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ABSTRACT

Chain-of-Thought (CoT) data has become essential for advancing large language
models’ reasoning capabilities, yet current quality assessment methods neglect
the quality of underlying reasoning processes and thus undermine their effective-
ness. To address these challenges, we propose a CoT data quality assessment
framework from a cognitive perspective, grounded in Bloom’s Taxonomy as our
core theoretical foundation. Through systematic analysis of existing CoT datasets,
we reveal that current CoT data exhibits significant distributional biases toward
intermediate-order cognitive operations, failing to adequately represent the full
spectrum of human-level cognitive capabilities. These findings demonstrate sys-
tematic inadequacies in reasoning quality across multiple benchmarks, with mod-
els struggling to reproduce sophisticated cognitive processes essential for com-
plex problem-solving. Based on these insights, we propose a simple-yet-effective
cognitive-guided CoT data enhancement approach that supplements datasets with
minimal higher-order cognitive CoT data. Consequently, we introduce a simple-
yet-effective CoT data enhancement method that rapidly enhances model per-
formance using minimal additional high-order cognitive CoT data, experiments
demonstrates the effectiveness of cognitive-aware CoT dataset construction and
evaluation.

1 INTRODUCTION

Chain-of-Thought (CoT) data plays a pivotal role in advancing large language models (LLMs). Be-
sides CoT data significantly enhances the accuracy of complex problem-solving by providing struc-
tured reasoning examples (Wei et al.,[2022} [Zhang et al., 2023} |Wei et al., [2022} |Suzgun et al.,|2023)),
it effectively induces models to develop sophisticated reasoning capabilities, especially in reinforce-
ment learning (RL) based models like Deepseek-R1 (DeepSeek-Al et al.| 2025). By incorporating
CoT data, RL-based reasoning LLMs can learn to break down complex problems into manageable
steps (DeepSeek-Al et al., [2025; |Wen et al., |2025), which not only boosts performance but also
enhances the interpretability of the model’s decision-making process, making CoT data invaluable
for improving the overall effectiveness and trustworthiness of these advanced LLMs. Hence, con-
structing and employing CoT datasets becomes an important task (Zhang et al.| [2023;|Suzgun et al.,
2023} Yin et al., 2025)).

Researchers have developed various CoT data construction methodologies, primarily encompass-
ing two technical approaches: direct utilization of pre-existing CoT datasets and acquisition via
knowledge distillation (Wang et al.,|2023a; |Chen et alJ |2023). Direct utilization typically involves
manual annotation, wherein domain experts meticulously construct high-quality reasoning chains
(L1 et al.l [2023a). Conversely, knowledge distillation leverages large pre-trained language models
to automatically generate CoT data. To ensure CoT data quality, these methods introduce additional
verification mechanisms to filter out low-quality CoT data, such as teacher-generated rationales with
post-hoc filtering (Li et al., 2023b)), self-distillation via self-consistency that retains rationales yield-
ing consistent answers (Wang et al.,[2023b)), and verification-based distillation that employs explicit
verifiers to validate intermediate reasoning steps (Ling et al., 2023).
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However, despite the proliferation of CoT construction efforts, we argue that current CoT datasets
suffer from fundamental quality assessment challenges that undermine their effectiveness. Current
research exhibits a pronounced trend toward scalability, with newly constructed CoT datasets not
only growing in data volume but also in length (Wang et al.| [2023b; |[Fang et al., 2025} |Golovneva
et al.,|2023;|Nguyen et al.,[2024). This “bigger and longer”” development strategy lacks robust quality
assessment foundations, implying three fundamental limitations. (1) Existing evaluations ignore
the quality of reasoning processes. Existing metrics concentrating exclusively on length and ac-
curacy cannot adequately characterize the semantic and cognitive properties intrinsic to reasoning
chains; they induce fundamental gaps in assessing the cognitive essence of the reasoning processes
Prasad et al.| (2023)). (2) Existing evaluations may introduce systematic biases. Longer CoT fre-
quently exhibits extraneous content, erroneous logical steps, or task-irrelevant information, whereas
cognitively sound reasoning is characteristically concise and demonstrates direct problem-solving
efficacy (Ling et al.l [2023; L1 et al., 2023aj |Wang et al., |2023b). (3) Existing evaluation metrics
fail to reflect data quality defects in terms of model performance. Emergent empirical evidence
indicates that neither length nor scale of CoT data correlates with substantive reasoning capability
gains [Kejriwal et al.|(2024); [Sylolypavan et al.| (2023)).

To address these limitations, cognitive theories can be leveraged for CoT quality assessment. First,
cognitive theory inherently prioritizes the quality of reasoning processes. Since CoT data fundamen-
tally aligns with human cognitive operations, cognitive theory provides normative frameworks for
assessing the quality of intermediate reasoning operations (Wei et al., 2022; [Nguyen et al., |2024)).
Second, cognitive theory emphasizes the depth of processing, establishing normative quality bench-
marks that mitigate quality degradation resulting from superficial pursuit of length or scale metrics,
thereby ensuring evaluation criteria correspond to authentic cognitive rigor. Finally, cognitive sci-
ence has established robust causal links between hierarchical cognitive operations and performance
efficacy, providing mechanistic foundations for fine-grained diagnostic evaluations of model reason-
ing capabilities.

Specifically, we employ Bloom’s Taxonomy Bloom et al.| (1956) as our core cognitive framework,
a theory that categorizes cognitive abilities into six cognitive levels (remembering, understanding,
applying, analyzing, evaluating, and creating), which is particularly suited for systematically parsing
the types of cognitive operations within CoT. We have developed methods to automatically map CoT
steps to Bloom’s Taxonomy levels and constructed an innovative evaluation metric system based on
this mapping, focusing on four key research questions:

RQ1: How well do current CoT datasets represent compared to human cognitive processes?
RQ2: Can LLMs reproduce human-level cognitive processes?
RQ3: What are the characteristics of the cognitive processes exhibited by LLMs?

RQ4: How can CoT datasets be optimized to enhance their cognitive expressiveness?
The main contributions of this work are summarized as follows:

* To the best of our knowledge, we are the first to systematically investigate CoT data
quality assessment from a cognitive perspective, establishing a novel evaluation paradigm
grounded in cognitive principles.

* We develop a comprehensive evaluation framework anchored in Bloom’s Taxonomy that
enables precise quantification of cognitive complexity within CoT reasoning sequences,
providing both accuracy and computational efficiency.

* We conduct extensive experiments to analyze the quality of existing CoT datasets and
knowledge-distilled CoT data, revealing systematic biases and cognitive inadequacies that
compromise reasoning quality across multiple benchmarks.

* We propose a simple-yet-effective cognitive-guided approach for CoT data enhancement,
with experimental validation demonstrating substantial improvements in model reasoning
capabilities using little CoT data.
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2 RELATED WORK

CoT Datasets Recent efforts in CoT dataset construction have emphasized creating coherent rea-
soning chains across diverse tasks and domains, thereby enhancing the interpretability and logical
capabilities of LLMs. Early large-scale efforts, such as ThoughtSource(Ott et al., 2023)), aggregate
CoT examples from multiple domains, including science, mathematics, medicine, and general ques-
tion answering, while standardizing formats and providing tools for evaluation, fine-tuning, and rea-
soning analysis. Other works such as LogiCoT(Liu et al., 2023) and OmniThought(Cai et al., |2025)),
introduce large-scale CoT dataset and show the effectiveness of them. Mathematics has emerged
as a central domain for CoT research, with datasets(Yu et al., 2024; Ling et al.,|2017; |/Amini et al.,
2019; Patel et al., [2024; Mitra et al., 2024) providing complementary resources with varying scale,
annotation format, and reasoning granularity, supporting tasks such as symbolic manipulation, al-
gebraic reasoning, and multi-hop deduction., and reverse reasoning to enhance existing benchmarks
(Cobbe et al.,|2021; Lightman et al.,|2024). Generally, CoT datasets have progressed toward broader
domain coverage and more sophisticated reasoning processes.

CoT Data Evaluation Recent research has increasingly focused on assessing the quality of CoT
data. Numerous studies have attempted to quantify and evaluate the complexity of CoT data through
various approaches. For instance, Budagam et al.|(2024) analyzed CoT data complexity using statis-
tical indicators such as length, entropy, and logical leaps, while|L1 et al. (2024)) introduced structural
entropy and cognitive tree representations. Alternative methods have examined reasoning complex-
ity through semantic stability (Yao et al.,[2023)) and logical consistency (Xu et al., 2025)), employing
embedding trajectory geometry and logical template matching as key analytical tools. Addition-
ally, Wang et al| (2024) framed model generation as progressive cognitive unfolding, introducing
the Local Disbalance Rate metric to capture the interplay between cognitive complexity and gener-
ative behavior. Notably, research has revealed that increasing reasoning chain length or depth does
not guarantee improved performance (Lee et al) 2025} [Kang et al., 2024). Overall, existing CoT
data evaluation remains predominantly focused on analyzing surface-level complexity of reasoning
chains, lacking deeper insights into their underlying cognitive capabilities.

3 METHODOLOGY

3.1 BLOOM’S TAXONOMY FRAMEWORK

Bloom’s Taxonomy serves as our theoretical framework for analyzing the quality of CoT datasets.
Bloom’s Taxonomy, first introduced by [Bloom et al.| (1956)) and |Anderson & Krathwohl| (2001)),
provides a hierarchical classification of cognitive processes encompassing six levels: Remembering,
Understanding, Applying, Analyzing, Evaluating, and Creating, alongside four knowledge dimen-
sions: Factual, Conceptual, Procedural, and Metacognitive.

We selected Bloom’s Taxonomy as our theoretical foundation for three reasons. (1) Bloom’s Taxon-
omy describes cognitive operational processes, which perfectly align with the core requirement of
CoT data assessment, to reveal the connection between reasoning processes and quality. (2) Bloom’s
Taxonomy provides a structured framework with dual-dimensional structure (cognitive processes
and knowledge types), enabling precise characterization of the cognitive-knowledge coupling pat-
terns, thereby offering an interpretable mechanism for model performance. (3) Bloom’s Taxonomy
possesses a comprehensive conceptual system and standardized assessment dimensions that ensure
both theoretical scientific reliability and operational standards convertible to automated evaluation.

3.2 PROBLEM DEFINITION

To systematically capture the cognitive structure of reasoning in CoT data, we formalize a taxonomy-
based annotation scheme. This scheme leverages Bloom’s Taxonomy to evaluate both the inherent
cognitive difficulty of the instructions and the step-wise cognitive progression of reasoning. By rep-
resenting CoT annotation through a formal mathematical expression, we can explicitly define the
procedure and goals of the annotation task, thereby further enabling a clear and rigorous character-
ization of both the task itself and the intended annotation outcomes. The set of cognitive levels and
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knowledge levels in Bloom’s Taxonomy are denoted as:

C ={REMEMBERING, UNDERSTANDING, APPLYING, ANALYZING, EVALUATING, CREATING }
K ={FACTUAL, CONCEPTUAL, PROCEDURAL, METACOGNITIVE}.

Consider giving a CoT instance z = (Q, CoT, A), where Q denotes the input question, CoT =
(s1,82,--.,8n) is the generated reasoning chain consisting of intermediate steps s;, A is the final
answer. Then, we present two cognitive annotation tasks with different granularities: instruction
and trajectory cognitive annotation.

Definition 3.1 (Instruction Cognitive Annotation) The instruction cognitive annotation assigns
a single cognitive label ¢ € C and a knowledge label k* € K to a CoT instance, reflecting the
highest cognitive level required to correctly respond to the given instruction. Formally, given the
CoT, question Q, answer A, and the annotation prompt Py, the label is defined as

LI<C0T| Q7A3PI) = (C*ak*vt?)? (1)

where t7 represents the reasoning process used in the annotation, capturing the annotator’s thought
process in determining the highest cognitive level required to answer the instruction.

For example, a simple factual recall problem may be labeled as REMEMBERING, whereas a multi-
step logical deduction problem may require ANALYZING or higher.

Definition 3.2 (Cognitive Trajectory Annotation) The cognitive trajectory annotation captures
the cognitive labels of individual reasoning steps within a CoT. Each reasoning step s; € CoT is
paired with a cognitive label ¢; € C, producing a cognitive trajectory (c; — co — -++ — ¢y,) that
aligns one-to-one with the reasoning steps within the annotation prompt Pr:

LT(COT| QaAvPT) = (7—7 t;“)a )
T=(c1 =g = =), 3)

where t, denotes the annotator’s thought process followed during annotation, reflecting how each
step s; was analyzed to determine its cognitive label c;.

The proposed annotation scheme not only formalizes cognitive labeling, but also enables structural
analysis of CoT sequences from two complementary perspectives:

Depth The highest cognitive level reached in the reasoning chain, reflecting overall problem diffi-
culty;

Progression The coherence of cognitive steps across the chain, indicating whether reasoning fol-
lows a consistent trajectory or shows regressions/redundancies.

Together, these two perspectives support a fine-grained evaluation of reasoning quality, considering
both the sophistication and the structural integrity of the thought process.

3.3 COGNITIVE ANNOTATION WITH LLMS

We adopt Qwen2.5-72B-Instruct as the primary annotator for cognitive-level labeling, inspired by
the strong evaluation results of CompassJudger-32B-Instruct (Cao et al., [2024). Specifically, we
use the instruction-tuned Qwen2.5-72B-Instruct as a few-shot annotator for both model-generated
and human-written CoTs. The annotation prompts are constructed by combining concise operational
definitions of Bloom’s cognitive processes and knowledge dimensions with representative examples,
thereby grounding the labeling in explicit decision rules.

To assess reliability, we randomly select 1,000 CoT instances, and engage three cognitive science
experts for independent annotation. We compute Cohen’s Kappa (k) against three experts, and
the results are shown in QOwen2.5-72B-Instruct achieves the highest agreement across
both knowledge and cognitive dimensions, with x > 0.88 indicating near-human consistency
and demonstrating the effectiveness of the model-based annotation pipeline. The consistency
evaluation result also demonstrates the effectiveness of model-based annotation, details are shown
in Appendix
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Table 1: Cohen’s Kappa () consistency scores computed on 1,000 sampled CoT instances, com-
paring multiple LLM annotators with three experts.

Knowledge Dimension Cognitive Dimension

Expert1 Expert2 Expert3  Average ‘ Expert 1 Expert2  Expert3  Average

Qwen2.5-32B-Instruct 0.9758 0.9801 0.9700 0.9753 0.8533 0.8718 0.8649 0.8633
Qwen3-32B 0.9646 0.9707 0.9609 0.9654 0.7811 0.7754 0.7811 0.7792
CompassJudger-2-32B-Instruct 0.9818 0.9790 0.9794 0.9801 0.8383 0.8517 0.8424 0.8441
Qwen2.5-72B-Instruct 0.9874 0.9874 0.9868 0.9872 0.8820 0.8832 0.8914 0.8855
ChatGPT4-mini 0.9646 0.9707 0.9609 0.9654 0.7811 0.7754 0.7811 0.7792

3.4 METRICS

For quantifying the CoT data quality of a dataset, we define V¢ and V* as the mean values for the
cognitive and knowledge dimensions, respectively, and denote ¢© and €” as their respective standard
deviations. Specifically, following Bloom’s Taxonomy hierarchy from low to high, we annotate each
CoT instance with cognitive dimension values from 1 to 6, where 1 denotes the lowest cognitive level
(Remembering) and 6 represents the highest level (Creating). Similarly, we annotate the knowledge
dimension values from 1 to 4, ranging from lower-order to higher-order knowledge types.

We further introduce a new metric Bloom’s Taxonomy Weighted Level Index W, and W}, in order

to quantify the distance between each cognitive and knowledge dimension’s distribution and the

uniform distribution. Specifically, we define W, = min (N¢ - p., 1), Wi = min (Ng - pg, 1),

where N¢ = 4, Ng = 6 are the number of dimensions of cognitive and knowledge, respectively,

and p., py are its relative frequency. The min function ensures the metric to 1 for dimensions with
i 1

Pr < 57 and pe < 7o

4 EXPERIMENT

To evaluate and improve the quality of existing CoT datasets, we conduct a series of experiments to
answer the following research questions:

RQ1: How well do current CoT datasets represent compared to human cognitive processes?
RQ2: Can LLMs reproduce human-level cognitive processes?
RQ3: What are the characteristics of the cognitive processes exhibited by LLMs?

RQ4: How can CoT dataset be optimized to enhance their cognitive expressiveness?

4.1 EXPERIMENT SETUP

Datasets We evaluate the quality of 10 different widely-used CoT datasets (Cobbe et al., 2021}
Mahdavi et al., [2025; |Albalak et al., [2025} |Lu et al., |2024; |Gao et al., 2025; |Hendrycks et al., 2021}
Ling et al., 2017), which can be categorized into 2 groups according to their usage. (1) Human-
authored CoT datasets. We assembled a diverse collection of human-written CoT corpora. The
datasets cover a wide range of mathematical reasoning tasks, from standard exercises to Olympiad-
level problems, and constitute the primary source of high-quality human CoTs that capture natural
cognitive processes. (2) LLM-distilled CoT datasets. We collected distilled CoTs from state-of-
the-art models. Distillation was performed on representative benchmarks selected for their domain
coverage and ability to reflect realistic model reasoning. Details of the CoT datasets are shown in

Appendix (Table 2| and [Table 3.

Settings Our experiments are conducted on 4 accelerated GPUs, and we use PyTorch 2.6 in Python
3.11. We set the maximum sequence length for both input and output sequences to 1536 tokens.
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Figure 1: The distribution of current CoT data across Bloom’s two dimensions.

4.2 ANALYSIS

4.2.1 RQI1: How WELL DO CURRENT COT DATASETS REPRESENT COMPARED TO HUMAN
COGNITIVE PROCESSES?

Observation 1: Current CoT datasets demonstrate systematic bias toward intermediate-order
cognitive processes and knowledge types. illustrates that most CoTs fall between Ap-
plying and Analyzing, indicating an emphasis on intermediate-order cognitive reasoning. However,
current CoT datasets exhibit marked deficiency in higher-order cognitive operations (Evaluating,
Creating). As shown in[Figure 2al a minimal proportion of CoT data operates at higher-order cog-
nitive levels (Evaluating and Creating). Similarly, reveals a pronounced concentration of
existing CoT datasets on conceptual and procedural knowledge types. further demon-
strates that the vast majority of reasoning chains operate at the conceptual and procedual knowledge
level, higher-order knowledge (metacognitive) remains markedly underrepresented across all evalu-
ated datasets.
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Figure 2: Distribution of cognitive process and knowledge types in CoT datasets.

Observation 2: Cognitive-Knowledge dimensional misalignment. Existing CoT datasets ex-
hibit systematic mismatches between cognitive and knowledge dimensions that contradict human
learning patterns. While optimal cognitive development follows a hierarchical progression where
cognitive complexity increases with knowledge abstraction(Krathwohl, 2002), [Figure 1| shows
anomalous pairings, notably Applying-Procedural and Analyzing-Conceptual, which violate this
fundamental cognitive-pedagogical principle.
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Current CoT datasets suffer from severe distributional imbalance and systematic inconsis-
tency with human cognitive patterns.

4.2.2 RQ2: CAN LLMS REPRODUCE HUMAN-LEVEL COGNITIVE PROCESSES?

Distribution of Cognitive and Knowledge Levels Across Models

Models
[$1  Phi-4-reasoning-plus
K3} 2B-Tnstruct
Metacognitive| 2} Q¥
¥ Qwen3-8B
#  Qwen3-14B
® Qwen3-
[#] Phi-4-reasoning
®  Qwen3-1.7B
= [® Qwen3-0.6B
5] DeepSeck-R1-0528-Qwen3-8B
= % Qwen2.5-14B-Tnstruct
E Procedural [#  Phi-4-mini-reasoning
=] DeepSeck-R1-Distill-Qwen-32B
7 [#  Qwen2.5-Coder-32B-Tnstruct
= #1  Qwen2.5-72B-Instruct
(=)
[
0
=]
< I
% Conceptual
2
£
Factual
Remembering Understanding Applying Analyzing Evaluating Creating

Cognitive Distribution

Figure 3: The distribution of distilled CoT data across Bloom’s two dimensions.
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Figure 4: The details for the LLM’s distilled CoT results.

Observation 3: Dimensional Concentration. Consistent with existing CoT datasets, distilled
CoT data exhibits systematic concentration in intermediate cognitive processes and knowledge di-
mensions, replicating the distributional bias observed in current CoT datasets. As shown in|Figure 3|
distilled CoTs concentrate in Applying and Analyzing operations, with sparse representation in both
lower-order (Remembering, Understanding) and higher-order (Evaluating, Creating) operations. In
the knowledge dimension, most models rely on Conceptual and Procedural knowledge, rather than
factual recall or metacognitive reasoning.

Observation 4: Task-Specific Diversity. Distilled CoT data demonstrates exceptionally high di-
versity with pronounced distributional inconsistency across different task domains, indicating signif-
icant task-dependent variation in cognitive-knowledge patterns. We show the distribution across four
different task categories in including professional exams, commonsense reasoning, math-
ematics, and code reasoning. In AGIEval and CruxEval, reasoning concentrates on Understand-



Under review as a conference paper at ICLR 2026

ing and Applying, with Analyzing as a secondary component. CommonsenseQA displays higher
proportions of Analyzing and Evaluating, reflecting increased critical assessment demands, while
Omni-MATH emphasizes Applying and Analyzing, highlighting procedural and problem-solving
reasoning. Detailed experimental results are shown in Appendix (Figure 7).

Observation 5: Human-Aligned Coupling. shows that distilled CoT data achieves
alignment with human cognitive patterns through proper dimensional coupling: lower-order cog-
nitive processes consistently pair with lower-order knowledge types, while higher-order cognitive
operations align with higher-order knowledge domains.

While distilled CoT data exhibits high diversity and consistency with human cognition, its
pronounced distributional imbalance critically constrains overall data quality.

4.2.3 RQ3: WHAT ARE THE CHARACTERISTICS OF THE COGNITIVE PROCESSES EXHIBITED

BY LLMs?
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Figure 5: Cognitive trajectory annotation results.

[Figure 3| presents cognitive trajectory matrices for 2 different types of datasets, where each cell rep-
resents the transition probability from one cognitive level to the next in CoT reasoning, as annotated
using Bloom’s Taxonomy. This visualization captures the sequential cognitive dynamics of model-
generated reasoning, showing how steps evolve across tasks. More detailed results are shown in

Appendix (Figure 9).

Observation 6: Cognitive Hierarchy Compliance. All datasets demonstrate cognitive transi-
tions that adhere to human cognitive hierarchies, with lower-order cognitive processes (Remem-
bering/Understanding) predominantly transitioning to adjacent or higher-level cognitive processes,
while reverse transitions (e.g., from Analyzing back to Remembering) occur infrequently, confirm-
ing alignment with established cognitive progression patterns (Wei et al., | 2022; Huber & Niklaus,
2025).

Observation 7: Task-Specific Transition Characteristics. Different datasets exhibit distinct
cognitive transition signatures reflecting their underlying task nature: GSM8K shows pronounced
Understanding-Applying transitions (90.7%), indicative of algorithmic problem-solving characteris-
tics; AQuA demonstrates strongest Understanding-Applying patterns (73.5%) with more distributed
transitions, reflecting quantitative reasoning complexity; while LIMO exhibits strong Remembering-
Understanding transitions (82.6%) coupled with notable Analyzing-Analyzing self-loops (49.8%),
characteristic of iterative logical reasoning processes.
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While distilled CoT data exhibits strong task-specificity and human-aligned cognitive tran-
sition hierarchies, it inevitably suffers from persistent distributional biases.

4.2.4 RQ4: HOW CAN THE COGNITIVE PROCESSES OF LLMS BE OPTIMIZED TO ENHANCE
THEIR COGNITIVE EXPRESSIVENESS?

[Figure 6]illustrates the performance trends of instruction fine-tuning on three representative bench-
marks, including CMMLU, MMLU-Pro (Broad Domain Knowledge), CommonsenseQA (Com-
monsense Reasoning), and AGIEval (Professional Exams). We compare the effect of high-order
CoT instructions (corresponding to ANALYZING, EVALUATING, CREATING in Bloom’s Taxon-
omy) with low-order CoT instructions (corresponding to REMEMBERING, UNDERSTANDING, AP-
PLYING). We present the average accuracy of all evaluations in the figure.

The results show distinct trends: for high-order cognitive level CoTs, the accuracy initially increases
as the dataset size grows, but gradually saturates after around 400-600 instructions. In contrast, low-
order cognitive level CoTs exhibit an increase in accuracy at small scales, but performance begins to
decline as more data are added. This indicates that fine-tuning with only low-order cognitive level
CoTs cannot sustainably improve LLM reasoning ability. These findings suggest that a relatively
small but high-quality subset of high-order cognitive level CoTs (approximately 300 examples)
is sufficient to boost LLM performance across diverse benchmarks, whereas simply enlarging
low-order cognitive level CoT datasets may even harm performance. This highlights that a small
but cognitively rich set of instructions can serve as a “golden dataset” for instruction fine-tuning,
offering an efficient strategy for enhancing reasoning capabilities in LLMs.
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Figure 6: The fine-tuning results on Qwen2.5-7B-Base.

Supplementing minimal amounts of high-order CoT data enables rapid model performance
enhancement and stabilization.

5 CONCLUSION

In this paper, we systematically investigate CoT data quality assessment from a cognitive perspective
and propose a comprehensive evaluation framework grounded in Bloom’s Taxonomy. Our analysis
reveals that existing CoT datasets typically suffer from distributional biases that fail to adequately
represent human-level cognitive capabilities. Consequently, we introduce a simple-yet-effective
CoT data enhancement method that rapidly enhances model performance using minimal additional
high-order cognitive CoT data. Future efforts must prioritize the creation and integration of higher-
order and metacognitive CoT data to unlock the full potential of language models for creative and
reflective tasks.
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6 DATA COLLECTIONS

To address different research questions, we compiled a variety of datasets from multiple domains.
These datasets include human-constructed datasets, model-distilled datasets, and model fine-tuning
datasets. Detailed examples of the datasets can be found in[Table 2} [Table 3| and [Table 4]

Table 2: Human-authored Chain-of-Thought datasets.

Dataset Domain Scale Source Usage
Orac_math Mathematics ~200K Human + synthetic Training / CoT examples
AOPS _forum Math contest problems Thousands AoPS forum Multi-step reasoning
CN._KI12 K-12 math (Chinese) Thousands Textbooks / exams Cross-lingual tasks
Synthetic. AMC AMC-style math Thousands—10K  Synthetic generation ~ Contest-style reasoning
Olympiads Math Olympiad Thousands Exam archives Hard math reasoning
Synthetic_math General synthetic math >100K Synthetic generation Broad math reasoning
GSMSK Grade-school math 8,000 Human-authored Benchmark / evaluation
AMC_AIME AMC + AIME contests Thousands Contest archives Hard math reasoning
MATH Math competition dataset 12,500 MATH benchmark Step-by-step reasoning
AQuA Algebra/word problems Thousands Human-authored Logic + math reasoning

Table 3: Model-distilled Chain-of-Thought datasets.

Dataset Domain Scale Usage
AQuA Math/logic QA Thousands Distilled CoT training
GSME&K Grade-school math 8,000 Distilled CoT training
LIMO  Logic + math reasoning Thousands Distilled reasoning analysis
MATH Extended MATH Thousands Complex reasoning

Table 4: Evaluation benchmarks for LLM performance.

Dataset Domain Scale Source Usage
AGIEval Expert knowledge + math Thousands Exam-based Cross-domain evaluation
MMLU-Pro Broad expert knowledge Thousands MMLU series General evaluation
CMMLU Chinese / multilingual MMLU  Thousands Exam-based Multilingual reasoning
CommonSenseQA Commonsense reasoning 12K CommonsenseQA benchmark Commonsense evaluation

7 ANNOTATION CONSISTENCY ANALYSIS

7.1 CONSISTENCY EVALUATION

Given the inherent ambiguity and subjectivity involved in annotating cognitive levels from CoT rea-
soning, it is essential to assess the consistency and reliability of the automated labeling process.
A representative sample of 1000 CoT instances was randomly selected from the annotated dataset.
Each instance was independently labeled by three large language models, including Qwen2.5-72B-
InstruciYang et al.| (2025b), Owen3-32BYang et al.| (2025a)), and ChatGPT-40-mini, as well as by
three human annotators with relevant expertise. This multi-annotator setup enables a robust com-
parison between machine-generated and human-assigned cognitive labels. To evaluate alignment
between different annotators, we adopt a relaxed consistency criterion inspired by educational as-
sessment frameworks: a cognitive or knowledge label is considered acceptable if it differs from
the reference label by at most one adjacent level in Bloom’s taxonomy hierarchy. Prior research
Thompson & Lake| (2023) supports the validity of this tolerance range in cognitive categorization
tasks.

To assess the confidence level of model-based labeling, we apply confidence interval estimation
based on a two-step procedure.(1) We treat the majority vote among human annotators as the ground
truth. For each CoT instance, we compare the label assigned by model M to this reference label.
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Table 5: Overview of Models by Series, Name, and Application Domain

Series Model Name Application Domain
Qwen3-0.6B General tasks, light reasoning
Qwen3-1.7B General tasks, light reasoning
Qwen3 Qwen3-4B General tasks, reasoning and generation
Qwen3-8B General tasks, reasoning and generation
Qwen3-14B Advanced reasoning, complex tasks
Qwen3-32B Advanced reasoning, complex tasks
Phi4-reasoning-plus Advanced reasoning and logic tasks
Phi4 Phi4-reasoning Reasoning and analytical tasks
Phi4-minireasoning Lightweight reasoning tasks
DeepSeek DeepSeek-R1-Distill-Qwen-32B Model distillation and knowledge retrieval

DeepSeek-R1-0528-Distill-Qwen3-8B

Model distillation and knowledge retrieval

Qwen2.5-32B-Instruct

Qwen2.5

Qwen2.5-14B-Instruct
Qwen2.5-72B-Instruct

Instruction-tuned, general tasks
Instruction-tuned, general tasks
Instruction-tuned, general tasks

Qwen2.5-Coder-32B-Instruct Programming instructions, code generation

A prediction is marked as correct if it exactly matches the human-assigned label (or falls within
the acceptable tolerance range, as defined above). The model’s accuracy is then calculated as the
proportion of correct predictions over the total number n of samples p. (2) We construct a confidence
interval for the observed accuracy using the binomial proportion confidence interval formula:
R p(1—p

Cl=p 2o [0 @
where Z,, /o refers to the Z-score corresponding to the chosen confidence level. This interval quan-
tifies the statistical reliability of the model’s annotation accuracy, offering a formal measure of the
model’s consistency with human judgment. The results show that the annotated model Qwen2.5-

72B-Instruct aligns closely with human annotations and reasoning, exhibiting a very high consis-
tency interval in [Table 6|and [Table 7} similar results are also observed for Cohen’s Kappa (k).

7.2 ANALYSIS

Table 6: The Cognitive Dimension Consistency for CI(a = 95%)

Expert 1 Expert 2 Expert 3 Average
low high low high low high low high
Qwen2.5-32B-Instruct 0.8297 0.8768 0.8497 0.8939 0.8417 0.8881 0.8403 0.8863
Qwen3-32B 0.7537 0.8084 0.7479 0.8030 0.7536 0.8086 0.7517  0.8067
CompassJudger-2-32B-Instruct  0.8125 0.8642 0.8268 0.8765 0.8161 0.8687 0.8185 0.8698
Qwen2.5-72B-Instruct 0.8604 0.9036 0.8618 0.9047 0.8701 0.9127 0.8641 0.9070
ChatGPT4-mini 0.7537 0.8084 0.7479 0.8030 0.7536 0.8086 0.7517  0.8067
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Table 7: The Knowledge Dimension Consistency for CI(a = 95%)

Expert 1 Expert 2 Expert 3 Average

low high low high low high low high

Qwen2.5-32B-Instruct 09644 09873 0.9697 0.9905 0.9570 0.9831 0.9637 0.9869
Qwen3-32B 09519 09774 09591 0.9824 0.9475 09743 0.9528 0.9780
CompassJudger-2-32B-Instruct  0.9720 0.9917 0.9685 0.9896 0.9687 0.9902 0.9697 0.9905
Qwen2.5-72B-Instruct 0.9792 09956 0.9792 0.9956 0.9783 0.9954 0.9789 0.9955
ChatGPT4-mini 09519 09774 09591 09824 0.9475 09743 0.9528 0.9780

8 TEST DETAILS

Analyzing(1)

Analyzing(1)
-

(1)8u

(c) Results for Omni-MATH Dataset (d) Results for CruxEval Dataset

Figure 7: The whole details for the LLM’s distilled CoT results.

Figure §|illustrates how the average cognitive level of distilled CoT reasoning in the Qwen3 series
changes with model scale. Larger models generally produce reasoning with higher cognitive scores,
but the improvement varies by benchmark. CommonsenseQA shows the most pronounced increase,
Omni-MATH remains consistently high with marginal gains, AGIEval rises gradually, and CruxEval
peaks early for smaller models before stabilizing. This indicates that scaling benefits reasoning
performance, but its effect is task-dependent.

9 INSTRUCTION PROMPTS

9.1 PROMPTS TEMPLATE

We used the same system prompt as our evaluation target, and then employed different user prompts
to specify various annotation tasks. The system prompt is shown as follows:
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Figure 8: Average cognitive level scores of distilled CoT reasoning from the Qwen3 LLM series

across different model scales on four benchmarks.
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(c) Results for LIMO Dataset
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(d) Results for MATH Dataset

Figure 9: Cognitive trajectory annotation results: CoT reasoning mainly spans lower-order to mid-

order cognition, with rare transitions to higher-orde
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System Prompt

You are a helpful assistant facilitating meaningful dialogue between users and assistants.

The user poses a question, and the assistant provides a solution by first reasoning through the
problem before delivering a response.

Please make sure to display the complete thought process in your outputs, including

<think></think> in think sections, <answer></answer> in answer section.

**Example Olltpllt:*’x< <think>thinking process</think><answer>Final answer</answer>

Instruction cognitive annotations Instruction-level cognitive annotation refers to the labeling of
the average cognitive processes within a chain of thought, as defined in detail in the main text. In
the user prompts, we provide much more detailed definitions of Bloom’s cognitive processes and the
corresponding annotation methods. To ensure the annotation process is more accurate, the prompts
guide the model to first reason and then provide an answer, resulting in more precise responses. The
user prompt is shown as follows:
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User Prompt

Assume you are a data annotation expert. Please use the question” and the “thinking process”
to classify the following “’thinking process” according to Bloom’s Taxonomy cognitive frame-
work. First, explain your reasoning and analytical process for the classification, then provide its
corresponding cognitive process dimension and knowledge dimension.

The revised version of the Bloom’s taxonomy is divided into two dimensions: cognitive and
knowledge.The cognitive dimensions include:

- **Remembering**: Thinking that focuses on retrieving or recognizing previously learned in-
formation from memory, such as recalling specific facts, terms, dates, or basic concepts without
necessarily interpreting them.

- **Understanding**: Thinking that involves processing and interpreting information to demon-
strate comprehension, such as explaining a concept in one’s own words, summarizing a text, or
classifying items into categories based on their meaning.

- **Applying**: Thinking that centers on using acquired knowledge, skills, or procedures in
new or practical situations, such as solving a problem with a learned method, executing a task
based on a rule, or adapting a concept to a different context. It bridges theory and practice.

- **Analyzing**: Thinking that entails breaking down complex information into its individual
parts to examine relationships, patterns, or underlying structures. This could include comparing
ideas, identifying causes and effects, or organizing data to reveal insights about how the pieces
fit together.

- **Evaluating**: Thinking that involves assessing or critiquing information, arguments, or
methods based on specific standards or criteria. Examples include judging the reliability of a
source, weighing the strengths and weaknesses of an approach, or determining the quality of a
solution.

- *¥*Creating**: Thinking that focuses on combining or synthesizing elements to produce some-
thing new and original, such as designing a project, constructing a novel solution, or generating
innovative ideas by integrating prior knowledge in unique ways.

The dimensions of knowledge include:

- **Factual**: Basic elements such as terminology, facts, and discrete pieces of information
(the “what”).

- **Conceptual**: Relationships among ideas, theories, models, and structures (the “why”).

- **Procedural**: How to do something—methods, techniques, and criteria for using skills and
algorithms (the “how”).

- **Metacognitive**: Awareness and regulation of one’s own cognition—strategies for learning
and self-assessment (the “knowing about knowing”).

Please **categorize the following think process with bloom’s taxonomy**,**DONOT solve
THE PROBLEM**, provide your thought process,and then give the answer. Here is an exam-
ple:
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User Prompt

Input:

‘YYjson

{

"question": "<Question>”,
"think\_process":"<Thinking>",
"answer":"<answer>”

}

ANAURY

Output: <think> Why fits Bloom’s Taxonomy some levels
</think><answer> ("cognitive", "knowledge")</answer>

Write the answers in the tags with format (cognitive, knowledge), and there is only one tag for
cognitive dimension and one tag for knowledge dimension,DO NOT GENERATE OTHER IR-
RELATIVE THINGS, and multiple tags cannot be generated. Now begin your inputs:

Trajectory cognitive annotations The cognitive trajectory annotation captures the cognitive
labels of individual reasoning steps within a CoT. We defined detailed Bloom’s cognitive definitions
and then divided them into several parts according to the chain-of-thought process, mapping each
part to its corresponding cognitive level. The user prompt is shown as follows:
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System Prompt

(You will be given a long chain-of-thought (CoT) reasoning text. Your task is to segment this
text into a series of clear, logically complete reasoning steps, and annotate each step with its
corresponding level in Bloom’s taxonomy. The cognitive dimensions include:

- **Remembering**: Thinking that focuses on retrieving or recognizing previously learned in-
formation from memory, such as recalling specific facts, terms, dates, or basic concepts without
necessarily interpreting them.

- **Understanding**: Thinking that involves processing and interpreting information to demon-
strate comprehension, such as explaining a concept in one’s own words, summarizing a text, or
classifying items into categories based on their meaning.

- **Applying**: Thinking that centers on using acquired knowledge, skills, or procedures in
new or practical situations, such as solving a problem with a learned method, executing a task
based on a rule, or adapting a concept to a different context. It bridges theory and practice.

- **Analyzing**: Thinking that entails breaking down complex information into its individual
parts to examine relationships, patterns, or underlying structures. This could include comparing
ideas, identifying causes and effects, or organizing data to reveal insights about how the pieces
fit together.

- **Bvaluating®*: Thinking that involves assessing or critiquing information, arguments, or
methods based on specific standards or criteria. Examples include judging the reliability of a
source, weighing the strengths and weaknesses of an approach, or determining the quality of a
solution.

- **Creating**: Thinking that focuses on combining or synthesizing elements to produce some-
thing new and original, such as designing a project, constructing a novel solution, or generating
innovative ideas by integrating prior knowledge in unique ways.

Do not omit any part of the original content.Each step should represent a distinct unit of
thought, such as a single observation, inference, recall, or comparison.

You are only allowed to segment the original CoT content into multiple parts and assign a sin-
gle Bloom’s taxonomy label to each part.

The output must be **a sequence containing only individual Bloom-level labels**. **WARN-
ING: DONOT GENERATE ANY OTHER IRRELEVANT CONTENTS!** **The output can
only be a python list and cannot contain any other irrelevant content! And any steps should be

one of Bloom’s taxonomy tags.**

Here is an Example:
&
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System Prompt

-
Input:
*YYjson

{

"question": "<Question>”,

"think\_process":"<Thinking>",

"answer":"<answer>”

}

Output: <think> why the annotation tags is set, give the thinking for annotation </think>

<answer>

[

["bloom-cognitiveA", "raw_text"],

["bloom—-cognitiveB", "raw_text"],

["bloom—-cognitiveN", "raw_text"]

]

</answer>

Now begin the normal Input:

-

Algorithm 1: Cognitive Annotation of Chain-of-Thought

Input: Dataset D = {z1,...,%;, ..., xN }
Output: Average cognitive annotation Dy, Cognitive trajectory annotation Dy
Initialization:
Set average cognitive annotation prompt p; and cognitive trajectory annotation prompt pr;
Load dataset D and format into z; = (q, CoT, a,p;), x7 = (q, CoT, a,pr);
Initialize annotated sets D; = (), Dy = ;
Initialize remaining sets Dg) = Dg) =D;
forj € {I,T} do
while DY  § do
Sample a batch(i : ¢ + B) from Dg): ZiieB = (QiivB, CoT}i1 B, ai;i+B,P§;ji)+B)§
Oi:i+B — LLM(JJEJ?)_FB),
fork € (i:i+ B) do
if Oy, satisfies annotation requirements then
DU — DWWy 0,
5

Dg) A Dg) -0 _u;
Ty

r(;turn Dy, Dy

9.2 CASE STUDY

Here are some examples of annotated thought chains:
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A case for Instruction-Level Annotation
' N

”question”: “Harly’s animal shelter has 80 dogs. She adopts out 40% of them but then has to
take back 5 because of personality conflicts with other dogs in their adopted homes. How many
dogs does she have now?”, “’think_process”: “"How many dogs are adopted out? ** First find
how many dogs are adopted out: 80 dogs » 40% = <<80%40*.01=32>>32 dogs How
many dogs does Harly have now? ** Then subtract the number of dogs adopted out from the
total number of dogs and add the number who were returned to find the final number of dogs:
80 dogs — 32 dogs + 5 dogs = <<80-32+5=53>>53 dogs”, “answer:”53”, “response””:
”<think>

Why this fits Bloom’s Taxonomy:

+ The person calculates the number of dogs adopted out by applying the percentage to the total
number of dogs (this shows they can use mathematical procedures).

+ They then adjust the total number of dogs by subtracting those adopted out and adding those
returned (this shows they can apply operations to solve a problem).

+ They are using procedural knowledge — methods, techniques, and criteria for using skills and

algorithms to solve a practical problem.

</think><answer> (Applying, Procedural) </answer>"
& J

A case for Instruction-Level Annotation

e )
“question”: “Meso can type 15 pages in 5 minutes. Tyler can type the same 15 pages in 3 min-

utes. How many minutes would it take Meso and Tyler to type 40 pages working together?”,
“think _process”: ”Meso types 15 pages / 5 minutes = <<15/5=3>>3 page per minute.

Tyler types 15 pages / 3 minutes = <<15/3=5>>5 pages per minute.

Together they can type 3 + 5 = <<3+5=8>>8 pages per minute.

Working together, it would take them 40 pages / 8 pages per minute = <<40/8=5>>5 min-
utes”’,

“answer’:”’5”, “response”: “<think>

Why this fits Bloom’s Taxonomy:

+ The person calculates the typing speed of Meso and Tyler by dividing the number of pages by
the time it takes (this shows they can apply mathematical operations to solve a problem).

+ They then combine the typing speeds to find the total pages per minute when working to-
gether (this shows they can apply the concept of combining rates).

+ Finally, they calculate the time it would take to type 40 pages together by dividing the total
pages by the combined rate (this shows they can apply the concept of time, rate, and work rela-
tionships).

</think><answer> (Applying, Procedural) </answer>"
& J
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A case for Trajectory-Level Annotation

p
“question”: “Michael is traveling on the interstate at an average speed of S0km/hr (taking into

account all the necessary stops for gas, relaxation, etc.). If he goes on like this for 3 days, and
the distance between Alaska and Texas is 6000 km, what percentage of this distance has he
covered?”, answer”: “There are 24 hours in each day, so he has been traveling for a total of
3+%24 = <<24%x3=72>>72 hours

At a rate of 50km/hr he has covered 50%x72 = <<50%72=3600>>3600 km

3600km as a percentage of 6000km is (3600/6000) x100% = 60%”,

“answer”:”60” <think> Step 1: Recall basic time conversion (hours in a day) and multipli-
cation to find total travel time. Step 2: Apply the formula distance = speed x time to calculate
total distance traveled. Step 3: Apply percentage calculation formula to find what fraction of
the total distance has been covered. </think> <answer> [ ["Remembering”,” There are 24
hours in each day, so he has been traveling for a total of 3*24 = 72 hours.”], [’Applying”,’At a
rate of 50km/hr he has covered 50*72 = 3600 km.”], [’ Applying”,”3600km as a percentage of
6000km is (3600/6000)*100] </answer>

A case for Trajectory-Level Annotation

p
”question”: ”To make 1 liter of juice, Sam needs 5 kilograms of oranges. Each kilogram of

oranges costs $3. How much money would Sam have to spend to make 4 liters of juice?”,
’think_process”: "How many kilograms of oranges does Sam need to make 4 liters of juice? **
To make 4 liters of juice, Sam needs 4 « 5 = <<4%5=20>>20 kilograms of oranges.

How much would 20 kilograms of oranges cost? ** If one kilogram of oranges costs $3,

then 20 kilograms would cost 20 * 3 = $<<20%3=60>>60.", answer”:’60”, ’response””:
”<think> The CoT reasoning involves a series of calculations where Sam determines the to-
tal amount of oranges needed and the total cost. Each calculation step applies a learned method
(multiplication) to a practical scenario, which aligns with the **Applying** level in Bloom’s
taxonomy. No steps involve merely recalling facts, interpreting concepts, analyzing structures,
evaluating, or creating something new; they are all straightforward applications of arithmetic to
solve a problem. Therefore, every step is labeled as **Applying**. </think> <answer>

[ [’Applying”,”How many kilograms of oranges does Sam need to make 4 liters of juice?”’],
[’Applying”,”To make 4 liters of juice, Sam needs 4 * 5 = 20 kilograms of oranges.”], [”Ap-

99 99

plying”,”How much would 20 kilograms of oranges cost?”’], [*Applying”,’If one kilogram of

oranges costs 3, then20kilogramswouldcost20 * 3 =60."] ] </answer>"
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