HDDI: A HISTORICAL DATA-BASED DIFFUSION IMPUTATION METHOD FOR HIGH-ACCURACY RECOVERY IN MULTIVARIATE TIME SERIES WITH HIGH MISSING RATE AND LONG-TERM GAP

Anonymous authors Paper under double-blind review

Abstract

Multivariate time series data often face the challenge of missing values, which can impact the performance of subsequent tasks. Although some deep learning-based imputation methods perform well, they still struggle with insufficient training data due to high missing rate and long-term missing data. To address these challenges, we propose a Historical Data-based Multivariate Time Series Diffusion Imputation (HDDI) method. Unlike existing deep learning-based imputation methods, we design a historical data supplement module to match and fuse historical data to supplement the training data. Additionally, we propose a diffusion imputation module that utilizes the supplement training data to achieve high-accuracy imputation even under high missing rate and long-term missing scenario. We conduct extensive experiments on five public multivariate time series datasets, the results show that our HDDI outperforms baseline methods across five datasets. Particularly, when the data missing rate is 90%, HDDI improves accuracy by 25.15% compared to the best baseline method in the random missing scenario, and by 13.64% in the long-term missing scenario. The code is available at https://github.com/liuyu3880/HDDI_project.

1 INTRODUCTION

1.1 BACKGROUND

Multivariate time series data is ubiquitous across various application domains, including transportation Liu et al. (2023); Wu et al. (2019), industry Chang et al. (2024), and healthcare Li et al. (2023b). However, this data often suffers from losses due to sensor failures, communication breakdowns, or unexpected malfunctions. Such missing data damages the interpretability of data Silva et al. (2012); Chauhan et al. (2022) and severely affects the performance of subsequent tasks, such as climate change research and patient monitoring. Therefore, accurate imputation of missing data is crucial.

To address the problem of missing data imputation, some studies propose algorithms based on statistics and classic machine learning Kreindler & Lumsden (2016); Little & Rubin (2019); Basharat & Shah (2009); Wang et al. (2006); Yu et al. (2016); Li et al. (2023a); Pujianto et al. (2019); Nelwamondo et al. (2007); Shu & Ye (2023). However, these methods rely on specific data assumptions Liu et al. (2023). For instance, linear interpolation methods typically assume a linear relationship between data points Kreindler & Lumsden (2016), while mean/median methods assume that the data follows a uniform distribution Little & Rubin (2019). The K-Nearest Neighbors (KNN) methods assume that data points have similar characteristics within their local neighborhoods Pujianto et al. (2019). When these assumptions do not hold, the accuracy of data interpolation can be significantly affected.

In contrast to statistics and classic machine learning-based algorithms, some recent studies propose deep learning-based imputation methods Cao et al. (2018); Yoon et al. (2017); Che et al. (2018); Cini et al. (2021); Suo et al. (2020). These methods leverage neural network models to extract data features and perform the imputation of missing values without relying on specific data assumptions. For example, some works use Recurrent Neural Networks (RNNs) Cao et al. (2018); Yoon et al. (2017); Che et al. (2018) to capture temporal dependencies in the data and use these dependencies for imputing missing values. Other methods Suo et al. (2020) capture dependencies between sequence elements through self-attention mechanisms. However, these methods are prone to encountering the issue of error accumulation (i.e., inference of missing values from inaccurate historical imputationLiu et al. (2019)).

Additionally, some research introduces imputation methods based on generative models. For example, methods Gong et al.; Miao et al. (2021); Luo et al. (2018); Yoon et al. (2018a) based on Generative Adversarial Networks (GANs) use the generator to estimate missing values and the discriminator to assess whether these estimates align with real data.
Variational Autoencoders (VAEs) Fortuin et al. (2020) map data to the latent space through an encoder and then generate imputation results from this latent space using a decoder. Through adversarial training, the generator progressively improves the accuracy of missing data imputation, but they still suffer from training instability.

With the development of generative models, the study Sohl-Dickstein et al. (2015) proposes the diffusion model, which is more robust to different types of noise and missing data compared to traditional generative models. The diffusion model is applied to various applications, such as image processing Song et al. (2020), and audio signal processing Kong

et al.. Morever, as the diffusion models can avoid the error accumulation issues in RNN-based imputation methods and
offer a more stable training process than generative adversarial networks, by using flexible architectures neural network
architecture, the diffusion model is also applied to the imputation problem to achieve higher performance. Such as, CSDI
Tashiro et al. (2021) is proposed to solve the data imputation problem based on the diffusion model. The diffusion model
starts with randomly sampled Gaussian noise and progressively removes noise to transform the noisy data into imputed
values.

1.2 CHALLENGES

 Although a limited number of works begin to use diffusion models for data imputation and achieve promising results, their effectiveness remains limited in scenarios with high missing rate and long-term missing data:

High missing rate data. Since these deep learning models rely on self-supervised learning, they need to select a subset of the collected sparse measurement data as supervised data for training. This approach reduces the amount of extractable information as the training data decreases. In scenarios with a high missing data rate, methods based on diffusion models struggle to extract sufficient information, which affects the accuracy of imputing missing data.

Long-term missing data. Due to equipment failures or communication issues, data from certain devices may be missing for extended periods, a situation known as long-term missing dataPark et al. (2023). On one hand, long-term missing data leads to a high missing rate. On the other hand, the absence of data from faulty equipment may cause imputation results to overfit data from non-faulty equipment while underfitting data from faulty equipment, results in lower imputation accuracy.

1.3 CONTRIBUTIONS

To address the above challenges, we propose a novel imputation model: Historical Data-Based Multivariate Time Series Diffusion Imputation (HDDI). Unlike existing methods based on diffusion models, HDDI fully utilizes historical features by searching for similar data from historical records and combining it with current target observational data to create new training data. By incorporating historical data, HDDI provides sufficient training data for diffusion-based imputation algorithms, significantly improving the imputation accuracy of multivariate time series data in scenarios with high missing rate and long-term missing scenario. Specifically, our contributions are as follows:

1) We propose HDDI based on a diffusion model: By matching historical data to supplement the target observational data, HDDI addresses the challenges posed by high missing data rate and long-term missing scenarios. This approach resolves the issue where insufficient data features hinder the accurate prediction of missing data, providing more valuable information for model training and enhancing the accuracy of predicting missing data at the current time.

2) We design a sliding window-based historical data matching and combination scheme: By selecting multiple segments of historical data that best match the current time segment to supplement training data, we tackle the problem of insufficient training data in self-supervised learning. Additionally, we design a historical data fusion scheme, carefully considering the similarity and temporal correlations between target observational data and historical data. We utilize multiple historical data segments and fuse them with target observational data through normalization to ensure that the distribution of the fused training data approximates the range of true values.

3) We design a diffusion-based imputation algorithm: The diffusion model primarily consists of two processes: the diffusion process and the denoising process. The diffusion process trains a noise estimation model by simultaneously inputting the fused training data and some observational data, which provides rich feature information for the model's training. The denoising process gradually removes the noise estimated by the noise estimation model from random noise data, ultimately resulting in accurate imputed data.

4) HDDI demonstrates excellent performance in experiments: We evaluate the proposed HDDI with five state-of-the-art baseline methods under five multivariate time series datasets. The experimental result indicates that our proposed HDDI achieves the best performance compared to other baseline methods. Even in cases where 90% of the data was missing, our HDDI outperformed the best baseline method by 25.15%.

2 Related Work

In this section, we introduce some existing deep learning-based time series imputation methods.

1) Temporal Feature Extraction-Based Methods: When handling time series data with Recurrent Neural Networks
 (RNNs), the study Che et al. (2018) proposes GRU-D, which estimates time series using a deep learning model and
 introduces the concept of time lag by employing hidden state decay to capture past features. M-RNN Yoon et al. (2018b)
 and BRITS Cao et al. (2018) both use bidirectional RNNs to incorporate bidirectional information flow, allowing them to
 learn patterns from the context around missing data and perform imputation. However, RNNs are prone to compounded
 errors Liu et al. (2019) during training, which accumulates with increasing sequence length, leading to reduced imputation

To address these limitations, some research shifts to methods based on self-attention mechanisms, such as SAITS Du et al. (2023). These methods use self-attention mechanisms to directly model dependencies between sequence elements, reducing the impact of compounded errors and improving the model's ability to handle long sequences. However, such a method requires a large amount of high-quality training data. When the training data is insufficient, this model cannot achieve satisfactory imputation results.

2) Generative-Based Methods: Imputation methods based on generative models are gaining increasing popularity. For example, GP-VAE Fortuin et al. (2020) utilizes a deep variational autoencoder (VAE) to obtain latent representations and employs Gaussian processes in latent space to capture the global dynamics and structure of time series, providing an advantage in handling continuous missing data. Even in long-term missing scenarios, GP-VAE leverages its understanding of global dynamics to generate reasonable imputations. Similarly, SS-GAN Miao et al. (2021) employs semi-supervised learning mechanisms to guide the learning process of generators and discriminators. Nevertheless, these methods often face issues with interpolation accuracy caused by unstable training.

Thanks to the introduction of diffusion model Ho et al. (2020); Song et al. (2020), the study proposes CSDI Tashiro et al. (2021) which learns data distribution through conditional score-based diffusion model, gradually transforming noise into reasonable time series via denoising processes. CSDI improves imputation accuracy by incorporating observational information into the diffusion model using conditional data, achieving better performance compared to other existing time series imputation methods. However, practical scenarios often provide limited observational data, and a low sampling rate may hinder the effectiveness of missing data imputation.

Different from the aforementioned methods, our imputation model HDDI supplements training data by identifying and matching historical data with current target imputation data to address issues related to low sampling rate. Building on this, we propose a novel diffusion model that fuses target imputation data with matched historical data to achieve high-precision imputation of missing data.

3 PROBLEM FORMULATION

138

139

140

141

142 143

144 145

146

147

148

149

150

151

152

153

154

155

156

157 158 159

160 161 162

163

164

165

166

167

168

169

Multivariate time series data is represented as a three-dimensional tensor $\mathcal{X} \in \mathbb{R}^{I \times J \times K}$, where *I* denotes the number of features, *J* represents the number of time points, and *K* indicates the number of data samples. For example, in air quality data, *I* denotes the number of metrics, e.g., NO2, PM2.5, and CO, and *K* denotes the number of sensing devices. In medical data, *I* denotes the number of physiological indicators of ICU patients, e.g., Lactate, PaO2, and Glucose, and *K* denotes the number of patients. However, due to cost reduction, equipment failures, or human errors, the recorded data tensor is highly sparse, as shown in Fig.1(a).

Samples Time Treatures target observational data X (a) Multivariate time series imputation results X^{reads} Multivariate time series imputation (b)

To indicate the positions of observed data, we define a mask tensor \mathcal{M} as follows:

$$m_{i,j,k} = \begin{cases} 0, & \text{if } x_{i,j,k} \text{ is missing;} \\ 1, & \text{if } x_{i,j,k} \text{ is observed,} \end{cases}$$
(1)

where $m_{i,j,k} = 0$ indicates that the data point $x_{i,j,k}$ is missing, while $m_{i,j,k} = 1$ signifies that the data point $x_{i,j,k}$ exists, with $0 \le i < I$, $0 \le j < J$, and $0 \le k < K$.

In this paper, we primarily focus on the multivariate time series imputation problem, aiming to accurately impute missing data in the target observational data \mathcal{X} using an imputation model. This process involves treating the missing data as the imputation target to obtain complete imputation results X^{result} , as illustrated in Fig.1(b).

Since the true missing values are unknown, we lack supervised data 170 to guide the training of the imputation model. Therefore, we adopt a 171 self-supervised learning approach by dividing the target observational 172 data into training data and supervised data. Through supervised data 173 providing true values, the model is guided in learning how to estimate 174 missing values during the training process. Specifically, we randomly 175 sample a portion of the target observational data \mathcal{X} to serve as supervised data $\mathcal{X}_{\mathrm{sup}},$ while the remaining data is used as training data 176 $\mathcal{X}_{\text{train}}$. Thus, $\mathcal{X} = \mathcal{X}_{\text{sup}} + \mathcal{X}_{\text{train}}$. 177

Figure 2: Self-supervised learning methods under low sampling rate.

1) Random Missing (RM) Scenario: Due to occasional communication failures (e.g., UDP packet loss) during data transmission, any sensor may experience data loss for one or multiple consecutive time points. In this scenario, the distribution of the missing data is random and unstructured.

183 2) Long-term Missing (LM) Scenario: In practical applications, sen-184 sor failures due to component malfunctions, battery interruptions, or 185 exposure to harsh weather conditions and dust are common. As a re-186 sult, there can be long-term missing data. As shown in Fig.3, all de-187 vices are operational before time t_1 , allowing the initial data matrix X 188 to collect monitoring data from all devices. However, at time t_1 , de-189 vices 2 and 4 fail, causing their data to become uncollectible thereafter, leading to missing entries in the corresponding row of matrix X after 190 time t_1 . 191

In summary, the training imputation model in the two main missing
 data scenarios mentioned above typically presents the following issues:

1) Both data-missing scenarios often involve excessively high missing tata rate, leading to a severe shortage of training data. Specifically, the

Figure 3: The Long-term Missing (LM) scenario leads to extended periods of missing data for certain attributes within the data tensor.

self-supervised learning approach reduces the amount of observational data used for model training, which negatively impacts the accuracy of data imputation.

2) In the LM scenario, during the training process of the imputation model, the model can only learn data distribution characteristics from the non-faulty devices and cannot capture data features from the faulty devices. This results in the imputation model overfitting to the data distribution of the non-faulty devices while underfitting the data feature of the faulty devices, leading to significant long-term missing data issues. Consequently, the imputation accuracy for data from faulty devices suffers.

To address these issues during the training of the imputation model, we seek supplementary training data from historical records.

206 Fig.4 shows a visualization of a multivariate time series sample (e.g., sensor data collected 208 from a device). The three differently colored 209 curves represent the values of three features over time, with the dashed portions indicating 210 missing values for those features at specific 211 times. We observe that a sequence segment 212 with missing data in the current time period 213 often finds one or more similar historical seg-214

195

218

219

220

221

222

223

224

225 226

228

230

231

232

233

234

235

237

238

239

Figure 4: Illustration of the correlation of time series data over history.

ments (highlighted in blue boxes). Additionally, we note that the positions with missing data in the current time segment may not necessarily be missing in the historical data, allowing historical data to provide supplementary features for the current target observational data.

Inspired by this observation, our HDDI aims to identify information from historical data that is similar to the target observational data and combine them with the training data X_{train} to create a more comprehensive training data X^{fu} for training subsequent diffusion imputation model. By fully utilizing historical data, the method provides more data features for the diffusion model, addressing issues of insufficient training data and long-term missing data, thereby enhancing imputation accuracy.

In the following sections, to facilitate the description of our proposed HDDI, we use a sample (e.g., the sensor data collected by a device) as an example, which can be represented as $X \in \mathbb{R}^{I \times J}$. Symbolic expressions are shown in Table 1 of Appendix 7.1 for clarity.

4 PROPOSED METHOD

Our proposed HDDI consists mainly of the Historical Data Supplement Module and the Diffusion Imputation Module as shown in Fig.5.

Historical Data Supplement Module: To address the issue of insufficient training data in high missing rate scenarios, we design a Historical Data supplement module. This module matches data from the historical data stream that is most similar to the target observational data and performs fusion to generate

Figure 5: Graphical overview of the HDDI Model, demonstrating the two main modules: the Historical Data Supplement Module and the Diffusion Imputation Module.

240

241

242

243

244

245

246

247

248 249

250 251

252

254

281

282

283

284

285 286 287

288

290 291 fused training data X^{fu} . This fused data can provide more comprehensive training data for training imputation model for missing data.

Diffusion Imputation Module: The diffusion imputation module takes both the target observational data X and the fused data X^{fu} as inputs. It consists of two main components: the diffusion process and the denoising process. The diffusion process begins with the supervised data X_{sup} and progressively adds noise until the data becomes pure noise. This process trains a noise estimation model. The denoising process starts with random noise data and applies the noise estimation model to estimate and gradually remove the noise, generating new imputed data. This imputed data is then combined with the target observational data to produce the final imputation results X^{result} . Next, we detail the design of each module.

4.1 HISTORICAL DATA SUPPLEMENT MODULE

Due to the high missing rate often encountered in multivariate time series data, which results in insufficient training data from random missing and long-term missing data problems, it is necessary to search historical data for segments that match the current target observational data X. This approach aims to provide more sufficient training data for subsequent imputation module. Therefore, we design the historical data supplement module to extract sufficient and useful information from historical data, ensuring adequate and accurate training data for the imputation module.

However, extracting sufficient and effective information from high missing rate data remains a challenging task. In
 practical applications, historical data also experiences a high missing rate. Consequently, merely extracting a segment
 of data from historical records to supplement the target observational data does not completely resolve the issues of
 insufficient training data and long-term missing data.

Therefore, we design a *Historical Data Matching Process* to match K segments of data from historical records and a *Fusion Process* to fuse the selected segments of data with the train data X_{train} divided from X. Among these, the K is a hyperparameter.

Historical Data Matching Process: To obtain sufficient supplement data, we need to identify K historical data segments that best match the target observation data among the entire historical data stream. Therefore, we designed the *Historical Data Matching Process* based on the sliding window strategy.

As illustrated in Fig.6(a), given a current tar-271 get observational data, denoted as $X \in \mathbb{R}^{I \times J}$, 272 we slide a matching window across the histor-273 ical data stream to find the most similar his-274 torical data segments. The sliding window 275 starts from the first time slot and slides with 276 the step size of 1. Therefore, for a histori-277 cal data stream with T time slots, the current 278 target observational data will match with data 279 from T - J + 1 historical time segments. 280

Figure 6: Matching historical data based on sparse historical data matrices.

During this process, we need to compute the similarity s_t between the target observational data X and each historical data segment H^t selected by the sliding window, where $t = \{1, 2, ..., T - J + 1\}$.

However, due to the high missing rate of the target observed data and historical data segments, their observed data positions may not fully align, which severely affects the calculation of similarity between datasets. To avoid inaccuracies in matching due to missing values, we calculate similarity only for the data points that are present in both the target observational data $X \in \mathbb{R}^{I \times J}$ and the historical data segments $H^t \in \mathbb{R}^{I \times J}$.

First, we identify their common sampling positions by calculating their intersection mask matrix as follows:

$$M^{\text{inter}_t} = M \cap M^t, \tag{2}$$

where M and M^t represent the mask matrices for the target observational data X and the historical data segment H^t , respectively. The mask matrix $M^{\text{inter.}t}$ indicates which positions have observed values in both the target observational data X and the historical data segment H^t . If both $X_{i,j}$ and $H_{i,j}$ have valid observations at position (i, j), then $M_{i,j}^{\text{inter.}t} = 1$; otherwise, $M_{i,j}^{\text{inter.}t} = 0$.

Additionally, since the missing patterns in the historical data are completely random, the amount of observational data in the matched historical segments varies, impacting the fairness of similarity comparisons. To address this, we compute the mean Frobenius norm distance based on the available data in both the target observational data and the historical data segments as follows:

$$f_t = \frac{\sum_{i=1}^{I} \sum_{j=1}^{J} M_{i,j}^{\text{inter}_t} \sqrt{\left(X_{i,j} - H_{i,j}^t\right)^2}}{\|M^{\text{inter}_t}\|_1},$$
(3)

where $||M^{\text{inter},t}||_1$ denotes the number of intersecting elements between X and H^t .

Note that a smaller mean Frobenius norm distance f_t indicates a higher similarity between the historical data segment H^t and the target observational data X. By comparing the mean Frobenius norm distance f_t of T - J + 1 historical data segments H^t with the target observational data X, we identify the top K most similar historical data segments $[H^{t_1}, \ldots, H^{t_k}, \ldots, H^{t_K}]$ for each sample, where $k = \{1, 2, ..., K\}$.

Then, we design a *Fusion Process* to fuse the selected K best match historical data segments with the training data X_{train} more accurately.

Fusion Process: In the *Fusion Process*, we need to consider the following two factors:

- Distance similarity. The distance similarity between each selected historical data segment and the current target observational data varies. We believe that historical data segments with smaller mean Frobenius norm distance f_t should be more important and apply higher weight in the *Fusion Process*.
- **Temporal proximity.** The closer the starting time slot of a historical data segment is to the current time slot, the more significant its data becomes. Therefore, we analyze the weight that should be assigned to each historical data segment during the *Fusion Process*, considering both distance similarity and temporal proximity.

Therefore, we design the *Fusion Process* based on the similarity and temporal proximity between the match historical data segments H^t and current target observational data X.

Distance similarity: To further measure the similarity between the selected K historical data segments H^t and the target observational data X, we define a distance similarity score s_k as follows:

$$s_k = 1 - \frac{f_{t_k}}{f_{t_1} + f_{t_2} + \dots + f_{t_K}},\tag{4}$$

where s_k reflects how closely the historical data segment matches the target observational data, the larger s_k means the k-th selected historical data segments H^{t_k} is more similar to the current target observational data X.

Temporal proximity: To measure temporal proximity between the selected K historical data segments H^t and the target observational data X, we define a temporal distance score d_k as follows:

$$d_k = t_k/T,\tag{5}$$

where t_k is the start time slot of the k-th selected historical data segments H^{t_k} , and T is the latest time slot (i.e., the largest time slot in the historical data stream). The larger d_k means the k-th selected historical data segments H^{t_k} is closer to the current target observational data X.

Fusion weight: To consider both the similarity and temporal proximity between the match historical data segments H^t and current target observational data X, we defined the weight λ_k as follows:

$$\lambda_k = \frac{\mu d_k + (1 - \mu) s_k}{\mu \sum_{i=1}^K d_i + (1 - \mu) \sum_{j=1}^K s_j},\tag{6}$$

where $\mu \in (0, 1)$ is a learnable hyperparameter used to adjust the weight between the similarity score s_k and the temporal distance score d_k . The larger λ_k means the k-th selected historical data segments H^{t_k} is more similar and closer to the current target observational data X, thus we need to apply larger weight to this historical data segment in the *Fusion Process*.

Fusion process: Since our goal is to supplement the training data X_{train} with historical data segments, we tend to trust the data from X_{train} rather than the data from historical data segments. Moreover, to avoid overwriting the supervised data X_{sup} , we need to ensure the locations where X_{sup} has observational data are set to zero in fused data. Thus, we formulate the *Fusion Process* as follows:

$$X_{i,j}^{\text{fu}} = \begin{cases} X_{\text{train}(i,j)}, & X_{\text{train}(i,j)} \text{ is observed}; \\ 0, & X_{\sup(i,j)} \text{ is observed}; \\ \frac{\lambda_n}{\lambda_n + \dots + \lambda_m} H_{i,j}^{t_n} + \dots + \frac{\lambda_m}{\lambda_n + \dots + \lambda_m} H_{i,j}^{t_m}, & \text{otherwise}, \end{cases}$$
(7)

. ...

360 where $X_{\text{train}(i,j)}$ and $X_{\sup(i,j)}$ denote the values at position (i,j) in the training data X_{train} and the supervised data X_{\sup} , respectively. The set $\{H_{i,j}^{t_n}, \ldots, H_{i,j}^{t_m}\}$ includes the historical data segments among the K matched segments that contain 362 observed values at position (i, j). 363

Noted that, in Eq.(7), the $\frac{\lambda_n}{\lambda_n+\ldots+\lambda_m} + \ldots + \frac{\lambda_m}{\lambda_n+\ldots+\lambda_m} = 1$, ensuring that the data remains within a reasonable range after fusion.

We present fusion examples in Appendix 7.2.

361

364

366

367

368

369

370

371 372

373 374

375

376

377

378

379

380

381

382

383

385

386

387

388

391

394

395

396 397

399

400

401

402

407

408 409 410

411

412

417

Based on our proposed historical data supplement module, our training data first identifies the most matching historical data segments through a matching process. Next, through a well-designed Fusion Process, the matched historical data segments are effectively fused with X_{train} . This process ensures that our training data is effectively supplemented with historical data, providing ample training data for the subsequent imputation module.

4.2 DIFFUSION IMPUTATION MODULE

The HDDI model proposed in this paper primarily relies on the diffusion model for data imputation. As illustrated in Fig.7, the HDDI model comprises two main stages: the diffusion process (training) and the denoising process (imputation).

In the diffusion process, fused training data X^{fu} and supervised data X_{sup} are used as inputs. We progressively add Gaussian noise into X_{sup} , eventually transforming it into pure noise X_{\sup}^{N} . During this process, we train a noise estimation model ϵ_{θ} by comparing the Gaussian noise ϵ added to the supervised data at each step with the noise $\epsilon_{\theta}(X_{\sup}^n, X^{\mathrm{fu}}, n)$ estimated by ϵ_{θ} .

389 The denoising process begins with initializing 390 random Gaussian noise \widetilde{X}^N and target observational data X, which serves as input. We 392 estimate the noise at each step using the noise 393

Figure 7: Visualization process of Diffusion Imputation Module.

estimation model ϵ_{θ} and progressively remove the noise from \widetilde{X}^N . Based on it, we can transforms \widetilde{X}^N into the denoising result \widetilde{X}^0 .

Finally, we can obtain the imputed result X^{result} based on the target observational data X and denoising result \widetilde{X}^0 .

Diffusion Process: The diffusion process aims to train the noise estimation model ϵ_{θ} . During this process, noise is progressively added to the target observational data, gradually transforming it into pure noise. The optimization of the noise estimation model is achieved by minimizing the discrepancy between the noise added at each step and the noise estimated by the model. The specific process is detailed below.

We add the Gaussian noise ϵ into the supervised data X_{sup} incrementally to produce noisy data X_{sup}^n at each step, where n = 1, 2, ..., N as follows:

$$X_{\sup}^{n} = \sqrt{1 - \beta_n} X_{\sup}^{n-1} + \beta_n \epsilon, \tag{8}$$

where $\epsilon \sim \mathcal{N}(0, 1)$ and $\beta_n \in (0, 1)$ denotes the level of noise.

Noted that, when n is small, a smaller β_n ensures that less Gaussian noise is added to X_{\sup}^{n-1} at step n. With the increase of n, the β_n gradually increases. Thus, in the diffusion process, X_{\sup} undergoes N steps of Gaussian noise addition to eventually result in a pure noise X_{sup}^N

Since the process of adding noise is iterative after we unfold Eq.(8), we derive the formula directly from X_{sup} to obtain X_{\sup}^n :

$$X_{\sup}^{n} = \sqrt{\widetilde{\alpha}_{n}} X_{\sup} + \sqrt{1 - \widetilde{\alpha}_{n}} \epsilon, \qquad (9)$$

where $\widetilde{\alpha}_n := \prod_{i=1}^n \alpha_i$ and $\alpha_i := 1 - \beta_i$.

Since we input the noisy supervised data X_{sup}^n in the *n*-th iteration and the fused training data X^{fu} into the model, we can 418 obtain the corresponding estimated noise: $\epsilon_{\theta}(X_{sup}^{n}, X^{fu}, n)$. 419

420

421

426

438

439

441 442

443

444

445 446

447

448

449

450

451

452

453

454 455

456

461

462

463

464

465

466

467

468

469

470

471

472 473

474 475

476

477

Then we can train the noise estimation model ϵ_{θ} by minimizing the loss between the Gaussian noise ϵ added at each step and the noise ϵ_{θ} estimated by the model as follows:

$$\min_{\theta} L(\theta) := \min_{\theta} \mathbb{E}_{X_{\sup},\epsilon,n} ||\epsilon - \epsilon_{\theta}(X_{\sup}^{n}, X^{\mathrm{fu}}, n)||_{2}^{2},$$
(10)

where θ is the trainable parameters in the noise estimation model ϵ_{θ} .

We organize the entire diffusion process as Algorithm 1. 427 First, we randomly sample an n from the set total diffu-428 sion steps N as the diffusion step for the current iteration. 429 As shown in Fig.8, during the process of adding noise in 430 any arbitrary n-th iteration, we calculate the noisy super-431 vised data X_{sup}^n based on Eq.(9) and input it along with the 432 fused training data X^{fu} into the noise estimation model to 433 obtain the estimated noise results $\epsilon_{\theta}(X_{\sup}^n, X^{fu}, n)$. Next, 434 we can train the noise estimation model by minimizing the 435 loss function Eq.(10). Iterating this process until the model 436 converges. 437

Algorithm 1 Diffusion Process

Input: Supervised data X_{sup} , fused training data X^{fu} , the number of diffusion step N.

Output: Noise estimation model ϵ_{θ} .

- 1: repeat
- Sample the diffusion step $n \sim \text{Uniform}(\{1, ..., N\})$. 2:
- Generate the Gaussian noise $\epsilon \sim \mathcal{N}(0, 1)$. 3:
- Calculate noisy data X_{sup}^n based on Eq.(9). 4:
- Train the noise estimation model based on Eq.(10). 5:
- 6: until converged

Denoising process: With the noise estimation model ϵ_{θ} trained in the previous section, we now initialize Gaussian noise data \widetilde{X}^N randomly and use target observational data as conditional data for the noise estimation model. By inputting the randomly generated Gaussian noise \widetilde{X}^N along with the noise estimation model ϵ_{θ} , we perform denoising to obtain the 440 denoised result \widetilde{X}^0 . The specific process is as follows:

The denoising process consists of N steps. As shown in Fig.9, the *n*-th step of the denoising process involves the following two steps:

- Step 1: Input the target observational data X and the denoised noisy data \widetilde{X}^n in the *n*-th iteration, estimate the noise based on the noise estimation model, which can be denoted as $\epsilon_{\theta}(X^n, X, n)$.
- Step 2: Remove the noise estimated by the noise estimation model $\epsilon_{\theta}(X^n, X, n)$ from the noisy data \widetilde{X}^n to obtain \widetilde{X}^{n-1} , which represents the noisy data at step n - 1.

The denoising process in the n-th iteration can be represented as:

$$\widetilde{X}^{n-1} = \frac{1}{\sqrt{\alpha_n}} \left(\widetilde{X}^n - \frac{\beta_n}{\sqrt{1 - \widetilde{\alpha}_n}} \epsilon_\theta(\widetilde{X}^n, X, n) \right) + \sigma_n^2 \mathbf{I},$$
(11)

where $\mathbf{I} \sim \mathcal{N}(0, 1)$, and σ_n^2 is defined as follows:

until n = 1 to obtain the imputation result \tilde{X}^0 .

 $X^{\text{result}} = M \odot X + (1 - M) \odot \widetilde{X}^0,$

where M represents the mask of the target observational data X.

Figure 8: The *n*-th step of the diffusion process.

Figure 9: The n-th step of the denoising process.

478 Imputation process: After we obtain the final denoised result by de denoising process, we fuse the denoised result \widetilde{X}^0 479 with the target observational data X to obtain the imputation result X^{result} :

(13)

Algorithm 2 Denoising Process

Input: Target observational data X, the number of diffusion step N, randomly initialize Gaussian noise data $\widetilde{X}^N \sim \mathcal{N}(0,1)$ where the dimension of \widetilde{X}^N corresponds to X.

Output: Denoising result \widetilde{X}^0 .

- 1: for n = N, ..., 1 do
- $\mathbf{I} \sim \mathcal{N}(0, 1)$ if n > 1 else $\mathbf{I} = 0$. 2:
- Compute the estimated noise $\epsilon_{\theta}(\tilde{X}^n, X, n)$ using 3: the noise estimation model ϵ_{θ} .
- Calculate the denoising result \widetilde{X}^{n-1} according to 4: Eq.(11) and Eq.(12).
- 5: end for

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494 495

496 497

498

499

500

501 502

503

504 505

506

507

508 509

510 511 512

513

514

515

516 517

518 519

520 521

522 523

524

525 526

527

529

531

532

6: **return** denoising result \tilde{X}^0 .

Algorithm 3 HDDI

- Input: target observational data \mathcal{X} , historical data streams \mathcal{X}^{hist} , the number of matched history data K, the number of diffusion step N.
- **Output:** Imputation results $\mathcal{X}^{\text{result}}$
- 1: Search the top-Kmatching history data $[H^{t_1}, ..., H^{t_k}, ..., H^{t_K}]$ from $\mathcal{X}^{\bar{\mathrm{hist}}}$ by Historical Data Matching Process.
- 2: Fuse the training and data X_{train} $[H^{t_1}, ..., H^{t_k}, ..., H^{t_K}]$ using Eq.(7), to obtain the fused training data $\mathcal{X}^{\mathrm{fu}}$.
- 3: Train the noise estimation model ϵ_{θ} by Algorithm 1.
- 4: Generate the denoising result \widetilde{X}^0 by Algorithm 2.
- 5: Calculate imputation results

$$\mathcal{X}^{\text{result}} = M \odot \mathcal{X} + (1 - M) \odot \widetilde{\mathcal{X}}^0.$$

6: **return** Imputation results $\mathcal{X}^{\text{result}}$.

Finally, our HDDI can be organized in Algorithm 3. We first select the K historical data segments most similar to the current target observational data X based on the Historical Data Matching Process. Then, using the Fusion Process, we fuse these historical data segments with the training data X_{train} in appropriate proportions to obtain the fused training data X^{fu} , which is supplemented with historical data.

Next, the supervised data X_{sup} and the fused training data X^{fu} are input into the diffusion imputation module for training the noise estimation model ϵ_{θ} . Using this noise estimation model, we progressively remove noise from pure Gaussian noise \widetilde{X}^N to generate the denoised result \widetilde{X}^0 , thereby obtaining the final imputation result $\mathcal{X}^{\text{result}}$.

In summary, utilizing the fused training data \mathcal{X}^{fu} obtained from the historical data supplement module can provide more comprehensive training data for model training, leading to improved imputation accuracy in both high missing rate and long-term missing data scenarios, as demonstrated in the experimental section.

5 **EXPERIMENT**

In this section, we evaluate our proposed HDDI by comparing it with five state-of-the-art baseline methods under five multivariate time series datasets. The dataset, baseline methods, and evaluation metrics used in the experiment are detailed in Appendix 7.3. In addition, we simulated two data missing scenarios (including random missing and long-term missing) to validate the robustness and effectiveness of our algorithm. In summary, we will investigate the following questions through experiments:

RQ1: Can our HDDI effectively handle the high missing rate? RQ2: If our HDDI is effective in the long-term missing data scenario? RQ3: Can our HDDI achieve better performance compared to existing state-of-the-art (SOTA) methods? **RQ4:** Is the *Historical Data Matching Process* effective? **RQ5:** Is the *Fusion Process* effective?

5.1 COMPARED WITH OTHER SOTA BASELINE METHODS

To address RQ1, we conducted experiments under the RM scenario to demonstrate the effectiveness of our imputation algorithm in high missing rate scenarios. As shown in Table 2 of Appendix 7.4, by comparing with five SOTA baseline methods, we can observe:

With the increase of missing rate, the imputation accuracy of all methods decreases. As the missing rate increases, the training data gradually becomes insufficient, leading to a decrease in imputation accuracy.

528 Compared with other SOTA baseline methods, our method achieves the highest accuracy across all missing rates in random missing scenarios. With the data missing rate increases, the gap between our proposed method and other 530 baselines increases, because our method supplements training data with similar data from historical records, addressing the issue of insufficient training data caused by a low sampling rate.

To address RQ2 and validate the effectiveness of our imputation algorithm in LM scenarios, we compare our HDDI with 533 five baseline methods. As shown in Table 3 of Appendix 7.4, we can observe: 534

535 With the increase of missing rate, the imputation accuracy of all methods decreases. As the missing rate increases, the training data gradually becomes insufficient, leading to a decrease in imputation accuracy. 536

537 Compared with other SOTA baseline methods, our HDDI achieves the highest accuracy across all missing rates 538 in long-term missing data scenarios. Since our HDDI approach uses historical data segments similar to the target 539 observational data to supplement the training data, the long-term missing data segments are supplemented by historical

data segments. As a result, the model can resolve the underfitting problem associated with undamaged equipment, thereby
 enhancing the accuracy of missing data imputation.

Based on the results of the comparative experiments on the two missing scenarios described above, we can answer **RQ3**: Our imputation scheme achieves higher accuracy and greater reliability compared to existing SOTA methods. This demonstrates that our HDDI approach effectively identifies historical data most similar to the current target observational data, thereby providing sufficient and reliable training data. This capability enables our model to handle diverse and complex time series missing scenarios, including both random and long-term missing.

Even in scenarios with high missing rate data, our HDDI still achieves excellent imputation performance. For instance, when the data missing rate reaches 90%, HDDI achieves an average MAE of 0.3758 across five datasets in the random missing scenario, which represents a 25.15% improvement in accuracy compared to the best baseline method (CSDI). In long-term missing scenarios, HDDI has an average MAE of 0.4635, which is a 13.64% accuracy improvement over the best baseline method (GP-VAE).

5.2 Ablation Studies

548

549

550

551

552 553 554

555 556

557

558

559

560

561

562

563

588

589 590 591

592 593

594

595

596

597

598

599

To prove the effectiveness of the *Historical Data Matching Process* and the *Fusion Process* in our HDDI, we conduct ablation studies as follows:

Firstly, to address **RQ4** and validate the effectiveness of the *Historical Data Matching Process*, we randomly select 10%, 30%, 50%, 70%, and 90% of observations as missing values from two datasets: ETT and Air-Quality. We design three sets of experiments for comparison:

1) The first set uses the nearest historical data segments as the data source for fusion from the history data stream, which is denoted as HDDI(near-match).

2) The second set randomly selects historical data segments as the data source for fusion from the history data stream, which is denoted as HDDI(rand-match).

3) The third set does not use data from the history data stream as a supplement, instead directly training the diffusion process with only target observational data, which is denoted as HDDI(no-history).

After the *Historical Data Matching Process*, we proceed with the remaining steps as described in this paper to evaluate the imputation results. As shown in Table 4 of Appendix 7.4, we can observe:

571 **Our designed historical data matching scheme achieves better performance compared to all other three matching** 572 **methods.** Due to the *Historical Data Matching Process* we designed, which finds historical data most similar to the current 573 target observation data using a sliding window-based approach, the supplemented historical data has features closer to the 574 current imputation data. This ensures that they provide more accurate information for the diffusion imputation module 575 and achieve higher imputation performance.

To address **RQ5** and validate the effectiveness of the *Fusion Process*, we use the same random missing scenario on the ETT and Air Quality datasets with 10%, 30%, 50%, 70%, and 90% missing rates. We conduct a comparison experiment called HDDI(aver-fusion), where, after identifying historical data segments similar to the current target observational data, the fusion stage does not consider the similarity and temporal correlation scores. Instead, it uses a simple averaging method to fuse the data, using the average of historical data as supplementary data for training the model. As shown in Table 5 of Appendix 7.4, we can observe:

Our designed fusion scheme consistently outperforms the averaging fusion scheme across various missing rates. Due to the design of our *Fusion Process*, which thoroughly considers the similarity in distance and temporal proximity between historical data and current target observational data, we place more trust in historical data that is closer in both time and distance to the current moment. As a result, our fused outcome is more accurate compared to simply taking the average value and achieves higher accuracy imputation.

These ablation studies highlight the significance of both the *Historical Data Matching Process* and the *Fusion Process* in our framework, demonstrating their contributions to achieving accurate and reliable imputation results.

6 CONCLUSION

To ensure high-precision imputation of missing data in multivariate time series under scenarios of high missing rate or long-term data absence, we propose the HDDI model. By designing a historical data supplementation module, we select multiple historical data segments which most similar to the current target observation data from the historical data stream and fuse them with the current training data. To fully utilize the supplemented training data, we design a diffusion imputation module to achieve high-accuracy imputation in scenarios of high missing rate and long-term missing. Extensive experimental results demonstrate that our method outperforms in both high missing rate and long-term missing scenarios across five multivariate time series datasets.

References

- Bshayer S Aldossari, Futun M Alqahtani, Noura S Alshahrani, Manar M Alhammam, Razan M Alzamanan, Nida Aslam, and Irfanullah. A comparative study of decision tree and naive bayes machine learning model for crime category prediction in chicago. In *Proceedings of 2020 6th International Conference on Computing and Data Engineering*, pp. 34–38, 2020.
- Arslan Basharat and Mubarak Shah. Time series prediction by chaotic modeling of nonlinear dynamical systems. In 2009 *IEEE 12th international conference on computer vision*, pp. 1941–1948. IEEE, 2009.
- Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. Brits: Bidirectional recurrent imputation for time series. Advances in neural information processing systems, 31, 2018.
- Ching Chang, Chiao-Tung Chan, Wei-Yao Wang, Wen-Chih Peng, and Tien-Fu Chen. Timedrl: Disentangled representation learning for multivariate time-series. In 2024 IEEE 40th International Conference on Data Engineering (ICDE), pp. 625–638. IEEE, 2024.
- Jatin Chauhan, Aravindan Raghuveer, Rishi Saket, Jay Nandy, and Balaraman Ravindran. Multi-variate time series forecasting on variable subsets. In *Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 76–86, 2022.
- Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent neural networks for multivariate time series with missing values. *Scientific reports*, 8(1):6085, 2018.
- Andrea Cini, Ivan Marisca, Cesare Alippi, et al. Filling the g_ap_s: Multivariate time series imputation by graph neural networks. In *ICLR 2022*, pp. 1–20. 2021.
- Wenjie Du, David Côté, and Yan Liu. Saits: Self-attention-based imputation for time series. *Expert Systems with Applications*, 219:119619, 2023.
- Vincent Fortuin, Dmitry Baranchuk, Gunnar Rätsch, and Stephan Mandt. Gp-vae: Deep probabilistic time series imputation. In *International conference on artificial intelligence and statistics*, pp. 1651–1661. PMLR, 2020.
- Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov, Roger G Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley. Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. *circulation*, 101(23):e215–e220, 2000.
- Yifan Gong, Zheng Zhan, Qing Jin, Yanyu Li, Yerlan Idelbayev, Xian Liu, Andrey Zharkov, Kfir Aberman, Sergey Tulyakov, Yanzhi Wang, et al. E²gan: Efficient training of efficient gans for image-to-image translation. In *Forty-first International Conference on Machine Learning*.
- Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in neural information* processing systems, 33:6840–6851, 2020.
- Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile diffusion model for audio synthesis. In *International Conference on Learning Representations*.
- David M Kreindler and Charles J Lumsden. The effects of the irregular sample and missing data in time series analysis. In *Nonlinear Dynamical Systems Analysis for the Behavioral Sciences Using Real Data*, pp. 149–172. CRC Press, 2016.
- Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term temporal patterns with deep neural networks. In *The 41st international ACM SIGIR conference on research & development in information retrieval*, pp. 95–104, 2018.
- Xiao Li, Huan Li, Hua Lu, Christian S Jensen, Varun Pandey, and Volker Markl. Missing value imputation for multiattribute sensor data streams via message propagation. *Proceedings of the VLDB Endowment*, 17(3):345–358, 2023a.
- Yan Li, Xinjiang Lu, Haoyi Xiong, Jian Tang, Jiantao Su, Bo Jin, and Dejing Dou. Towards long-term time-series forecasting: Feature, pattern, and distribution. In 2023 IEEE 39th International Conference on Data Engineering (ICDE), pp. 1611–1624. IEEE, 2023b.
- Roderick JA Little and Donald B Rubin. Statistical analysis with missing data, volume 793. John Wiley & Sons, 2019.
 - Mingzhe Liu, Han Huang, Hao Feng, Leilei Sun, Bowen Du, and Yanjie Fu. Pristi: A conditional diffusion framework for spatiotemporal imputation. In 2023 IEEE 39th International Conference on Data Engineering (ICDE), pp. 1927–1939. IEEE, 2023.
- Yukai Liu, Rose Yu, Stephan Zheng, Eric Zhan, and Yisong Yue. Naomi: Non-autoregressive multiresolution sequence imputation. *Advances in neural information processing systems*, 32, 2019.
- Yonghong Luo, Xiangrui Cai, Ying Zhang, Jun Xu, et al. Multivariate time series imputation with generative adversarial networks. *Advances in neural information processing systems*, 31, 2018.

- Xiaoye Miao, Yangyang Wu, Jun Wang, Yunjun Gao, Xudong Mao, and Jianwei Yin. Generative semi-supervised learning for multivariate time series imputation. In 35th AAAI Conference on Artificial Intelligence, AAAI 2021, pp. 8983, 2021.
- Fulufhelo V Nelwamondo, Shakir Mohamed, and Tshilidzi Marwala. Missing data: A comparison of neural network and expectation maximization techniques. Current Science, pp. 1514–1521, 2007.
- Jangho Park, Juliane Müller, Bhavna Arora, Boris Faybishenko, Gilberto Pastorello, Charuleka Varadharajan, Reetik Sahu, and Deborah Agarwal. Long-term missing value imputation for time series data using deep neural networks. Neural Computing and Applications, 35(12):9071–9091, 2023.
- Utomo Pujianto, Aji Prasetya Wibawa, Muhammad Iqbal Akbar, et al. K-nearest neighbor (k-nn) based missing data imputation. In 2019 5th International Conference on Science in Information Technology (ICSITech), pp. 83–88. IEEE, 2019.
- Xiaoling Shu and Yiwan Ye. Knowledge discovery: Methods from data mining and machine learning. Social Science Research, 110:102817, 2023.
- Ikaro Silva, George Moody, Daniel J Scott, Leo A Celi, and Roger G Mark. Predicting in-hospital mortality of icu patients: The physionet/computing in cardiology challenge 2012. In 2012 computing in cardiology, pp. 245–248. IEEE, 2012.
- Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning using nonequilibrium thermodynamics. In International conference on machine learning, pp. 2256–2265. PMLR, 2015.
- Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. In International Conference on Learning Representations, 2020.
- Qiuling Suo, Weida Zhong, Guangxu Xun, Jianhui Sun, Changyou Chen, and Aidong Zhang. Glima: Global and local time series imputation with multi-directional attention learning. In 2020 IEEE International Conference on Big Data (Big Data), pp. 798-807. IEEE, 2020.
- Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based diffusion models for probabilistic time series imputation. Advances in Neural Information Processing Systems, 34:24804–24816, 2021.
- Jun Wang, Arjen P De Vries, and Marcel JT Reinders. Unifying user-based and item-based collaborative filtering approaches by similarity fusion. In Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 501-508, 2006.
- Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for deep spatial-temporal graph modeling. In Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 1907–1913, 2019.
- Xiuwen Yi, Yu Zheng, Junbo Zhang, and Tianrui Li. St-mvl: Filling missing values in geo-sensory time series data. In Proceedings of the 25th international joint conference on artificial intelligence, 2016.
- Jinsung Yoon, William R Zame, and Mihaela van der Schaar. Multi-directional recurrent neural networks: A novel method for estimating missing data. In Time series workshop in international conference on machine learning, 2017.
- Jinsung Yoon, James Jordon, and Mihaela Schaar. Gain: Missing data imputation using generative adversarial nets. In International conference on machine learning, pp. 5689–5698. PMLR, 2018a.
- Jinsung Yoon, William R Zame, and Mihaela van der Schaar. Estimating missing data in temporal data streams using multi-directional recurrent neural networks. IEEE Transactions on Biomedical Engineering, 66(5):1477–1490, 2018b.
- Hsiang-Fu Yu, Nikhil Rao, and Inderjit S Dhillon. Temporal regularized matrix factorization for high-dimensional time series prediction. Advances in neural information processing systems, 29, 2016.
- Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

7 Appendix

7.1 NOTATIONS

We organize the meanings of the symbolic expressions in this paper in Table 1.

Table 1: Important notations for the HDDI Model

Notations	Descriptions
X	Target observational data
M	Mask matrix for target observational data
X^{fu}	Fused training data
X^{result}	Imputation results
H^t	Historical data segments
H^{t_k}	Selected historical data segments
M^{inter_t}	Intersection mask matrix
X_{train}	Training data (a portion of X)
X_{sup}	Supervised data (a portion of X)
$X_{\sup}^{1:N}$	Results of each step in the diffusion process
\widetilde{X}^N	Randomly generated Gaussian noise
$\widetilde{X}^{1:N-1}$	Results of each step in the denoising process
\widetilde{X}^0	Denoising result
K	The number of selected historical data segments
T	Length of historical data stream
N	The total number of diffusion steps

7.2 FUSION EXAMPLES

More specifically, as shown in Fig.6(b), we selected three historical data segments: H^{t_1} , H^{t_2} , and H^{t_3} . The *Fusion Process* can be divided into three scenarios:

1) Taking the $X_{3,3}^{\text{fu}}$ as an example, if position (i, j) has observational data in the training data X_{train} , the corresponding position in the fused training data can be represented as $X_{3,3}^{\text{fu}} = X_{\text{train}(3,3)}$.

2) Taking the $X_{4,4}^{\text{fu}}$ as an example, if position (i, j) has observational data in the supervised data X_{sup} , the corresponding position in the fused training data can be represented as $X_{4,4}^{\text{fu}} = 0$.

3) Taking the $X_{1,1}^{\text{fu}}$ as an example, if position (i, j) only has observational data in the historical data segments H^{t_1} and H^{t_2} , the corresponding position in the fused training data can be represented as $X_{1,1}^{\text{fu}} = \frac{\lambda_1}{\lambda_1 + \lambda_2} H_{1,1}^{t_1} + \frac{\lambda_2}{\lambda_1 + \lambda_2} H_{1,1}^{t_2}$.

7.3 DATASET, BASELINE METHODS, AND EVALUATION METRICS

Datasets: *Electricity Transformer Temperature (ETT)* Zhou et al. (2021): The ETT dataset, collected from power transformers from July 1, 2016, to June 26, 2018, contains 69,680 samples, each featuring seven features, including oil temperature and six types of external power load characteristics. We use the last 2 hours as target observational data, while the first 22 hours are used as historical data.

Beijing Multi-Site Air-Quality (Air-Quality) Yi et al. (2016): The Air-Quality dataset includes PM2.5 measurements from 36 stations in Beijing, sampled hourly over 12 months. Each sequence consists of 36 consecutive time steps. The dataset itself contains approximately 13% missing data. We use the last 6 hours as target observational data, while the first 42 hours are used as historical data.

Chicago Crime Dataset (Chicago-Crime) Aldossari et al. (2020): The Chicago-Crime dataset spans from January 1, 2001,
 to December 11, 2017. It provides information on crime time, location, and type. We process the dataset into a three dimensional structure with 32 crime types, 200 months, and 77 locations. We use the last 10 months to serve as target
 observational data, while the first 180 months are used as historical data.

Electricity Load Diagrams (Electricity) Lai et al. (2018): The Electricity dataset, sourced from UCI. It contains electricity consumption data collected every 15 minutes from 370 customers over a period from January 1, 2011, to December 31, 2014 (48 months). We use the last 1 hour as target observational data, while the first 23 hours are used as historical data.

PhysioNet Challenge 2012 (PhysioNet-2012) Goldberger et al. (2000): The PhysioNet-2012 dataset includes 4,000 clinical time series from intensive care units (ICUs) over 48 hours, with 35 variables. The dataset itself contains approximately 80% missing data. We use the last 6 hours as target observational data, while the first 42 hours are used as historical data.

Baseline Methods: We implement five SOTA deep learning-based multivariate series imputation methods as follows:

- BRITS Cao et al. (2018): Based on the recurrent neural network model, BRITS uses bidirectional recurrent neural networks to fuse bidirectional information flow, learning patterns from the context around missing data for imputation.
- GP-VAE Fortuin et al. (2020): Based on the variational autoencoder model, GP-VAE utilizes a deep variational autoencoder (VAE) to obtain latent representations and employs the Gaussian process in latent space to capture the global dynamics and structure of time series.
- SS-GAN Miao et al. (2021): Combining RNN with a semi-supervised generative adversarial network model, SS-GAN uses semi-supervised learning mechanisms to guide the learning process of generators and discriminators.
- SAITS Du et al. (2023): A model based on a self-attention mechanism, SAITS models dependencies between sequence elements directly using self-attention mechanisms.
- CSDI Tashiro et al. (2021): Uses a conditional score-based diffusion model to estimate missing values by gradually transforming noise into coherent time series.

Evaluation Metrics: We evaluate each method using the following metrics:

$$\mathsf{MAE} = \left(\sum_{i}^{I} \sum_{j}^{J} |(X^{\mathsf{result}} - X) \odot M^{\mathsf{test}}|) / \left\| M^{\mathsf{test}} \right\|_{1}, \tag{14}$$

$$\mathbf{RMSE} = \sqrt{\left(\sum_{i}^{I}\sum_{j}^{J}\left(\left(X^{\text{result}} - X\right) \odot M^{\text{test}}\right)^{2}\right) / \|M^{\text{test}}\|_{1}}.$$
(15)

- Mean Absolute Error (MAE): Measures the average absolute difference between predicted value and groundtruth values of missing data, providing an intuitive and interpretable error measure.
- Root Mean Square Error (RMSE): Measures the square root of the average squared difference between predicted and actual values. It is sensitive to larger errors, thus indicating significant deviations between predictions and actual values.

The mathematical definition of the evaluation metric is as follows. Note that we set the mask for the test data as M^{test} , while $||M^{\text{test}}||_1$ represents the number of test data.

Missing Data Scenarios:

Our experiment simulated two common missing data scenarios: Random Missing and Long-term Missing.

- Random Missing (RM): We randomly select $\gamma\%$ of the data as missing data, while the remaining data serves as the target observational data X. To evaluate the accuracy of the imputation algorithm under different missing rates, we set γ to 10, 30, 50, 70, and 90, respectively.
- Long-term Missing (LM): Due to the high level of missing data in the PhysioNet healthcare dataset, it is not feasible to approximate the long-term missing scenario. Instead, we select the other four datasets to test the long-term missing scenario. We randomly select $\gamma\%$ of the features from each sample to be damaged. For each damaged feature, we set all data points at all time slots to be missing. Similar to the random missing scenario, we set γ to 10, 30, 50, 70, and 90, respectively.

The HDDI epoch is set to 1000, the learning rate is 0.001, the batch size is 16, and the number of diffusion steps is 50. All other baseline methods use their optimal parameters and are trained on a single NVIDIA GeForce RTX 3090 GPU. All experimental results are averaged over five trials.

7.4 EXPERIMENTAL RESULT

Table 2: Experimental Results in RM Scenarios.

	et: ETT	N	lissing Rat				
Metrics	Model	10%	30%	50%	70%	90%	
	BRITS	0.2060	0.3889	0.5911	0.7278	0.7602	
	GP-VAE	0.2325	0.3444	0.4882	0.6189	0.7237	
MAE	SS-GAN	0.2252	0.3641	0.5403	0.7229	0.7602	
	CSDI	0.0887	0.1003	0.1311	0.2237	0.4530	
	HDDI	0.0718	0.0851	0.1035	0.1712	0.3609	
	BRITS	0.3055	0.5352	0.7779	0.9180	0.9547	
	GP-VAE SS GAN	0.3391	0.4599	0.6392	0.7868	0.9122	
RMSE	SAITS	0.1563	0.2861	0.8154	0.9547	0.9607	
	CSDI	0.1940	0.2041	0.2744	0.4590	0.6362	
	HDDI	0.1230	0.1613	0.1731	0.2920	0.5371	
Dataset:	Air-Quality		N	Aissing Rat	te		
Metrics	Model	10%	30%	50%	70%	90%	
	BRITS	0.2643	0.3347	0.4759	0.6204	0.6508	
	GP-VAE SS GAN	0.2803	0.3596	0.4472	0.5473	0.6283	
MAE	SAITS	0.2590	0.3281	0.4212	0.5697	0.6654	
	CSDI	0.0920	0.1033	0.1272	0.1936	0.4907	
	HDDI	0.0887	0.0989	0.1186	0.1776	0.3022	
	BRITS GP-VAF	0.4180	0.4720	0.6303	0.7403	0.7832	
-	SS-GAN	0.4218	0.4720	0.5661	0.6516	0.7664	
RMSE	SAITS	0.3115	0.4153	0.5724	0.7077	0.8048	
	CSDI	0.1614	0.1772	0.2248	0.3394	0.6392	
	HDDI	0.1536	0.1650	0.2066	0.2974	0.4965	
Dataset: Ph	hysioNet-2012	100	20.07	Aissing Rat	70.07	000	
Metrics	Model	10%	30%	50%	70%	90%	
	GP-VAE	0.3102	0.4191	0.6530	0.6961	0.6984	
MAE	SS-GAN	0.3306	0.4429	0.6169	0.6961	0.6974	
MAE	SAITS	0.2512	0.3746	0.6961	0.6962	0.6972	
	CSDI HDDI	0.2617 0.2407	0.3277 0.2955	0.4078 0.3617	0.5532 0.4602	0.6415 0.5936	
	BRITS	0.5582	0.7096	0.9202	0.9675	0.9826	
	GP-VAE	0.6560	0.7704	0.8192	0.8950	0.9608	
RMSE	SS-GAN	0.5709	0.7290	0.8799	0.9674	0.9815	
	SAITS	0.4965	0.6776	0.9676	0.9701	0.9716	
	CSDI	0.5214	11 56 74	() / /()()	0.0.00	0.9245	
	CSDI HDDI	0.5314 0.4693	0.5623 0.5500	0.6021	0.7234	0.8531	
Dataset: Cl	CSDI HDDI hicago-Crime	0.5314 0.4693	0.5623 0.5500	0.6021 Aissing Rat	0.7234 te	0.8531	
Dataset: Cl Metrics	CSDI HDDI hicago-Crime Model	0.5314 0.4693	0.5623 0.5500 N 30%	0.6021 Aissing Rat 50%	0.7234 te 70%	0.8531 90%	
Dataset: Cl Metrics	CSDI HDDI hicago-Crime Model BRITS	0.5314 0.4693	0.5623 0.5500 N 30% 0.3351	0.6021 Aissing Rat 50% 0.4115	0.7234 te 70% 0.5220	0.8531 90% 0.5422	
Dataset: Cl Metrics	CSDI HDDI hicago-Crime Model BRITS GP-VAE	0.5314 0.4693	0.3623 0.5500 N 30% 0.3351 0.3490 0.3490	0.6021 Aissing Rat 50% 0.4115 0.4063 0.4225	0.7234 te 70% 0.5220 0.4558 0.5000	0.8531 90% 0.5422 0.5179	
Dataset: Cl Metrics MAE	CSDI HDDI hicago-Crime Model BRITS GP-VAE SS-GAN SAITS	0.5314 0.4693 10% 0.2613 0.3071 0.2697 0.2461	0.5623 0.5500 N 30% 0.3351 0.3490 0.3485 0.2964	0.6021 Missing Rat 50% 0.4115 0.4063 0.4236 0.3728	0.7234 te 70% 0.5220 0.4558 0.5069 0.5192	0.8531 90% 0.5422 0.5179 0.5417 0.5425	
Dataset: Cl Metrics MAE	CSDI HDDI hicago-Crime Model BRITS GP-VAE SS-GAN SAITS CSDI	0.5314 0.4693 0.2613 0.3071 0.2697 0.2461 0.1994	0.5623 0.5500 30% 0.3351 0.3490 0.3485 0.2964 0.2128	0.6021 Missing Rat 50% 0.4115 0.4063 0.4236 0.3728 0.2277	0.7234 te 0.5220 0.4558 0.5069 0.5192 0.2855	0.8531 90% 0.5422 0.5179 0.5417 0.5425 0.4526	
Dataset: Cl Metrics MAE	CSDI HDDI hicago-Crime Model BRITS GP-VAE SS-GAN SAITS CSDI HDDI	0.5314 0.4693 0.2613 0.3071 0.2697 0.2461 0.1994 0.1857	0.5623 0.5500 N 30% 0.3351 0.3490 0.3485 0.2964 0.2128 0.1910	0.6021 Aissing Rat 50% 0.4115 0.4063 0.4236 0.3728 0.2277 0.2275	0.7234 te 0.5220 0.4558 0.5069 0.5192 0.2855 0.2700	0.8531 90% 0.5422 0.5179 0.5417 0.5425 0.4526 0.3014	
Dataset: Cl Metrics MAE	CSDI HDDI hicago-Crime BRITS GP-VAE SS-GAN SAITS CSDI HDDI BRITS GP.VAE	0.5314 0.4693 0.2613 0.3071 0.2697 0.2461 0.1994 0.1857 0.7870 0.9820	0.5623 0.5500 N 30% 0.3351 0.3490 0.3485 0.2964 0.2128 0.1910 0.8863 0.9238	0.6021 Aissing Rat 50% 0.4115 0.4063 0.4236 0.3728 0.2277 0.2275 0.9901 0.9919	0.7234 0.7234 ite 0.5220 0.4558 0.5069 0.5192 0.2855 0.2700 0.9672 0.9241	0.8531 90% 0.5422 0.5179 0.5417 0.5425 0.4526 0.3014 0.9570	
Dataset: Cl Metrics MAE	CSDI HDDI hicago-Crime BRITS GP-VAE SS-GAN SAITS CSDI HDDI BRITS GP-VAE SS-GAN	0.5314 0.4693 0.2613 0.3071 0.2697 0.2461 0.1994 0.1857 0.7870 0.7870 0.9080 0.7769	0.5623 0.5500 30% 0.3351 0.3490 0.3485 0.2964 0.2128 0.1910 0.8863 0.9338 0.8849	0.6021 Aissing Rat 50% 0.4115 0.4063 0.4236 0.3728 0.2277 0.2275 0.9901 0.9818 0.9874	0.7234 0.7234 1e 70% 0.5220 0.4558 0.5069 0.5192 0.2855 0.2700 0.9672 0.9341 0.9519	0.8531 90% 0.5422 0.5179 0.5417 0.5425 0.4526 0.3014 0.9576 0.9576 0.9442	
Dataset: Cl Metrics MAE RMSE	CSDI HDDI hicago-Crime BRITS GP-VAE SS-GAN SAITS CSDI HDDI BRITS GP-VAE SS-GAN SAITS	0.5314 0.4693 0.2613 0.3071 0.2697 0.2461 0.1994 0.1857 0.7870 0.9080 0.7769 0.7769	0.5023 0.5500 30% 0.3351 0.3490 0.3485 0.2964 0.2964 0.2964 0.2964 0.2964 0.2964 0.2964 0.2964 0.2964 0.2964 0.3485 0.2964 0.3485 0.2964 0.2985 0.2964 0.29664 0.2964 0.29640 0.29640000000000000000000000000000	0.6021 Aissing Rai 50% 0.4115 0.4063 0.4236 0.3728 0.2277 0.2275 0.9901 0.9818 0.9874 0.9865	0.7234 1e 70% 0.5220 0.4558 0.5069 0.5192 0.2855 0.2700 0.9672 0.9341 0.9519 0.9738	0.8531 90% 0.5422 0.5179 0.5417 0.5425 0.4526 0.3014 0.9576 0.9370 0.9442 0.9566	
Dataset: Cl Metrics MAE RMSE	CSDI HDDI hicago-Crime BRITS GP-VAE SS-GAN SAITS CSDI HDDI BRITS GP-VAE SS-GAN SAITS CSDI SS-GAN	0.5314 0.4693 0.2613 0.3071 0.2697 0.2461 0.1994 0.1857 0.7870 0.9080 0.7769 0.7973 0.3583 0.3583	0.5623 0.5500 N 30% 0.3351 0.3490 0.3485 0.2964 0.2964 0.2964 0.2964 0.2964 0.2964 0.3485 0.2964 0.3485 0.3490 0.3485 0.2964 0.3485 0.2964 0.3485 0.2964 0.3490 0.3485 0.2964 0.2964 0.3931 0.3490 0.3485 0.2964 0.2964 0.2964 0.3931 0.3990 0.3485 0.2964 0.29667 0.29667 0.29667 0.29667 0.29667 0.2967 0	0.6021 Aissing Rat 50% 0.4115 0.4063 0.4236 0.3728 0.2277 0.2275 0.9901 0.9818 0.9874 0.9865 0.4873 0.4236	0.7234 te 70% 0.5220 0.4558 0.5069 0.4558 0.5069 0.2855 0.2700 0.9672 0.9341 0.9519 0.9738 0.5152 0.9738	0.8531 90% 0.5422 0.5179 0.5417 0.5425 0.4526 0.3014 0.9576 0.9370 0.9442 0.9566 0.7035	
Dataset: Cl Metrics MAE RMSE	CSDI HDDI hicago-Crime BRITS GP-VAE SS-GAN SAITS CSDI HDDI BRITS GP-VAE SS-GAN SAITS CSDI HDDI	0.5314 0.4693 0.2613 0.3071 0.2697 0.2461 0.1994 0.1857 0.7870 0.9080 0.7769 0.7973 0.3583 0.3583	0.5023 0.5500 N 30% 0.3351 0.3490 0.3485 0.2924 0.2128 0.1910 0.8863 0.9338 0.8849 0.8837 0.4944 0.3515	0.6021 Aissing Rat 50% 0.4115 0.4063 0.4227 0.2277 0.2275 0.9901 0.9818 0.9874 0.9865 0.4873 0.4228 0.4273 0.4228	0.7234 te 70% 0.5220 0.4558 0.5069 0.5192 0.2855 0.2700 0.9672 0.9341 0.9519 0.9738 0.5152 0.5051	0.8531 90% 0.5422 0.5179 0.5417 0.5425 0.4526 0.3014 0.9576 0.9370 0.9442 0.9566 0.7035 0.5366	
Dataset: Cl Metrics MAE RMSE Dataset:	CSDI HDDI hicago-Crime BRITS GP-VAE SS-GAN SAITS CSDI HDDI BRITS GP-VAE SS-GAN SAITS CSDI HDDI Electricity	0.5314 0.4693 0.2613 0.3071 0.2697 0.2461 0.1994 0.1857 0.7870 0.9080 0.7769 0.7973 0.3583 0.3483	0.5023 0.5500 N 30% 0.3351 0.3490 0.3485 0.2128 0.2128 0.2128 0.2128 0.2128 0.2128 0.2138 0.2138 0.2138 0.2138 0.3490 0.2128 0.2138 0.2138 0.2150 0.3451 0.2150 0.3451 0.2150 0.3451 0.2150 0.3455 0.2150 0.3455 0.2150 0.3455 0.2150 0.3455 0.2150 0.3455 0.2150 0.2158 0.2150 0.21588 0.2158 0.2158 0.2158 0.2158 0.2158 0.215	0.6021 <i>Aissing Rat</i> 50% 0.4115 0.4063 0.4205 0.2277 0.2275 0.9901 0.9818 0.9874 0.9865 0.4873 0.4228 <i>Missing Rat</i>	0.7234 0.7234 te 70% 0.5220 0.4558 0.5069 0.5192 0.9341 0.9519 0.9738 0.5152 0.5151 0.5051 te 70%	0.8531 90% 0.5422 0.5179 0.5417 0.5425 0.4526 0.3014 0.9576 0.9370 0.9442 0.9566 0.7035 0.5366 0.5366	
Dataset: Cl Metrics MAE RMSE Dataset: Metrics	CSDI HDDI hicago-Crime BRITS GP-VAE SS-GAN SAITS CSDI HDDI BRITS GP-VAE SS-GAN SAITS CSDI HDDI Electricity Model	0.5314 0.4693 0.2613 0.3071 0.2697 0.2461 0.1994 0.1857 0.7870 0.9080 0.7769 0.7973 0.3583 0.3483 0.3483	0.5023 0.5500 N 30% 0.3351 0.3490 0.3485 0.2964 0.2964 0.2964 0.2964 0.2964 0.2964 0.2964 0.2964 0.3515 N 30% 0.8837 0.4944 0.3515 N 30%	0.6021 <i>Aissing Rat</i> 50% 0.4115 0.4063 0.4236 0.3728 0.2277 0.2275 0.9901 0.9818 0.9873 0.4873 0.48238 <i>Aissing Rat</i> 50%	0.7234 0.7234 te 70% 0.5220 0.4558 0.5069 0.5192 0.2855 0.2700 0.9672 0.9341 0.9519 0.9738 0.5152 0.5152 0.5051 te 70% 0.5120 0.51512 0.5120 0.51512 0.5152 0	0.8531 90% 0.5422 0.5179 0.5417 0.5425 0.4526 0.3014 0.9576 0.9370 0.9442 0.9566 0.7035 0.5366 90%	
Dataset: Cl Metrics MAE RMSE Dataset: Metrics	CSDI HDDI hicago-Crime BRITS GP-VAE SS-GAN SAITS CSDI HDDI BRITS GP-VAE SS-GAN SAITS CSDI HDDI Electricity Model BRITS GP-VAF	0.5314 0.4693 0.2613 0.3071 0.2697 0.2461 0.1994 0.1857 0.7870 0.9080 0.7769 0.7973 0.3583 0.3483 0.3483 0.3483	0.5023 0.5500 N 30% 0.3351 0.3490 0.3485 0.2964 0.2964 0.2964 0.2964 0.2964 0.8837 0.4944 0.3515 N 30% 0.2236 0.2000	0.6021 <i>Aissing Rat</i> 50% 0.4115 0.4063 0.4236 0.3728 0.2277 0.2275 0.9901 0.9818 0.9873 0.4228 <i>Aissing Rat</i> 50% 0.4752 0.4052 0.4752	0.7234 0.7234 10.7234 10.7234 10.7520 0.5220 0.5192 0.2855 0.2700 0.9672 0.9341 0.9519 0.9738 0.5152 0.5152 0.5051 10 10 10 10 10 10 10 10 10 1	0.8531 90% 0.5422 0.5179 0.5417 0.5425 0.4526 0.3014 0.9576 0.9370 0.9442 0.9566 0.7035 0.5366 90% 0.8079 0.7347	
Dataset: Cl Metrics MAE RMSE Dataset: Metrics	CSDI HDDI hicago-Crime BRITS GP-VAE SS-GAN SAITS CSDI HDDI BRITS GP-VAE SS-GAN SAITS CSDI HDDI Electricity Model BRITS GP-VAE SS-GAN	0.5314 0.4693 0.2613 0.3071 0.2697 0.2461 0.1994 0.1857 0.7870 0.7870 0.7870 0.7870 0.7769 0.7973 0.3583 0.3483 0.3483 0.3483	0.5023 0.5500 N 30% 0.3351 0.3490 0.3490 0.2128 0.2128 0.2128 0.2128 0.2128 0.2128 0.2128 0.2138 0.8837 0.4944 0.3515 N 30% 0.2236 0.2990	0.6021 <i>A</i> issing Rat 50% 0.4115 0.4063 0.4236 0.3728 0.2277 0.2275 0.9901 0.9818 0.9873 0.4873 0.4873 0.4873 0.4873 0.4873 0.4752 0.4752 0.4427	0.7234 0.7234 10.7234 0.70% 0.5220 0.4558 0.5069 0.5192 0.2855 0.2700 0.9672 0.9341 0.9519 0.9738 0.5152 0.5152 0.5051 10 0.5521 0.5152 0.5051 10 0.57200 0.5720 0.5720 0.57200 0.57200 0.57200 00	0.8531 90% 0.5422 0.5179 0.5417 0.5425 0.4526 0.3014 0.9576 0.9370 0.9442 0.9566 0.7035 0.5366 90% 0.8079 0.7347 0.7976	
Dataset: Cl Metrics MAE RMSE Dataset: Metrics MAE	CSDI HDDI hicago-Crime BRITS GP-VAE SS-GAN SAITS CSDI HDDI BRITS GP-VAE SS-GAN SAITS CSDI HDDI Electricity Model BRITS GP-VAE SS-GAN SAITS	0.5314 0.4693 0.2613 0.2613 0.2697 0.2461 0.1994 0.1857 0.7870 0.9080 0.7769 0.7973 0.3583 0.3483 0.3483 0.3483 0.1468 0.1787 0.1273	0.5023 0.5500 N 30% 0.3351 0.3490 0.3485 0.2128 0.2128 0.2128 0.2128 0.2128 0.2138 0.8863 0.8849 0.8863 0.8849 0.8863 0.9338 0.8849 0.4944 0.3515 N 30% 0.2236 0.2236 0.2286	0.6021 Jissing Rat 50% 0.4115 0.4063 0.4275 0.9901 0.9818 0.9874 0.9865 0.4873 0.4228 Missing Rat 50% 0.4752 0.4752 0.4752	0.7234 0.7234 1e 70% 0.5220 0.4558 0.5020 0.5192 0.2855 0.2700 0.9672 0.9341 0.9519 0.9738 0.5152 0.5051 1e 70% 0.5720 0.5720 0.9747 0.7942	0.8531 90% 0.5422 0.5179 0.5417 0.5425 0.4526 0.3014 0.9576 0.9370 0.9442 0.9566 0.7035 0.5366 90% 0.8079 0.7347 0.7976 0.8004	
Dataset: Cl Metrics MAE RMSE Dataset: Metrics MAE	CSDI HDDI hicago-Crime BRITS GP-VAE SS-GAN SAITS CSDI HDDI BRITS GP-VAE SS-GAN SAITS CSDI HDDI Electricity BRITS GP-VAE SS-GAN SAITS CSDI HDDI	0.5314 0.4693 0.2613 0.3071 0.2697 0.2461 0.1994 0.1857 0.7870 0.9080 0.7769 0.7973 0.3583 0.3583 0.3483 0.3483 0.1468 0.1787 0.1427 0.1273 0.1174 0.1109	0.5023 0.5500 N 30% 0.3351 0.3490 0.3485 0.2964 0.2964 0.2964 0.2964 0.1910 0.8863 0.9338 0.8849 0.8837 0.4944 0.3515 N 30% 0.2236 0.2999 0.2999 0.299 0.2999 0.2999 0.2999 0.2999 0.2999 0.2999 0.2999 0.2999 0.2999 0.2999 0.2990	0.6021 <i>Aissing Rat</i> 50% 0.4115 0.4063 0.4236 0.3728 0.2277 0.2275 0.9901 0.9818 0.9873 0.4228 <i>Aissing Rat</i> 50% 0.4752 0.4427 0.4752 0.4427 0.4752 0.4427 0.4752 0.4427 0.4752 0.4427 0.4752 0.4427 0.4752 0.4427 0.4752 0.4427 0.4752 0.4427 0.4752 0.4427 0.4752 0.4427 0.4752 0.4427 0.4752 0.4427 0.4477 0.4427 0.4477	0.7234 0.7234 10.7234 10.7234 10.7234 10.7520 0.5220 0.5192 0.2855 0.2700 0.9672 0.9341 0.9519 0.9738 0.5152 0.5051 10.5555 10.55551 10.55551 10.5555 10.5	0.8531 90% 0.5422 0.5179 0.5417 0.5425 0.4526 0.3014 0.9576 0.9370 0.9442 0.9566 0.7035 0.5366 90% 0.8079 0.7347 0.7976 0.8004 0.4060 0.3209	
Dataset: Cl Metrics MAE RMSE Dataset: Metrics MAE	CSDI HDDI hicago-Crime BRITS GP-VAE SS-GAN SAITS CSDI HDDI BRITS GP-VAE SS-GAN SAITS CSDI HDDI Electricity Model BRITS GP-VAE SS-GAN SAITS CSDI HDDI	0.5314 0.4693 0.2613 0.3071 0.2697 0.2461 0.1994 0.1857 0.7870 0.9080 0.7769 0.7973 0.3583 0.3483 0.3483 0.3483 0.1468 0.1787 0.1427 0.1273 0.1174 0.1109	0.5023 0.5500 N 30% 0.3351 0.3490 0.3485 0.2964 0.2128 0.9338 0.8863 0.9338 0.8849 0.8863 0.9338 0.8849 0.9338 0.8849 0.9338 0.8849 0.3515 N 30% 0.2236 0.2999 0.2590 0.2236 0.2999 0.2590 0.2236 0.1295 0.2366 0.2366 0.2236 0.2236 0.1295 0.2236 0.1295 0.2236 0.1295 0.2236 0.1295 0.2236 0.1295 0.2236 0.1295 0.1295 0.2236 0.1295	0.6021 Aissing Rat 50% 0.4115 0.4063 0.4227 0.2277 0.2275 0.9901 0.9818 0.9874 0.9865 0.4228 Aissing Rat 50% 0.4228 Aissing Rat 50% 0.4752 0.4752 0.4747 0.5106 0.1497 0.1461 0.5284	0.7234 1e 70% 0.5220 0.4558 0.5069 0.5192 0.2855 0.2700 0.9672 0.9341 0.9519 0.9738 0.5152 0.5051 1e 70% 0.7979 0.5876 0.7942 0.7947 0.2247 0.2247 0.2247 0.2247	0.8531 90% 0.5422 0.5179 0.5417 0.5425 0.4526 0.3014 0.9576 0.9370 0.9442 0.9566 0.7035 0.5366 90% 0.8079 0.7347 0.7976 0.8004 0.8004 0.418 0.9418	
Dataset: Cl Metrics MAE RMSE Dataset: Metrics MAE	CSDI HDDI hicago-Crime BRITS GP-VAE SS-GAN SAITS CSDI HDDI BRITS GP-VAE SS-GAN SAITS CSDI HDDI Electricity Model BRITS GP-VAE SS-GAN SAITS CSDI HDDI BRITS GP-VAE	0.5314 0.4693 0.2613 0.3071 0.2697 0.2461 0.1994 0.1857 0.7870 0.9080 0.7769 0.7973 0.3583 0.3483 0.3483 0.3483 0.1468 0.1787 0.1427 0.1273 0.1174 0.1273 0.1109 0.2626 0.2670	0.5023 0.5500 N 30% 0.3351 0.3490 0.3485 0.2964 0.2128 0.9338 0.8849 0.9338 0.8849 0.9338 0.8849 0.9338 0.8849 0.9338 0.8849 0.9338 0.8849 0.2236 0.2999 0.2590 0.2236 0.2999 0.2590 0.2236 0.2999 0.2590 0.2236 0.1290 0.1215 0.3487 0.3933	0.6021 <i>A</i> issing Rat 50% 0.4115 0.4063 0.4236 0.3728 0.2277 0.2275 0.9901 0.9874 0.9865 0.4873 0.4228 <i>A</i> issing Rat 50% 0.4752 0.4427 0.4427 0.4427 0.4747 0.5106 0.4752 0.4461 0.6284 0.5481	0.7234 1e 70% 0.5220 0.5520 0.5069 0.5192 0.2855 0.2700 0.9672 0.9672 0.9519 0.9738 0.5152 0.5051 1e 70% 0.5979 0.5876 0.7942 0.5876 0.7942 0.5876 0.5942 0.59417 0.7064	0.8531 90% 0.5422 0.5179 0.5417 0.5425 0.4526 0.3014 0.9576 0.9370 0.9442 0.9566 0.7035 0.5366 90% 0.8079 0.7347 0.7976 0.8004 0.4060 0.3209 0.9418 0.8711	
Dataset: Cl Metrics MAE RMSE Dataset: Metrics MAE	CSDI HDDI hicago-Crime BRITS GP-VAE SS-GAN SAITS CSDI HDDI BRITS GP-VAE SS-GAN SAITS CSDI HDDI Electricity Model BRITS GP-VAE SS-GAN SAITS CSDI HDDI BRITS GP-VAE SS-GAN	0.5314 0.4693 0.2613 0.3071 0.2697 0.2461 0.1994 0.1857 0.7870 0.9080 0.7769 0.7973 0.3583 0.3483 0.3483 0.3483 0.1468 0.1787 0.1427 0.1273 0.1427 0.1273 0.1174 0.1109 0.2626 0.2670 0.2382	0.5023 0.5500 N 30% 0.3351 0.3490 0.3485 0.2964 0.2128 0.9338 0.8849 0.8863 0.9338 0.8849 0.8837 0.9338 0.8849 0.3515 N 30% 0.2236 0.2999 0.2590 0.2236 0.2999 0.2590 0.2236 0.2999 0.2590 0.2236 0.2999 0.2590 0.2236 0.3487 0.3933 0.3766	0.6021 <i>Aissing Rat</i> 50% 0.4115 0.4063 0.4236 0.3728 0.2277 0.2275 0.9901 0.9818 0.9874 0.9865 0.4873 0.4228 <i>Aissing Rat</i> 50% 0.4752 0.4427 0.4427 0.4427 0.4427 0.4427 0.4427 0.4427 0.4427 0.4427 0.4427 0.4427 0.4427 0.4427 0.4427 0.4427 0.4427 0.4427 0.4427 0.4427 0.4428 <i>Aissing Rat</i> 50% <i>Aissing Rat</i> 50% <i>Aissing Rat</i> 50% <i>Aissing Rat</i> 50% <i>Aissing Rat</i> 50% <i>Aissing Rat</i> <i>Aissing Rat</i>	0.7234 1e 70% 0.5220 0.4558 0.5069 0.5192 0.2855 0.2700 0.9672 0.9341 0.9519 0.9738 0.5152 0.5051 1e 70% 0.5979 0.5876 0.7942 0.5876 0.7947 0.5876 0.9738 0.9738 0.5938 0.5938 0.5938 0.5938 0.5938 0.5938 0.5938 0.5938 0.5938 0.5938 0.5938 0.5938 0.5938 0.5938 0.5938 0.9738 0.5938 0.5938 0.5938 0.5938 0.9738 0.5938 0.5938 0.9738 0.5938 0.9738 0.5938 0.5938 0.93	0.8531 90% 0.5422 0.5179 0.5417 0.5425 0.4526 0.3014 0.9576 0.9370 0.9442 0.9566 0.7035 0.5366 90% 0.8079 0.7347 0.7976 0.8004 0.4060 0.3209 0.9418 0.8711 0.9416	
Dataset: Cl Metrics MAE RMSE Dataset: Metrics MAE RMSE	CSDI HDDI hicago-Crime BRITS GP-VAE SS-GAN SAITS CSDI HDDI BRITS GP-VAE SS-GAN SAITS CSDI HDDI Electricity Model BRITS GP-VAE SS-GAN SAITS CSDI HDDI BRITS GP-VAE SS-GAN SAITS CSDI HDDI	0.5314 0.4693 0.2613 0.3071 0.2697 0.2461 0.1994 0.1857 0.7870 0.9080 0.7769 0.7973 0.3583 0.3483 0.3483 0.3483 0.1468 0.1787 0.1427 0.1273 0.1427 0.1273 0.1174 0.1109 0.2626 0.2670 0.2382 0.2282 0.2282	0.5023 0.5500 N 30% 0.3351 0.3490 0.3485 0.2964 0.2128 0.9338 0.8849 0.9338 0.8849 0.9338 0.8849 0.9338 0.8849 0.9338 0.9338 0.2236 0.2999 0.2590 0.2236 0.2999 0.2590 0.2236 0.1290 0.1255 0.3487 0.3933 0.3766 0.3375 0.3375	0.6021 <i>Aissing Rat</i> 50% 0.4115 0.4063 0.4236 0.3728 0.2277 0.2275 0.9901 0.9818 0.9874 0.9865 0.4873 0.4228 <i>Aissing Rat</i> 50% 0.4752 0.4427 0.4461 0.6284 0.5481 0.6280 0.6284 0.4238 0.4228 0.4288 0.4278 0.4278 0.4278 0.4278 0.4427 0.4461 0.42888 0.42888 0.42888 0.42888 0.42888 0	0.7234 1e 70% 0.5220 0.5520 0.5069 0.5192 0.2855 0.2700 0.9672 0.9672 0.9519 0.9738 0.5152 0.5051 1e 70% 0.5979 0.5876 0.7942 0.5876 0.7942 0.5876 0.7942 0.5876 0.7942 0.5876 0.7942 0.5876 0.7942 0.5876 0.7942 0.59381 0.7064 0.9380 0.9381 0.2655 0.2706 0.2707 0.2855 0.592 0.592 0.592 0.592 0.9738 0.592 0.9738 0.5951 0.592 0.592 0.9738 0.5951 0.592 0.592 0.9738 0.5951 0.592 0.592 0.9738 0.5951 0.592 0.592 0.9738 0.5951 0.592 0.5921 0.9738 0.5951 0.592 0.5921 0.9738 0.5951 0.592 0.5921 0.9738 0.5951 0.5921 0.5921 0.5931 0.5951 0.5921 0.5932 0.5931 0.5931 0.5931 0.5931 0.5931 0.5931 0.5931 0.5931 0.5932 0.5931 0.59338 0.5932 0.59338 0.59358 0.595588 0.5955888 0.595588 0.59	0.8531 90% 0.5422 0.5179 0.5417 0.5425 0.4526 0.3014 0.9576 0.9370 0.9442 0.9566 0.7035 0.5366 90% 0.8079 0.7347 0.7976 0.8004 0.4060 0.3209 0.9418 0.8711 0.9416 0.9446 0.9446 0.9446 0.9446	

Dataset: ETT

Model

BRITS

GP-VAE

SS-GAN

SAITS

CSDI

HDDI

BRITS

GP-VAE

SS-GAN

SAITS

CSDI

HDDI

Model

BRITS

GP-VAE

SS-GAN

SAITS

CSDI

HDDI

BRITS

GP-VAE

SS-GAN

SAITS

CSDI

HDDI

Model

BRITS

GP-VAE

SS-GAN

SAITS

CSDI

HDDI

BRITS

GP-VAE

SS-GAN

SAITS

CSDI

HDDI

Model

BRITS

GP-VAE

SS-GAN

SAITS CSDI

HDDI

BRITS

GP-VAE

SS-GAN

SAITS

CSDI

HDDI

Dataset: Electricity

Dataset: Chicago-Crime

Dataset: Air-Quality

10%

0.5146

0.1905

0.5606

0.0986

0.1429

0.0970

0.5146

0.2596

0.8119

0.2236

0.2514

0.2052

10%

0.3307

0.3007

0.4430

0.1831

0.1410

0.1382

0.4681

0.4403

0.6290

0.3112

0.2207

0.2192

10%

0.3020

0.2853

0.2268

0.3476

0.1979

0.1904

0.8723

0.8990

0.7715

0.8881

0.3605

0.3359

10%

0.2932

0.1661

0.5781

0.1576

0.1136

0.1073

0.3876

0.2474

0.7244

0.2454

0.1781

0.1703

16

Metrics

MAE

RMSE

Metrics

MAE

RMSE

Metrics

MAE

RMSE

Metrics

MAE

RMSE

Table 3: Experimental Results in LM Scenarios.

30%

0.7278

0.3717

0.7594

0.3226

0.3481

0.2919

0.7278

0.3770

0.9466

0.4854

0.4749

0.4592

30%

0.6221

0.3543

0.6245

0.3927

0.1954

0.1909

0.7976

0.5422

0.7980

0.6771

0.3261

0.3181

30%

0.3823

0.2896

0.2371

0.4259

0.2284

0.2253

0.9590

0.9133

0.8675

0.9293

0.4905

0.3585

30%

0.6841

0.1686

0.7065

0.2806

0.2413

0.1674

0.8520

0.2719

0.8655

0.3994

0.3484

0.2658

Missing Rate

50%

0.7327

0.4268

0.7731

0.3478

0.4174

0.3074

0.7327

0.4746

0.9545

0.5315

0.5667

0.4634

Missing Rate

50%

0.6273

0.3677

0.6250

0.5482

0.4298

0.3075

0.7991

0.5437

0.8007

0.8572

0.6279

0.5005

Missing Rate

50%

0.4391

0.2914

0.2607

0.4332

0.3046

0.2302

0 9 5 9 0

0.9292

0.8836

0.9587

0.7422

0.4088

Missing Rate

50%

0.7756

0.2127

0.7789

0.3286

0.2826

0.2033

0.9204

0.3309

0.9315

0.4573

0.3692

0.3038

70%

0.7474

0.4816

0.7288

0.3972

0.5881

0.3622

0.7474

0.4835

0.9584

0.5362

0.8636

0.5783

70%

0.6368

0.4250

0.6414

0.6097

0.4744

0.3877

0.8137

0.6402

0.8129

0.9116

0.6678

0.6218

70%

0.4501

0 3228

0.3147

0.4478

0.4334

0.2729

1 0144

0.9382

0.8902

1.0131

0.8517

0.4935

70%

0.7710

0.4107

0.7860

0.3550

0.4129

0.2825

0.9347

0.4103

0.9320

0.5237

0.5418

0.4045

90%

0.7692

0.5905

0.7254

0.8258

0.8065

0.4810

0.7692

0.6980

0.9800

1.1157

1.0237

0.6361

90%

0.6675

0.5473

0.6699

0.6924

0.6471

0.4511

0.8393

0.7820

0.8368

0.9159

0.8267

0.7490

90%

0.4612

0.4135

0.3950

0.4559

0.4784

0.3581

1 0369

0.9974

0.9230

1.0362

0.9830

0.6809

90%

0.7931

0.6200

0.7879

0.7794

0.7223

0.5636

0.9365

0.8294

0.9350

0.9684

0.8820

0.7350

ς.	\sim	~	
a		e	
2		0	

- 904 905
- 906
- 907 908
- 909
- 910 911
- 912
- 913 914

916

918

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941 942

943

944

945

946

947

948

949

950

951

952

915

919

1	Dataset: ETT		Μ	issing Rate	е	
Metrics	Model	10%	30%	50%	70%	90%
	HDDI(near-match)	0.0765	0.0905	0.1392	0.2118	0.4012
	HDDI(rand-match)	0.0735	0.0873	0.1058	0.1779	0.3858
MAE	HDDI(no-history)	0.0887	0.1003	0.1311	0.2237	0.4530
	HDDI	0.0718	0.0851	0.1035	0.1712	0.3609
	HDDI(near-match)	0.1322	0.1684	0.2366	0.3400	0.6431
DMCE	HDDI(rand-match)	0.1282	0.1648	0.1822	0.3022	0.6200
KNISE	HDDI(no-history)	0.1940	0.2041	0.2744	0.4590	0.6362
	HDDI	0.1230	0.1613	0.1731	0.2920	0.5371
Dat	aset: Air-Quality		Μ	issing Rate	e	
Metrics	Model	10%	30%	50%	70%	90%
	HDDI(near-match)	0.0899	0.1018	0.1288	0.1983	0.3457
MAE	HDDI(rand-match)	0.0909	0.1019	0.1260	0.2034	0.3860
MAL	HDDI(no-history)	0.0920	0.1033	0.1272	0.1936	0.4907
	HDDI	0.0887	0.0989	0.1186	0.1776	0.3022
	HDDI(near-match)	0.1555	0.1703	0.2274	0.3337	0.5407
DMCE	HDDI(rand-match)	0.1600	0.1723	0.2211	0.3767	0.6887
KMSE	HDDI(no-history)	0.1614	0.1772	0.2248	0.3394	0.6392
	HDDI	0.1536	0.1650	0.2066	0.2974	0.4965

Table 4: Ablation studies of Historical Data Matching Process.

Table 5: Ablation studies of Fusion Process.

l	Dataset: ETT		М	issing Rate	e		
Metrics	Model	10%	30%	50%	70%	90%	
MAE	HDDI(aver-fusion) HDDI	0.0765 0.0718	0.0905 0.0851	0.1392 0.1035	0.2118 0.1712	0.4012 0.3609	
RMSE	HDDI(aver-fusion) HDDI	0.1300 0.1230	0.1684 0.1613	0.1874 0.1731	0.3049 0.2920	0.6101 0.5371	
Dataset: Air-Quality Mi				issing Rate	e		
Metrics	Model	10%	30%	50%	70%	90%	
MAE	HDDI(aver-fusion) HDDI	0.0912 0.0887	0.1012 0.0989	0.1205 0.1186	0.1995 0.1776	0.4596 0.3022	
RMSE	HDDI(aver-fusion) HDDI	0.1623 0.1536	0.1655 0.1650	0.2107 0.2066	0.3285 0.2974	0.7859 0.4965	