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ABSTRACT

Few-shot learning is an established topic in natural images for years, but few work
is attended to histology images, which is of high clinical value since well-labeled
datasets and rare abnormal samples are expensive to collect. Here, we facilitate the
study of few-shot learning in histology images by setting up three cross-domain
tasks that simulate real clinics problems. To enable label-efficient learning and
better generalizability, we propose to incorporate contrastive learning (CL) with
latent augmentation (LA) to build a few-shot system. CL learns useful represen-
tations without manual labels, while LA transfers semantic variations of the base
dataset in an unsupervised way. These two components fully exploit unlabeled
training data and can scale gracefully to other label-hungry problems. In experi-
ments, we find i) models learned by CL generalize better than supervised learning
for histology images in unseen classes, and ii) LA brings consistent gains over
baselines. Prior studies of self-supervised learning mainly focus on ImageNet-like
images, which only present a dominant object in their centers. Recent attention
has been paid to images with multi-objects and multi-textures (Chen & Li, 2020).
Histology images are a natural choice for such a study. We show the superiority
of CL over supervised learning in terms of generalization for such data and pro-
vide our empirical understanding for this observation. The findings in this work
could contribute to understanding how the model generalizes in the context of
both representation learning and histological image analysis. Code is available at
https://github.com/TencentAILabHealthcare/Few-shot-WSI.

1 INTRODUCTION

Histological images provide crucial phenotypical and diagnostic information for disease assessment
and prognosis (Srinidhi et al., 2020). Thus, computer-aided histological image classification systems
are highly demanded but expensive to build due to the scarcity of well-annotated data. Besides,
histological images diversify in many aspects, including acquisition protocols, body sites and tissue
types. Such heavy domain shifts and variations pose more challenging data-hungry issues. How to
train robust models with limited annotated samples becomes the key of general diagnosis systems.

We sort for few-shot learning (FSL) to tackle the aforementioned issues. Recent works have demon-
strated FSL’s success in natural images, but it is much unexplored in histological image analysis.
Here, we facilitate the study of FSL and generalized FSL (GFSL) for histology images by setting
up 3 cross-domain tasks where there exist near-, middle- and out-domain shifts from base class to
novel class. In addition, we investigate the impact of homogeneous and heterogeneous shot selection
problem, i.e., few-shot samples come from the same whole slide image (WSI) or different ones.

To enable label-efficient learning and better generalizability, we propose to incorporate contrastive
learning (CL) with latent augmentation (LA) to build a few-shot system. Concretely, CL learns
a meaningful encoder during pre-training, while LA inherits knowledge from “unlabeled” base
datasets by transferring semantic variations in latent space. These two components fully exploit
a base dataset by using its legacy: the learned model weights, and the captured latent variations.

⋆: Equal contribution. †: Work done during intern at Tencent AI Lab. ∗: Corresponding author.
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Figure 1: Example images from NCT (Kather et al., 2018). Each column contains two samples
from the same class (column name). More example images can be found in Appendix A.1.

Also to our surprise, we show the generalization gap between state-of-the-art CL models and the
supervised models is larger in histological images than that in natural images. Previously studies
of CL mainly focus on iconic natural images where only a dominant object occupies image centers,
while images like histological ones, where multiple small objects (e.g. cells, nucleus) and various
textures (e.g. muscle, mucus) are densely presented, are much unexplored. We also aim to fill the gap
of studying CL for non-iconic, multi-object and multi-texture histological images, and empirically
explain why the large generalization gap between CL models and supervised ones exists for them.

To summarize, our key findings and contributions are:

• We, as one of early works, study FSL in histological data with domain-specific problems.

• We propose a simple label-efficient method for few-shot learning, which incorporates con-
trastive learning and latent augmentation to fully exploit training data in an unsupervised
way. Extensive experiments confirm their consistent gains and improved generalizability.

• We show that, at slight odds with findings in iconic natural images, CL learned models
generalize better than the supervised counterparts for histology images by a large margin.
We analyze and provide our empirical explanations for this observation, which we believe
could contribute to understanding how model generalizes to novel samples in the context
of representation learning and histology image analysis.

2 PRELIMINARIES AND PROBLEM FORMULATION

Whole-Slide Image (WSI). Whole-slide images are digital scans of histology tissue slides col-
lected by biopsy or surgery. Given micron-size pixels and centimeter-size slides, a WSI is usually
of gigapixel size and thus have to be divided into hundreds or thousands of small “patches” for
computational analysis. A patch represents the basic unit in patch-level classification problem. As
tissues context and staining quality could vary across WSIs, the extracted patches’ styles are con-
fined to their source WSIs, leading to inter-WSI domain shift. Besides, unlike iconic natural images
which only present a dominant object in their centers, histological patches contain multiple small
objects and multiple texture-like tissues (see Figure 1), making the process different from the major
recognition systems which only need to focus on dominant objects.

Few-shot Learning (FSL). Few-shot classification is to learn from a large “base” dataset, and
afterwards generalize to unseen classes with only limited labeled data. Formally, a base dataset is
defined as Dbase = {(xi, yi)}Nbase

i=1 ⊂ Xbase ×Ybase, where Xbase is a sample set and Ybase is their
label space. Novel datasetDnovel = {(xi, yi)}Nnovel

i=1 has a disjoint label space, i.e. Ybase∩Ynovel =
∅, where Ynovel is the novel label space. A few-shot learner is trained on Dbase and evaluated on
a series of meta-tasks sampled from Dnovel. Such task is defined as T = {(Si,Qi)}Ii=1, where
S = {(xi, yi)}NKi=1 ∼ Dnovel is a small training set, called support set, and Q = {xi}NQi=1 ∼ Xnovel
is another small test set, called query set, and I is the number of tasks. This formulation is termed
as N -way K-shot (Q-query) task, since N classes are sampled from Ynovel, each with K labeled
samples for training and Q unlabeled samples for testing. Usually, K is less than Q, e.g. K = 1, 5,
and Q = 15. The evaluation stage is often referred to as meta-testing stage.

Generalized few-shot learning (GFSL). Unlike in FSL, GFSL samples meta-tasks from a joint
dataset Djoint = Dbase ∪ Dnovel, with a joint label space Yjoint = Ybase ∪ Ynovel. Now, support
sets and query sets contain both seen base classes and unseen novel classes.
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Figure 2: Overview. With pre-trained feature extractor (a), N-way K-shot classifiers are learnt (b)
based on LA (d) to classify WSI patches (c). Given a novel representation z, LA generates its new
features from the most likely variation in the base dictionary, so few-shot novel samples can be
proliferated in a reasonable way, and the decision boundary could therefore be improved.

3 METHODS

Consider a few-shot classifier as f = fθ ◦ fϕ , where fϕ is an embedding function, i.e., a feature
extractor that maps a high-dimensional input image x ∈ R3HW into a low-dimensional latent space
Rd, and fθ is a classifier trained on support set S and predicts results for query set Q. ϕ and θ
are their corresponding parameters. Our method consists of two phases — a) pre-training fϕ on
base datasets and b) training fθ on support sets with latent augmentation during meta-testing stage.
Figure 2 shows the overview of our methods. We elaborate them in the followings.

3.1 PRE-TRAINING

Current paradigms in FSL for training fϕ lie in two folds: i) meta-training, also known as episodic
training, where base datasets are divided into various episodic N -way K-shot meta-tasks that sim-
ulate meta-learning; and ii) standard training, which does standard fully supervised classification
pre-training without splitting data. The former one emphasizes the idea of meta-learning for fast
adaption (Schmidhuber, 1987; Finn et al., 2017), while the latter one attributes the success of FSL
to feature reuse (Raghu et al., 2019) or good representations (Chen et al., 2019; Tian et al., 2020).
We follow the latter one and we believe better learned encoders lead to stronger generalizability.

Fully-supervised pre-training (FSP). Given a base dataset, we jointly train a feature extractor fϕ
and a proxy classifier fψ using the standard cross-entropy loss. Once pre-trained, only fϕ is kept
and fixed for downstream tasks. We term the embedding functions learned by FSP as fFSPϕ .

Contrastive-learning pre-training (CLP). Self-supervised learning methods alleviate the need
for data annotation. Here we focus on a contrastive learning method – MoCo-v3 (Chen et al.,
2021b), which currently holds the state-of-the-art performance. It consists of three components: a
feature extractor (backbone) fϕ, a projection head fg and a prediction head fq . Given an unlabeled
base training dataset Dubase = {xi}

Nbase
i=1 , the model learns to minimize the contrastive loss function

w.r.t. unlabeled batch data:

ϕ∗, g∗, q∗ = argmin
ϕ,g,q

E
x,x′ t∼Du

base

[
LCLP

(
fq ◦ fg ◦ fϕ(x), fg̃ ◦ fϕ̃(x

′);ϕ, g, q
)]

, (1)

where LCLP is a contrastive loss function; x,x′ are two views of the same images obtained by
applying random data augmentation t; ϕ̃ and g̃ denote the momentum updated copies of ϕ and g. In
short, contrastive learning aims to maximize the similarity between positive pairs (two augmented
views of a same image), while minimizing the similarity between negative pairs (two different im-
ages). We leave more detailed descriptions of MoCo-v3 and LCLP to Appendix B. Once CLP is
done, two auxiliary heads, fg and fq , are removed, while fϕ is kept and fixed, termed as fCLPϕ .

3.2 LATENT AUGMENTATION

The pre-trained feature extractor fϕ only transfers parts of available knowledge in base datasets by
reusing the learned weights. The more transferable knowledge is inherent in data representations. It
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is reasonable to assume that base classes and novel classes share similar modes of variations (Wang
et al., 2018) since they are all histology-related. Such inductive biases allow us to transfer variations
from seen tissues or styles to unseen ones. Here we propose to transfer the representation variations
in a simple unsupervised way. Below, we first introduce latent augmentation and then discuss our
motivations and intuitions about it.

Base dictionary and Latent augmentation (LA). Our goal is to fully exploit training data. This
is done not only by reusing pre-trained model weights fϕ, but also by transferring possible semantic
shifts of clustered representations. Given an unlabeled base dataset, we perform K-Means on the
representations z = fϕ(x) to obtain C clusters (Figure 2-(a), red arrows). The base dictionary is
constructed as B = {(ci,Σi)}Ci=1, where ci is the i-th cluster prototype (i.e., mean representation)
and Σi denotes its intra-cluster covariance matrix. Roughly, B captures how the pre-trained fϕ
thinks samples from base dataset would vary in latent space conditioned on cluster i, e.g., using
a multivariate Gaussian N (ci,Σi). Given the base dictionary B, during meta-testing stage, LA
uses original representations z to query the most likely variations from B, followed by additive
augmentation z̃ = z + δ (Figure 2-(b,d)). This is done by sampling δ ∼ N (0,Σi∗) where i∗ is
selected by finding the maximum cosine similarity between z and ci. The classifier fθ is then trained
on both the original representations z and the augmented representations z̃ (Figure 2-(c)).

3.2.1 INTUITIONS AND MOTIVATIONS ON LATENT AUGMENTATION

Why transferring variations works. LA aims at transferring the knowledge of variations. Such
knowledge brings semantic diversity from base classes to novel classes. For example, tumorous cells
are mutated from normal cells; when given limited tumorous samples, LA may replicate how normal
cells alter under this mutation using the captured variations in base dictionaries. This closely resem-
bles how a pathologist builds his/her knowledge on unseen phenotypes from seen phenotypes. From
the view of under-representative learning (Yin et al., 2019), replicating latent variations encourages
under-represented distributions to be closer to regular ones. From the view of low-data learning,
distribution of few samples is not well calibrated (Yang et al., 2021), so using established distribu-
tions in base class to calibrate untrustworthy novel class may help. Besides, LA can be seen as a
consistency regularization technique. Enforcing the classifiers’ predictions to be consistent across
different perturbation is known to help in low-data regime (Bachman et al., 2014; Berthelot et al.,
2019; Sohn et al., 2020). In fact, LA is a stronger alternative against data augmentation (DA), as we
later show in §4.3 that LA outperforms DA by a large margin and can cover the role played by DA.

Why linear additive augmentation is meaningful. When well trained, deep networks are hy-
pothesized to be good at linearizing deep features (Bengio et al., 2013; Upchurch et al., 2017). This
gives the rationality behind linearly inter/extrapolating features, i.e., using “add” operation to gen-
erate new features. Recently, Cheung & Yeung (2020) study the universal label-preserving additive
augmentations in latent space that can be used in different data modalities, showing the effectiveness
of simple linearly transforming latents.

Why base dictionary construction is warranted in both FSP and CLP. FSP uses classification
task as a proxy task to learn useful encoders fϕ. During optimization, features are incentivized
to maximize their dot-product similarity with class weights in fψ , thus forming meaningful metric
space. In the regard of CLP, the contrastive loss, a form of metric-based loss, brings similar features
closer while spreading dissimilar representations farther, which also results in an informative met-
ric space. Thus, feature distance in the representation space of both FSP and CLP is meaningful,
justifying the use of unsupervised clustering method to construct base dictionary.

4 EXPERIMENTS

4.1 SETUP

Datasets. Since tissues vary across body sites, we use three public histology datasets from differ-
ent body sites to construct three tasks with different degrees of domain shift. They are: NCT-CRC-
HE-100K collected from colon site (Kather et al., 2018), LC25000 collected from lung and colon
sites (Borkowski et al., 2019), and PAIP19 collected from liver site (Kim et al., 2021); we term
them as NCT, LC-25K and PAIP respectively. NCT consists of 9 classes with 100k non-overlapping
patches in total, each of size 224×224. LC-25K has 5 classes with 5,000 patches in each class; each
patch is of size 768× 768. PAIP is composed of 50 WSIs, each of size about 45k×45k with 3 mask
annotated classes. For LC-25K, all patches are resized to 224×224. For PAIP, the foreground tissues

4



Published as a conference paper at ICLR 2022

are cropped into 75k patches of size 224×224 with the same pixel resolution as NCT and labels are
assigned by majority voting. More details are in Appendix A. When novel and base classes are from
different organs, we view the novel classes as out-domain classes. When from the same organ,
we consider them as near-domain classes only when the data is collected from the same source.
Otherwise, they are considered as middle-domain classes due to difference in imaging protocols.

Task i) Near-domain task (to study GFSL). We randomly split NCT by 80%/20% to construct a
training set (80k images) and a test set (20k images). Then, we do leave-one-class-out-as-novel-
class to the training set to construct 9 base datasets and use the test set asDjoint for evaluation. This
results in 9 sub-tasks, each of which has one class regarded as novel class and samples belonging to
it are excluded from pre-training datasets.

Task ii) Mixture-domain task (to study FSL). We use the entire training set (80k images) of NCT
asDbase, and use LC-25K asDnovel for evaluation. Two of five classes in LC-25K are colon-related
(middle-domain novel classes) and the remaining three are lung-related (out-domain novel classes).
Task iii) Out-domain task (to study FSL). Similar to mixture-domain task, we use the NCT train-
ing set as Dbase and PAIP as the novel dataset Dnovel. Liver tissues from PAIP are different from
colon tissues in NCT. We thus regard them as are out-domain novel classes. To study heterogeneous
and homogeneous shot selection problem, we use WSI ID information to split PAIP into a support
WSI set (15 WSIs with 22.5k images) and a query WSI set (35 WSIs with 52.5k images). During
evaluation, support samples and query samples are drawn from the support WSI set and the query
WSI set respectively. Heterogeneous strategy selects few-shot samples from different support WSIs,
while homogeneous strategy selects them from a single randomly chosen support WSI.

Evaluation. If not otherwise specified, for near-domain task, we evaluate methods in 1000 × 9
(9 sub-tasks) random meta-tasks; for mixture- and out-domain tasks, we evaluate methods in 1000
randomly sampled meta-tasks. All meta-tasks use 15 samples per class as the query set. We report
the average F1-score and 95% confidence interval. To handle the unequal numbers of base classes
and novel classes, we follow convention in GZSL (Xian et al., 2018) and GFSL (Shi et al., 2020) to
report their average harmonic mean. More details about evaluation metrics are in Appendix A.

Implementations. I. Pre-training. We use ResNet-18 as the embedding function fϕ, and follow
previous arts in FSL (Tian et al., 2020; Chen et al., 2019) to use l2-normalized features for clustering
and downstream meta-tasks. II. Latent Augmentation. We use faiss (Johnson et al., 2019), a library
for clustering, to perform K-means with a fixed seed for reproducibility. The number of prototypes
in the base dictionary is 16 (C = 16, discussed in ablation §4.3). In each meta-task, each sample is
augmented 100 times (including the original one) by LA. More details are in Appendix C.

Compared methods. Recent works (Chen et al., 2019; Tian et al., 2020), including a concurrent
work for histology image (Shakeri et al., 2021), show that sophisticated episodic training (meta-
training) is no better than standard pre-training. Hence, we summarize methods using standard
pre-training as: 1) NearestCentroid. It computes class centroids from support sets and classifies
query samples to their nearest centroids. Related works using such strategy includes Wang et al.
(2019a), Snell et al. (2017), and Chen et al. (2020c), to list a few; 2) LinearClassifier. It trains a new
fully-connected layer with different loss functions (Chen et al., 2019; Lee et al., 2019) w.r.t. support
samples, or directly uses linear models in scikit-learn (Pedregosa et al., 2011), e.g., LogisticRegres-
sion (Yang et al., 2021; Tian et al., 2020). For the ease of implementation and consistency, we use
NearestCentroid, and two l2-regularized linear classifiers — LogisticRegression and RidgeClassi-
fier, all from scikit-learn APIs (Pedregosa et al., 2011).

4.2 MAIN RESULTS

Fully-supervised fFSPϕ v.s. Self-supervised fCLPϕ . Results in Table 1 show that CLP generalizes
better to novel classes than FSP by a large margin. Comparing the best vanilla entries (w/o. LA)
using two types of pre-training methods, we observe an average advantage in HarmMean of 4%, 5%
and 8% in 1-/5-/10-shot settings by CLP in near-domain task and 10%, 19%, 16% in mixture-domain
task. Besides, CLP representations benefit more from the increase of number of shots than FSP’s in
both tasks, e.g. +17% vs. +11% and +12% vs. +10% when 1-shot → 5-shot for linear classifiers
in near-domain, and mixture-domain tasks respectively. Despite the inevitable advantage of FSP
in base classes under full supervision, CLP demonstrates stronger generalizability to novel classes.
Furthermore, Table 3 also confirms the superiority of CLP over FSP in out-domain task where a
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Table 1: Main results in near-/mixture-domain tasks. In near-domain task, the “Base”/“Novel”
columns report average F1-scores of the base/novel classes; the “HarmMean” columns report their
average harmonic mean. In mixture-domain task, the same metrics are reported w.r.t. middle-domain
classes and out-domain classes. “±” numbers denote 95% confidence interval across multiple runs.
“LA” denotes latent augmentation. More 10-shot results are in Table D.1.

1-shot 5-shot 10-shot

9-way-K-shot Near-domain task

Methods Base Novel HarmMean Base Novel HarmMean HarmMean

Fully-supervised pre-training (FSP)
NearestCentroid 77.38±0.96 43.80±1.12 54.84±1.03 88.64±0.41 57.67±0.80 68.36±0.53 71.00±0.46

LogisticRegression 75.14±1.03 37.80±1.17 48.84±1.09 88.45±0.40 48.76±0.93 59.99±0.55 66.39±0.45
RidgeClassifier 75.89±1.02 37.55±1.18 48.75±1.09 88.44±0.40 45.73±0.97 56.96±0.57 60.33±0.48

LogisticRegression + LA (ours) 78.88±0.94 43.42±1.14 54.83±1.02 90.85±0.36 63.54±0.74 73.63±0.48 78.14±0.39
RidgeClassifier + LA (ours) 76.19±1.03 40.71±1.16 51.95±1.07 88.86±0.41 53.90±0.90 64.87±0.55 66.96±0.46

Contrastive-learning pre-training (CLP)
NearestCentroid 71.45±0.95 51.95±1.03 58.81±0.98 83.11±0.52 65.36±0.80 72.51±0.62 75.18±0.54

LogisticRegression 70.83±1.01 48.76±1.12 56.13±1.06 84.04±0.50 62.69±0.87 70.89±0.62 76.83±0.51
RidgeClassifier 71.24±0.99 49.18±1.12 56.56±1.05 85.89±0.46 66.12±0.83 73.73±0.58 79.45±0.45

LogisticRegression + LA (ours) 72.11±0.95 53.15±1.08 59.82±1.01 86.43±0.46 76.68±0.61 80.67±0.51 85.48±0.40
RidgeClassifier + LA (ours) 72.60±0.99 54.50±1.11 60.89±1.04 86.18±0.47 78.00±0.60 81.28±0.51 86.17±0.40

5-way-K-shot Mixture-domain task

Methods Middle Out HarmMean Middle Out HarmMean HarmMean

Fully-supervised pre-training (FSP)
NearestCentroid 45.65±1.27 54.94±1.22 49.87±1.24 49.01±1.05 61.28±0.78 54.56±0.90 55.75±0.84

LogisticRegression 40.07±1.35 48.00±1.44 43.68±1.39 49.42±1.02 54.18±1.04 51.69±1.03 56.12±0.93
RidgeClassifier 41.46±1.36 48.74±1.43 44.81±1.39 55.28±0.98 56.12±1.05 55.70±1.01 60.77±0.88

LogisticRegression + LA (ours) 46.98±1.33 53.34±1.30 49.95±1.31 65.51±0.81 62.64±0.87 64.04±0.84 67.60±0.73
RidgeClassifier + LA (ours) 47.70±1.38 52.13±1.35 49.82±1.36 67.45±0.80 60.97±0.95 64.04±0.86 67.23±0.74

Contrastive-learning pre-training (CLP)
NearestCentroid 71.42±1.14 52.01±1.05 60.19±1.09 84.50±0.49 65.31±0.71 73.68±0.58 76.30±0.49

LogisticRegression 72.16±1.06 51.14±0.97 59.86±1.01 83.91±0.49 61.98±0.71 71.29±0.58 74.89±0.48
RidgeClassifier 72.57±1.04 51.13±0.96 59.99±1.00 85.22±0.43 62.47±0.72 72.09±0.54 75.84±0.46

LogisticRegression + LA (ours) 71.77±1.09 52.73±1.03 60.79±1.06 87.51±0.39 72.92±0.65 79.55±0.48 84.95±0.41
RidgeClassifier + LA (ours) 71.86±1.08 52.92±1.04 60.95±1.06 88.55±0.38 74.04±0.65 80.64±0.48 86.32±0.39

Table 2: Ablations on covariance type.
See text for more details.

Cov Type Base Novel HMean

None 85.85±0.78 53.27±1.63 65.74±1.06

Tied 79.35±1.08 65.32±1.21 71.65±1.14
Diag 85.91±0.88 62.66±1.42 72.46±1.08

Spherical 85.78±0.87 62.00±1.39 71.97±1.07

Full (default) 87.51±0.80 65.79±1.36 75.11±1.01

Table 3: Results in out-domain tasks. Average
F1-scores from 1000 meta-tasks are reported.

RidgeClassifier Homogeneous Heterogeneous

3-way K-shot FSP CLP CLP+LA FSP CLP CLP+LA

K = 1 36.90 42.56 43.14 / / /
K = 5 39.00 48.91 49.83 43.35 52.25 53.67
K = 10 40.26 50.57 51.62 45.91 55.96 58.35
K = 50 41.53 51.76 53.71 50.54 61.88 65.38
K = 100 41.23 52.74 54.25 52.45 64.03 67.56

larger domain shift exists. Such generalization gap between FSP and CLP in histology images is at
slight odds with observations in natural images, where they show similar generalizability. We study
and discuss it at §4.4. We also provide the linear evaluation results of all the 20 pre-trained models
in Appendix C.3 for a reference to see how each model perform in NCT dataset.

Latent augmentation brings consistent improvement. Regardless of pre-training methods, LA
brings consistent gains over baseline linear classifiers, confirming its effectiveness. With base dic-
tionaries, limited few-shot samples are able to proliferate in a reasonable way by transferring latent
variations. Such boost maintains its significance from near-domain task to mixture-domain task (Ta-
ble 1) but turns smaller in out-domain task (Table 3). This is in our expectation since the three classes
(non-tumor, viable-tumor and other) defined in PAIP are extremely coarse-grained: it may include
couples of real fine-grained classes (c.f. Figure A.4 in Appendix). Few samples are unable to well
represent their entangled semantics. Hence, this observation does not repudiate the effectiveness of
latent augmentation but re-ensures its tenability.

4.3 ABLATIONS

To ablate design choices, we exclude two cancer-related classes, i.e., cancer-associated stroma (STR)
and colorectal adenocarcinoma epithelium (TUM), from NCT to be novel classes, and use the rest
as base classes. If not otherwise specified, all ablations are conducted on CLP models with Ridge-
Classifier for 300 meta-tasks in 5-shot setting.

6



Published as a conference paper at ICLR 2022

A
ve

ra
ge

 F
1-

sc
or

es
 (%

)

50
55
60
65
70
75
80
85
90

Number of prototypes

2 4 8 16 32 64 128 256

HM-LA Base-LA Novel-LA
HM Base Novel

A
ve

ra
ge

 H
ar

m
on

ic
 m

ea
n 

of
 F

1-
sc

or
e 

(%
)

65

67

69

71

72

74

76

Number of augmentation times

0

LA LA×DA DA

22 42 62 82 102 122 142 162

(a) Effect of number of prototypes (b) Effect of number of augmentation times

A
ve

ra
ge

 F
1-

sc
or

es
 (%

)

60

65

70

75

80

85

90

95

100

Base Novel HMean

DC (supervised)
LA + supervised dict.
LA w/ 6-proto + calib.
LA w/ 6-proto
LA w/ 16-proto

(c) Effect of using labels and calibration

A
ve

ra
ge

 F
1-

sc
or

es
 (%

)

62

66

70

74

78

82

86

90

94

Base Novel HMean

78.9

70.0

90.3

77.9

68.4

90.5

79.0

70.2

90.4

78.5

69.3

90.5

75.1

65.8

87.5

LA w/ 16-proto
LA w/ 7-proto
LA w/ 7-proto + calib.
LA + supervised dict.
DC (supervised)

Figure 3: Ablations on latent augmentation. (a) The effect of different number of prototypes. Dash
lines are the baselines for the solid lines of same colors. (b) The effect of number of augmentation
times. The harmonic mean are plotted. “LA×DA” denotes T latent augmentations are applied after
T traditional data augmentations (leads to T 2 times in total). (c) The effect of using labels and
calibration. “DC”: Distribution Calibration. “calib.”: calibration; we introduce it in Appendix D.3.

Number of prototypes in base dictionary. Figure 3 (a) shows how performance varies with the
number of prototypes C. We observe the similar tendency between base class and novel class, where
their harmonic means peak at C = 16; we subsequently choose C = 16 for all experiments. Besides,
the performance of base classes and novel classes shows opposite trends from C = 4 to C = 16.
The trade-off exists here that as the granularity of clusters increases (C ↑), the intra-cluster variance
decreases, which results in better grouping accuracy but brings less semantic variation. The novel
classes benefit from larger variation while the base classes benefit from more accurately estimated
variation since they have been exposed in training. Nevertheless, LA demonstrates its robustness by
consistent improvement over baselines (solid vs. dashed lines of same color in Fig. 3-(a)).

DA vs. LA, and number of augmentation times. Here we compare LA with data augmenta-
tion (DA), and their combination. DA’s details are in Appendix D.2. Figure 3-(b) shows that LA
outperforms DA by a large margin. The boost brought by DA saturates easily and keeps dropping
thereafter, while LA keeps improving with all tested cases. Besides, DA can marginally improve LA
(LA×DA v.s. LA). We conclude that LA has already covered the role played by DA in an implicit
way since the most of gains are brought by LA. It is worthy to emphasize the computation budget
involved in LA (addition in Rd space) is significantly lower than DA (image augmentation in R3HW

space and encoder forwards). Therefore, we run all experiments only with LA.

Using label information. LA constructs the base dictionary without any label information, e.g.,
the number of classes. When label is available, similar methods such as Distribution Calibration
(DC) (Yang et al., 2021) can be used. Figure 3-(c) shows the comparisons of using labels and
calibration (introduced in Appendix D.3). Under supervision, “DC” and “LA+supervised dict.”
achieve competitive performance. Surprisingly, once given the number of base classes, “LA w/
7-proto” can attain better results than using 16-prototype and be comparable as supervised DC.
Calibration could further improve LA. This implies that, with LA, knowing the number of base
classes can be sufficient for gaining as descent results as knowing all examples’ labels.

Covariance type. Here we explore more types of covariances that LA can use. Specifically, we
also include: 1) “Tied”, where all clusters share a covariance matrix estimated from the entire base
dataset, 2) “Diag”, where each cluster has its own diagonal covariance matrix, i.e., diagonal elements
are a variance vector and non-diagonal elements are zeros, 3) “Spherical”, where each cluster has
its own single scalar-variance shared by all feature dimensions. Table 2 shows the results. LA with
all types of covariances improves performance. This emphasizes the importance of diversifying few
samples with variation. Using full covariance estimation achieves the best performance. We further
show how different covariance types perform with smaller or larger cluster sizes in Appendix D.4.

Heterogeneous v.s. Homogeneous patch selection. We investigate the hetero-/homo-geneous
patch selection strategies defined in out-domain task (§4.1). Table 3 shows the results. We observe:
i) heterogeneous selection shows higher baselines than homogeneous one; and ii) LA brings more
gains for heterogeneous selection. Heterogeneous patches provide reliable and diverse “anchor”
samples than homogeneous ones, thus can benefit more from bootstrapping the base dictionary.

Additional ablation studies. We conduct two more ablation studies: (a) clustering with differ-
ent random seeds in K-Means, (b) studying the effect of l2-normalization to covariance. We show
that LA’s improvement is stable under different random seeds used in K-Means (Appendix D.5),
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Figure 4: Visualization of samples learned by CLP and FSP. “Abs./Rel. Sim.” columns show the
absolute/relative cosine similarity between the global feature and the local ones. Relative similarity
is the min-max normalized absolute similarity. k indicate the cluster numbers used by K-Means.
“Low”, “middle” and “high” denote using features from stage-3, 4, and 5 from a ResNet. See text
in §4.4 for discussion. Visualization procedures and more examples are provided in Appendix D.8.

and covariances estimated before and after l2-normalization are highly correlated, and further l2-
normalizing augmented samples marginally degenerates LA’s performance (Appendix D.6). In ad-
dition, we reproduce δ-encoder (Schwartz et al., 2018) for ablation task. However, we observe
performance drops from baseline (e.g., -2.5% HMean), and none of the tested cases can outperform
our method. More results and discussions are in Appendix D.7.

4.4 MORE DISCUSSION

Disparity between fCLPϕ and fFSPϕ influences the choice of base learner. In Table 1, we find
i) stronger baselines for CLP and FSP vary, and ii) simple NearestCentroid can sometimes outper-
form the vanilla l2-regularized linear classifiers for FSP. Here we briefly discuss our understandings.
Representations produced by CLP can have different distributions compared to FSP, as also no-
ticed by He et al. (2020). With limited training samples, different classifiers can have their own
biases in building decision boundary, leading to different generalizability. Besides, no regulariza-
tion techniques are used during FSP (Chen et al., 2020a), e.g., weight decay (Krogh & Hertz, 1992),
DropBlock (Lee et al., 2019; Tian et al., 2020) or “distill” regularization (Tian et al., 2020). The lin-
ear classifiers, though with l2 penalty, may still be overfitted in such representation space when only
limited samples are provided. Subsequently, the simplest NearestCentroid model can yield better
results than these overfitted linear models, as it has the least complexity.
Why do CLP models generalize better than FSP ones in histology images? To study why
the large generalization gap exists, in Figure 4, we follow Chen & Li (2020) to see how features
aggregate in space. Specifically, we visualize the cosine similarity between a feature map (a set
of local representations) and its global averaging (global representation), and run K-Means on the
feature maps from different layers (i.e., stage 3, 4, 5 of ResNet) with different cluster numbers.
We observe: the FSP model maintains high global-local similarity in low-/middle-levels, while the
CLP model holds it in high-level (solid boxes). Besides, the CLP model extracts low-level features
that are edge-related, and afterwards successively agglomerates adjacent similar structures (dashed
boxes). In contrast, the FSP model can differentiate nuclei in low-&middle-levels but fails to encode
structure-related features in a deeper layer.
We further visualize some samples from base classes (bottom of Figure 4 and D.6), and find that
such disparity between FSP and CLP does not only exist in a previously unseen class but also
in seen classes. In the bottom row of Figure 4, FSP only pays attention to the most discriminative
parts, leaving the rest “redundant parts” disorder (dashed box). However, the discriminative parts are
likely to alter when a new class is presented. FSP’s inability to fully encode meaningful information
may lead to its failure in generalizing to new classes. Meanwhile, CLP encodes most of tissue-
structure-related features that may be useful for novel class recognition, possibly resulting in better
generalizability. However, FSP models and CLP models are shown to perform similarly, instead
of differently, under the same visualization procedure in ImageNet dataset (see the website for a
comparison). What might cause this disparity? ImageNet has more diverse classes (1000 classes)
and samples (∼ 1.28M images) than those in histology datasets. FSP models in ImageNet need
to recognize the discriminative parts of all 1000 classes. In such case, the redundant information
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in one class might contribute to the recognition of another class. Therefore FSP may eventually
encode most of available information for new classes that are related to ImageNet classes. However,
histology datasets usually lack enough diverse annotated classes that help to build a know-everything
FSP model. A topic we leave for future work is to explore whether CLP always generalizes better
than FSP when pre-training on a base dataset with limited number of annotated classes and if the
generalization gap would increase as the label diversity decreases. We point out that the visualization
results and the large generalization gap shown in our work still remains as empirical observations.
Our discussion is about what the reasons behind them could be. We hope our work would be helpful
for representation learning, histology image analysis, and beyond.

5 RELATED WORK

Few-shot learning (FSL). FSL has been tackled from different perspectives, e.g. metric-based
and optimization-based (Finn et al., 2017; Rusu et al., 2018). This paper follows a “pre-training &
fine-tuning” scheme in metric-based branch, where previous works typically learn a shared metric
space by standard fully-supervised pre-training (Tian et al., 2020; Chen et al., 2019; Wang et al.,
2018). In contrast, we propose to incorporate self-supervised pre-training to enable label-efficient
learning, and show that it can yield stronger generalization than supervised pre-training.
FSL in medical images. FSL in medical images is at its early stage, especially for histology im-
ages. Mahajan et al. (2020) investigate FSL methods in skin-disease classification, while Chen et al.
(2021a) tackle COVID-19 CT image classification using contrastive pre-training and prototypical
network fine-tuning. In the regard of histology image, Medela et al. (2019) use a triplet loss (Schroff
et al., 2015) to pre-train an encoder with a followed fine-tuned SVM classifier for few-shot domain
adaptation. Sikaroudi et al. (2020) and Teh & Taylor (2020) study learning with less data in histol-
ogy images. Concurrent to our work, Shakeri et al. (2021) simultaneously propose a benchmark for
few-shot classification of histological images. Our work has similar but different settings, with more
investigations conducted, e.g., GFSL task, and hetero-/homo-geneous few shots selection.
Self-supervised learning. Self-supervised learning aims to learn good representations without
true labels. Recent state-of-the-art variants can be categorized as contrastive-based learning (Chen
et al., 2021b; 2020a; He et al., 2020), cluster-based learning (Caron et al., 2018; 2020) and expec-
tation prediction based learning (Grill et al., 2020; Chen & He, 2021). However, this line of works
focus on pre-training on ImageNet-like images, and recent attention has been attracted to images
with multi-objects and multi-texture presented (Chen & Li, 2020). We see histology image as a
natural choice for such study, and show that contrastive learning can agglomerate structural “part-
whole” information and maintain “global-local consistency”, which make it generalize better for
such data than supervised counterparts (see §4.4 and Table C.1 in Appendix C.3).
Representation variation augmentation. The idea of exploiting feature variations dates back to a
decade ago (Heller et al., 2009; Salakhutdinov et al., 2012). Recent variants further develop this idea.
For example, Hariharan & Girshick (2017) and Schwartz et al. (2018) use a generator to generate
“hallucinated” novel features from variation of given base samples. This method is later extended
by not relying on given base samples (Wang et al., 2018). Wang et al. (2019b) use class variance to
perform semantic augmentation for classification and segmentation (Wang et al., 2021), while Yin
et al. (2019) and Liu et al. (2020) utilize intra-class variance of head classes to augment tail classes
for “long-tail” face recognition problem. Yang et al. (2021) use the distribution information, i.e.
mean and variance, of base classes to calibrate novels’ distribution. Cheung & Yeung (2020) propose
a novel and systematical framework to apply automated augmentation with more considerations in
label-preserving transformations. This work follows the line of Yang et al. (2021); Wang et al.
(2021); Liu et al. (2020), but in contrast to them, we obtain and transfer variations without relying
on any label information, allowing our method to scale gracefully to other label-hungry problems.

6 CONCLUSION

This work has studied, as an early attempt, the few-shot learning problem for histology images. We
incorporate contrastive learning and latent augmentation to fully exploit training data in an unsuper-
vised way, which means our method can gracefully scale to other large label-hungry problems. More
importantly, we show that the generalization gap between the state-of-the-art contrastive learning
pre-training method and supervised pre-training in histological images is larger than that in Ima-
geNet experiments. We analyze the underlying reasons and provide our empirical understandings.
We hope our work could contribute to the study of representation learning and generalization for
both self-supervised learning community as well as histology image analysis community.
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A DATASET

A.1 NCT

Data. NCT-CRC-HE-100K dataset (Kather et al., 2018) contains 100, 000 non-overlapping
patches extracted from hematoxylin and eosin (H&E) stained human colorectal cancer and nor-
mal tissues. Each image is of size 224 × 224 at 0.5 MPP (20× magnification). Tissue classes and
their label index are: 0) background (BACK), 1) adipose (ADI), 2) debris (DEB), 3) lymphocytes
(LYM), 4) mucus (MUC), 5) smooth muscle (MUS), 6) normal colon mucosa (NORM), 7) cancer-
associated stroma (STR), 8) colorectal adenocarcinoma epithelium (TUM). Figure A.2 shows the
class distribution and Figure A.1 shows 4 examples per class from NCT. These images are from Na-
tional Center for Tumor Diseases (Heidelberg, Germany) and University Medical Center Mannheim
(Mannheim, Germany). Their acquisition protocols differ across organizations, which lead to inter-
source domain shift.

Processing. We use the “NCT-CRC-HE-100K-NONORM” dataset, which does not apply color
normalization to images. We randomly split NCT dataset (100k images) into a training set (80k
images) and a test set (20k images). The class distribution is the same for the training set and test
set, i.e. data are sampled w.r.t. each class. Since each image in NCT is of size 224× 224, we do not
further resize it.

Near-domain task. NCT dataset contains tissue patches from multiple sources, which bears slight
domain shift since the staining intensity varies. To better study the generalizability in FSL problem,
we do leave-one-class-out-as-novel-class to the training set of NCT. This procedure closely resem-
bles the leave-one-out cross-validation. Since histology datasets usually have far less number of
classes compared to natural image dataset (e.g. 9 classes in NCT v.s. 100 classes in miniImageNet
and 608 classes in tieredImageNet), we believe such leave-one-class-out-as-novel-class can better
simulate the generalization error bound when number of classes is small. After the leave-one-class-
out-as-novel-class split, 9 sub-base datasets are constructed, each of which has one class regarded
as the novel class and samples belonging to it are excluded from pre-training. For each sub-base
dataset, a CLP model and a FSP model will be trained on it. Therefore, a total of 18 models will
be obtained (9 CLP models and 9 FSP models). All models are evaluated on the NCT test set. It
contains both seen classes and unseen novel classes, so as to simulate generalizes few-shot classifi-
cation.

Evaluation metric. Typical FSL methods use accuracy as metrics. However, to study GFSL prob-
lem, the performance of novel classes and base classes should be appropriately considered. Accuracy
w.r.t. specific classes cannot be computed in a joint label space. Hence, we choose F1-score as our
metric. Besides, the numbers of novel classes and base classes are unequal in each sub-task, so we
follow convention in GFSL to compute their harmonic mean. The final metrics are

Mbase(i) =
1

8

∑
j∈{0..9}\{i}

F1(j), (A.1)

Mnovel(i) = F1(i), (A.2)

HMean(i) =
2

1/Mbase(i) + 1/Mnovel(i)
, (A.3)

Base =
1

9

9∑
i=1

Mbase(i), Novel =
1

9

9∑
i=1

Mnovel(i), HarmMean =
1

9

9∑
i=1

HMean(i), (A.4)

where F1(j) denotes the F1-score of j-th class. Mbase(i) (Equation A.1) computes the average
F1-score of base classes in i-th sub-task. Equation A.2 and Equation A.3 compute the F1-score of
novel class and the harmonic mean of Mbase and Mnovel in i-th sub-task respectively. Equation A.4
shows the final metrics we report in this work.
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ADI DEB LYM MUC MUS NORM STR TUMBACK

Figure A.1: Example images from NCT dataset. Each column represents a different class.
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Figure A.2: Class distribution in NCT dataset. Labels denote: 0-ADI, 1-BACK, 2-DEB, 3-LYM,
4-MUC, 5-MUS, 6-NORM, 7-STR and 8-TUM. See Appendix A.1 for full names of labels.

A.2 LC25000

Data. The LC25000 (LC-25K) dataset contains 25,000 color images from 5 classes. They are: 0)
colon adenocarcinoma (Colon ACA), 1) benign colonic tissue (Colon benign), 2) lung adenocar-
cinoma (Lung ACA), 3) benign lung tissue (Lung benign), and 4) lung squamous cell carcinoma
(Lung SCC). The class distribution is balanced, i.e. each class has 5000 images. All images are of
size 768×768. LC25K is constructed by augmenting 1250 images (250 images for each class). The
augmentations are: left and right rotations (within 25 degrees, p=1.0) and vertical and horizontal
flips (p=0.5), where “p” represents the probability.

Processing. We resize all images from 768× 768 to 224× 224. No other process is taken.

Mixture-domain task. LC-25K dataset includes tissues from colon and lung sites. Two of five
classes in LC-25K are colonic tissues, which suffers moderate domain shift due to difference in
imaging protocol and pixel resolutions. Thus, we see them as middle-domain novel classes. The rest
three lung-related classes are regarded as out-domain novel classes since they are from a different
organ. To study few-shot classification, we use the entire training set (80k images) of NCT asDbase,
and use LC-25K as Dnovel for evaluation.

Evaluation metric. Similar to near-domain task evaluation in Appendix A.1, we compute
Middle = 1

2 (F1(0) + F1(1)),Out = 1
3 (F1(2) + F1(3) + F1(4)),HarmMean = 2

1/Middle+1/Out .
Here F1(i) denotes the F1-score of i-th class. Class 0 and class 1 are colon-related, termed as
middle-domain novel classes, and the rest three classes are lung-related, termed as out-domain novel
classes.
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Colon_benign Lung_ACA Lung_benign Lung_SCCColon_ACA

Figure A.3: Example images from LC25000 dataset. Each column represents a different class.
The classes are: colon adenocarcinoma (Colon ACA), benign colonic tissue (Colon benign), lung
adenocarcinoma (Lung ACA), benign lung tissue (Lung benign), and lung squamous cell carcinoma
(Lung SCC).

A.3 PAIP19

Data. The PAIP 2019 (Kim et al., 2021) is composed of 50 H&E stained WSIs at 20× magnifica-
tion. Each WSI is approximately of size 45, 000 × 45, 000 with XML annotation. It contains three
classes, which are: 0) non-tumor liver tissue, 1) viable tumor, and 2) other tissues in whole tumor
area but not viable tumor. The class 2 may include intratumoral hemorrhage, necrosis or non-tumor
tissue in whole tumor area. Figure A.4 shows an example WSI of PAIP19. This dataset provides
“case number” (WSI identifier) information.

Processing. We use mask information to extract 500 randomly selected non-overlapping patches
at 20× magnification for each class from each WSI, leading to a dataset with 75, 000 samples. We
define patches from 15 randomly selected WSIs as the support WSI set and patches from the rest 35
WSIs as query WSI set.

WSI Non-Tumor OtherViable-Tumor

Figure A.4: Examples from PAIP 2019 dataset. The Leftmost image shows the overview of a whole-
slide image, where tissues outside yellow boundary are defined as “non-tumor” class, and tissues
inside green boundary are “viable-tumor” class, and tissues inside yellow but outside green are
“other” class. Right columns show examples of extracted patches from PAIP19 dataset. The “non-
tumor” class and “other” class are coarse-defined, since they can include many real fine-grained
classes such as hepatocyte, vein, artery, stroma, fibrosis, fatty infiltration, etc.

B CONTRASTIVE LEARNING PRE-TRAINING: MOCO-V3

MoCo-v3 (Chen et al., 2021b) aims for an empirical study for vision transformer pre-training, but
has a ResNet variant. We adopt the ResNet variant.
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Overview. MoCo-v3 follows its ancestors MoCo v1/2 (He et al., 2020; Chen et al., 2020b) with
straightforward modification. As shown in Figure B.1, each batch is augmented twice under stochas-
tic augmentation t to obtain two views, denoted as x1, x2 ∼ t(x), where x represents the raw im-
ages. They are then encoded by query encoder and key encoder respectively. The query encoder
is composed of three components: a backbone fϕ, a projector (projection head) fg and a predictor
(prediction head) fq , formulated as fq ◦fg ◦fϕ. The key encoder, also known as momentum encoder,
consists of momentum copies of backbone and projector, formulated as fg̃ ◦ fϕ̃.

Backbone

Image

Projector Predictor

Backbone Projector

fϕ
t

t
fϕ̃ fg̃

fg fq

ℒctr

Momentum update

View 1

View 2

Query encoder:  fq ∘ fg ∘ fϕ Key encoder:  fg̃ ∘ fϕ̃

Figure B.1: Abstraction of MoCo-v3 structure. Each image is augmented twice under stochastic
augmentation t to obtain two views (denoted by blue and red color). The key encoder (bottom,
fg̃ ◦ fϕ̃ is momentum updated by parts query encoder (top, fq ◦ fg ◦ fϕ). The ˜ symbol denotes
momentum updated parameters.

Momentum update. In iteration k, the momentum update rule is:

ϕ̃k ← mϕ̃k + (1−m)ϕk, g̃k ← mg̃k + (1−m)gk, (A.5)
where m is the momentum.

Loss function. The contrastive loss function is a form of InfoNCE (Oord et al., 2018):

Lctr(u, v) = − log
exp (u · v+/τ)

exp (u · v+/τ) +
∑
v− exp (u · v−/τ)

, (A.6)

Here, v+ denotes the positive sample, i.e. the other augmented view of u, and v− denotes the neg-
ative samples, i.e. other representations in the batch. τ is a hyper-parameter, known as temperature
(Wu et al., 2018). The final loss is a symmetric sum: LCLP = [Lctr(z1, z̃2) + Lctr(z2, z̃1)] /2,
where the subscript indicates view source, z = l2 [fq ◦ fg ◦ fϕ(x)], z̃ = l2

[
fg̃ ◦ fϕ̃(x)

]
, and l2[·]

means l2 normalization.

C IMPLEMENTATION DETAILS

C.1 FULLY-SUPERVISED PRE-TRAINING

Optimization. We use SGD optimizer with lr = 0.5,momentum = 0.9, and no weight decay
is used, i.e. weight decay=0. The batch size is 512. We train for 100 epochs with “step decay”
learning schedule. The lr is multiplied by 0.1 at 30, 60 and 90 epochs respectively.

Data augmentation. We use RandomResizedCrop, RandomHorizontalFlip, fol-
lowed by normalization (subtract mean and divide std) using ImageNet (Deng et al., 2009) statis-
tics, i.e. mean = (0.485, 0.456, 0.406) and std = (0.229, 0.224, 0.225). During testing, we only
resize the image to 224×224, followed by ImageNet normalization. Following previous work (Chen
et al., 2019; Tian et al., 2020), we further l2-normalize features.

C.2 CONTRASTIVE-LEARNING PRE-TRAINING

The detailed description of MoCo-v3 is in Appendix B.
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Table C.1: The linear evaluation accuracy of FSP and CLP models. FSP means fully-supervised pre-
training, while CLP denotes contrastive-learning pre-training. We train LogisticRegression models
on whole training features, and report the accuracy for whole test features. Base-Base means the
novel class is excluded when we train and test linear classifiers. Joint-Joint means the linear clas-
sifiers are trained on all training features (80k samples) and then evaluated on all test features (20k
samples). The “Average” row reports the average accuracy of 9 sub-tasks (the top 9 rows).

Base-Base Joint-Joint

Novel Class FSP CLP FSP CLP

0 98.46 95.81 97.73 95.98
1 97.80 95.79 97.41 95.72
2 98.59 96.28 90.60 95.10
3 96.67 95.85 93.92 95.88
4 95.50 96.49 92.66 95.67
5 97.60 97.39 92.43 94.33
6 98.72 96.09 94.75 95.22
7 98.49 97.68 92.66 95.52
8 97.44 95.75 92.63 94.80

Average 97.80 96.35 93.87 95.36
No Novel Class 98.43 96.00 / /

Architecture. The architecture of MoCo-v3 is ResNet18-Projector-Predictor. We use
the codebase of OpenSelfSup1. For projector, we use 3-layer NonLinearNeckSimCLR (Chen
et al., 2020a), with the dimension transitions of 512→ 1024→ 1024→ 256. For predictor, we use
2-layer NonLinearNeckSimCLR, with the dimension transitions of 256 → 1024 → 256. The
base momentum m to update key encoder is 0.996 and is linearly increased to 1 as training iteration
goes. The temperature τ for contrastive loss is set to 1.

Optimization. We follow Chen et al. (2021b) to use LARS optimizer with initial learning rate
of 0.3, weight decay of 1.5e − 6, momentum = 0.9, and use CosineAnnearling learning
schedule. We train all models with batch size of 256 for 200 epochs.

Data augmentation. Following previous work (Grill et al., 2020; Chen et al., 2021b), we
use strong data augmentation: RandomResizedCrop, RandomHorizontalFlip, and
ColorJitter with (brightness=0.4, contrast=0.4, saturation=0.4, hue=0.4) and probability of
0.8, RandomGrayscale with probability of 0.2, GaussianBlur with probability of 0.5, and
Solarization with probability of 0.2.

C.3 LINEAR EVALUATION FOR PRE-TRAINING

In §4.1, we manually construct 9 sub-tasks in near-domain task, thus resulting 9 pre-trained models
for each pre-training method (FSP and CLP). Besides, for mixture-domain and out-domain tasks,
we use models pre-trained on the entire NCT training dataset with no class excluded.

Here we report their performance w.r.t. linear classifier. Specifically, we use the pre-trained models
to extract features from NCT training set and test set. Then, we train LogisticRegression models
on whole training features, and report the accuracy for whole test features. We report the results
of Base-Base and Joint-Joint. Base-Base means the novel class is excluded when we train and test
the linear classifiers, while Joint-Joint means the linear classifiers are trained on all training features
(80k samples) and then evaluated on all test features (20k samples).

Table C.1 shows the results. With full supervision, FSP models can achieve better results in base
label space (Base-Base). However, when evaluated in joint label space (Joint-Joint), they are worse
than CLP models. Besides, in few-shot setting, CLP models underperform FSP models in base label
space (c.f. the “Base” column in Table 1 near-domain task), but when the number of training samples

1https://github.com/open-mmlab/OpenSelfSup
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Table D.1: Results of 10-shot setting in near-domain task and mixture-domain task. In near-domain
task, the “Base” and “Novel” columns report the average F1-score of the base/novel class respec-
tively; the “HarmMean” columns report their average harmonic mean. In mixture-domain task, the
same metrics are reported w.r.t. middle-domain and out-domain novel classes. “LA” denotes latent
augmentation. The bold numbers denote the best while the underscored numbers denote the second
best. Results in this table are in complementary to Table 1.

10-shot Near-domain Task 10-shot Mixture-domain Task

Methods Base Novel HarmMean Middle Out HarmMean

Fully-supervised pre-training (FSP)
NearestCentroid 90.08±0.35 60.96±0.72 71.00±0.46 50.63±0.96 62.04±0.75 55.75±0.84

LogisticRegression 90.65±0.32 55.92±0.78 66.39±0.45 55.42±0.87 56.84±1.00 56.12±0.93
RidgeClassifier 90.14±0.34 49.62±0.86 60.33±0.48 62.72±0.78 58.93±1.01 60.77±0.88

LogisticRegression + LA (ours) 92.75±0.29 69.10±0.63 78.14±0.39 70.10±0.69 65.26±0.78 67.60±0.73
RidgeClassifier + LA (ours) 90.69±0.33 56.65±0.80 66.96±0.46 71.09±0.66 63.77±0.84 67.23±0.74

Contrastive-learning pre-training (CLP), ours
NearestCentroid 85.15±0.45 68.18±0.72 75.18±0.54 85.97±0.40 68.58±0.65 76.30±0.49

LogisticRegression 87.20±0.41 69.83±0.71 76.83±0.51 85.82±0.38 66.42±0.66 74.89±0.48
RidgeClassifier 89.02±0.36 73.03±0.66 79.45±0.45 87.04±0.36 67.19±0.66 75.84±0.46

LogisticRegression + LA (ours) 89.62±0.36 82.40±0.48 85.48±0.40 90.44±0.34 80.08±0.51 84.95±0.41
RidgeClassifier + LA (ours) 89.45±0.36 83.81±0.47 86.17±0.40 91.77±0.32 81.47±0.50 86.32±0.39

Table D.2: Ablation on the effect of the number of prototypes in the base dictionary. This table
shows the numerical results of Figure 3-(a).

5-shot ablation task

Number of prototypes Base Novel HarmMean

No Latent Augmentation 85.85 53.27 65.74
2 76.84 66.99 71.58
4 79.83 67.92 73.39
8 84.87 67.59 75.25

16 87.37 66.51 75.53
32 87.08 65.94 75.05
64 86.65 65.41 74.55
128 86.52 65.32 74.44
256 86.13 64.25 73.60

increases (no longer few-shot setting), CLP models can achieve similar results as FSP models (Table
C.1 “Base-Base” column).

D DETAILED RESULTS AND MORE ABLATIONS

D.1 10-SHOT RESULTS

Table D.1 shows the results of 10-shot settings in near-domain and mixture-domain task, in comple-
mentary to results in Table 1.

D.2 ABLATION ON DATA AUGMENTATION

For ablation study, we exclude cancer-related classes, i.e. cancer-associated stroma (STR) and col-
orectal adenocarcinoma epithelium (TUM), from NCT training set, and use them as novel classes.
An additional CLP model is trained on this base dataset for ablation. Table D.2 shows the numerical
results of Figure 3-(a), which studies the effect of the number of prototypes in the base dictionary.

Figure D.1 shows the full results of comparison between data augmentation (DA), latent augmen-
tation (LA), and their combination (LA× DA). It can be seen that, DA brings slight gain when the
number of augmentation times is small, and brings negative gain when the number of augmentation
times increases. In contrast, LA and LA×DA can consistently improve the baselines for base class
and novel class, resulting in best performance in harmonic mean.

19



Published as a conference paper at ICLR 2022

The data augmentations used in this experiment are RandomResizedCrop(scale=(0.8,
1.0)) with probability 1.0, RandomHorizontalFlip with probability 0.5, and
ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.2)
with probability 0.8. These augmentations are applied sequentially and jointly on original images.
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Figure D.1: Comparison of DA, LA and LA×DA. “LA×DA” denotes T latent augmentation applied
after T traditional data augmentation (leads to T 2 times in total).

D.3 ABLATION ON USING LABEL INFORMATION AND CALIBRATION

Supervised base dictionary. LA constructs the base dictionary using the unsupervised K-Means
clustering. Alternatively, it can use label information, if available, to construct the base dictionary.
Specifically, the prototypes and their covariance matrices are computed with respect to each class
instead of each cluster.

Calibration. Distribution Calibration (Yang et al., 2021), a recent state-of-the-art in few-shot clas-
sification, proposes to use the statistics of base classes to calibrate the statistics of novel classes.
Specifically, they compute a calibrated novel class distribution: µ′ = (

∑
i∈S µi + z)/(k + 1),

Σ′ = (
∑
i∈S Σi)/k+ α, where k and α are two hyper-parameters, and |S| = k. Here, S is the top-k

similar classes set to the novel sample z. k denotes the number of base classes used to calibrate
the novel class, and α controls the the degree of dispersion from the calibrated covariance. The
augmented samples are then generated from N (µ′,Σ′). In their experiments, they find calibrating
from two base classes, i.e., k = 2 achieve the best results. In our experiments, we set k = 1, α = 0,
since the number of base classes in our problem is 7, which is significantly smaller than 64, 160,
and 100 base classes in natural images (Yang et al., 2021).

D.4 ABLATION ON COVARIANCE TYPES

By default, LA estimates the “full” covariance matrix for each cluster. Following notations in Gaus-
sianMixture model API in scikit-learn library (Pedregosa et al., 2011), we further compute different
types of covariance: 1) “tied”, where all clusters share the same general covariance matrix estimated
from the entire base dataset; 2) “diag”, where each cluster has its own diagonal covariance matrix;
3) “spherical”, where each cluster has its own single scalar variance. Specifically, “diag” covariance
matrix only computes the variance of each channel (each dimension) without considering the cor-
relation between channels, and “spherical” covariance further averages diagonal elements in each
“diag” covariance matrix, resulting in a single scalar variance. Results are shown in Table 2.

Table 2 reports results of our default setting, where 16 clusters are used. Here we further explore
more options of cluster numbers (leading to larger or smaller clusters). Figure D.2 show the results.
LA with full covariance matrix does degenerate performance as the cluster size decreases (larger
number of prototypes). In contrast, LAs with isotropic covariance matrices (“spherical”/“diag”)
perform more stably when cluster size alters. However, they underperform “full” covariance in
all cluster sizes. Besides, similar performance degeneration is also observed when using isotropic
covariance, but becomes slight. Note, the “Tied” covariance is estimated from the whole dataset.
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Therefore the results should only be affected by randomness in latent augmentation (yellow line in
Figure D.2).
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Figure D.2: Ablation study on cluster sizes v.s. covariance types.

D.5 ABLATION ON K-MEANS RANDOM SEEDS

LA relies on K-Means clustering, which might be effected by random initialization. Here we explore
how LA performs under different random seeds. Still, we use the K-Means API from faiss Johnson
et al. (2019), a library for clustering. Table D.3 reports the results. LA is robust to the choice of
random seeds. Among different seeds, the numerical differences of performance are within 95%
confidence interval. We choose the random seed 66 for reproducibility in main paper.

Table D.3: Ablation on different K-Means seeds. Results of ablation tasks are reported, i.e. 300
meta-tasks under 5-shot setting.

Random Seed Base Novel HMean

Baseline 85.85±0.78 53.27±1.63 65.74±1.06

10 86.85±0.84 65.70±1.40 74.81±1.05
20 87.34±0.80 66.74±1.33 75.66±1.00
30 87.71±0.81 66.48±1.35 75.63±1.01
40 87.31±0.80 65.04±1.39 74.55±1.02
50 87.83±0.78 66.40±1.35 75.63±0.99

66 (default) 87.37±0.81 66.51±1.39 75.53±1.03

Average 87.40±0.81 66.14±1.37 75.30±1.01

D.6 ABLATION ON COVARIANCE & L2 NORMALIZATION.

In our experiments, we compute the covariance matrices after l2-normalization. To inspect whether
the covariance is still meaningful after normalization. We compute the covariance matrices of NCT
test set features before and after l2-normalization. Then, we plot the covariance matrix as heatmaps.
Since the length of a feature vector is 512, and inspecting a 512 × 512 heatmap might be difficult,
we first compute the whole covariance matrix, then randomly select 128 channels to visualize; the
upper triangle elements of this 128 × 128 matrix are masked out. Figure D.3, D.4, D.5 are results
of three runs. We observe that the covariance before and after l2-normalization are highly corre-
lated, where the Pearson correlation coefficients are 0.9908, 0.9900, 0.9910 between before/after
l2-normalization covariance in Figure D.3, D.4, and D.5 respectively. Due to this high correlation,
the covariance after l2-normalization may still be informative to some extend. Besides, a recent
work on self-supervised learning, BarlowTwins (Zbontar et al., 2021), also compute covariance af-
ter l2-normalization in their ablation study (Section 4, “Loss Function Ablations”).

After l2-normalization, all original samples are on the surface of a unit-hypersphere (a d-1 dimen-
sional manifold, i.e. Sd−1), but the augmented samples generated by LA are not necessarily on
the surface. We therefore further normalize the augmented samples to see whether this impacts
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performance. In the same setting as ablation study (300 meta-tasks, 5-sot), we observe the HMean
marginally drops from 75.30±1.01 to 74.69±1.01. Although the l2-normalized features are on the
surface of a unit-hypersphere, the linear classifiers, typically, are still fitted in the original Rd space
and no special consideration is taken. Generating augmented samples that are not on the surface of
unit-hypersphere may still help. For more analysis about the niceness of unit-hypersphere, we refer
the reader to the discussion section in Wang & Isola (2020).

Figure D.3: Heatmap visualization of the covariance matrix of randomly selected 128 channels
before and after l2-normalization. Pearson correlation coefficients between them are 0.9908.

Figure D.4: Heatmap visualization of the covariance matrix of randomly selected 128 channels
before and after l2-normalization. Pearson correlation coefficients between them are 0.9901.

D.7 COMPARISON TO DELTA-ENCODER

D.7.1 REPRODUCTION

We follow an open-source repository2 to implement δ-encoder (Schwartz et al., 2018), and change
the batch size from 128 to 512 for faster training speed. Other hyper-parameters remain unaltered.

Note that, δ-encoder trains different generators for different shot settings, e.g., one generator for
1-shot setting, and another for 5-shot. This differs from our flexible and universal augmentation
pipeline. Besides, in both the official and the pytorch-version repositories, the best generator is
chosen based on the best performance on test set. We do not follow this setting, and directly use the
last-epoch model for augmentation.

2https://github.com/leven03/DeltaEncoder pytorch
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Figure D.5: Heatmap visualization of the covariance matrix of randomly selected 128 channels
before and after l2-normalization. Pearson correlation coefficients between them are 0.9910.

For 5-shot ablation task, we exclude the tumor-related classes to be novel class and use the remaining
as base dataset to train δ-encoder. All δ-encoders are trained for 20 epochs (the original paper trains
12-epoch for 5-shot). We find the 20-epoch δ-encoder performs slightly better than 12-epoch and
50-epoch δ-encoders.

D.7.2 RESULTS AND DISCUSSION

Results. Table D.4 shows the results. When using cluster labels as supervision, we find train-
ing δ-encoder on non-l2-normalized features and transferring to l2-normalized features gives the
best results. Normalizing the original features and generated features further improves the results
(63.40%→ 64.92%). Using ground truth labels, unfortunately and surprisingly, leads to worse per-
formance (64.92%→63.30%, especially no further l2-normalization is applied on generated features
(63.30%→48.11%). In our re-implementation, none of tested cases can outperform baseline and our
method.

Discussion. During augmentation, δ-encoder randomly samples a pair of base features from a same
class, referred to as reference pair, and use it as guidance to augment novel samples. It, by construc-
tion, does not utilize any similarity information between base features and novel features. This could
potentially cause problems as the base samples and novel samples can differ drastically, making the
semantic transferring meaningless. In contrast, our LA queries the most likely variation from base
dictionary via cosine similarity, which is a more strict constraint than randomly sampling as in δ-
encoder. Besides, in δ-encoder, the reference pair used for augmentation could come from different
base classes every time for a same novel class. For example, it could sample a LYM-LYM pair
to augment one novel sample from TUM class, and use a ADI-ADI pair to augment another novel
sample from TUM class3. This step might lead to feature inconsistency, which could degenerate
performance.

D.8 VISUALIZATION

D.8.1 VISUALIZATION PROCEDURE

Models. All images are visualized with models that have never seen their classes during pre-
training. For example, if the class “NORM” in NCT is regarded as novel class, samples belonging
to it are excluded from this sub- pre-training dataset. Models trained on this sub-dataset are used to
visualize “NORM” class.

Similarity map. To better understand why the generalization gap exists between CLP and FSP
models, we visualize how CLP models and FSP models are attended to different local features
for non-iconic, multi-object and multi-texture histology images. To this end, we resize images in

3LYM, ADI and TUM are two class names in NCT dataset
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Table D.4: Comparison to δ-encoder in ablation task. δ-encoder is a supervised method. “Label
source” column marks using unsupervised clustering labels or ground truth labels as supervision.
We study training δ-encoder on l2-normalized (L2) and non-normalized (Non-L2) base features,
marked in “Trained on” columns. Given the trained δ-encoder, we study how the target features
it is applied on affect the results, marked in the “Transfer to” column. At last, we study how l2-
normalization classifier affects final performance, marked in “Clf train&infer” column. Underlined
numbers denote the best entries among each group rows. Bold numbers denote the best entries
among all rows. Results are shown in percentage (%).

Method Label source Train on Transfer to Clf train infer Base Novel Hmean

δ-encoder

KMeans(K=16) L2 L2 L2 82.40 48.76 61.26
KMeans(K=16) L2 L2 Non-L2 82.04 48.15 60.28
KMeans(K=16) L2 Non-L2 L2 81.16 45.31 58.15
KMeans(K=16) L2 Non-L2 Non-L2 77.89 45.58 57.51
KMeans(K=16) Non-L2 L2 L2 79.68 54.77 64.92
KMeans(K=16) Non-L2 L2 Non-L2 81.65 51.82 63.40
KMeans(K=16) Non-L2 Non-L2 L2 81.52 48.21 60.59
KMeans(K=16) Non-L2 Non-L2 Non-L2 77.82 46.89 58.52

Ground Truth Non-L2 L2 L2 80.18 52.29 63.30
Ground Truth Non-L2 L2 Non-L2 82.67 33.93 48.11

ours Baseline 85.85 53.27 65.74
Baseline+LA 87.68 66.71 75.77

the NCT test set to 448 × 448, and use the pre-trained CLP models and FSP models to extract
l2-normalized features from stage-2, stage-3, and stage-4 of ResNet-18. To obtain similarity heat
maps, we compute the cosine similarity between global representations (after pooling) and local
representations (before pooling). For absolute similarity (“Abs. Sim.”), we directly rescale the
similarity values by multiplying 255. For normalized relative similarity (“Rel. Sim.”), we first
rescale the similarity values to [0, 1] by subtracting the minimum and dividing the maximum, and
then multiply them by 255.

Local feature agglomeration. We follow Chen & Li (2020) to see how local features are agglom-
erated across layers. To this end, we run K-means in scikit-learn Pedregosa et al. (2011) on the
l2 normalized local features (before pooling) from stage-2, stage-3, and stage-4 of ResNet-18 with
different numbers of clusters, i.e. 2, 4, 6.

D.8.2 MORE EXAMPLES

Figure D.6 show more visualizations of a base class that has been exposed during both supervised
pre-training and self-supervised pre-training.

Figure D.7 and Figure D.8 show more example images in the NCT dataset. Figure D.9 and Figure
D.10 show the results of the LC-25K dataset and the PAIP dataset respectively. We visualize the ab-
solute and relative cosine similarity between the global average pooled feature and the local features
before pooling (“Abs. Sim.” and “Rel. Sim.” columns accordingly). To inspect correlation between
local features, we conduct k-means clustering with different k values (columns with “k=*”). “Low”,
“middle” and “high” represent using features from stage-2, 3, and 4 from ResNet-18.
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Figure D.6: Visualization of base classes in NCT dataset. FSP show high correspondence to the
most discriminative parts (Abs. Sim. and Rel. Sim. columns). However, the cluster results of
non-discriminative parts appear to be meaningless, which may implies FSP’s failure in encoding all
available semantic information in the image.
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Figure D.7: Visualization in the NCT dataset - 1. White indexes in black circles represent class
IDs. They are: 0) background (BACK), 1) adipose (ADI), 2) debris (DEB), 3) lymphocytes (LYM),
and 4) mucus (MUC).
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Figure D.8: Visualization in the NCT dataset - 2. White indexes in black circles represent class
IDs. They are: 5) smooth muscle (MUS), 6) normal colon mucosa (NORM), 7) cancer-associated
stroma (STR), 8) colorectal adenocarcinoma epithelium (TUM).
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Figure D.9: Visualization in the LC-25K dataset. White indexes in black circles represent class
IDs. They are: 0) colon adenocarcinoma, 1) benign colonic tissue, 2) lung adenocarcinoma, 3)
benign lung tissue, and 4) lung squamous cell carcinoma.
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Figure D.10: Visualization in the PAIP dataset. White indexes in black circles represent class IDs.
They are: 0) non-tumor, 1) viable-tumor and 2) other tissues.
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