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Abstract
Large Language Models (LLMs) excel in genera-
tion tasks, yet their causal attention mechanisms
limit performance in embedding tasks. While
bidirectional modeling may enhance embeddings,
naively fine-tuning unidirectional models bidi-
rectionally severely degrades generative perfor-
mance. To investigate this trade-off, we analyze
attention weights as dependence indicators and
find that bidirectional fine-tuning increases subse-
quent dependence, impairing unidirectional gen-
eration. Through systematic Transformer module
evaluations, we discover the FFN layer is least
affected by such dependence. Leveraging this dis-
covery, we propose UBMoE-LLM, a novel Uni-
Bi-directional Mixture-of-Experts LLM, which
integrates the original unidirectional FFN with a
bidirectionally fine-tuned FFN via unsupervised
contrastive learning. This MoE-based approach
enhances embedding performance while preserv-
ing robust generation. Extensive experiments
across diverse datasets and model scales vali-
date our attention dependence metric and demon-
strate UBMoE-LLM’s superior generative qual-
ity and reduced hallucination. Code is available
at: https://github.com/heiyonghua/
ubmoe_llm.

1. Introduction
Creating a model capable of both generation and text em-
bedding has been a long-term goal in the field of natural
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language processing (Muennighoff et al., 2024; Bao et al.,
2020; Dong et al., 2019). Large causal language models
have shown strong capabilities across multiple tasks (Tou-
vron et al., 2023a;b; Jiang et al., 2023; Bai et al., 2023),
making them a promising choice for achieving this goal.
Recent research indicates that causal language models are
limited by their causal attention mechanisms in embedding
tasks, making unidirectional models suboptimal for these
tasks (BehnamGhader et al., 2024; Springer et al., 2024;
Muennighoff et al., 2024). A natural idea to address this
issue is to enhance the bidirectional modeling capabilities of
causal language models. However, simply enabling bidirec-
tional modeling in Large Language Model (LLMs) results
in a significant decline in generative performance (Muen-
nighoff et al., 2024). Therefore, a critical challenge in build-
ing such a unified model is how to enhance its bidirectional
modeling capabilities while maintaining robust generative
performance.

Previous studies have explored two main methods to en-
hance the bidirectional modeling capabilities of unidirec-
tional language models:

(1) Transforming a unidirectional decoder-only language
model into a bidirectional encoder model This method
initializes the weights using a unidirectional language model
and enables bidirectional attention. As shown in the Bidirec-
tion in Figure 1, the tokens in the model self-attention matrix
are visible to each other. Through contrastive learning (Gao
et al., 2022; BehnamGhader et al., 2024; Muennighoff et al.,
2024), this approach maximizes the similarity between the
representations of positive samples while minimizing the
similarity with negative sample representations, thereby
enhancing the model’s ability to contextually model bidi-
rectional information. Behamghader et al. (BehnamGhader
et al., 2024) and Li et al. (Li & Li, 2024b) use this method
to turn a unidirectional decoder-only language model into
a strong bidirectional encoder model. This method can
make the model have a better text understanding ability, but
will bring disastrous effects on the generation tasks (Muen-
nighoff et al., 2024).

(2) Constructing generative models with local bi-
directional modeling In the instruction fine-tuning phase,
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Figure 1. The image depicts three different attention mask mechanisms: unidirectional attention, prefix attention, and bidirectional
attention. In prefix attention, bidirectional attention is used for the instruction part, while unidirectional attention is maintained for the
other parts.

a local bi-directional attention mechanism is introduced, as
shown in Figure 1. There are two main implementations,
Prefix-I (Rafailov et al., 2023) and Prefix-H (Devlin et al.,
2019; He et al., 2023). Prefix-I uses bi-directional attention
in the instruction part and keeps it unidirectional in the rest
of the part, while Preifx-H enables bi-directional attention
for all the history conversations, and keeps the unidirection-
ality and calculates the loss only for the last reply. However,
this approach still has some drawbacks (Muennighoff et al.,
2024). Prefix-I and Prefix-H maintain unidirectionality in
the response part and only compute loss in the response
part. Since in the training phase, some of the tokens can see
some of the later tokens, which makes it possible to increase
the attention to the later tokens in the optimization process
to optimize the representation of the hidden state, and this
process may generate subsequent dependence. In the gener-
ation phase, the subsequent dependence it generates affects
the same tokens, which makes these tokens that should be
modeled unidirectionally generate an inappropriate depen-
dence distribution.

Recent work has shown that both methods result in varying
degrees of degradation in generation performance (Muen-
nighoff et al., 2024). However, the reasons for this degra-
dation remain unexplained. An intuitive explanation is that
this degradation is caused by subsequent dependence during
the training phase (Wang et al., 2022). To test this interpreta-
tion, we propose an attention dependence based explanation
method which considers the attention weight of each token
on other tokens as a dependence and constructs average
preceding/subsequent dependence measures at the hierarchi-
cal and global levels. Previous research has shown that all
generative tasks can be reduced to generating dialogues fol-
lowing user instructions (Raffel et al., 2023; Du et al., 2022);
therefore, we use instruction texts to evaluate such depen-
dence. We demonstrate that this effect is brought about by

enabling bi-directional attention in the training phase, from
comparing the effects of different model scales, evaluation
datasets, token lengths, and training methods on subsequent
dependence. Through extensive experiments, we verify the
correlation between subsequent attention dependence and
the generation ability of the model. Besides, we find that
the FFN layer is least affected in bidirectional fine-tuning.

Based on this finding, we propose a novel Uni-Bi-
Directional Mixture-of-Expert Large Language Model,
UBMoE-LLM which can reduce the damage of the sub-
sequent dependence on generation performance while en-
hancing the model’s performance in embeddings. We first
initialize the weights using a model fine-tuned with instruc-
tions, then enable bidirectional attention and use supervised
contrastive learning to enhance the model’s word embed-
ding capability, updating only the FFN parameters during
this process. We use extensive comparative experiments to
demonstrate the rationality of this approach. Next, we paral-
lel the FFN layer of the word embedding fine-tuned model
with the FFN layer of the original instruction fine-tuned
model and use a gating mechanism to select the parameters
activated for each token, constructing a mixture of experts
model with two experts. Finally, we fine-tune the param-
eters of the gating layer using a small amount of data to
improve the balance and effectiveness of expert selection.

To evaluate the effectiveness of our method across different
scales of language models, we used four different scales
of Qwen1.5-Chat (Bai et al., 2023) models ranging from
0.5B to 7B as the backbone models to validate our method’s
effectiveness. First, we experimentally verified the effec-
tiveness of fine-tuning only the FFN layer, which achieved
performance comparable to fine-tuning all parameters on
ten text similarity (STS) tasks in MTEB (Muennighoff et al.,
2022), consistently demonstrating superior performance.
Next, we combined the instruction-tuned model and the
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embedding-tuned model to construct UBMoE-LLM and
fine-tuned the gate layer. We evaluated UBMoE-LLM using
multiple generative criteria, and the results indicated that
this approach enhances the model’s embedding performance
while maintaining robust generative performance. We also
tested UBMoE-LLM on the TruthfulQA dataset and the
results show that UBMoE-LLM incorporating bidirectional
attention can effectively resist the hallucinatory problem.

2. Related Work
Enhanced text embedding performance for LLM Ini-
tially, bi-directional pre-trained language models are a ro-
bust choice for text embedding tasks (Devlin et al., 2019;
Lan et al., 2020). Recent research has shown that large unidi-
rectional language models can also be transformed into pow-
erful encoders for embedding tasks (Li & Li, 2023). How-
ever, although large causal language models show strong
performance on multi tasks (Touvron et al., 2023a;b; Jiang
et al., 2023; Bai et al., 2023; Zeng et al., 2023; Brown
et al., 2020), but their preference in text embedding has
been limited due to its architectural (BehnamGhader et al.,
2024). Recent research suggests that causal self-attention
mechanism is the main reason, with its limitation of models
to acquire information from the entire sequence. For this,
its text embedding ability can be effectively enhanced by
simply enabling bidirectional attention and using contrast
learning for training (BehnamGhader et al., 2024; Li & Li,
2024b).

Language model with both embedding and generation
capabilities Initially, the encoder-decoder model was
a natural choice to unify the generation and embedding
tasks (Vaswani et al., 2023; Lewis et al., 2019; Raffel et al.,
2023). But it was replaced by decoder-only unidirectional
language models and encoder-only bidirectional language
models for generation and embedding tasks (Lan et al.,
2020). Recent research has shown that how to unify uni-
directional and bidirectional capabilities is key to framing
such a unified model (Muennighoff et al., 2024). But the
severe generative performance loss problem associated with
bi-directional training makes this unification limited. So, a
discussion of the causes of this damage is necessary for the
construction of such a unified model.

Interpreting language models using attention weights
Based on the self-attention mechanism, language models
calculate attention weights through a dot product mecha-
nism, allowing each token to observe other tokens with
varying weights. Previous research has suggested that the
interpretability of attention weights may vary significantly
across different NLP tasks, and there are critical views on
whether attention weights truly provide insights into model
predictions (Vashishth et al., 2019; Chrysostomou & Ale-
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Figure 2. Preliminary experiments results.

tras, 2021). These earlier studies analyzed different tasks
using different models due to the lack of a powerful sin-
gle language model. Recent research indicates that various
NLP tasks can be unified as instruction-following tasks (Du
et al., 2022), and large language models have become the
preferred choice for multiple tasks. This makes it possible
to analyze the interpretability of attention weights from a
unified model and perspective

3. What Causes Generative Performance
Decline?

3.1. Preliminaries

Previous work (Ding et al., 2024) has demonstrated that
overcoming the bidirectional attention-pure decoder used for
text-embedding tasks has several advantages. We present the
performance effects of recent work on bidirectional attention
in Appendix A. Recent work (BehnamGhader et al., 2024)
has shown that the supplement of bidirectional attention
will lead to the degradation of model generation ability. We
conducted preliminary experiments to test the impact of
existing bidirectional modeling enhancement efforts.

Generation performance. We tested the generation task
effects of Cusual, Prefix-I and Prefix-H methods on the
Natural Instructions (Mishra et al., 2021), DOQA (Campos
et al., 2020) and Dureader (Contributors, 2021) datasets.
Prefix-I and Prefix-H are the bidirectional attention enhance-
ment methods mentioned above. Cusual represent unidirec-
tional attention calculations. We add a detailed experimental
setup for pilot analysis. We set the batch size to 1, loss accu-
mulation to 32, learning rate to 0.00003, and others to follow
the default Settings of the transformer library (Wolf et al.,
2020). We can see from the Figure 1 that from Cuaual to
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Table 1. The result of fine-tuning Qwen1.5-0.5B and Qwen1.5-1.8B with the DOQA dataset. ”Full test dataset” mean use all office test set
to evaluate, ”W/o no answer” mean no unanswerable questions in the test set.

Model Method Bleu-1 Bleu-2 Bleu-3 Bleu-4 Dist-1 Dist-2 Dist-3 F1 Rouge-L

Full test dataset

Qwen1.5-0.5B causal 40.24 34.29 31.96 30.73 8.46 34.06 49.67 41.03 39.87
Qwen1.5-0.5B Prefix-I 37.11 30.79 28.33 27.04 8.44 32.89 47.85 38.80 37.55
Qwen1.5-1.8B causal 44.39 39.20 37.16 36.11 9.40 37.78 54.80 44.53 43.43
Qwen1.5-1.8B Prefix-I 41.89 36.24 34.02 32.83 9.30 36.95 53.72 43.13 41.94

W/o no answer

Qwen1.5-0.5B causal 32.62 26.07 23.82 22.84 10.14 39.27 56.00 28.02 26.36
Qwen1.5-0.5B Prefix-I 28.95 22.26 20.01 19.06 9.73 36.39 51.43 25.75 24.05
Qwen1.5-1.8B causal 37.33 31.80 29.85 29.01 10.99 42.76 60.86 33.86 32.38
Qwen1.5-1.8B Prefix-I 36.85 31.05 29.02 28.14 10.76 42.04 59.95 32.61 31.10

Table 2. Results of mixed training experiments on DOQA datasets

Train Method Gnenrate Method F1 Rouge-l Bleu-1 Bleu-2 Bleu-3 Bleu-4 Dist-1 Dist-2 Dist-3

Qwen1.5-0.5B

causal+Prefix-I causal 37.20 36.41 30.59 27.33 25.32 24.23 12.68 51.93 72.47
causal+Prefix-I Prefix-I 33.10 32.40 20.12 17.62 15.87 14.95 14.33 57.09 76.87
causal+causal causal 36.58 35.82 30.28 26.98 25.00 23.93 12.57 52.40 73.18

Qwen1.5-1.8B

causal+Prefix-I causal 39.12 38.45 34.07 31.22 29.38 28.34 13.16 54.85 76.67
causal+Prefix-I Prefix-I 37.71 37.08 30.64 27.89 26.06 25.05 13.39 55.42 75.92
causal+causal causal 38.85 38.18 34.35 31.52 29.71 28.69 12.92 54.83 76.91

Qwen1.5-4B

causal+Prefix-I causal 40.27 39.81 19.06 18.17 17.00 16.32 15.94 64.60 86.36
causal+Prefix-I Prefix-I 35.60 35.27 9.32 9.01 8.24 7.81 16.90 69.16 87.46
causal+causal causal 40.70 40.34 19.28 18.58 17.49 16.87 16.10 64.59 85.59

Prefix-H, the degree of bidirectional attention of the model
is increasing. We show the experimental results in Figure 2.
The experiment results on all tested datasets show that from
Cuaual to Prefix-H, the model generation performance de-
creases with the increasing degree of bidirectional attention.

Overfitting. As show in Table 1. We used the DOQA
dataset to fine-tune Qwen 1.5-0.5b and 1.5B, and we com-
pared the effects of using Prefix-I with causal. The results
show that on the DOQA data set, Prefix-I produces obvious
overfitting and overlearns the unanswerable of the train data
set.

Hybrid mask training. We conducted mixed training on
the two methods causal and Preifx-I, and the experimental
results are shown in Table 2. We were surprised to find
that using causal+Prefix-I in both the 0.5B and 1.8B models

resulted in a slight increase in unidirectional generation
performance, indicating some bidirectional advantage in
understanding long text.

3.2. Average Preceding and Subsequent Dependence

To analyze the reason for the decline of productive ability
caused by bidirectional attention, we propose an average
subsequent and preceding dependence method that uses
attention dependence to explain this phenomenon.

The specific explanation is shown in Figure 3. We first in-
troduce the attention dependence of a single layer. For the
attention weight w = softmax(QKT ) ∈ Rb×l×l (where K
is the key, Q is the query, b is head number and l is token
sequence length) of the k-th layer in the n self-attention
layers, we sum it to obtain the attention score Ak ∈ Rl×l

between each pair of tokens. We then average the Ak of n
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Figure 3. The calculation process of average before and after dependence.

self-attention layers to obtain the attention weight A for the
global model. We assume that Ai,j represents the depen-
dence of the i-th token on the j-th token, then the average
dependence of the i-th token on the preceding i− 1 token
DPbefore

i and the average dependence of the following l− i

token DPafter
i can be expressed as:

DPbefore
i =

1

i− 1

i−1∑
j=1

Ai,j ,

DPafter
i =

1

l − i

i∑
j=0

Ai,j .

(1)

DPbefore
i and DPafter

i reflect the degree of dependence of
the i-th token on the preceding and the following tokens
respectively. In addition, it is easy to understand that Ai,i

represents the degree of dependence of the i-th token on
itself, which we denote by DPmain

i .

In order to obtain the dependence of the full text on the
preceding text, the following text and itself, we carry out
an average operation on each dependence indicator for each
token:

DPindicator =
1

l′

l′∑
i=1

DPindicator
i ,

indicator ∈ {main, before, after}.

(2)

It is worth noting that l′ = l when indicator is main while
l′ = l − 1 when indicator is berfore or after. Because
the calculating process of the DPbefore

i or DPafter
i will not

get DPbefore
1 or DPafter

l , which can be easy to understand
by Figure 3.

We conduct experiments on the average attention depen-
dence metric with different training objectives, different
token lengths, and different model sizes. The experiment
setting can be found in Section 5.1. As shown in Table 3,
after training with bi-directional contrastive learning, the
model’s subsequent dependence shows a significant increase.
Through the discussion of different token lengths and dif-
ferent model scales, it can be considered that the source of
this subsequent dependence is bidirectional training. Addi-
tionally, we observes that increasing the model scale and
the number of tokens also leads to an increase in subsequent
dependence. As the subsequent dependence increases, we
can see a downward trend in performance on the MMLU
dataset. This trend demonstrated remarkable consistency
across the four model scales. This fully reflects the statisti-
cal association between subsequent dependence and model
generation ability. We conduct the same experiment on
LLAMA3-8B, and the results are shown in Table 3. This
further validates our hypothesis that bidirectional training
leads to the increase of subsequent dependence and thus
damages the model generation ability.

4. UBMoE-LLM
Through pre-experiments and attention-dependence analy-
sis, we draw the following conclusions: the performance
degradation of text generation task caused by the join of
bidirectional attention is mainly caused by the model’s sub-
sequent dependence and the FFN layer is least affected by
the subsequent dependence during the bidirectional atten-
tion training process. Therefore, a novel Uni-Bi-directional
Mixture of Expert Large Language Model, UBMoE-LLM,
is proposed to optimize the FFN layer during the bidirec-
tional training of the unidirectional generative model. The
main architecture of our approach is shown in Figure 4. It
joins the advantage of bidirectional attention on the basis of
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Table 3. Dependence of four different scales of models in 0-2048 token lengths. DP-M, DP-B, and DP-A indicate DPmain, DPbefore, and
DPafter respectively. The following tables take the same abbreviation. Uni and Bi indicate unidirectional and bidirectional respectively.

Model Attention 0-256 256-512 512-1024 1024-2048 MMLUDP-M DP-B DP-A DP-M DP-B DP-A DP-M DP-B DP-A DP-M DP-B DP-A

Qwen1.5-0.5B-Chat Uni 4.83 63.48 31.69 3.48 59.57 36.95 3.01 56.62 40.37 2.61 51.45 45.94 32.5
Bi 4.21 60.11 35.68 2.78 56.73 40.49 2.35 48.09 49.93 1.98 48.09 49.93 25.8

Qwen1.5-1.8B-Chat Uni 4.44 67.23 28.33 3.21 64.15 32.64 2.82 61.51 35.68 2.47 55.32 44.21 44.3
Bi 4.27 60.97 34.75 2.80 58.93 38.27 2.37 56.32 41.11 1.94 50.51 47.55 25.52

Qwen1.5-4B-Chat Uni 4.28 68.3 27.43 3.30 66.66 30.04 2.93 65.16 31.9 2.68 61.62 35.69 54.2
Bi 3.60 64.28 32.12 2.64 63.56 33.79 2.40 62.56 35.04 2.18 59.17 38.66 50.93

Qwen1.5-7B-Chat Uni 4.48 71.10 24.42 3.30 69.34 27.36 2.95 67.81 29.24 2.80 63.65 33.55 60.2
Bi 4.16 67.31 28.53 2.84 66.20 30.95 2.54 65.14 32.33 2.33 61.32 36.25 58.12

Llama3-8B Uni 3.29 76.81 19.89 2.60 72.49 24.94 2.13 65.55 32.31 1.50 61.58 36.91 68.4
Bi 3.05 75.42 21.53 2.51 70.31 27.18 2.02 61.42 36.56 1.48 56.48 41.72 65.4

maintaining the generative ability of unidirectional models,
which can resist the hallucination problem faced by large
models.

4.1. Uni-bi-directional Mixture-of-expert FFN Layer

To combine the context understanding ability of bidirec-
tional attention with the text generation ability of unidirec-
tional attention, we decided to adopt the Mixture of Experts
(MoE) method to integrate bidirectional attention FFN layer
into the unidirectional generative model. Specifically, We
define the bidirectional attention FFN layer as bi-directional
embedding expert expertBi, and the FFN layer of the back-
bone model is defined as uni-direction generation expert
expertUni.

As shown in Figure 4 we implement the allocation of tokens
through a gate control layer, activate only one expert at a
time. Since the gate control layer does not get any training,
we use a small amount of data to train the gate control
layer while freezing other parameters. Following Jiang
et al. (Jiang et al., 2023), we use cross entropy loss and
gate control loss L = LCE + λLGating to jointly train
our model. LCE is the cross entropy loss and LGating is
the gating regularization loss. λ is a hyperparameter that
adjusts the weight between the cross-entropy loss and the
gated regularization loss.

The Cross entropy loss is used to supervise the difference
between the output of the learning model and the actual label.
For a given input x and target label y, the cross-entropy loss
LCE is defined as:

LCE = − 1

N

N∑
i=1

C∑
c=1

yic log(pic), (3)

where N is the number of samples in the batch, C is the
number of categories, yic is the actual label (one-hot coding)
of the i sample belonging to the c category, and pic is the

probability of the model predicting that the i sample belongs
to the c category.

The gating regularization loss LGating is to ensure uniform
use of all experts. It uses negative entropy to encourage a
uniform distribution of the gated network. It is specifically
defined as:

LGating = − 1

N

N∑
i=1

M∑
j=1

gij log(gij), (4)

where M is the number of experts and gij is the probability
that the i th sample will have the j th expert selected by the
gating network.

4.2. Contrastive Learning based Bidirectional Expert
Training

We use contrastive learning to train the model to obtain the
FFN Layer containing the prior knowledge of bidirectional
attention. For the input sequence x = {x1, ..., xt}, we
simultaneously input x with its similar positive cases x+

and different negative cases x−. After encoding and pooling
of the model, we can obtain the embedding representation
of the input sequence with its positive and negative cases h,
h+ and h−. Since the model is the decoder-only model, we
choose the vector corresponding to the token at the end of
sentence ([EOS] token) position as the pooling operation.
After that, we followed Gao et al. (Gao et al., 2021) ’s
comparative training objective for training:

loss = − log
esim(hi,h

+)/τ∑N
j=1(e

sim(hi,h
+
j )/τ + esim(hi,h

−
j )/τ

, (5)

where τ is a temperature hyperparameter and sim(h1, h2)

is the cosine similarity hT
1 h2

||h1||·||h2|| . By contrast learning
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Figure 4. The model architecture and design ideas of UBMoE-LLM.

with positive and negative examples, the model can better
grasp the bidirectional understanding ability of text. It is
worth noting that the training process freezes the weights of
other modules and trains only the FFN layer of the model.
Therefore, we can obtain FFN layers based on bidirectional
attention.

5. Experiments
5.1. Experiments Setup

Datasets. For the training of bidirectional contrast learn-
ing, we used the data collected by Li at al. (Li & Li, 2024a)
to train our model. There were 480,862 training data in
this dataset. Following the settings set by Muennighoff
et al. (Muennighoff et al., 2024), we applied the model’s
default prompt template when training.

To test the performance of different fine-tuning layers on em-
bedding tasks, we conduct experiments on ten text similarity
(STS) tasks in MTEB (Muennighoff et al., 2022)

For the evaluation of subsequent dependence and the train-
ing for gate layer, we use tulu-v2-sft-mixture (Ivison et al.,
2023), which is a multitask instruction dataset with a wide
text interval, with 326,154 training data. We split it into
four subsets based on the number of tokens recorded in the
historical conversation, in other to dissolve the effect of to-
ken length on subsequent dependence. For the evaluation of
all language models, we use the officially provided prompt
template to process the input.

To evaluate the generative performance of UBMoE-LLM ,
we use the following three datasets: (1) MMLU: a dataset to
evaluate AI language understanding across various subjects
using a massive multitask framework (Hendrycks et al.,
2021). (2) Winogrande: a large-scale dataset focused on
common sense reasoning, designed to improve and evaluate

AI models on ambiguity resolution tasks (Sakaguchi et al.,
2019). (3) TruthfulQA: a dataset designed to challenge
AI models on their ability to generate truthful and factual
responses in a question-answering format (Lin et al., 2022).
During evaluation, the few-shot setting for MMLU is set
to 5, using accuracy (acc) as the metric; for TruthfulQA,
the few-shot setting is set to 0, using multiple-choice score
(mc2) as the metric; for Winogrande, the few-shot setting is
set to 5, also using accuracy (acc) as the metric.

Model Scales. To ablate the impact of model scale on
dependence, we evaluate models of various scales. To mini-
mize the influence of other factors, we select the Qwen1.5-
Chat series models, ranging from 0.5B to 7B scales. These
models have identical architecture, tokenizer, and instruc-
tion templates.

Baselines. For the embedding tasks, previous work has
demonstrated that enabling bidirectional attention in uni-
directional language models and training them using con-
trastive learning methods can effectively improve the embed-
ding capability of the models. We followed this approach
to train our model. We conducted the following compar-
ative experiments: (1) ATT/FFN/EMB: updating only the
parameters of the self-attention layer, FFN layer, or embed-
ding layer, (2) EMB+ATT/FFN: updating the embedding
layer while also updating the self-attention layer or FFN
layer, (3) FFN+ATT: updating only the FFN layer and the
self-attention layer, consistent with the parameter update
settings in LLM2VEC (BehnamGhader et al., 2024), (4)
ALL: updating all parameters.

For the dependence evaluation, the uni-bi-directional
mixture-of-expert large language model and bidirectional
contrastive learning, we use the backbone model as the
baseline.
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Table 4. Experimental results of word embedding ablation. ATT, FFN, and EMB indicate freezing other parameters for bidirectional
modeling training on the Attention Layer, FFN Layer, and Embedding Layer respectively. The following tables take the same abbreviation.
ALL Indicates the full-parameter bidirectional modeling trained model.

Method BIOSSES SICK-R STS12 STS13 STS14 STS15 STS16 STS17 STS22 STSB Average

Qwen1.5-0.5B-Chat

Base 31.56 53.56 24.96 35.86 22.54 21.65 52.30 51.50 12.91 42.76 34.96
FFN 54.01 69.73 72.41 68.16 65.86 75.71 70.89 77.38 42.82 72.61 66.96
ATT 55.07 68.30 70.5 73.67 68.51 77.41 73.56 79.19 43.57 73.15 68.29
EMB 27.77 54.32 34.67 30.18 24.49 23.09 52.19 59.94 20.52 48.02 37.52

FFN+ATT 49.17 66.73 71.85 67.08 65.09 75.82 72.08 76.42 48.59 73.49 66.63
FFN+EMB 58.38 69.89 72.69 71.18 68.86 77.05 73.04 77.62 41.44 73.61 68.38
ATT+EMB 58.32 69.02 70.43 71.55 67.52 76.20 74.27 79.02 41.66 73.55 68.15

ALL 51.98 68.10 72.06 68.38 65.52 74.66 72.38 75.05 49.19 71.98 66.93

Qwen1.5-1.8B-Chat

Base 43.87 56.82 48.15 65.80 52.57 62.08 63.35 72.26 33.75 56.84 55.55
FFN 64.95 67.45 73.85 71.61 70.11 78.25 73.33 77.48 48.59 75.50 70.11
ATT 58.42 66.24 72.09 74.28 70.97 77.73 72.67 75.69 47.11 75.15 69.04
EMB 54.90 71.66 63.23 65.82 61.56 72.77 66.72 77.57 23.74 70.71 62.87

FFN+ATT 63.99 67.03 72.69 73.39 71.08 78.03 73.03 76.32 46.64 75.26 69.75
FFN+EMB 66.3 67.6 72.58 72.55 70.57 78.11 73.13 76.82 50.7 75.37 70.37
ATT+EMB 58.28 65.86 72.22 73.41 70.69 77.72 72.55 76.15 45.42 75.70 68.80

ALL 61.80 66.48 72.95 74.33 71.23 77.93 72.87 77.85 48.10 75.71 69.93

Qwen1.5-4B-Chat

Base 31.00 53.68 24.04 40.75 24.55 25.59 52.40 49.35 10.29 41.34 35.30
FFN 64.97 63.99 72.30 75.62 71.97 78.08 76.87 69.53 54.93 76.51 70.48
ATT 64.96 64.74 71.56 77.54 73.9 77.85 75.54 73.46 57.13 77.35 71.40
EMB 4.44 35.48 27.78 17.13 15.62 22.27 28.05 37.34 10.63 25.60 22.43

FFN+ATT 69.17 63.73 71.86 76.59 73.17 78.00 76.11 71.66 56.44 76.43 71.32
FFN+EMB 63.03 61.16 51.78 35.94 45.57 61.32 51.36 65.33 41.35 54.72 53.16
ATT+EMB 51.16 60.99 53.53 41.90 45.70 59.55 52.68 63.91 39.45 54.60 52.35

ALL 62.16 59.76 51.43 39.6 47.14 59.48 51.01 67.05 39.53 55.97 53.31

Qwen1.5-7B-Chat

Base 23.79 56.77 11.94 40.85 22.45 26.43 52.39 43.85 12.21 29.59 32.03
FFN 66.20 64.73 73.68 79.74 75.08 79.04 73.87 73.21 49.36 78.55 71.35
ATT 63.87 65.12 73.52 80.25 75.44 80.26 77.62 73.11 58.24 78.23 72.57
EMB 29.94 53.82 37.90 25.33 26.95 32.22 42.70 48.39 7.42 32.46 33.71

FFN+ATT 65.52 65.17 73.20 79.80 74.61 79.59 77.73 71.45 57.27 77.92 72.23
FFN+EMB 60.69 62.18 51.06 36.70 45.57 60.39 52.45 66.65 32.52 54.62 52.28
ATT+EMB 61.55 60.31 51.87 31.64 43.92 60.25 51.70 68.81 31.00 55.94 51.70

ALL 52.05 60.04 50.72 36.14 46.03 61.13 52.93 65.97 31.41 55.81 51.23

Model Settings. For bidirectional contrasted learning
training, we conduct full fine-tuning for the 0.5B and 1.8B
models, and use LoRA (Hu et al., 2021) for parameter ad-
justments on the 4B and 7B models. We fix the learning
rate at 0.00003 but vary the batch size and gradient accu-
mulation steps according to the model parameters, ensuring
their product remains 32, and apply the same hyperparam-
eter settings within the same scale models. For LoRA, we
set r = 16, α = 32, LoRA dropout to 0.05, and enable
reLoRA (Lialin et al., 2023).

For the training of UBMoE-LLM, we only sample data
with token counts less then 512. The batch size is set to 1,
gradient accumulation is set to 32, and the learning rate is
set at 0.0003, with training limited to 1000 steps. During

the training process, we freeze parameter updates except
for those of the gating layer. We trained Qwen1.5-Chat
with sizes 0.5B, 1.8B, and 4B on a GeForce RTX 4090.
For Qwen1.5-7B-Chat and Llama3-8B, we train them on a
NVIDIA L20. For the evaluation of UBMoE-LLM, we use
the scripts provided by Language Model Evaluation Harness
for evaluation (Gao et al., 2023).

5.2. Analysis

Bidirectional embedding expert The embedding tasks
experiment results are shown in Table 4. In all sizes of
models, although the optimal results of fine-tuning different
layers are different, merely fine-tuning the FFN or attention
layers has achieved robust performance in the text similar-
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Table 5. Contrastive learning subsequent dependence ablation.

Model Trained
Module

0-256 256-512 512-1024 1024-2048
DP-M DP-B DP-A DP-M DP-B DP-A DP-M DP-B DP-A DP-M DP-B DP-A

Qwen1.5-0.5B-Chat FFN 3.86 61.74 34.40 2.58 57.87 39.55 2.22 54.73 43.05 1.92 49.56 48.52
ATT 4.33 59.28 36.39 2.82 56.44 40.74 2.39 53.49 44.12 2.00 48.53 49.48

Qwen1.5-1.8B-Chat FFN 3.82 62.81 33.37 2.65 60.79 36.56 2.34 58.85 38.81 2.04 52.72 45.24
ATT 4.09 62.49 33.41 2.52 60.68 36.79 2.10 58.41 39.48 1.69 52.98 45.33

Qwen1.5-4B-Chat FFN 3.64 65.60 30.76 2.71 64.31 32.98 2.43 63.14 33.43 2.19 59.62 38.18
ATT 3.62 62.52 33.86 2.63 63.09 35.28 2.38 61.17 36.44 2.17 57.91 39.92

Qwen1.5-7B-Chat FFN 4.05 69.64 26.32 2.87 68.16 28.97 2.57 67.17 30.25 2.41 63.44 34.15
ATT 3.98 65.39 30.63 2.63 64.81 32.56 2.29 63.67 34.04 2.06 59.67 38.29

Table 6. Experiment results of UBMoE-LLM and base model with
different model scales on the generation tasks. All results are
evaluated by us.

Model
Model
Scale MMLU Winogrande Truthfulqa Average

Qwen1.5-Chat 0.5B 32.5 53.0 43.0 42.8
UBMoE-LLM 28.1 54.0 43.9 42.0

Qwen1.5-Chat 1.8B 44.3 59.7 40.5 48.2
UBMoE-LLM 45.2 58.5 40.9 48.2

Qwen1.5-Chat 4B 54.2 66.0 44.5 54.9
UBMoE-LLM 51.9 64.7 47.6 54.7

Qwen1.5-Chat 7B 60.2 67.4 53.7 60.4
UBMoE-LLM 59.6 66.0 55.4 60.2

ity computation tasks across all scales. We evaluated the
dependence distribution of models trained via bidirectional
contrastive learning for these two components and token
evaluations as show in Table 5. The results indicate that
solely fine-tuning the FFN consistently yielded the lowest
subsequent dependence across various model scales. It is
shown that only fine-tuning the FFN has the lowest impact
on the dependence of the model. This is primarily because,
in the initial layers where the attention layer is not updated,
the attention distribution during the bidirectional training
phase is exactly the same as the unidirectional generation.
In this context, the FFN layer mainly learns how to process
hidden states that contain backward token information un-
der the same attention distribution. Updating the ATT layer,
however, would disrupt this consistency in distribution. This
implicit separation of the two modeling capabilities reduces
the performance degradation of the FFN in unidirectional
modeling during training.

UBMoE-LLM The generative performance of UBMoE-
LLM is illustrated in Table 6, where our method consistently
achieves improvements on the TruthfulQA dataset while
maintaining robust generative capabilities. At the same
time, due to only learning token allocation capabilities dur-
ing the training phase, degradation in some generation tasks
is inevitable. This is because the bidirectional experts, after

training on word embeddings, did not undergo instruction
alignment, leading to a decline in their generative abilities.
Notably, our approach manages to enhance overall gener-
ative performance at the 1.8B scale, which suggests the
benefits of incorporating bidirectional experts—enhancing
the model’s resistance to hallucinations and improving its
language comprehension capabilities and the richness of
semantic modeling. More experiment results can be found
in Appendix B.

6. Conclusion
To explore whether bidirectional training of unidirectional
models would enhance subsequent dependence, we reinter-
preted attention weights as a form of dependency, dividing
it into preceding dependency, subsequent dependence, and
self/main dependency. We have provided the formulas for
calculating these dependencies and tested our hypothesis
on four models ranging from 0.5B to 7B — bidirectional
training does increase subsequent dependence. Addition-
ally, we performed an ablation study on the bidirectional
contrastive learning training part, revealing that training
only the FFN layers results in robust embedding effects and
a lower increase in subsequent dependence. We used the
fine-tuned FFN layers as bidirectional embedding experts,
paired with the unidirectional generative experts of the main
model. By adding a gating mechanism, we constructed a
hybrid expert language model that effectively utilizes the
illusion resistance brought by bidirectionality and the ro-
bust generative capabilities of unidirectionality. This model
showed consistent improvements on the realness benchmark
dataset TruthfulQA.
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A. Effect of bidirectional attention model
In Table 7, we follow Li et al. (Li et al., 2023b) ’s work to train a bidirectional attention model BatGPT and test it on the
CMMLU (Li et al., 2023a) dataset. We can find that BatGPT with bi-directional attention has excellent performance, fully
demonstrating the benefits of bi-directional attention.

Table 7. Performance comparison of BATGPT and other Chinese-oriented large language models on the CMMLU benchmark. Results are
presented as average accuracy within each categories based on a five-shot experiment setting.

Model STEM Humanities Social Science Other China-specific Average

Random 25.00 25.00 25.00 25.00 25.00 25.00
MOSS-SFT-16B 27.23 30.41 28.84 32.56 28.68 29.57
Chinese-LLaMA-13B 27.12 33.18 34.87 35.10 32.97 32.63
Chinese-GLM-10B 25.49 27.05 27.42 29.21 28.05 27.26
Chinese-LLaMA-7B 25.79 27.45 26.35 26.06 25.45 26.36
ChatGLM-6B 32.35 39.22 39.65 38.62 37.70 37.48

BATGPT 33.49 35.38 36.31 42.14 37.00 36.72

B. Further Study
Performance on more base models. We analyzed the relationship between generation performance and attention-based
forward or subsequent dependence on other models. The experimental results are shown in Table 8. As the level of
subsequent dependence increased, the generation performance of the model declined. In contrast, our method reduced the
subsequent dependence introduced by incorporating bidirectional experts while improving generation performance. This
indicates a correlation between the distribution of attention weights and the model’s generation performance.

Model DPB DPA MMLU
Qwen2.5-0.5B-Instruct 55.68 39.75 46.9
UBMoE-LLM 54.68 38.91 43.85
FNN-Bi 54.40 41.40 35.54
Qwen2.5-1.5B-Instruct 58.27 36.57 60.21
UBMoE-LLM 58.08 36.80 59.41
FNN-Bi 57.00 38.13 54.35
Qwen2.5-7B-Instruct 60.94 35.07 73.86
UBMoE-LLM 60.37 35.61 70.86
FNN-Bi 46.17 49.05 21.28

Table 8. Dependence and Performance on Qwen 2.5.

Besides, we add MNTP-LLM as a baseline, which is trained using the Wikipedia dataset through the MNTP method. As
shown in Table 9, the experimental results demonstrate that UBMoE-LLM still exhibits strong performance. we also test
the generation ability on models beyond 7B parameters. As shown in Table 10, the experimental results of the 14B model
remain consistent with the previous conclusions.

Model MMLU Winogrande Truthfulqa Avg
Qwen2.5-0.5B-Instruct 46.90 55.60 41.86 48.12
UBMoE-LLM 43.85 56.94 43.02 47.94
MNTP-LLM 41.33 54.40 41.65 45.79

Qwen2.5-7B-Instruct 73.86 73.60 64.72 70.72
UBMoE-LLM 70.86 75.42 62.65 69.64
MNTP-LLM 70.06 74.21 62.54 68.93

Table 9. Performance on generation tasks.
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Model MMLU Winogrande Truthfulqa Avg
Qwen2.5-14B-Instruct 79.54 78.74 67.51 75.26
UBMoE-LLM 78.44 77.83 68.01 74.76

Table 10. Performance on 14B model.

Comparison of computational overhead. UBMoE activates only one expert for each token, adding computational
overhead during inference solely for token routing. Compared to the computational cost of the causal language model
itself, this additional overhead is minimal. As shown in Table 11, our approach does not result in significant additional
computational overhead.

Model GFLOPs
Qwen2.5-0.5B-Instruct 505.82
UBMoE-LLM (0.5B) 505.86

Qwen2.5-1.5B-Instruct 1,580.62
UBMoE-LLM (1.5B) 1,580.70

Qwen2.5-7B-Instruct 7,239.97
UBMoE-LLM (7B) 7,240.18

Table 11. Comparison of computational overhead.

Performance on reasoning tasks. To evaluate the reasoning ability of UBMoE-LLM, we evaluate the performance
of UBMoE-LLM on a physics problem benchmark and a mathematics problem benchmark. As shown in Table 12, the
experimental results indicate that UBMoE-LLM still demonstrates performance comparable to that of a causal language
model.

Model Math PIQA Avg
Qwen2.5-0.5B-Instruct 32.5 70.62 51.56
UBMoE-LLM 32.67 69.85 51.26

Qwen2.5-1.5B-Instruct 41.07 76.22 58.64
UBMoE-LLM 42.68 76.36 59.52

Qwen2.5-7B-Instruct 54.51 79.49 67.00
UBMoE-LLM 53.91 79.04 66.48

Table 12. Performance on reasoning tasks.

Ablation study of gate control layer. To test the effectiveness of gate control layer, we carry out ablation experiments.
As shown in Table 13, we conduct experiments on the STS task. The gate control layer effectively enhances the ability to
embed tasks.

Model Method Avg
Qwen2.5-0.5B-Instruct FNN 81.63
Qwen2.5-0.5B-Instruct FNN w/o gate 80.14

Qwen2.5-1.5B-Instruct FNN 80.15
Qwen2.5-1.5B-Instruct FNN w/o gate 78.49

Qwen2.5-7B-Instruct FNN 81.79
Qwen2.5-7B-Instruct FNN w/o gate 80.39

Table 13. Ablation study of gate control layer.
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