
PALMER: Perception-Action Loop with Memory
for Long-Horizon Planning

Onur Beker, Mohammad Mohammadi, Amir Zamir
School of Computer and Communication Sciences

Swiss Federal Institute of Technology (EPFL)

Abstract: To achieve autonomy in a priori unknown real-world scenarios, agents
should be able to: i) act from high-dimensional sensory observations (e.g., images),
ii) learn from past experience to adapt and improve, and iii) be capable of long
horizon planning. Classical planning algorithms (e.g. PRM, RRT) are proficient at
handling long-horizon planning. Deep learning based methods in turn can provide
the necessary representations to address the others, by modeling statistical contin-
gencies between observations. In this direction, we introduce a general-purpose
planning algorithm called PALMER that combines classical sampling-based plan-
ning algorithms with learning-based perceptual representations. For training these
representations, we combine Q-learning with contrastive representation learning
to create a latent space where the distance between the embeddings of two states
captures how easily an optimal policy can traverse between them. For planning with
these perceptual representations, we re-purpose classical sampling-based planning
algorithms to retrieve previously observed trajectory segments from a replay buffer
and restitch them into approximately optimal paths that connect any given pair of
start and goal states. This creates a tight feedback loop between representation
learning, memory, reinforcement learning, and sampling-based planning.

Keywords: Representation Learning, Memory, Planning, Reinforcement Learning

1 Introduction1

Animals and humans operate on high-dimensional stimuli (e.g., vision) to achieve diverse and ever-
changing goals necessary for their survival [1, 2, 3, 4, 5]. Learning through trial-and-error plays a
fundamental role in this [6, 7, 8, 9, 10, 5]. Even in simplest environments, a brute-force approach
to trial-and-error by trying every possible action for achieving every possible goal is intractable.
The complexity of this search motivates memory-based mechanisms for compositional thinking.
Examples of such mechanisms include : i) remembering relevant segments of past experience, ii)
recomposing them in new counterfactual ways to form plans, and iii) executing such plans as part of
a targeted search strategy. Such mechanisms for recycling past successful behavior can significantly
accelerate trial-and-error compared to uniformly sampling all possible actions. This is because the
same behavior (i.e., sequence of actions) can remain valid for different goals and in different contexts,
due to the inherent compositional structure of real-world goals as well as the commonality of the
physical laws that govern real-world environments.

Contribution: We describe a long-horizon planning method that directly operates on high dimensional
sensory input observable by an agent on its own (e.g., images from an onboard camera). Our
method combines classical sampling-based planning algorithms with learning-based perceptual
representations, to retrieve and recompose previously observed sequences of state transitions in a
replay buffer. This is enabled by a two-step process. First, we learn a latent space where the distance
between two states captures how many timesteps it takes for an optimal policy to go from one to the

1This paper has been accepted for publication at NeurIPS 2022.

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

Figure 1: Top: Given a start-goal image pair, PALMER plans a path between them by concatenating the
endpoints of past trajectory segments retrieved from a provided replay buffer. This is enabled by a state
embedding function fϕ that can identify close-by states, and results in robust long-horizon planning. Bottom:
To achieve this : i) it uses offline Q-learning to obtain local reachability estimates between states, ii) uses these
Q-values for representation learning to train fϕ, iii) uses fϕ to plan over the replay buffer, iv) executes these
plans, v) evaluates the resulting trajectories and inserts them back into the replay buffer to improve its contents.

other. To achieve this, we use goal-conditioned Q-values learned through offline hindsight relabelling
[11] for contrastive representation learning. Second, we threshold this learned latent distance metric to
define a neighborhood criterion between states. We then define sampling-based planning algorithms
that search over the replay buffer [12] to retrieve and stitch together trajectory segments (i.e., past
sequences of observed transitions) whose endpoints are neighboring states. This trajectory stitching
approach allows for creating planning graphs to connect any pair of start and goal states that were
observed before (as depicted in Fig.1). Our approach operates on offline unlabeled data, and can
therefore be combined with any exploration method to populate the replay buffer. Our experiments
implement an image-based navigation policy in simulation, using an offline replay buffer populated
with uniform random-walk exploration data.

2 Perception-Action Loop with Memory Retrieval

Nomenclature: An environment is represented as a tuple ⟨S,A, penv⟩, where S and A are the state
and action spaces, and penv(s

′|s, a) is the Markovian transition dynamics. A trajectory τ ∈ T is
any sequence of states and actions. τ0 , τ−1 , τi denote the first, last, and i’th states in τ respectively.
The length of a trajectory in terms of timesteps is denoted as len(τ), and concatenation of two
trajectories is denoted as τcat = τ1 ◦ τ2. We assume an additive reward functionR : T → R where
R(τ) =

∑
(s,a)∈τ r(s, a). We call a finite set of trajectoriesM = {τi} a replay buffer.

2.1 Perceptual Representations that Capture Local Reachability

A key component of our framework is a perceptual encoder fϕ(s) : S → Rd that maps states into a
representation space where L2 distance dϕ(st, sg) := ∥fϕ(st)− fϕ(sg)∥ captures local reachability
(i.e., how many timesteps it takes for the optimal policy to go from one state to another). To discuss
this more rigorously, we follow the work of [13, 12] and define a goal-conditioned reward function
r(st, a, st+1, sg) = −1st+1 ̸=sg that returns −1 for all steps before reaching a goal. This means
goal-conditioned Q-values for the optimal policy correspond to negative shortest-path distances

2

Figure 2: An overview of the functions, inputs, and losses used in our method (see Sec.2.2 for details). We aim
to train a perceptual encoder fϕ with two properties: i) representations of two states should be close if they were
observed to be easily reachable from each other within a low number of timesteps, ii) the representation of a state
should capture a minimal sufficient statistic to inform an agent about the actions needed to reach nearby states.

(i.e., maxaQ(st, a, sg) = V (si, sj) = −len(τsp)). We can then define a symmetric distance metric
between states as dQ(sc, sg) := max(−V (sc, sg),−V (sg, sc)), as proposed in [14]. What we
want from fϕ(s) is for dϕ(sc, sg) and dQ(sc, sg) to roughly correlate.

2.2 Representation Learning via Reinforcement Learning

Any perceptual encoder fϕ whose latent representations satisfy the local reachability property
defined in Sec.2.1 can be used to implement the nearest neighbor retrieval and trajectory stitching
mechanisms for the upcoming sections 2.3 and 2.4. This section discusses one possible way by using
goal-conditioned Q-values for contrastive representation learning. We propose a model (depicted in
Fig.2) that includes the following standard components from the literature: i) z = fϕ(s), projecting a
state into a latent representation; ii) pfwd(z

′
t+1 | zt, at), modelling the transition distribution induced

by penv(s
′|s, a) over the latent space [15, 16]; iii) πinv(a

′
t | zt, zg), defining a distribution of actions

to reach a goal state; iv) pt(T ′ | zt, zg), modelling the distribution of timesteps necessary to reach a
goal state [17]; v) Q(st, at, sg), providing local reachability estimates between pairs of states.

We train Q(st, at, sg) over an offline replay bufferM, using hindsight relabelling [11] with a reward
function r(st, a, st+1, sg) = −1st+1 ̸=sg . After training Q(st, at, sg) in isolation, we freeze its
parameters and use it to define a contrastive loss function [18] LQ as explained below. We then
train the remaining components using the same replay bufferM. We randomly sample a transition
(st, at, st+1) and a time difference T , and set the goal state as sg := st+T , as in hindsight relabelling.
We then minimize the following losses:

• LQ(st, sg) = lhinge(dϕ(st, sg) − dp) 1dQ(st,sg)≤cQ + lhinge(dp − dϕ(st, sg)) 1dQ(st,sg)≥cQ ,
where lhinge is the hinge loss [19]. This contrastive loss dictates that perceptual representations
should be close together (i.e., dϕ(st, sg) ≤ dp holds) if and only if two states are close to each
other in terms of reachability (i.e., dQ(st, sg) ≤ cQ holds). dp and cQ are hyperparameters.

• LT (T
′, T), Linv(a

′
t, at), and Lfwd(z

′
t+1, zt+1) are MSE and cross-entropy losses [16, 17].

2.3 Perceptual Experience Retrieval (PER)

Given a perceptual encoder fϕ that captures local reachability, we go over all states si ∈ M in
the replay buffer and compute their projections zi = fϕ(si), which are stored alongside the states
themselves. We then employ zi to implement two retrieval mechanisms from the replay buffer: i)
retrieving neighboring states, and ii) retrieving neighboring trajectories.

i) Retrieving Neighboring States: Given a query state sc and radius dp (i.e., the same one used in the
contrastive loss LQ in Sec.2.2), retrieving neighboring states amounts to computing the setNdp(sc) =
{sn | dϕ(sc, sn) ≤ dp}, which can be achieved by a straightforward L2 distance computation and
thresholding. The number of neighbors |Ndp

(sc)| of a query state sc is an approximate measure of

3

how many times the agent has visited around sc, which also makes it a good visitation-count that is
applicable to both discrete and continuous state spaces.

ii) Retrieving Neighboring Trajectories: Given a starting state sc and a goal state sg, we can search
the replay buffer for the highest reward trajectory segment τ that starts from a state τ0 in Ndp(sc)
and ends in a state τ−1 in Ndp(sg). This corresponds to the following optimization problem:

τM(sc,sg) := argmax
τ∈M

R(τ) s.t. τ0 ∈ Ndp
(sc) , τ−1 ∈ Ndp

(sg) (1)

To find τM(sc,sg), we first select all state pairs (si, sj) ∈ Ndp
(sc) × Ndp

(sg). We then take all
sequences of transitions τij = {si, ai, si+1, ..., sj−1, aj−i, sj} that start from si, end at sj , and
are below a length threshold in terms of timesteps. We sort them based on R(τij), and return the
trajectory with the highest reward. We call this trajectory retrieval process ‘Perceptual Experience
Retrieval’ (PER). We use PER only to retrieve short trajectory segments between close-by states
(sc, sg) (i.e., hence the length threshold on τij). These are then stitched together into long global
trajectories using the planning algorithms defined in the next section.

2.4 Long-Horizon Planning Through Stitching Trajectory Segments

This section discusses how PER can be employed for long-horizon planning. Classical sampling-
based planning algorithms such as RRT [20] or PRM [21] connect points sampled from obstacle-free
space with line segments in order to build a planning graph. We instead reimagine them as memory
search mechanisms by altering their subroutines so that whenever an edge is created, a trajectory is
retrieved from the replay buffer through PER (eq.1) and stored in that edge. Our new definitions for
these subroutines directly mirror the original ones given in [22]:
1) Sampling: Sampling originally returns a point from obstacle free space. We instead return a state
sc from the replay bufferM using any distribution (e.g., uniform, or based on visitation-counts).
2) Lines and Their Cost: The equivalent of drawing a line segment in our framework is retrieving
a trajectory τM(sc,sg), and its length and cost are len(τM(sc,sg)) and −R(τM(sc,sg)) respectively.
3) Nearest State and Neighborhood Queries: Given a query point si, these subroutines return the
closest point or a neighborhood of points within a distance, among a set of vertices V = {sj}. We
preserve these definitions, and only replace the metric from euclidean distance to len(τM(sc,sg)).

Nearest(V, sg) := argmin
sc∈V

len(τM(sc,sg))

Near(V, sg, r) := {sc ∈ V | len(τM(sc,sg)) ≤ r}
4) Collision Tests: Collision tests originally prevent the sampling and line drawing subroutines from
intersecting obstacles. Since we are planning in retrospect, any such undesirable event can be handled
during PER by adjusting the reward function (i.e., if τ has such an event, this reflects onR(τ)).

Algorithm 1 R-PRM (Roadmap Construction)

1: Input: fϕ,M
2: V ← {SampleFreei}i=1,...,num_vertices; E ← ∅ ▷ Initialize vertices and edges
3: for each si ∈ V do
4: U ← Near(V, si, r) \ {si}
5: for each sj ∈ U do ▷ Place PER trajectories in edges
6: E ← E ∪ {(si, sj) : τedge = τM(si,sj), dedge = −R(τM(si,sj))}

return G = (V,E)

Using these subroutines directly in-place of their originals, we reimplement retrospective equivalents
of PRM, RRT, and RRT*, which we call R-PRM, R-RRT, R-RRT*. We denote the resulting planned
trajectory as τM*(sc,sg). Algorithms 1, 2 explicitly describe R-PRM as an example2. We note that
our proposed planning algorithms can optimize any general reward function R. As the number of
sampled vertices increases, R(τM*(sc,sg)) gets optimized through dynamic programming (i.e., by
minimizing the Bellman error between vertices of the planning graph G).

2Similar descriptions for R-RRT and R-RRT* can be obtained by directly replacing subroutines 1-4 in [22].

4

Algorithm 2 R-PRM (Trajectory Restitching Given the Constructed Roadmap)

1: Input: sc, sg, G = (V,E),R(τ), fϕ,M
2: for each si ∈ V do ▷ Insert sc and sg into the PRM graph
3: if len(τM(sc,si)) ≤ r then ▷ Place PER trajectories in edges
4: E ← E ∪ {(sc, si) : τedge = τM(sc,si), dedge = −R(τM(sc,si))}
5: if len(τM(si,sg)) ≤ r then
6: E ← E ∪ {(si, sg) : τedge = τM(si,sg), dedge = −R(τM(si,sg))}

7: τstitched ← ∅
8: {sj} ← ShortestPath(sc, sg, G,R(τ)) ▷ Trajectory stitching by dynamic programming
9: for 0 < i < |{sj}| do ▷ Concatenate PER trajectories along the shortest path

10: τstitched ← τstitched ◦ τM(si−1,si)

return τM*(sc,sg) = τstitched

2.5 Refining Memory Contents via Forming and Executing Plans

We iteratively form and execute τM*(sc,sg), and whenever execution is successful, we insert the
resulting new trajectories back intoM. This creates the following perception-action loop: i)M with
refined contents is used to train a more accurate Q(st, a, sg), ii) a more accurate Q(st, a, sg) creates
a more accurate distance metric dϕ, iii) a better dϕ generates better τM*(sc,sg), iv) better τM*(sc,sg)

result in higher chances of successful execution to further refineM, thus looping back to step i.

3 Related work

Self-supervised goal reaching: Our approach is closely related to goal-reaching methods that combine
learning-based distance-regression with graph search, particularly Semi-parametric Topological
Memory (SPTM) [23] and Search on the Replay Buffer (SoRB) [12], which we compare to in
our experiments. The key difference is that when setting the edges of the planning graph, our
approach retrieves transitions that actually happened rather than relying on learned distance regression.
This brings two main benefits. First is robustness. Local reachability estimates are susceptible to
overestimation when evaluated between pairs of states that are far apart or unreachable. This is
because such states rarely occur together and are therefore out of distribution for the distance
regression model. This creates ‘hallucinated’ shortcuts in the planning graph that corrupt shortest
path queries [12, 14]. In our approach, eq.1 naturally addresses this problem, since it requires an
actual short trajectory in the dataset that connects two states before marking them as close. The
second benefit of our approach is that it can optimize general reward functions. This is because it
decouples the reachability metric len(τ) (used in nearest neighbor queries and as a threshold to create
edges) from the downstream task rewardR(τ) (used to set edge distances), unlike previous work.
Robot Motion Planning: A common approach to motion planning is to first run a sampling-based
planning algorithm [24, 22], and then refine the result through trajectory optimization [25, 26, 27] to
satisfy constraints [28, 29, 30]. An important bottleneck is that sampling-based planning algorithms
require a precomputed map of the environment, and our approach extends such algorithms in a way
that relaxes this requirement by replacing a precomputed map with raw exploration experience.
SLAM and Geometric Maps: SLAM based methods [31] can autonomously construct high-fidelity
geometric maps [32, 33], therefore alleviating the bottleneck of precomputing environment maps. The
downside of such approaches is that they can abstract away useful physical and semantic affordances.
For example, a purely geometric map cannot plan a path through a traversable field of tall-grass,
while our approach can learn such affordances as long as they are represented in past experiences.

4 Experiments

Setup: Our experiments are performed in ViZDoom [34] and Habitat [35]. The VizDoom environment
consists of a clover shaped maze. States solely consist of four images INorth/East/South/West that

5

form a panorama, and actions move the agent North/South/East/West by a fixed distance ∆. The
maze contains many long-thin column-like obstructions (shown as dots in visualizations). Habitat
experiments contain demonstrations on two large-scale scans of real-world apartments: i) Roxboro
(62 m2), and ii) Annawan (75m2). States consist of single 150 FOV images. There are 3 actions:
{turn_left_30_deg, turn_right_30_deg,move_forward_∆}. In both environments, an offline
training dataset is collected by a uniform random walk exploring the environment. This offline
training dataset consists of only 300k and 150k timesteps for ViZDoom and Habitat respectively (i.e.,
compared to sample complexities around the orders of magnitude 1e6-1e7 common in RL).

4.1 Experiments in Vizdoom

Figure 3: A comparison between perceptual distances dϕ and other suitable metrics from Sec.2.2. While
all of these metrics are reasonably monotonic with physical reachability (i.e., goal distance), only perceptual
distances dϕ do not saturate when evaluated locally (i.e., for close by goals). In addition, the ratio between the
variance of dϕ and the slope of its mean is much smaller compared to other sensible metrics (i.e., dϕ has a high
signal-to-noise ratio). This means that perceptual distances can implement a more accurate nearest-neighbor
criterion for perceptual experience retrieval and trajectory stitching, compared to the other metrics.

Perceptual Representations: Fig.3 shows that dϕ(st, sg) obtained from our model captures a suitable
notion of local reachability. Fig.5 in turn shows that retrieving nearest neighbor states Ndp

(st) from
M using dϕ (i.e., NN retrieval) returns physically close states.

Figure 4: Comparisons of our local policy πM and global policy πM∗ with SPTM and SoRB. πM performs well
because it avoids getting stuck (as such events are filtered by eq.1), while πM∗ performs well because it builds
robust roadmaps without hallucinated shortcuts; therefore avoiding the main failure modes of the baselines.

Perceptual Experience Retrieval (PER): Fig.5 shows visualizations of trajectories retrieved with PER.
We implement a retrieval policy πM that computes τM(st,sg) through eq.1 at each timestep t and
executes argmaxa Q(st, a, τM(st,sg),s,1), therefore forming a model predictive control (MPC) loop.
We evaluate πM in an image-based navigation task where start/goal images are sampled randomly to
have an euclidean distance n×∆ in between, and a trial is considered successful if the agent can get
within ∆ proximity of the goal position within 4× n time-steps. We use SORB [12] and SPTM [23]
as baselines. Fig.4 shows the results. The main mode of failure for both baselines is that they get
stuck in column-like structures. πM avoids this, since eq.1 retrieves collision free τM(st,sg).

Proposed Planning Algorithms: Fig.6 shows the planning graphs and τM*(sc,sg) produced by R-
PRM, R-RRT, and R-RRT*. It can be seen that R-PRM doesn’t contain any hallucinated edges,
while R-RRT and R-RRT* maintain the visual characteristics of their classical counterparts. We

6

Figure 5: At the core of PALMER is a process called perceptual experience retrieval (PER). Given a query
pair of current-goal states, PER searches the replay buffer to retrieve the highest scoring trajectory τM(st,sg)

whose first and last states are close to the query pair according to the perceptual distance dϕ. Left, Middle:
Visualizations of τM(st,sg) retrieved using PER and nearest neighbor states Ndp(st) retrieved using dϕ. Right:
Setting edges of a roadmap using len(τM(st,sg)), compared with distance estimates used in SORB and DDL
[17]. We found that distance estimates from baselines are prone to setting false edges that cross map boundaries.

Figure 6: We repurpose conventional sampling-based planning algorithms as memory search mechanisms, by
altering their graph building subroutines so that whenever an edge is created a trajectory τM(st,sg) is retrieved
through PER and stored in that edge. We visualize the resulting planning graphs produced by our proposed
algorithms R-PRM, R-RRT, R-RRT*.

implement an MPC policy πM* that replans at each timestep t using Algorithm 2 to return τM*(st,sg),
and executes argmaxa Q(st, a, τM*(st,sg),s,1). Fig.4 shows the results. A new mode of failure for
both baselines is that false distance estimates throw-off graph search by setting hallucinated shortcuts.
An additional baseline is πmpc, which extends the SPTM local policy by using pfwd and pt from
Sec.2.2 to implement an MPC loop with n-step look-ahead.

Figure 7: Memory Refinement: In PALMER, a policy has three groups of parameters: Q(st, at, sg), fϕ, and the
contents of M. Iteratively forming plans through PER and executing them creates a feedback loop between
these components, where: i) actions inform perception during the training of fϕ, ii) perception facilitates actions
through the formation plans, and iii) memory serves as the medium for this reciprocal interaction. As a result,
trajectories produced by explicit planning are gradually internalized as implicit behavior encoded in the model
parameters. This leads to: Q-values propagating further into distant goals (Left), memory contents getting closer
to optimal (Middle), and performances of local policies showing significant improvement (Right).

Refining Memory Contents: We refine the contents of M by iteratively generating and executing
τM*(sc,sg). We then retrain all model components only on the resulting new data that is equal in size
to the initial unrefinedM. Fig.7 shows the results. When πM, and argmaxaQ(at, a, sg) are used as
policies, their success ratio increases significantly if they are trained on the optimizedM. Q-value
estimates trained on the optimizedM also propagate better to goals further away. The scaling of
len(τM(sc,sg)) with goal-distance changes from an exponential trend to an approximately linear one,

7

due to the inclusion of transitions from successfully executed τM*(sc,sg). These results highlight that
refining memory contents improves the quality of future plans.

4.2 Experiments in Habitat

Figure 8: We evaluate our R-PRM based policy πM∗ in Habitat for image-based navigation. Top Left: Success
ratios in training and test apartments. Top Right: Number of timesteps until reaching the goal. ("Habitat seen"
refers to the training apartment Roxbox, while "habitat unseen" refers to the test apartment Annawan.

As shown in Fig.8, we find that our method allows image-based navigation in this new domain
with significantly different visuals and layouts (i.e., real-world apartments), action space (i.e., turn-
left, turn-right, go-forward), and state space (i.e., single 256 × 256 RGB images with 150 FOV).
Perhaps more surprisingly, we find that training fϕ only on exploration data from a single apartment
generalizes substantially well to any unseen apartment, which directly allows perceptual experience
retrieval and trajectory stitching when provided with a corresponding replay buffer. For a quantitative
evaluation, we randomly pick two apartments, named Roxbox and Annawan. In both apartments, we
collect an exploration dataset using a uniform random walk sequence of only 150k timesteps. We
train the model components solely on data from Roxbox. We then use them to implement our πM∗

policy from Sec.4.1, which we then evaluate on both apartments. For n ∈ {8, 16, 24, 32, 36, 44}, we
randomly sample 100 pairs of start and goal-states in a way that the geodesic distance between them
lies within n×∆ and (n+ 8)×∆ through rejection sampling. A policy is considered successful if
it can get within 2×∆ proximity of the goal-state. We do not plot the SPTM and SORB baselines,
because we found that the models πinv(a|st, sg) and argmaxa Q(st, a, sg) that they use as local
navigation policies achieved almost zero percent success rate in reaching local goals beyond ∼ 2×∆
distance. We empirically observed that most of the time these policies get stuck in repetitive rotational
motions without moving forward. This is most likely due to the difficulty of offline RL training with
hindsight relabelling over random-walk data obtained with a much more challenging non-cartesian
action space {turn_left_30_deg, turn_right_30_deg,move_forward_∆}.

5 Conclusion and Future Directions

We presented PALMER, a long-horizon planning method that combines learning-based perceptual
representations with classical sampling-based planning algorithms. It operates by retrieving and
restitching previously observed trajectory segments in a replay buffer. This results in an experiential
framework for long-horizon planning that is significantly more robust and sample efficient compared
to baselines. Our memory-based planning perspective highlights a number of questions for future
research. First, which transitions should be kept in the replay bufferM, and which ones should be
discarded?M cannot be infinitely expanded, and it is critical to distill away redundancies between
stored experiences. Second, when the environment undergoes a change, which transitions in the
replay buffer remain valid and can still be used for planning, and which ones become invalid? A
mechanism that can answer this question can allow quick and sample-efficient adaptation. Third, how
can we extend fϕ to allow more abstract associations and functional equivariances between states?
This can improve generalization by defining a more flexible notion of experience retrieval that can
recycle past behavior in new contexts and for new tasks. We leave these questions to future work.

8

References
[1] S. E. Palmer. Vision science: Photons to phenomenology. MIT press, 1999.

[2] J. J. Gibson. The ecological approach to visual perception: classic edition. Psychology Press,
2014.

[3] J. K. O’regan and A. Noë. A sensorimotor account of vision and visual consciousness. Behav-
ioral and brain sciences, 24(5):939–973, 2001.

[4] J. D. Co-Reyes, S. Sanjeev, G. Berseth, A. Gupta, and S. Levine. Ecological reinforcement
learning. arXiv preprint arXiv:2006.12478, 2020.

[5] D. Silver, S. Singh, D. Precup, and R. S. Sutton. Reward is enough. Artificial Intelligence, 299:
103535, 2021.

[6] E. L. Thorndike. Animal intelligence: An experimental study of the associative processes in
animals. The Psychological Review: Monograph Supplements, 2(4):i, 1898.

[7] E. L. Thorndike. The law of effect. The American journal of psychology, 39(1/4):212–222,
1927.

[8] D. T. Campbell. Perception as substitute trial and error. Psychological review, 63(5):330, 1956.

[9] R. J. Herrnstein. On the law of effect. Journal of the experimental analysis of behavior, 13(2):
243–266, 1970.

[10] S. D. Whitehead and D. H. Ballard. Learning to perceive and act by trial and error. Machine
Learning, 7(1):45–83, 1991.

[11] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
O. Pieter Abbeel, and W. Zaremba. Hindsight experience replay. Advances in neural information
processing systems, 30, 2017.

[12] B. Eysenbach, R. R. Salakhutdinov, and S. Levine. Search on the replay buffer: Bridging
planning and reinforcement learning. Advances in Neural Information Processing Systems, 32,
2019.

[13] L. P. Kaelbling. Learning to achieve goals. In IJCAI, volume 2, pages 1094–8. Citeseer, 1993.

[14] S. Emmons, A. Jain, M. Laskin, T. Kurutach, P. Abbeel, and D. Pathak. Sparse graphical memory
for robust planning. Advances in Neural Information Processing Systems, 33:5251–5262, 2020.

[15] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine. Learning to poke by poking:
Experiential learning of intuitive physics. Advances in neural information processing systems,
29, 2016.

[16] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-
supervised prediction. In International conference on machine learning, pages 2778–2787.
PMLR, 2017.

[17] K. Hartikainen, X. Geng, T. Haarnoja, and S. Levine. Dynamical distance learning for semi-
supervised and unsupervised skill discovery. arXiv preprint arXiv:1907.08225, 2019.

[18] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with
application to face verification. In 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), volume 1, pages 539–546. IEEE, 2005.

[19] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

9

[20] S. M. LaValle et al. Rapidly-exploring random trees: A new tool for path planning.

[21] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic roadmaps for
path planning in high-dimensional configuration spaces. IEEE transactions on Robotics and
Automation, 12(4):566–580, 1996.

[22] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning. The
international journal of robotics research, 30(7):846–894, 2011.

[23] N. Savinov, A. Dosovitskiy, and V. Koltun. Semi-parametric topological memory for navigation.
arXiv preprint arXiv:1803.00653, 2018.

[24] S. M. LaValle. Planning algorithms. Cambridge university press, 2006.

[25] J. T. Betts. Survey of numerical methods for trajectory optimization. Journal of guidance,
control, and dynamics, 21(2):193–207, 1998.

[26] J. T. Betts. Practical methods for optimal control and estimation using nonlinear programming.
SIAM, 2010.

[27] D. E. Kirk. Optimal control theory: an introduction. Courier Corporation, 2004.

[28] R. Tedrake. Underactuated Robotics. 2022. URL http://underactuated.mit.edu.

[29] P. Abbeel. Advanced Robotics. 2019. URL https://people.eecs.berkeley.edu/
~pabbeel/cs287-fa19/.

[30] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, and W. Burgard. Principles of robot
motion: theory, algorithms, and implementations. 2005.

[31] S. Thrun. Probabilistic robotics. Communications of the ACM, 45(3):52–57, 2002.

[32] M. Bujanca, P. Gafton, S. Saeedi, A. Nisbet, B. Bodin, M. F. O’Boyle, A. J. Davison, P. H.
Kelly, G. Riley, B. Lennox, et al. Slambench 3.0: Systematic automated reproducible evaluation
of slam systems for robot vision challenges and scene understanding. In 2019 International
Conference on Robotics and Automation (ICRA), pages 6351–6358. IEEE, 2019.

[33] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard. A tutorial on graph-based slam. IEEE
Intelligent Transportation Systems Magazine, 2(4):31–43, 2010.

[34] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski. Vizdoom: A doom-based ai
research platform for visual reinforcement learning. In 2016 IEEE conference on computational
intelligence and games (CIG), pages 1–8. IEEE, 2016.

[35] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain, J. Straub, J. Liu, V. Koltun,
J. Malik, et al. Habitat: A platform for embodied ai research. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 9339–9347, 2019.

10

http://underactuated.mit.edu
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa19/
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa19/

	IntroductionThis paper has been accepted for publication at NeurIPS 2022.
	Perception-Action Loop with Memory Retrieval
	Perceptual Representations that Capture Local Reachability
	Representation Learning via Reinforcement Learning
	Perceptual Experience Retrieval (PER)
	Long-Horizon Planning Through Stitching Trajectory Segments
	Refining Memory Contents via Forming and Executing Plans

	Related work
	Experiments
	Experiments in Vizdoom
	Experiments in Habitat

	Conclusion and Future Directions

