design
	4.1 Concrete Construction
	4.2 Security Analysis

	5 Implementation and Experiments
	6 Conclusion
	References
	A Functionalities
	B Use case

