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Abstract
Audio editing involves the arbitrary manipulation
of audio content through precise control. Al-
though text-guided diffusion models have made
significant advancements in text-to-audio gen-
eration, they still face challenges in finding a
flexible and precise way to modify target events
within an audio track. We present a novel ap-
proach, referred to as Prompt-guided Precise Au-
dio Editing (PPAE), which serves as a general
module for diffusion models and enables precise
audio editing. The editing is based on the in-
put textual prompt only and is entirely training-
free. We exploit the cross-attention maps of dif-
fusion models to facilitate accurate local editing
and employ a hierarchical local-global pipeline
to ensure a smoother editing process. Experi-
mental results highlight the effectiveness of our
method in various editing tasks.

1. Introduction
Recent progress in image synthesis (Ramesh et al., 2021;
Rombach et al., 2022; Ramesh et al., 2022) has inspired
the application of text-guided diffusion models in text-to-
audio (TTA) generation, known for their realism and diver-
sity (Huang et al., 2023b; Ghosal et al., 2023; Liu et al.,
2023a;b; Huang et al., 2023a; Yang et al., 2023a). Thanks
to large-scale training data and prompt-enhanced methods,
these diffusion models have demonstrated great potential
in modeling long continuous signal data, and have success-
fully learned to produce sounds based on given text.

However, these generative models still face challenges in
editing tasks, particularly in precise editing. Precise audio
editing involves modifying the target events within an au-
dio track while preserving the unrelated part unchanged.
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(a) Source Audio: A dog barking

(b) Precise Editing: Replace dog barking to gun shooting

(c) Traditional Editing: Replace dog barking to gun shooting

Figure 1: Precise audio editing. Such editing requires
modifying the target events while preserving the unrelated
events and keeping the overall structure unchanged.

As illustrated in fig. 1, precise editing (fig. 1b) replaces
”dog barking” with ”gun shooting” in the original place.
In contrast, traditional editing often overemphasizes the
replacement of the content itself, leveraging regeneration
steps to ensure the emergence of gun shooting, while often
changing the overall structure of the original audio (fig. 1c).

The key to precise editing lies in the ability to accurately
differentiate between targeted sections for editing and un-
related parts, ensuring that manipulations are strictly con-
fined to the intended areas. Image editing methods often
achieve this by providing spatial localization masks, which
can be time-consuming and labor-intensive. Furthermore,
such methods cannot be easily generalized to audio edit-
ing, as target events mixed in an audio piece are often dif-
ficult to identify and separate manually. More recently, re-
searchers mainly utilize pre-trained TTA generation models
or concentrate on end-to-end training with human-provided
instructions (Wang et al., 2023; Liu et al., 2023a; Huang
et al., 2023b; Yang et al., 2023c), while these methods
do not guarantee precision in the process of regeneration.
They can also be resource-intensive during the end-to-end
training process, as they require a large number of editing
demonstration pairs as training data.

In this work, we propose Prompt-guided Precise Audio
Editing (PPAE), a training-free approach for precise au-
dio editing. Building on the success of image editing tech-
niques that rely on attention map manipulation (Hertz et al.,
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Figure 2: The overview of the proposed PPAE. Given the edit instruction, the source audio will first be inverted into the
given diffusion model’s domain, and then edited on the attention-map level under the guidance of our editing controller.
The controller accomplishes precise editing by utilizing hierarchical guidance throughout the diffusion process. The whole
editing pipeline is training-free and is adaptable to common diffusion models.

2022; Parmar et al., 2023; Patashnik et al., 2023), PPAE
focuses on the cross-attention layer of diffusion models,
where text and audio features are interconnected. We
demonstrate that diverse types of precise audio editing can
be achieved by manipulating the cross-attention map dur-
ing the denoising process. Our approach serves as a flexible
audio editing interface, where users only need to provide
edited textual prompts. Additionally, it can function as a
plug-in editing module in various diffusion models.

To perform editing, we first convert the original audio into
edit-friendly noise spaces and then perform editing by in-
jecting cross-attention maps into the diffusion process. We
additionally design a hierarchical pipeline to guarantee the
editing effectiveness. Locally, we import a particular Fuser
module to integrate different attention maps seamlessly
in single diffusion steps. This integration is crucial for
mitigating the abrupt transitions often caused by sudden
changes in the attention map. Globally, we employ a boot-
strapping method to adjust the guidance scale, acknowl-
edging the variability of editing targets across different au-
dio samples. We find such a method allowing for tailored
editing, adapting to the unique requirements of each au-
dio piece. Our ablation studies confirm the effectiveness
of these innovations. Moreover, we observe that the edit-
ing targets in audio differ markedly from those in images,
necessitating distinct hyperparameters for optimal perfor-
mance. This distinction underlines the unique challenges
inherent in audio editing, and our method’s adaptability in
addressing these challenges.

To the best of our knowledge, our work showcases the

first attempt at utilizing attention map-level manipulation
to achieve precise editing for audio. The proposed PPAE
approach, compared with traditional audio editing meth-
ods, offers several key benefits: it achieves precise editing,
which can ensure the manipulations are confined to the in-
tended event; the editing process is flexible based on the
textual prompts; it is entirely training-free; and it is com-
patible with widely-used diffusion models. We hope that
this work serves as a step towards addressing the distinct
challenges associated with audio editing1.

2. Related Work
2.1. Diffusion-based TTA Models

Diffusion models have emerged as a promising approach
for generating high-quality and diverse samples, from im-
age synthesis (Ramesh et al., 2021; Rombach et al., 2022;
Ramesh et al., 2022) to text-to-audio generation (Kreuk
et al., 2022; Huang et al., 2023b; Ghosal et al., 2023;
Liu et al., 2023a). More recently, methods like Diff-
sound (Yang et al., 2023b) and AudioLDM (Liu et al.,
2023a;b) work based on the diffusion model to produce
better test-to-sound (TTS) and TTA generation results;
Tango (Ghosal et al., 2023) adopts an instruction-tuned
Large Language Models (LLM) FLAN-T5 to utilizing its
powerful representational ability in text-to-audio (TTA)
generation; Make-An-Audio (Huang et al., 2023b;a) lever-
ages prompt-enhanced methods to train diffusion models

1See the project page at https://sites.google.com/
view/icml24-ppae.
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with high-quality text-audio pairs.

2.2. Diffusion-based Image Editing

Text-conditioned editing based on diffusion models has
recently garnered significant interest in the image do-
main (Shi et al., 2023; Kawar et al., 2023; Hertz et al.,
2022; Zhang et al., 2023a). When compared to Generative
Adversarial Network (GAN)-based methods such as Drag-
GAN (Pan et al., 2023), diffusion-based approaches are
considered to have better generality and higher-quality
editing effects due to the advantages of diffusion mod-
els (Shi et al., 2023). On the one hand, techniques like
Glide (Nichol et al., 2021) and Diffusionclip (Kim et al.,
2022) excel at global editing or detailed local editing when
precise masks of the restricted area are provided. On the
other hand, works such as Prompt-to-Prompt (PTP) (Hertz
et al., 2022) achieve intuitive image editing by examining
the semantic strength in cross-attention maps and perform-
ing injection. Various inversion methods (Mokady et al.,
2023; Huberman-Spiegelglas et al., 2023) have been intro-
duced to help invert the given image, thereby facilitating
further editing.

2.3. Audio Editing

Traditional audio editing methods predominantly focus on
global editing tasks, such as audio super-resolution (Birn-
baum et al., 2019), audio inpainting (Adler et al., 2012;
Moliner & Välimäki, 2023; Wang et al., 2023) and style
transfer (Grinstein et al., 2018; Lu et al., 2019; Cı́fka et al.,
2020; Netzorg et al., 2023). Among these, uSee (Yang
et al., 2023c) proposes a unified model to perform speech
editing given text description and specific arguments; Loop
Copilot (Zhang et al., 2023b) and InstructME (Han et al.,
2023) enable generating and refining generated music. Re-
cent research has started to explore more fine-grained audio
editing techniques, concentrating on tasks such as adding,
removing, or replacing particular audio events within a spe-
cific audio piece. Audit (Wang et al., 2023) trains a latent
diffusion model on editing tasks and supports instruction-
guided audio editing. More recently, TTA generation is
combined with personalization methods to meet user pref-
erences (Plitsis et al., 2024).

2.4. Comparison

Achieving precise editing in audio is challenging, espe-
cially when compared to visual media editing, due to the
inherent temporal and spectral intricacies of audio signals.
Conventional approaches like Audit and PerMod depend
on training a latent diffusion model specifically for audio
editing tasks and regeneration. Conversely, PPAE enables a
training-free and flexible manipulation of audio content and
is not limited to music or speech editing only. Addition-

ally, PPAE offers a higher degree of granularity, empower-
ing users to edit specific audio elements within a track—a
level of precision that has been challenging to attain with
existing methods. This fine-grained control also parallels
the progress seen in text-conditioned image editing using
diffusion models, while uniquely adapted to the audio do-
main in editing tasks.

3. Method
Formally, let A represent a given audio piece, and P de-
notes the textual description (prompt) of that audio piece;
we aim to edit the input audio guided solely by the edited
text prompt P ∗, resulting in the final edited audio A∗. Re-
searchers are also interested in cases where the original text
prompt is absent but only with a command such as ”Re-
place theA with aB.” We note that this scenario can be ad-
dressed through audio captioning. In this paper, we mainly
focus on the former task.

3.1. System Overview

Our method comprises three parts: an inversion module
that maps the given audio piece into the pre-trained Latent
Diffusion Model (LDM)’s domain, an LDM pre-trained
on audio, and a hierarchical editing controller which is
plugged into the LDM that facilitates audio editing. LDMs
for audio generation often contain an variational auto-
encoder (VAE) that projects the input mel-spectrograms
into the latent space, a textual-prompt encoder that trans-
forms the text prompt into embeddings, and a diffusion net-
work. The system’s overview is illustrated in 2.

3.2. LDM

The fundamental concept of diffusion models revolves
around the iterative refinement of a randomly sampled
noise input xt ∼ N (0, I), in a controlled manner, to x0.
With a trained perceptual compression model, LDMs focus
on the efficient, low-dimensional latent space, where the
goal is to derive z0 from zt. With a given text description
P , to perform sequential denoising, we train a network ϵθ
predict artificial noise, following the objective:

min
θ

Ez0,ϵ∼N (0,I),t∼Uniform(1,T )∥ϵ−ϵθ(zt, t, ψ(P ))∥22, (1)

where the conditionC = ψ(P ) is the text embedding of the
description. In TTA generation, z is the latent representa-
tion of the mel-spectrogram of the audio, where researchers
often leverage a pre-trained VAE to help compress the mel-
spectrogram into the latent space.

For the conditional generation of LDMs, classifier-free
guidance has proven to be an effective method for text-
guided generation and editing (Ho & Salimans, 2022).
When given a latent and a textual prompt, the generation
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is performed both conditionally and unconditionally and
then extrapolated according to a given weight. Formally,
let ∅ = ψ(” ”) be the null text embedding, the generation
can be defined by:

ϵ̃θ = w · ϵθ(zt, t, ψ(P )) + (1− w) · ϵθ(zt, t,∅), (2)

where w denotes the guidance scale.

3.3. Attention Map Editing

Popular diffusion-based generation models utilize U-
Nets (Ronneberger et al., 2015) with the cross-attention
mechanism (Vaswani et al., 2017) as the diffusion net-
work. When doing conditional generation, the embeddings
of different modalities are often fused in the cross-attention
layers. Researchers have shown that injecting the cross-
attention maps of the input enables precise editing while
maintaining the original composition and structure of the
original input (Hertz et al., 2022). As commonly defined,
we note attention maps as:

M = Softmax(
QKT

√
d

), (3)

where Q = ℓQ(ϕ(zt)) is the query matrix of the deep
spatial features of the noisy input, K = ℓK(ψ(P )) and
V = ℓV (ψ(P )) are the key matrix and the value matrix
of the textual embedding, and ℓQ, ℓK , ℓV are the learned
linear projections.

In image editing, researchers perform replacements to get
a new attention map M∗ when generating the new target
z∗t from P∗, and override the original attention map M in
the computation of a single step t of the diffusion process,
noted as DM(z∗t , P

∗, t, s){M ← M̂c}. Although this ap-
proach is also applicable in TTA editing, we observe that
a significant abrupt change in the diffusion step may result
in the generation of indistinct audio with low quality. An
intuitive solution is to incrementally incorporate the edit-
ing component into the original attention map, transitioning
from a low to a high ratio. We propose a fusion mechanism,
utilizing a cosine scheduler to manage the transition of the
attention map during the editing process. We denote this
asMedit = Fuser(Mt,M

∗
t , t). For different editing tasks,

we denote our method as follows:

Fuser :=



Sca(t) ·M∗
t + (1− Sca(t)) ·Mt,

for Audio Replace
Sca(t) · (M∗

t )i,j + (1− Sca(t)) ·Mt,

for Audio Refine
c · Sca(t) · (M∗

t )i,j + (1− Sca(t)) ·Mt,

for Audio Reweight
(4)

where Sca(t) is the fusion ratio determined by the
CosineAnnealing scheduler at step t, (M∗

t )i,j means that

we only modify the pixel value i according to the se-
lected text token j, and c denotes the scale extent of the
reweighted token in Reweight task. The CosineAnnealing
scheduler can be expressed as:

Sca(t) = ηmin+
1

2
(ηmax−ηmin)

(
1 + cos

(
π · t− ts

te − ts

))
,

(5)

where ts and te represent the starting and ending steps of
the transitional phase during diffusion steps respectively,
ηmin and ηmax are the minimum and maximum values for
the ratio, which commonly be 1 and -1.

3.4. Inversion

Text-guided editing with the method mentioned above re-
quires inverting the given audio and textual prompt. Many
previous works on text-to-image generation have focused
on Denoising Diffusion Implicit Models (DDIM) inver-
sion (Song et al., 2020; Dhariwal & Nichol, 2021), as
DDIM sampling is considered as a deterministic sampling
process that maps the initial noise to an output.

However, such inversion has been found lacking when
classifier-free guidance is applied. To overcome this issue,
Null-text Inversion (Mokady et al., 2023) imports pivotal
inversion for diffusion models and null-text optimization
to achieve high-fidelity editing of natural images. DDPM-
based inversion methods have also been developed (Wu
& De la Torre, 2022; Huberman-Spiegelglas et al., 2023).
We have adapted different inversion modules according to
LDMs, see appendix B for details.

3.5. Guidance Bootstrapping

The guidance scale w plays a crucial role in controlling
the level of importance assigned to a given prompt dur-
ing the generation process in diffusion models. Gener-
ally, there exists a common scale for w that enables the
model to produce creative or precise outputs. For example,
Stable Diffusion (Rombach et al., 2022)’s w lies between
5 and 15. However, determining a universally applicable
w for audio generation presents a challenge, as the edit-
ing components in audio generation can vary significantly,
ranging from the resounding nuances of human voices to
blurred background sounds. Existing work (Liu et al.,
2023a) has also shown the effectiveness of guidance scale
on key metrics like Kullback–Leibler (KL) and Fréchet dis-
tance (FD). We introduce a bootstrapping approach that
aims to avoid the selection of the guidance scale. We ini-
tialize a list of W = [w1, w2, w3, ...wn] before editing,
and then computing z0 for each wi separately. We employ
a Filter module to help get the final editing results. By
default, PPAE uses a contrastive language-audio pretrain-
ing (CLAP) model (Elizalde et al., 2023) as the naive filter
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function f to identify the output with the highest relevance
to the target prompt. The process can be fully paralleled.

3.6. Overall Framework

The overall algorithm of PPAE can be described as fol-
lows: given an audio piece and its prompt, we firstly set
the guidance scale to 0 and perform an inversion on the
hidden space with the source prompt; then we do denois-
ing process on the source prompt and target prompt sepa-
rately, under the guidance of the PPAE editing controller.
Locally, we edit the attention map based on the editing in-
structions under the guidance of Fuser, and decode the final
latent variable and filter on the guidance scale to obtain the
edited audio. More details can be found in appendix B.

Algorithm 1 PPAE

1: Input: A piece of audio a and its description as the
source prompt P , a target prompt P ∗.

2: [Optional for Fuser]: ηmin and ηmax, ts and te;
3: [Optional for Bootstrapping]: W = {wi};
4: [Optional for Filter]: Filterw = filterw(a, f);
5: Output: A piece of edited audio a∗.

6: w = 0, z0 = Encoder(a);
7: {zT , zT−1, ..., z1} = Inversion(z0, P, w);
8: z∗T ← zT ;
9: for t = T, T − 1, . . . , 1 do

10: zt−1,Mt ← DM(zt, P, t);
11: M∗

t ← DM(z∗t , P
∗, t);

12: Mct ← Fuser(Mt,M
∗
t , t);

13: z∗t−1 ← DM(z∗t , P
∗, t,W ) with M ←Mct;

14: end for
15: a∗ = Filterw(Decoder(z

∗
0));

16: Return: a∗

4. Experiments
4.1. Editing Task

We mainly focus on the three following audio editing tasks:

Audio Replace: This task aims to replace a specific audio
event in a given audio piece with another, while keeping the
remaining part unchanged. For example, given an audio
piece ”A cat meowing and then a baby crying,” the task
could involve changing ”cat meowing” to ”dog barking.”

Audio Refine: Audio Refine here involves modifying an
existing audio piece to meet additional requirements or
preferences. The task aims to transform the original au-
dio piece according to various extra adjective descriptions,
such as altering the style or incorporating new features,
while maintaining the essence of the music.

Audio Reweight: Audio Reweight is to alter the audio bal-
ance to emphasize or de-emphasize some aspects without

compromising the audio’s overall clarity. This could in-
volve amplifying the sound of raindrops in a track where
rain and thunder are present, or reducing the volume of
background music in a conversation.

We only focused on these three local editing tasks here, as
these tasks allow for the addition, drop, or replacement of
certain audio elements or adjusting the balance of different
sounds. These tasks can often be predictable and repetitive
across different audio pieces and files.

4.2. Test Set

We construct our test set utilizing a cleaned subset of the
Fsd50k dataset (Fonseca et al., 2021; Li et al., 2023). A
pivotal aspect of precise audio editing is implementing pre-
cise modifications while maintaining the other elements of
the audio unchanged. In each task, we select two distinct
audio clips, treating one as the target for editing. For each
task, we randomly sample 100 editing tasks as the test set.
See appendix F for the detailed construction process. We
also select preliminary editing tasks as case studies.

4.3. Metrics

For objective metrics, we leverage commonly used met-
rics to evaluate the editing effects. We leverage Fréchet
distance (FD), Fréchet audio distance (FAD), Spectral dis-
tance (SD), and Kullback–Leibler (KL) divergence to mea-
sure the distance between the edited audio and the ground
truth. Specifically, we also use CLAP Score in some cases
as an extra metric to calculate how well the target prompt
aligns with the edited audio, as for tasks like Refine and
Reweight, it is challenging to construct a corresponding
target audio that can serve as ground truth for comparison.
For subjective metrics, we primarily employed two met-
rics: Relevance, which measures how well the output audio
matches the input editing prompt, and Consistency, which
assesses the extent to which the original audio is edited in
accordance with the editing goal. Details of these metrics
can be found in appendix C and appendix D.

4.4. Experimental Settings

In this work, we primarily utilize Tango (Ghosal et al.,
2023) as our TTA backbone model due to its success in
TTA generation, while it’s worth mentioning that our meth-
ods can be applied to a wide range of popular diffusion
models. We run our experiments with 100 inference steps
and retain the original hyperparameters from Tango. For
editing, we run the denoising steps with 0.8 cross-replace
steps, 0.0 self-replace steps, and 50 skip steps. The boot-
strapping num n is set to 5. We reset our Fuser configs
to fit these settings, mainly ηmin and ηmax, ts, and te. We
also leverage our reproduced PTP for audio as an editing
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baseline. See appendix B for detailed discussion about the
backbone model choice and baseline implementation.

5. Results
5.1. Audio Replace

(a) A baby crying while a man talking.wav (Source)

(b) A baby crying while a woman talking.wav (Edited)

(c) A baby crying while a woman talking.wav (Regenerated)

Figure 3: Case Study (Audio Replace)

The PPAE efficiently performs replacement within a given
audio piece by manipulating the attention map, and exhibits
sufficient precision to preserve the overall audio structure.
As demonstrated in fig. 3, the PPAE replaces the ”man
talking” event with ”woman talking” while maintaining the
original ”baby crying” content and even the talking compo-
nent in the initial audio piece, in contrast to the regenerated
result. We quantitatively evaluate the replacement editing
outcomes as presented in table 1. The results reveal that the
PPAE achieves substantial editing enhancements across the
majority of metrics.

Table 1: Replace Editing Results

Replace FAD ↓ LSD ↓ FD ↓ KL ↓ CLAP↑
PPAE 2.15 1.51 27.53 1.30 0.62

Regenerated 4.93 1.74 32.94 1.69 0.63

Unedited 1.86 5.98 45.99 3.28 0.12

PTP 2.95 2.83 45.91 4.42 0.57

Despite the scarcity of competitive open-source baselines
for audio editing tasks, we attempt to compare the PPAE
with Audit. This alternative audio editing technique attains
state-of-the-art performance in analogous tasks. The edit-
ing approach employed by the PPAE diverges significantly
from Audit’s, as the latter trains a specialized end-to-end
diffusion model on editing instructions and an extensive
set of data pairs. Conversely, the PPAE conducts training-
free edits on attention map layers, rendering it compatible
with a diverse range of diffusion models. Since Audit is
not open-source, we compare these two audio editing tech-
niques using Audit’s publicly accessible demos, as depicted
in fig. 4. For the task of ”Replace laughter to trumpet,”

(a) Task: Replace laughter to trumpet (Source Audio)

(b) Edited by PPAE

(c) Edited by Audit

Figure 4: Case Study (PPAE compared with Audit)

Audit regenerates the audio based on the given instruction,
resulting in a change in the audio structure. On the other
hand, PPAE only performs replacement on attention maps
related to ”laughter,” thus preserving the original structure.
The source and target prompts are generated through audio
captioning and human relabeling. We want to additionally
note that the editing quality of PPAE can be affected by the
data bias between the input audio and the training set of the
utilized diffusion model.

5.2. Audio Refine

(a) A piece of music.wav (Source)

(b) A piece of jazz music.wav (Edited)

(c) A piece of shrill music.wav (Edited)

Figure 5: Case Study (Audio Refine)

PPAE demonstrates that injecting into the attention map
can aid in enhancing or modifying a given audio clip to
meet supplementary requirements or preferences. As illus-
trated in fig. 5, when provided with the source audio ”a
piece of music,” PPAE successfully refines it according to
different adjective descriptions. It transforms the original
audio into a different style, such as ”jazz,” or infuses it with
a new characteristic, like ”shrill,” while striving to preserve
the original musical content.

We present the Refine editing effects in table 2. For com-
parison purposes, we report the corresponding metrics of
the PPAE editing results alongside the unedited audio. It is
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Table 2: Refine Editing Results

Refine FAD ↓ LSD ↓ FD ↓ KL ↓ CLAP↑
PPAE 6.86 1.55 43.31 1.92 0.63

Unedited 8.19 1.70 49.91 1.85 0.25

PTP 9.35 1.94 45.88 1.17 0.32

worth noting that obtaining an audio with the same struc-
ture that also satisfies the prompt is challenging. There-
fore, we regenerate the audio according to the target prompt
as the ground truth, which results in worse performance in
terms of distance metrics. Nevertheless, the PPAE results
still outperform the unedited audio, demonstrating signif-
icant editing effects. For the CLAP score, we employ
CLAP to calculate the similarity between the edited audio
and the target prompts. The CLAP scores are softmaxed.
Generally, the results demonstrate that the refined editing
effects significantly improve the audio quality and better
align with the target prompts.

5.3. Audio Reweight

(a) A woman talking and a dog barking.wav, c = 2

(b) A woman talking and a dog barking.wav, c = 0

(c) A woman talking and a dog barking.wav, c = -2

Figure 6: Case Study (Audio Reweight), controlled to-
ken = ”dog barking”

Table 3: Reweight Editing Results

Reweight Original 2 1 0 −1 −2

Reweight ↑↓ 0.74 0.83 0.73 0.35 0.10 0.12

Reweight(PTP) ↑↓ 0.74 0.79 0.74 0.49 0.32 0.25

Unrelated → 0.91 0.93 0.91 0.89 0.82 0.85

Our methods demonstrate effective control in strengthen-
ing or weakening a specific audio event based on the tex-
tual token. fig. 6 illustrates edited audio with prompts ”A
woman talking and a dog barking,” where we reweight on
the ”barking” effect. Results show that the barking com-
ponent in the edited audio is controlled according to the
specified controlling parameter c.

We mainly employ the CLAP Score to quantitatively eval-
uate the reweight degree of the target event in the given
audio. For the results presented in table 3, we show
the CLAP scores for the reweighted event and unrelated
event in reweight editing. See the error bars in table 7.
Take ”A woman talking and a dog barking” as an exam-
ple. If we want to reweight the ”dog barking” compo-
nent, we compute the CLAP score between the edited au-
dio and ”dog barking” to obtain the reweight score, and ”a
woman talking” to get the unrelated score. Our edited re-
sults demonstrate that a positive controlling parameter ef-
fectively strengthens the reweighted component in the au-
dio, enabling the CLAP model to recognize it more accu-
rately. Conversely, a negative controlling parameter assists
in weakening this component. Also, the results indicate
that as the controlling parameter decreases from 2 to -2,
the reweighted component diminishes. The unrelated com-
ponents remain relatively stable, showing that the edit will
not change the other attributes of the audio.

5.4. Subjective Evaluation

Table 4: Subjective Evaluation Results

Metric Replace Refine Reweight

PPAE Comp PPAE Comp PPAE Comp

Relavence ↑ 95.71 89.28 81.42 81.42 99.28 92.14

Consistency ↑ 95.0 81.42 85.71 81.42 94.28 82.85

We assessed the editing effects of the PPAE through a Sub-
jective Evaluation. The evaluation involves judging the rel-
evance and consistency of each edited audio file with its
file name and the original audio file. The metric Relevance
refers to the match between the audio and the input tex-
tual prompt, whether the text content appears in the audio,
and whether the audio corresponds to the text’s semantics.
Consistency assesses the degree of similarity between the
current audio and the original audio.

For each task, we engaged 14 participants to evaluate the
editing effect and precision on 30 randomly sampled edited
audio pairs. We leverage regenerated audio based on P ∗

as the comparison. The results in table 4 show that PPAE
significantly improves the precision of the editing while
maintaining a good editing effect, whereas the regenerat-
ing baseline failed in terms of consistency. See the error
bars in table 8. More details of our Subjective Evaluation
can be found in appendix D.

5.5. Ablation Study

5.5.1. GENERATION CONFIGURATIONS

Specific generation configurations significantly impact the
output quality. In particular, configurations derived from

7
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Table 5: Ablation study on the generation configuration.
We show editing results with different generation configu-
rations, especially the guidance scale w, the cross-replace
steps Cross, and the self-replace steps Self .

Parameters FAD↓ LSD↓ FD↓ KL↓ CLAP↑
7/0.8/0 5.97 2.01 40.90 1.88 0.51

25/0.8/0 3.34 1.62 25.74 0.62 0.68

75/0.8/0 3.67 1.98 43.24 1.83 0.69

75/0.8/0.2 12.92 1.73 48.90 1.62 0.57

75/0.6/0.2 6.79 2.11 35.63 1.37 0.41

Table 6: Ablation study on the Fuser with different
schedulers. Editing results with different schedulers show
that a scheduler can help generate better-edited audios.

Fuser Scheduler FAD↓ LSD↓ FD↓ KL↓
PTP(w/o) 5.36 2.09 31.32 0.72

Exponential 3.65 1.51 35.02 1.21

Linear 3.47 1.61 25.74 0.62

CosineAnnealing 3.15 1.73 25.75 0.63

image generation and editing sometimes translate poorly
when applied to audio. Among these configurations, guid-
ance scales and replace steps are vital for successful gener-
ation and editing effects.

We conduct several groups of editing studies, as shown in
table 5. Generally, generation with the cross-replace steps
around 0.8 and self-replace steps around 0 improves the
metrics. Whilew around 25 achieves the best performance,
the generation can also potentially work with a larger or
smaller guidance scale. These results also demonstrate the
importance of guidance bootstrapping, as we cannot find a
universally applicable w. A more extensive guidance scale
results can lead to a more significant editing effect, as evi-
denced by the CLAP score, although it may affect the qual-
ity of the generated audio. An alternative solution is to in-
crease the diffusion steps while keeping the guidance scale
small. We have concluded that steps = 1000/w generally
works.

5.5.2. ATTENTION-MAP FUSER SCHEDULER

The Fuser scheduler controls when and how the atten-
tion map of the source audio and the edited audio are
mixed, thus being the critical module in the proposed edit-
ing pipeline here. In PPAE, we use the CosineAnnealing
scheduler, while here we compare the editing effects of
different schedulers like linear and exponential schedulers
without bootstrapping. Details of these schedulers can be
found in appendix E. The results are shown in table 6.

We have observed that the Fuser module enhances the edit-
ing effects compared to the original PTP model. Addi-
tionally, editing results slightly vary when different Fuser
schedulers are used, with the CosineAnnealing scheduler
proving slightly superior to the linear and exponential
schedulers. Interestingly, the PTP model without a Fuser
exhibits the most drastic changes (fig. 26), while the Co-
sine function is the most subtle, which corresponds to the
editing effects. A plausible explanation could be that it fa-
cilitates a smoother combination of noisy latents, thereby
aiding in merging sources from different audios. This con-
clusion has been similarly tested on images, where re-
searchers linearly interpolate the noisy latent from various
sources (Dong et al., 2023). While they observed cluttered
content in images due to the spatial (rather than semantic)
mix of the source object and the edited object, we find such
a problem is quite different in audio editing.

5.5.3. DISCUSSION ABOUT THE HYPERPARAMETERS

There are a number of hyperparameters introduced by this
approach such as the number of inference steps, the guid-
ance scale, and the parameters of the cosine scheduler.
While the method is training-free in that the diffusion
model need not be re-trained, results indicate that selection
of these parameters is important for performance. We con-
sider this aspect not as a drawback, but as a strategic design
choice. Firstly, for the majority of editing tasks, there ex-
ist common selections for these hyperparameters that have
been empirically found to perform well across a wide range
of scenarios. This standard configuration serves as a solid
starting point for users, ensuring that effective editing can
be achieved without the need for extensive parameter tun-
ing in general cases. For certain parameters, such as the
guidance scale, we have developed a bootstrapping strat-
egy that simplifies the selection process. This strategy as-
sists users in automatically identifying appropriate parame-
ter values based on the characteristics of their specific audio
editing tasks, reducing the complexity involved in manual
tuning. Secondly, the inclusion of these hyperparameters
was a deliberate choice to provide users and researchers
with the flexibility needed to fine-tune the editing process
according to specific needs and constraints. This flexibility
is paramount in the diverse field of audio editing, where the
optimal settings for hyperparameters can significantly vary
depending on the task at hand and the specific characteris-
tics of the audio data being processed.

More details and further ablation studies on other configu-
rations can be found in appendix G.

6. Audio Refusion
The previous success of audio editing based on attention
maps sets the stage for us to tackle a more challenging task

8
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(a) A man talking and a soft music.wav (Source)

(b) A woman talking and a jazz music.wav (Source)

(c) A man talking and a jazz music.wav (Refused)

(d) A woman talking and a soft music.wav (Refused)

Figure 7: Case Study (Audio Refuse)

called Audio Refusion: given two audio pieces, a1 + a2
and a3 + a4, the goal is to create a fusion, such as a1 + a4.
We introduce Audio Refusion here to further demonstrate
PPAE’s editing capability.

We perform attention map fusion as follows:

Fuser := Sca(t) ·(M1,t)i,j+(1−Sca(t)) ·(M2,t)k,l, (6)

where M1 and M2 represent the attention maps from the
two given audio sources, (M1)i,j and (M2)k,l denote dif-
ferent components of these audio sources, such as the se-
lected text token j from the first audio and the selected text
token l from the second audio. We fuse their attention maps
Mi and Mk under the guidance of the fuser scheduler. It is
important to note that the scheduler should aim for a more
balanced fusion, as we are combining the attention maps
rather than replacing them. We recommend setting ηmin
and ηmax to 0.4 and 0.6, respectively, for optimal results.

Audio Fusion offers significant creative opportunities in au-
dio production while nevertheless presenting considerable
challenges. We demonstrate the fusion editing in fig. 7.
As shown, we are given two distinct audio pieces featur-
ing human speech and different music backgrounds, and at-
tempt to arbitrarily combine the speech with different mu-
sic backgrounds through one-step editing. The PPAE suc-
cessfully fuses audio components from different sources by
utilizing inversion and fusion techniques in the attention
map. Although the original audio content of the event is
preserved, as shown in fig. 7, we observe that such fusion
does not guarantee precise editing at the structural level.
This can be attributed to the fact that attention map fusion
does not inherit the structure from the source audio, unlike

injection methods used in previous tasks such as replace-
ment.

7. Conclusion
In this paper, we introduce a novel approach PPAE for
precise audio editing. By adeptly manipulating the atten-
tion map of a pre-trained diffusion model, we have demon-
strated a training-free and adaptive approach for precise au-
dio editing within diffusion models. Our approach facili-
tates a wide range of audio editing tasks, including content
replacement and recombination, but does so while preserv-
ing the semantic essence and overall structure of the origi-
nal audio. The experiments conducted showcase its poten-
tial as a highly effective editing tool. We hope our work can
offer a new horizon in audio processing that is both precise
and flexible to a myriad of audio editing needs.

future work We see several potential avenues for en-
hancing the capabilities and applications of our PPAE
framework. Briefly, 1) while PPAE demonstrates signifi-
cant advancements in editing efficiency and flexibility, fur-
ther research is needed to enhance the overall audio quality;
2) PPAE and similar frameworks require processing time
that limits their use in real-time applications, as the diffu-
sion process is relatively slow. 3) it’s crucial to continue ex-
ploring mechanisms for ensuring the ethical use of PPAE,
including safeguards against misuse for creating mislead-
ing or harmful content.

Impact Statement
The proposed PPAE is thought beneficial to audio genera-
tion and productions related to audio, as it provides a more
precise and flexible way to edit audio content automati-
cally. It can potentially enhance the efficiency and effec-
tiveness of audio editing processes in various industries,
and make audio editing more accessible to a broader range
of users. The potential negative social impact of our meth-
ods mainly lines in the fact that precise audio editing tech-
nologies can give the evolving landscape of digital content
creation and the potential for misuse in generating fake or
misleading content. We advocate for increased focus on
addressing challenges related to the authenticity of content
and its ethical utilization.
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A. More editing results
A.1. Audio Replace

(a) A man talking and a soft music.wav (Source)

(b) A woman talking and a soft music.wav (Edited by PPAE)

(c) A woman talking and a soft music.wav (Regenerated)

Figure 8: Case Study (Audio Replace)

(a) A man talking and a baby crying.wav (Source)

(b) A woman talking and a baby crying.wav (Edited by PPAE)

(c) A woman talking and a baby crying.wav (Regenerated)

Figure 9: Case Study (Audio Replace)

(a) The water flowing and a man talking.wav (Source)

(b) The water flowing and a woman talking.wav (Edited by PPAE)

(c) The water flowing and a woman talking.wav (Regenerated)

Figure 10: Case Study (Audio Replace)

(a) A man talking and a jazz music.wav (Source)

(b) A man talking and a rock music.wav (Edited by PPAE)

(c) A man talking and a rock music.wav (Regenerated)

Figure 11: Case Study (Audio Replace)

(a) A dog barking and water flowing.wav (Source)

(b) A dog barking and wind blowing.wav (Edited by PPAE)

(c) A dog barking and wind blowing.wav (Regenerated)

Figure 12: Case Study (Audio Replace)

(a) a man applause and a dog barking.wav (Source)

(b) a man applause and a metal collision.wav (Edited by PPAE)

(c) a man applause and a metal collision.wav (Regenerated)

Figure 13: Case Study (Audio Replace)
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A.2. Audio Refine

(a) A piece of music.wav (Source)

(b) A piece of rock music.wav (Edited by PPAE)

(c) A piece of rock music.wav (Regenerated)

Figure 14: Case Study (Audio Refine)

(a) A man talking.wav (Source)

(b) A man talking in a large room.wav (Edited by PPAE)

(c) A man talking in a large room.wav (Regenerated)

Figure 15: Case Study (Audio Refine)

(a) A dog barking and raining.wav (Source)

(b) A dog barking and raining heavily.wav (Edited by PPAE)

(c) A dog barking and raining heavily.wav (Regenerated)

Figure 16: Case Study (Audio Refine)

(a) A dog barking and a car engine running.wav (Source)

(b) A dog barking and a car engine running in a far place.wav
(Edited by PPAE)

(c) A dog barking and a car engine running in a far place.wav
(Regenerated)

Figure 17: Case Study (Audio Refine)

(a) A woman talking and a dog barking.wav (Source)

(b) A woman talking and a dog barking loudly.wav (Edited by
PPAE)

(c) A woman talking and a dog barking loudly.wav (Regenerated)

Figure 18: Case Study (Audio Refine)

(a) A duck quacking and gunshot.wav (Source)

(b) A duck quacking and loud gunshot.wav (Edited by PPAE)

(c) A duck quacking and loud gunshot.wav (Regenerated)

Figure 19: Case Study (Audio Refine)
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A.3. Audio Reweight

(a) Someone talking and a dog barking.wav, c = 2

(b) Someone talking and a dog barking.wav, c = 0

(c) Someone talking and a dog barking.wav, c = -2

Figure 20: Case Study (Audio Reweight)

(a) A man talking and a dog barking.wav, c = 2

(b) A man talking and a dog barking.wav, c = 0

(c) A man talking and a dog barking.wav, c = -2

Figure 21: Case Study (Audio Reweight)

(a) The water flowing and a dog barking.wav, c = 2

(b) The water flowing and a dog barking.wav, c = 0

(c) The water flowing and a dog barking.wav, c = -2

Figure 22: Case Study (Audio Reweight)

(a) The rain falling and a dog barking.wav, c = 2

(b) The rain falling and a dog barking.wav, c = 0

(c) The rain falling and a dog barking.wav, c = -2

Figure 23: Case Study (Audio Reweight)

(a) The machine clicks and a dog barking.wav, c = 2

(b) The machine clicks and a dog barking.wav, c = 0

(c) The machine clicks and a dog barking.wav, c = -2

Figure 24: Case Study (Audio Reweight)

(a) A man talking and firework.wav, c = 2

(b) A man talking and firework.wav, c = 0

(c) A man talking and firework.wav, c = -2

Figure 25: Case Study (Audio Reweight)
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B. TTA Models and Preliminaries
B.1. TTA Models

We leverage Tango (Ghosal et al., 2023) as our baseline
model in this work for its ability to understand complex
concepts in the textual description. We note that our pro-
posed method is also compatible with widely-used diffu-
sion structures, such as Audioldm (Liu et al., 2023a;b)
and Make-An-Audio (Huang et al., 2023b;a). In gen-
eral, these models consist of three primary components:
i) a textual-prompt encoder, ii) a LDM, and iii) a mel-
spectrogram/audio VAE. The textual-prompt encoder pro-
cesses the input audio description, which is then utilized to
create a latent audio representation or audio prior to stan-
dard Gaussian noise through reverse diffusion. Following
this, the mel-spectrogram VAE’s decoder generates a mel-
spectrogram from the latent audio representation. Finally,
a vocoder receives the mel-spectrogram as input to produce
the resulting audio. Our PPAE method only influences the
LDM part.

B.2. Inversion

We elaborate on the inversion function in section 3.6, which
involves extracting a sequence of noise vectors that can re-
construct the given source content (image or audio) when
used in the reverse diffusion process. Generally, there are
two main categories of inversion studied: DDIM inversion
and Denoising Diffusion Probabilistic Models (DDPM) in-
version. The DDIM scheme employs a deterministic sam-
pling process that maps a single initial noise vector to a
generated image, making DDIM inversion relatively sim-
pler. We implement DDIM inversion following the well-
known Null-text Inversion algorithm (Mokady et al., 2023),
as depicted in algorithm 2:

Algorithm 2 Null-text inversion (DDIM Inversion)
Input: A source prompt embedding C = ψ(P) and input
image I.
Output: Noise vector zT and optimized
embeddings.{∅t}Tt=1 .

Set guidance scale w = 1;
Compute the intermediate results z∗T , . . . , z

∗
0 using

DDIM inversion over I;
Set guidance scale w = 7.5;
Initialize z̄T ← z∗T , ∅T ← ψ(””);
for t = T, T − 1, . . . , 1 do

for j = 0, . . . , N − 1 do
∅t ← ∅t − η∇∅

∥∥z∗t−1 − zt−1(z̄t,∅t, C)
∥∥2
2
;

end for
Set z̄t−1 ← zt−1(z̄t,∅t, C), ∅t−1 ← ∅t;

end for
Return z̄T , {∅t}Tt=1

However, it has been observed that such a DDIM inver-
sion method only becomes effective when a large number
of diffusion timesteps are used. Even then, it often results
in less than optimal outcomes in text-guided editing. Al-
though the native DDPM noise space is not conducive to
editing, researchers have attempted to employ alternative
inversion methods to fit better and achieve a more con-
trollable editing space. We adopt the Edit-friendly Inver-
sion (Huberman-Spiegelglas et al., 2023) in DDPM scenar-
ios, as demonstrated in algorithm 3:

Algorithm 3 Edit-friendly DDPM inversion

Input: real image x0.
Output: {xT , zT , . . . , z1}.
for t = 1 to T do
ϵ̃ ∼ N (0, 1);
xt ←

√
ᾱtx0 +

√
1− ᾱtϵ;

end for
for t = T to 1 do
zt ← (xt−1 − µ̂t(xt))/σt;
xt−1 ← µ̂t(xt) + σtzt; // to avoid error accumulation

end for
Return: {xT , zT , . . . , z1}

B.3. Baselines

We reimplement the PTP method (Hertz et al., 2022) for
audio editing as one of our baselines, primarily because it
is closely related to the editing techniques we are explor-
ing. Originally, the PTP method was designed for image
editing, where attention maps from the original image are
injected into the edited image’s attention maps during the
diffusion process. To adapt this method for audio input,
we migrate PTP to work with TTA LDMs, focusing on the
latent representation of the mel-spectrogram for the input
audio. It is worth noting that most existing editing works
utilizing PTP are based on DDIM inversion. However, for a
fair comparison, we adopt the DDPM inversion component
from PPAE as the inversion mechanism for PTP.

While both PPAE and PTP have migrated their editing
pipelines from image to audio, they differ in two main as-
pects. Firstly, the core function in editing attention maps
is distinct. Audio editing tasks present unique challenges,
and a simple injection on attention map layers may not be
effective. Secondly, TTA LDMs perform differently during
the generation process. Given the complexity involved in
the generation and editing process, PPAE requires a global
configuration scheduler to boost the quality of the gener-
ation results. In the main paper, we primarily discuss the
influence of the guidance scale. However, it’s worth noting
that configurations like generation steps and attention re-
placement steps also play a crucial role. We demonstrated
this in various conducted ablation studies.
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C. Objective Evaluation
Fréchet distance FD is a mathematical metric used to
measure the similarity or dissimilarity between two curves
or sequences in a metric space. In the context of audio,
Frechet Distance can be used to compare generated audio
samples with target samples.

Fréchet audio distance Inspired by the Fréchet Incep-
tion Distance used in image processing, FAD measures the
similarity between the distribution of features in the source
audio and the edited audio. A lower FAD score indicates
that the edited audio is closer to the original in terms of
the overall distribution of its features, implying a higher
fidelity of the editing process.

Spectral distance This metric evaluates the difference in
the spectral characteristics between the original and edited
audio. The SD gives a quantitative measure of how much
the frequency content has been altered during the editing
process.

Kullback–Leibler Divergence KL divergence measures
how one probability distribution diverges from the expected
one. In the context of audio editing, it is used to compare
the distribution of certain audio features between the origi-
nal and edited audio.

CLAP Score For tasks like refine and reweight, it is chal-
lenging to construct a corresponding target audio that can
serve as ground truth for comparison. Therefore, we lever-
age the CLAP as an extra metric to calculate how well the
target prompt aligns with the edited audio. The pre-trained
CLAP model extracts a latent representation of the given
audio and text and returns the audio-text similarity score.

FAD, FD, and KL are well-established and widely accepted
metrics in text-to-audio generation tasks. Previous works,
such as AudioLDM (Liu et al., 2023a;b), Tango (Ghosal
et al., 2023), and AudioGen (Kreuk et al., 2022), have
similarly employed these metrics. Our intention is not
to claim novelty in using these metrics but to adhere to
common practices within the domain, ensuring that our
evaluation is convincing and reliable. To compute these
metrics, we follow the same evaluation pipeline as Audi-
oLDM, utilizing code from the official repository (https:
//github.com/haoheliu/audioldm_eval).

D. Subjective Evaluation
D.1. Evaluation Metrics

The evaluation metrics involve Relevance and Consistency.
Relevance refers to the match between the audio and the
input textual prompt, whether the text content appears in
the audio, and whether the audio corresponds to the text’s
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Figure 26: Decay lines of Fuser with different sched-
ulers. We assume the cross replace steps is 0.6 and the
decay window is 12.

semantics. Relevance has scores ranging from 1 (lowest) to
100 (highest). Consistency assesses the degree of similar-
ity between the current audio and the original audio. Note
that the current audio and the original audio have differ-
ent descriptions; for example, the current audio is ”a man
speaking and a dog barking,” while the original audio is
”a woman speaking and a dog barking.” The consistency
assessment focuses on whether the content and rhythm of
the man’s and woman’s speech are consistent, as well as
whether the dog’s barking is consistent, without paying at-
tention to the difference between ”man” and ”woman.”

D.2. Test Data

The test set consists of fifteen different audio sets for three
editing tasks mentioned in the paper, each containing one
original audio file (xxx-0.wav) and two edited audio files
(xxx-1.wav and xxx-2.wav). The evaluation process in-
volves scoring each edited audio file based on the criteria
mentioned above, with a detailed scoring breakdown pro-
vided for both relevance and consistency. The aim is to
ensure a comprehensive understanding of the audio editing
quality and its effectiveness in achieving the desired editing
goals.

D.3. Results with Error Bars

E. Fuser Scheduler
We utilize schedulers to help mix the attention maps of
the source audio and the edited audio during the diffusion
steps. Specifically, through ablation studies, we find that
the CosineAnnealing scheduler is particularly effective in
aiding the editing process. Below, we list all the baseline
schedulers considered. All of the listed schedulers start
from a higher value αstart and decay to a lower value αend

here, from a start timestep t0 in a given window size tw:

16

https://github.com/haoheliu/audioldm_eval
https://github.com/haoheliu/audioldm_eval


Prompt-guided Precise Audio Editing with Diffusion Models

Table 7: Error bars of Reweight CLAP score

Original 2 1 0 −1 −2

Reweight 0.74± 0.13 0.83± 0.09 0.73± 0.14 0.35± 0.18 0.10± 0.07 0.12± 0.06

Reweight(PTP) 0.74± 0.14 0.79± 0.18 0.74± 0.25 0.49± 0.23 0.32± 0.06 0.25± 0.09

Unrelated 0.91± 0.08 0.93± 0.11 0.91± 0.07 0.89± 0.13 0.82± 0.08 0.847± 0.13

Table 8: Error bars of Subjective Evaluation Results

Metric Replace Refine Reweight

PPAE Comp PPAE Comp PPAE Comp

Relevance 95.71± 6.22 89.28± 12.79 81.42± 14.06 81.42± 12.45 99.28± 2.57 92.14± 11.45

Consistency 95.0± 5.00 81.42± 10.59 85.71± 9.03 81.42± 11.24 94.28± 4.94 82.85± 8.80

E.1. Binaray

The scheduler starts with a high value αstart for the first t0
steps. After that, it returns αend. Leveraging this scheduler
converts the Fuser into a similar way in PTP when mixing
attention maps.

f(t) =

{
αstart if t < t0

αend if t ≥ t0
(7)

E.2. Linear

Linear scheduler implements a linear decay of the value
from αstart to αend over a specified number of steps tw.

f(t) =



αstart

if t < t0

αstart − (t−t0)
tw
· (αstart − αend)

if t0 ≤ t ≤ t0 + tw

αend

if t ≥ t0 + tw

(8)

E.3. Exponential

The exponential scheduler implements an exponential de-
cay of the value from αstart to αend over a specified num-
ber of steps tw, with the decay rate rdecay:

rdecay = (
αend

αstart
)(

1
tw

) (9)

f(t) =


αstart if t < t0

αstart × rt−t0
decay if t0 ≤ t ≤ t0 + tw

αend if t ≥ t0 + tw

(10)

E.4. CosineAnnealing

The implementation of our CosineAnnealing scheduler
mainly uses PyTorch’s Cosine Annealing learning rate
scheduler, in which the decay starts from t0 to tw.

f(t) =



αstart

if t < t0
αstart

2 ×
(
cos

(
π×(t−t0)

tw

)
+ 1

)
if t0 ≤ t ≤ t0 + tw

αend

if t ≥ t0 + tw

(11)

F. Test Set Construction
For instance, we choose an audio clip a1 with the prompt
p1 = ”a cat meowing” and another a2 with p2 =
”a baby crying”. We combine these as the source audio,
generating its description using GPT (OpenAI, 2023). For
Audio Editing, we select a third audio clip a3 with p3 =
”a dog barking”. a3 is randomly replaced with one of the
earlier audio clips and merged with the remaining clip to
form the target audio for assessment. A corresponding tar-
get description is also generated. The data format for this
scenario is denoted as a1 + a2 −→ a1 + a3. For the audio
refinement task, we consider adding adjective descriptions
to one of the original audio pieces and regenerate to get the
refined audio ã, thus a1 + a2 −→ a1 + ã2. In the audio
reweighting task, the format is a1 + a2 −→ a1 + α · a2,
wherein the chosen edit target is reweighted prior to merg-
ing with another audio clip.
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Table 9: The influence of CLAP selection.

Select Groups FAD↓ LSD↓ FD↓ KL↓ CLAP↑
1 (w/ bootstrap) 3.68 1.50 28.32 1.42 0.63

3 (w/ bootstrap) 3.40 1.47 23.91 1.44 0.68

10 (w/ bootstrap) 3.38 1.47 24.24 1.32 0.70

10 (w/o bootstrap) 5.52 2.24 52.41 1.89 0.68

G. More Ablation Studies
G.1. Generation Bootstrapping

Bootstrapping generation configurations plays a crucial
role in ensuring effective editing, as different editing tasks
involve varying components of the original audio, making
it challenging to determine the extent of guidance required
for the editing process. While our work is the first to ex-
plore this issue in editing tasks, similar selection methods
using CLAP have been employed in generation tasks to
enhance effectiveness. Generally, existing methods cre-
ate batches of audio and employ CLAP to select the best
one. For instance, AudioLDM2 (Liu et al., 2023b) use
CLAP to filter generated audios, which they call ”clap fil-
tering.” Similarly, Audiobox (Vyas et al., 2023) utilizes
CLAP reranking with N = 8 or even 16 samples using
the sound clap model.

We conducted further studies, as illustrated in table 9. First,
we attempted to combine batch sampling methods with
sample numbers ranging from 1 to 10. The results indi-
cate that this approach only yields a slight improvement in
metrics. Next, we removed the bootstrapping module, al-
lowing our model to generate batches of edited audio with
a fixed guidance scale of 3 (consistent with the original
Tango model). This scenario resulted in a significant per-
formance decline, highlighting the importance of guidance
bootstrapping within the entire editing pipeline.

G.2. Regeneration Steps

We observe that regenerating the audio according to the in-
version guidance aids in the recovery of the original audio
content and structure. However, it negatively affects the au-
dio quality and fidelity, as a more extensive mixture of the
attention map results in increased fusion during the inter-
mediate step. This could explain some of the low metrics
observed for the PPAE in section 5. To address this issue,
intuitively we can incorporate extra diffusion steps, as pre-
viously discussed in many previous paper. However, it is
crucial to acknowledge the inherent trade-off: while addi-
tional diffusion steps lack inversion guidance, increasing
their number may cause the generated audio to lose more
information from the source audio, as shown in table 10.

Table 10: The influence of re-diffusion.

Extra Steps FAD↓ LSD↓ FD↓ KL↓ CLAP↑
0 3.72 1.68 29.12 1.51 0.76

10 12.43 3.39 84.90 1.96 0.82

20 14.95 3.35 77.55 1.62 0.74

50 12.80 3.35 71.40 2.03 0.78

H. Limitations
Our proposed audio editing method relies on accurate in-
version of the given audio. If the audio content falls outside
the model’s trained domain, precise editing becomes chal-
lenging. Furthermore, our approach primarily focuses on
modifications at the attention map level, which inherently
restricts the extent of the edits. It may not be suitable for
more substantial structural alterations.
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