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Figure 1. The Results of Text Slider with Text-to-Video (AnimateDiff [5]) and Video-to-Video (MeDM [2]) Model. Text Slider has
strong adaptability for various video synthesis models and achieves precise control of visual concepts. In these results, we control visual
concept (age) and generate videos with different strengths (from young to old) of the concept (age).

Abstract

Video generation and editing using diffusion models have
made significant progress in recent years. While free-
form text prompts provide flexible control over generation
and attribute manipulation, existing methods still strug-
gle to achieve fine-grained control over specific attributes.
Moreover, expressing varying degrees of attribute intensity
through text alone is often challenging. For example, de-
scribing subtle variations in a person’s smile can be am-
biguous and imprecise. Furthermore, the existing method
suffers from limited adaptability and inefficient training.
To address these limitations, we introduce Text Slider, a
lightweight, efficient and highly adaptable framework that
identifies low-rank directions within a pre-trained text en-
coder, enabling precise control of visual concepts while
significantly reducing training time and the number of pa-
rameters. Text Slider is plug-and-play, easily composable,
and continuously modulated, providing enhanced control-
lability and fine-grained manipulation for video generation

and editing. We demonstrate that Text Slider effectively at-
tenuates or strengthens specific attributes while preserving
the original input layout and structure, surpassing current
state-of-the-art methods in controllable video synthesis.

1. Introduction

Diffusion models [3, 7, 14] have recently achieved sig-
nificant progress in text-guided image and video synthe-
sis [1, 8]. While text prompts offer flexible control and
allow users to express creative intent, they are often insuf-
ficient for achieving continuous and fine-grained manipula-
tion of specific visual concept, especially when subtle vari-
ations or intensity levels are needed. For example, showcas-
ing nuanced changes in a person’s smile using text alone can
be inherently ambiguous. This limitation makes it difficult
for creators to perform precise image and video editing.

Existing methods for precise concept control primarily
focus on image synthesis, while video synthesis has become



an emerging research direction. For example, Prompt-to-
Prompt [6] achieves localized control by modifying cross-
attention weights, allowing user to edit an image with latent
diffusion models (LDMs) [14]. To extend this to the video
domain, Video-P2P [10] applies a similar cross-attention
reweighting strategy. However, its effectiveness is limited,
particularly for fine-grained facial attributes such as age
or smile. Another approach is Concept Slider [4], which
enables concept-specific generation by learning Low-Rank
Adapters (LoRA) and modulating a scaling factor dur-
ing inference. However, Concept Slider suffers from lim-
ited adaptability and inefficiency. Specifically, a separate
slider must be trained for each diffusion model architecture.
For example, sliders trained for Stable Diffusion 1.5 (SD-
1.5) [14] and Stable Diffusion XL (SD-XL) [12] are not in-
terchangeable. Moreover, training a single slider requires
approximately 30 minutes and nearly 3 million parameters
for SD-1.5, with even longer training time and larger model
sizes required for SD-XL, as shown in Table 1. These scal-
ability issues hinder its practical application across diverse
model architectures, tasks, and large sets of concepts. To
fully unlock the potential of creative and expressive gener-
ation, it is essential to develop more adaptable and efficient
methods that support continuous and precise attribute mod-
ulation, particularly in the context of video synthesis.

In this paper, we introduce Text Slider, an approach in-
spired by Concept Slider [4], with the added advantage of
being seamlessly extendable to various pre-trained image
and video diffusion models that share the same text encoder.
Unlike Concept Slider, which learns low-rank directions
within the diffusion model using contrastive text prompts
based on concepts extracted from a pre-trained text encoder,
we find the similar concept representations can be learned
directly by injecting low-rank parameters into the text en-
coder itself. Specifically, we fine-tune LoRA adapters ex-
clusively on the text encoder without requiring backpropa-
gation through the diffusion model, enabling efficient and
effective control over specific concepts. This design sig-
nificantly reduces computational requirements, using only
≈ 23% of the parameters and ≈ 10% of training time re-
quired by Concept Slider with SD-1.5, and ≈ 15% of the
parameters and ≈ 7% of training time on SD-XL. More-
over, Text Slider can adapt to different model architectures
that share the same text encoder (e.g. SD-1.5 and SD-XL),
supporting precise and continuous concept control.

Our main contributions are summarized as follows:
• We propose Text Slider, a method that injects and fine-

tunes LoRA modules within the pre-trained text encoder,
allowing precise concept control without modifying and
backpropagating through the diffusion model, reducing
≈ 77% of parameters and ≈ 90% of training time in SD-
1.5, and ≈ 85% of parameters and ≈ 93% of training
time in SD-XL.
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Figure 2. Overview of Text Slider. Text Slider injects and learns
low-rank parameters within the text encoder using contrastive
prompts derived from concept representations extracted by a pre-
trained text encoder, enabling precise control over visual concepts.

• Text Slider is plug-and-play, composable and generalizes
across various pre-trained diffusion models that share the
same text encoder, offering adaptability and reusability.

• Text Slider extends naturally to video synthesis, enabling
continuous and fine-grained concept control.

2. Method
2.1. Preliminary
Low-Rank Adaptation (LoRA) [9] is a parameter efficient
fine-tuning method that inserts trainable low-rank matrices
into pre-trained models while keeping the original weights
frozen. Instead of updating the full weight matrix W0 ∈
Rd×k, LoRA introduces a low-rank update:

W = W0 + α ·BA, (1)

where A ∈ Rr×k, B ∈ Rd×r, and r ≪ min(d, k). The
scaling factor α modulates the strength of the update and
can be adjusted at inference time to control the influence of
the learned direction.

In our framework, LoRA is applied to the text encoder,
enabling efficient and highly adaptable fine-tuning for con-
cept control in both image and video generation.

2.2. Text Slider
Text Slider is a method for fine-tuning LoRA adapters on a
text encoder [13] to enable precise image and video control
over designated concepts, as shown in Figure 2. Our ap-
proach learns low-rank directions that can enhance or sup-
press the representation of specific attributes when condi-
tioned on a target concept. Unlike previous work [4], Text
Slider is not limited to image generation and editing. Since
it only fine-tunes LoRA adapters on the text encoder and
does not backpropagate through the diffusion model, it can
be seamlessly extended to video tasks without any addi-
tional effort. The same adapter can be directly applied for
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Figure 3. Comparison of Text-to-Video Results. AnimateDiff [5] combined with Text Slider enables fine-grained, continuous control over
attributes while preserving structure. In contrast, prompt-based control offers limited controllability and often disrupts spatial coherence.

controllable video generation and editing, without any re-
training. Moreover, Text Slider requires significantly fewer
parameters and less training time.

Given a target concept ct, we propose to learn a low-rank
direction using a model θ that encourages the expression of
more positive attributes c+ while reducing the presence of
negative attributes c−. The model θ is trained by minimiz-
ing the mean squared error (MSE) between the prompt em-
beddings generated by the pre-trained text encoder θ∗ and
those produced by the adapted model θ. Specifically, fθ
denotes the embedding function that maps a text prompt y
into a conditional prompt embedding fθ(y). The objective
is defined as:

θ∗ = argmin
θ

Ey ∥ft − fθ(y)∥22 (2)

As illustrated in Figure 2, the target embedding pt is com-
puted as:

ft = fθ∗(ct) + η
∑
q∈Q

(fθ∗(c+, q)− fθ∗(c−, q)), (3)

where η is a guidance scale and Q is a set of concepts that
should be preserved during attribute manipulation. For ex-
ample, controlling the “smile” attribute may unintentionally
affect other attributes such as age or gender. By incorporat-
ing these preserved concepts into the embedding computa-
tion, the learned direction becomes more disentangled and

less likely to introduce unwanted changes.
To achieve varying degrees of editing strength, we uti-

lize a scaling factor α that can be adjusted at inference time
within the LoRA formulation (Equation 1). This parameter
controls the intensity of the attribute manipulation, allowing
for fine-grained edits, as illustrated in Figure 1.

3. Experiments
3.1. Qualitative Results
We qualitatively evaluate our method on video synthesis
tasks using models based on Stable Diffusion 1.5 (SD-
1.5) [14]. Specifically, we assess the effectiveness of Text
Slider in both text-to-video generation and real video edit-
ing. In addition, we demonstrate its ability to compose mul-
tiple sliders for controllable video generation. Please refer
to Appendix Section A for implementation details.
Text-to-Video Generation. We adopt AnimateDiff [5] as
our primary text-to-video framework due to its lightweight
design, efficiency, and adaptability to various personalized
image diffusion models. To evaluate the effectiveness of
combining AnimateDiff with Text Slider, we select four di-
verse attributes, each applied to a different object category:
smile on a person, alien effect on a car, winter effect on a
scene, and cartoon style. As shown in Figure 3, Text Slider
enables precise and continuous control over attribute inten-
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Figure 4. Comparison of Video-to-Video Results. MeDM [2]
combined with Text Slider enables fine-grained concept manipu-
lation, whereas Video-P2P [10] exhibits limited attribute control-
lability, particularly for facial attributes such as smile and age.

sity while preserving the spatial layout of the content. In
contrast, prompt-based methods often struggle to maintain
structural coherence and offer limited controllability.
Video-to-Video Generation. To assess the effectiveness
of Text Slider within a video-to-video translation frame-
work, we integrate it with MeDM [2], a zero-shot video
editing method based on image diffusion. MeDM perturbs
real video frames using SDEdit [11] and applies an image
diffusion model in a frame-by-frame manner. As shown
in Figure 4, we select two attributes, smile on a person
and rusty effect on a car, to examine the performance of
combining MeDM with Text Slider, and compare it against
Video-P2P [10]. Our method achieves fine-grained attribute
modulation while preserving spatial structure and temporal
consistency. In contrast, Video-P2P performs poorly on fa-
cial attributes and often distorts the original content. More-
over, Video-P2P requires time-consuming, per-video model
tuning, whereas Text Slider offers a plug-and-play solution
without any additional fine-tuning.
Composing Sliders. In Figure 5, we demonstrate the qual-
itative results of composing multiple Text Sliders in text-
to-video generation using AnimateDiff [5]. By sequen-
tially applying the surprised, glasses, and old attributes, our
method preserves structural consistency at each stage while
effectively modulating the intended concepts.

3.2. Comparison with Concept Slider
As shown in Table 1, compared to Concept Slider, our
method significantly reduces both the number of param-
eters and the training time while achieving comparable
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Figure 5. Slider Composition. The figure demonstrates the com-
posability of Text Slider in text-to-video generation, enabling se-
quential attribute modifications while preserving structural consis-
tency and effectively controlling target concepts.

SD-1.5 CLIP-s (↑) #Params(M) (↓) Time (min) (↓)

Concept Slider [4] 26.50 2.91 30
Text Slider (Ours) 25.97 0.66 3

SD-XL CLIP-s (↑) #Params(M) (↓) Time (min) (↓)

Concept Slider [4] 26.44 4.32 45
Text Slider (Ours) 26.88 0.66 3

Table 1. Comparison with Concept Slider. Text Slider signif-
icantly reduce ≈ 77% of the parameters and ≈ 90% of training
time in SD-1.5, and ≈ 85% of parameters and ≈ 93% of training
time in SD-XL while achieving comparable performance.

performance in CLIP scores. Moreover, unlike Concept
Slider, which requires separate training for each base model
(e.g., SD-1.5 and SD-XL), Text Slider generalizes naturally
across different architectures that share the same text en-
coder, such as SD-1.5 and SD-XL, without the need for re-
training. This highlights the superior adaptability and effi-
ciency of our approach. We also present qualitative results
in Figure S.1 and S.2 of supplementary material to further
validate the generalization ability of Text Slider on SD-XL.

4. Conclusion

We propose Text Slider, a precise concept control method
that is efficient, highly adaptable, plug-and-play, and com-
posable. Text Slider significantly reduces more than 77%
of both the number of parameters and the training time re-
quired to learn a slider. Moreover, it generalizes across
different Stable Diffusion architectures without retraining,
whereas Concept Slider requires separate training for each
model. Additionally, our approach naturally extends to text-
to-video and video-to-video generation, enabling precise
and continuous concept control.
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Slider Input Prompt Edited Prompt Checkpoint

Smile
“face photo of a person, moving,

light tone, delightful, bright”
“face photo of a smiling person, moving,

light tone, delightful, bright”
majicmixRealisticV2V25

Alien “photo of a car, moving” “photo of an alien car, moving” realistic-vision-V5.1-noVAE

Winter

“photo of coastline, rocks,
sunny weather, wind, waves, lightning, 8k uhd,

dslr, soft lighting, high quality,
film grain, Fujifilm XT3”

“photo of a winter coastline, rocks,
sunny weather, wind, waves, lightning, 8k uhd,

dslr, soft lighting, high quality,
film grain, Fujifilm XT3”

majicmixRealistic-V2V25

Cartoon
“A funny and charming robot

exploring a futuristic city”
“A funny and charming cartoon robot

exploring a futuristic city”
realistic-vision-V5.1-noVAE

Table S.1. Sliders, prompts, and model checkpoints used in qualitative experiments for text-to-video generation.

A. Implementation Details
All Text Sliders are trained for 500 epochs using the
AdamW optimizer with a learning rate of 2 × 10−4 and
bfloat16 precision. The LoRA rank is set to r =
4, and the guidance scale is η = 4. In all experi-
ments, LoRA modules are applied to every layer of the
clip-vit-large-patch14 text encoder, including
the projection layers within the self-attention and MLP
blocks. For video generation tasks, we follow the structure-
preserving strategy of SDEdit [11]. Specifically, LoRA
adapters are disabled during the initial denoising steps by
setting their multipliers to 0 until timestep t = 700, after
which the adapters are activated for the remaining steps.

A.1. Text-to-Video Generation
For the qualitative comparison in Figure 3 of the main pa-
per, we generate videos using AnimateDiff [5] in combina-
tion with the prompts and pre-trained checkpoints listed in
Table S.1. These prompts span a diverse set of subjects, hu-
man, vehicle, scene, and stylized character, highlighting the
generality and fine-grained controllability of our method in
various video generation scenarios.

To apply Text Slider, we integrate it into the text encoder
of AnimateDiff and perform inference using a scaling fac-
tor α = 0 ∼ 0.5 for each target concept. For prompt-based
baseline comparisons, concept control is attempted by di-
rectly inserting attribute keywords before the subject noun,
as shown in the “Edited Prompt” column of Table S.1.

A.2. Video-to-Video Generation
For qualitative evaluation of real video editing, we gener-
ate results using MeDM [2] combined with Text Slider, and
compare them against the baseline method, Video-P2P [10].
To integrate MeDM with Text Slider, we insert the slider
into the text encoder and perform inference with a scaling

Slider Input Prompt Edited Prompt
Smile ”a person cuddle a little creature” ”a smiling person cuddle a little creature”
Rusty ”a car” ”a rusty car”

Table S.2. Sliders and prompts used in qualitative experiments for
video-to-video generation.

SD-1.5 Age Smile Muscular Curly hair Winter weather

Concept Slider [4] 27.80 29.38 20.03 28.55 26.73
Text Slider (Ours) 28.76 29.06 20.74 25.35 25.96

SD-XL Age Smile Muscular Curly hair Winter weather

Concept Slider [4] 29.85 29.18 25.46 26.42 21.31
Text Slider (Ours) 30.51 27.66 23.80 27.70 24.71

Table S.3. Comparisons of CLIP scores for individual concept.

factor α = 0 ∼ 0.5 for the corresponding concept. For
Video-P2P, we use the ”Input Prompt” and “Edited Prompt”
entries from Table S.2 to perform attribute-specific video
editing.

A.3. Comparison with Concept Slider
For the quantitative comparison, we compute the
CLIP score over 5,000 image-prompt pairs using the
clip-vit-large-patch14 encoder to embed both
images and prompts. Specifically, we select five distinct
attributes, as listed in Table S.4, and generate 1,000 images
per attribute to evaluate the alignment between visual
output and textual descriptions. We also report the CLIP
scores for individual attributes in Table S.3.

B. Limitation
We observe that Text Slider exhibits limited controllabil-
ity when targeting specific objects within a scene. For in-
stance, in the presence of multiple objects, it often struggles
to apply attribute manipulation to a designated object. This
highlights a critical direction for future work: enhancing the
precision of concept control to allow attribute manipulation
localized to specific objects or regions.



Slider Input Prompt Evaluation Prompt
Age ”image of a person, photorealistic” ”image of an old person, photorealistic”
Smile ”image of a person, photorealistic” ”image of a person with smile, photorealistic”
Muscular ”image of a person, photorealistic” ”image of a muscular person, photorealistic”
Curly hair ”image of a person, photorealistic” ”image of a person with curly hair, photorealistic”
Winter weather A bustling city street, with people walking A bustling winter city street, with people walking

Table S.4. Sliders and prompts used in quantitative comparison with Concept Slider.

Age Curly hair Smile ChubbyLong hair
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Figure S.1. Qualitative Results of Text Slider on SD-XL. The figure showcases Text Slider’s ability to modulate human-related attributes
with varying strengths using SD-XL.
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Figure S.2. Qualitative results of Text Slider on SD-XL. The figure showcases Text Slider’s capability with SD-XL in modulating car,
style, and scene attributes across varying strengths.
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