Under review as a conference paper at ICLR 2026

AVEY BIDIRECTIONAL ARCHITECTURE

Anonymous authors
Paper under double-blind review

ABSTRACT

Compact pretrained bidirectional encoders remain the backbone of industrial NLP
under tight compute and memory budgets. Their effectiveness stems from self-
attention’s ability to deliver bidirectional contextualization with high parallelism,
as popularized by BERT-style architectures. Recently, Avey was introduced as
an autoregressive, attention-free alternative that naturally admits an encoder-only
adaptation. In this paper, we reformulate Avey for the encoder-only paradigm
and propose several innovations to its architecture, including decoupled static
and dynamic parameterizations, stability-oriented normalization, and neural com-
pression. Results show that this reformulated architecture compares favorably to
four widely used Transformer-based encoders, consistently outperforming them
on standard token-classification and information-retrieval benchmarks while scal-
ing more efficiently to long contexts.

1 INTRODUCTION

Pretrained bidirectional Transformer encoders, most notably BERT (Devlin et al., 2019), have been
especially impactful in resource-constrained, application-specific settings, where compact models
can be efficiently fine-tuned for downstream tasks and deployed under strict latency and memory
budgets. Unlike unidirectional Transformer decoders, bidirectional encoders condition each token
on both its left and right contexts, yielding fully contextualized representations that improve disam-
biguation and translate into stronger performance on certain discriminative tasks (e.g., classification,
retrieval, and extractive question-answering) (Liu et al., 2019;Wang et al.| [2019bga; [Karpukhin et al.|
2020; Khattab & Zaharial, [2020j Rajpurkar et al., 20165 2018). Since BERT’s introduction, such en-
coders have seen broad and sustained adoption across academia and industry (Muennighoff et al.,
2023} [Thakur et al.| 2021} [Santhanam et al.| [2022; Wang et al., 2022} [Su et al., [2023)), particularly
targeting high-throughput, high-precision, and budget-constrained applications (Lan et al., 2020;
Sanh et al.,[2019; |Sun et al., 2020; J1ao et al., 2020).

The BERT family’s success in research and industry was enabled by the Transformer (Vaswani et al.,
2017), whose self-attention mechanism affords bidirectional contextualization while maintaining
high parallelizability. However, the quadratic time and memory costs of full self-attention remain a
central bottleneck (Tay et al., 2022} [Munkhdalai et al.,[2024), limiting practical extension of context
windows in cost-sensitive deployments. A large body of work has sought to mitigate this bottleneck
(e.g., via using linear attention (Katharopoulos et al., 2020; (Choromanski et al.| 2021} [Peng et al.,
2025)) and RNN-inspired architectures (Gu et al., 2021} |Gupta et al.| [2022; [Fu et al., [2022; |Gu &
Daol [2023)), but little of it has been adapted to the bidirectional, encoder-only paradigm. Mean-
while, BERT itself was modernized through larger pretraining corpora, architectural refinements
(e.g., FlashAttention (Dao et al., 2022)), SwiGLU activations (Shazeer, [2020), and RoPE positional
encoding (Su et al., [2021))), and new pretraining and fine-tuning strategies (Liu et al., [2019; |Portes
et al.,[2023; [Warner et al., [2025)), among others.

Most recently, Avey (Hammoud & Acharyal [2025) was introduced as an autoregressive architecture
that departs from both Transformer- and RNN-based designs. It partitions a sequence into splits,
ranks and retrieves the most relevant splits for each target split, and applies a dynamically parame-
terized neural processor to contextualize them. By decoupling context width from sequence length,
Avey enables efficient long-range interactions and extrapolation far beyond its training window, fa-
cilitating practical context extensions at realistic compute budgets. Although originally formulated
for causal language modeling, its cosine-similarity—based selectivity and learned cross-embedding
linear transformation make it naturally amenable to a bidirectional, encoder-style adaptation.

Under review as a conference paper at ICLR 2026

In this paper, we introduce Avey-B, a bidirectional reformulation of Avey for the encoder-only set-
ting, and compare it empirically against widely used and recently introduced Transformer-based
encoders. We further propose architectural advances that improve its effectiveness and efficiency,
including (1) decoupling static and dynamic parameterizations within the neural processor, (2) uti-
lizing stability-oriented, row-normalized similarity in dynamic layers, and (3) integrating a neural
compression module that reduces retrieved context before processing.

To elaborate, Avey-B contextualizes tokens via either a learned static linear projection or a dynamic
similarity matrix computed from cosine similarities, in any given layer. This contrasts with Avey,
which multiplicatively couples the learned projection and cosine scores element-wise in every layer.
By decoupling the static and dynamic parameterizations, Avey-B avoids destructive interactions
between fixed weights and input-dependent scores, most notably sign-flip effects where negative
learned weights invert the contributions of positively relevant tokens (especially during inference).
In addition, we normalize the cosine scores at each position by the sum of that position’s scores over
all tokens, stabilizing training and consistently improving downstream task performance.

Alongside, we observe that extending Avey to the bidirectional paradigm without some modifica-
tions may introduce a scalability issue. Specifically, in the original design of Avey, each split is
concatenated with its top-k relevant splits and jointly contextualized in a single pass through the
neural processor. Performing this for every split inflates the input size to roughly & times the num-
ber of tokens, substantially increasing processing time. In the autoregressive regime, this overhead
is mitigated by training on short context widths, leveraging Avey’s ability to extrapolate well beyond
that. It is also tolerable at inference because only the most recent split is contextualized with its top-
k splits to generate the next token. In the bidirectional inference setting, however, this strategy is
infeasible, since all splits must be contextualized to produce complete token-level representations.

Building on this observation and recognizing that inference efficiency is critical for encoder mod-
els (especially in industry where they are commonly used (Raghavan, [2020; [Zhu, |2019; |Guo et al.}
2020; Warner et al., 2025)), we introduce a neural compression scheme in the ranker. More pre-
cisely, we compress each split together with its top-k retrieved splits back to the size of a single
split via a learned linear projection. As a result, the neural processor contextualizes only as many
tokens as in the original input sequence, avoiding redundant computations over the appended top-k
splits. Because the neural processor operates on each split independently, Avey-B achieves higher
throughput than Transformer-based encoders at scale, while preserving high accuracy across a wide
range of downstream benchmarks.

To summarize, our main contributions in this paper are as follows:

* We propose Avey-B, a bidirectional encoder architecture that capitalizes on Avey by de-
coupling static and dynamic parameterizations and introducing a lightweight normalization
scheme for dynamic contextualization.

* We redesign Avey’s ranker to compress each split’s top-k retrieved context into a fixed
token budget, making the neural processor’s per-split compute independent of k£ while pre-
serving the benefits of retrieving larger relevant token sets via increasing k.

* We demonstrate that Avey-B scales efficiently with large sequence lengths, delivering much
higher throughput at scale compared to Transformer-based encoders.

* We conduct extensive design-choice and ablation studies to identify the most effective ar-
chitectural configuration and demonstrate how each proposed idea contributes to the per-
formance gains of Avey-B over the original Avey architecture.

* We show that Avey-B outperforms BERT (Devlin et al.l [2019) and NeoBERT (Breton
et al.l [2025) across all the evaluated benchmark categories, and consistently surpasses
RoBERTa (L1u et al.,[2019) and ModernBERT (Warner et al., |2025) on token-classification
and information-retrieval tasks, despite being pretrained on ~11x fewer tokens than Mod-
ernBERT.

* We release the full implementation and pretrained checkpoints of Avey-B (see Section (7)),
enabling reproducibility and fostering future research.

Under review as a conference paper at ICLR 2026

2 RELATED WORK

The introduction of GPT (Radford et al., 2018)) in 2018 marked a turning point in large-scale lan-
guage modeling, establishing the now-standard paradigm of pretraining Transformer-based models
on massive unlabeled corpora followed by supervised fine-tuning on task-specific data. GPT op-
timized a causal language modeling (CLM) objective, pretraining a unidirectional, decoder-only
Transformer (Vaswani et al., 2017) for next-token prediction. The resulting pretrained model can
then be effectively fine-tuned with modest labeled data to a broad range of downstream tasks, in-
cluding text classification (Wang et al., [2019b), natural language inference (Bowman et al., 2015}
Williams et al.,|2018)), and question answering (Rajpurkar et al., 2016; |[Lai et al.,2017), to mention
just a few. This pretrain—fine-tune paradigm yielded state-of-the-art performance on these tasks at
the time (Radford et al., [2018)).

BERT (Devlin et al.| [2019) extended this paradigm by replacing the unidirectional decoder with a
fully bidirectional encoder. Concretely, it introduced two pretraining objectives, masked language
modeling (MLM), which reconstructs randomly masked tokens in an input sequence, and next sen-
tence prediction (NSP), which models inter-sentence relationships. By contextualizing tokens in
both directions, BERT delivered substantial gains over causally pretrained models, particularly on
benchmarks such as GLUE (Wang et al.,[2019b), MultiNLI (Williams et al.,[2018]), and SQuAD (Ra-
jpurkar et al.,|2016), among others.

RoBERTa (Liu et al, [2019) robustly optimized BERT by retaining its overall architecture while
systematically revisiting nearly every aspect of its pretraining setup. Key modifications included
removing the NSP objective, pretraining with larger batches and longer sequences, adopting dy-
namic masking strategies, and scaling to substantially larger corpora. Building on this foundation,
DeBERTa (He et al., [2021bza; 2023) introduced disentangled attention, which separates content and
positional information into distinct attention matrices, and improved fine-tuning stability through
virtual adversarial training. Together, these innovations further advanced performance on some
challenging benchmarks such as SuperGLUE (Wang et al.,|2019a)).

Subsequent work emphasized both architectural refinements and pretraining efficiency. For exam-
ple, MosaicBERT (Portes et al.,[2023]) integrated FlashAttention (Dao et al.,2022), ALiBi positional
biases (Press et al.||2022), and gated linear units (GLU) (Dauphin et al., 2017; Shazeer, [2020) to ac-
celerate pretraining while maintaining strong downstream accuracy. NomicBERT (Nussbaum et al.,
2024) adopted SWiGLU (Shazeer, |2020) and rotary positional encodings (RoPE) (Su et al., |2021)).
NeoBERT (Breton et al.l |2025) combined RoPE, SwiGLU, and RMSNorm (Zhang & Sennrich}
2019) with depth—width rebalancing and large-scale pretraining. ModernBERT (Warner et al.| 2025)
pushed this trend further, employing many of these techniques (e.g., RoPE, FlashAttention, and al-
ternating global/local attention), supporting context windows for up to 8,192 tokens, and pretraining
on multi-trillion-token corpora.

All of the above models are Transformer-based, leveraging self-attention to provide effective bidi-
rectional contextualization while maintaining high pretraining parallelism. Recently, a fundamen-
tally different architecture named Avey (Hammoud & Acharyal 2025) was introduced. Avey is
attention-free and can process virtually unlimited sequence lengths (see Section[3). Avey-B capital-
izes on Avey to support bidirectional contextualization, mirroring the shift from GPT-style decoder-
only to BERT-style encoder-only models in the Transformer family. We empirically compare Avey-
B against BERT, RoBERTa, ModernBERT, and NeoBERT in Section@

3 BACKGROUND

The original Avey architecture decouples sequence length from context width by pairing a
lightweight ranker with a data-dependent neural processor. We next provide a background on both.
3.1 RANKER

Avey partitions an input sequence of length N into equal-sized splits of S tokens, applying zero-
padding if IV is not divisible by S. For a given current split, the ranker computes its relevance to
each preceding split using the MaxSim operator (Khattab & Zaharial 2020), orders them by their
MaxSim scores, and selects the top-k splits for contextualization.

Before contextualization, the MaxSim scores of the top-k selected splits are normalized by dividing
each score by the maximum among them. Each selected split is then weighted by its normalized

Under review as a conference paper at ICLR 2026

score and concatenated with the current split. This weighted-selective-split mechanism prunes irrel-
evant global tokens and scales the contribution of each retrieved split based on relevance.

Crucially, the ranker is invoked only once per full forward/backward pass, independent of the num-
ber of neural-processor layers. Matching each split against all preceding splits yields a training-time
compute cost of O(N2d), where d is the embedding dimension.

3.2 NEURAL PROCESSOR

The neural processor ingests the current split and its weighted top-k retrieved splits, and processes
them through a layered architecture. Each layer comprises three modules, an enricher, a contextu-
alizer, and a fuser.

The enricher is a single-layer, position-wise neural network applied independently to each token
embedding. Given C' input embeddings arranged as X € R©*?, the enricher computes a matrix
Z € RE*™ (with m > d) as follows:

Z = o(XU+b), (D

where U € R%*™ is a learnable weight matrix, b € R®*™ represents biases, and o(-) is an
activation function. The output Z is partitioned into a head Zj € R®*™ which is bypassed
directly to the fuser, and a tail Z; € RE*™: (with m = my, + my), which is forwarded to the
contextualizer. This partial-embedding bypassing technique preserves raw token-specific features
and mitigates degradation effects (e.g., over-smoothing), as the number of layers is increased.

The contextualizer operates on the tail Z;. Each m;-dimensional tail embedding is split evenly into a
gating left half and a contextual right half, yielding Zy; € RE* 2" and Z,, € RE* 2", respectively.
Formally, the contextualizer is a single-layer, embedding-wise network that updates Z;, as follows:

c(Z) = Zu © o((V © N(Zi) N (Z)T) Zir + b)), @)

where V € R*C is a learned cross-embedding matrix, ® denotes element-wise (Hadamard) mul-
tiplication, \V(-) applies row-wise £ normalization (so N'(Zy,.) N'(Z¢,) T computes cosine similar-
ities between embeddings), and b’ is an optional bias. Intuitively, each neuron aggregates statically
and dynamically weighted contributions from other embeddings, and the resulting update is gated by
Z,;. The learned matrix V provides position-sensitive mixing, so no additional positional encodings
are required within the contextualizer.

The fuser combines the bypassed and contextualized streams and projects the output back to the
model embedding dimension d as follows:

[(Z) = [Zn]lc(Z4)] O, 3)

where O € R(mn+m:/2)xd jg 3 Jearned projection matrix. As with the enricher, the fuser is applied
independently to each token embedding. Its output is merged with the enricher’s input within the
same layer via a residual, element-wise addition.

Aggregating the costs of the ranker, enricher, contextualizer, and fuser over L layers yields a training
complexity of O(N?d) for an input sequence of length N. At inference, only the most recent split
is contextualized for autoregressive decoding, reducing the complexity to O(N).

4 AVEY-B

Avey-B is a bidirectional reformulation of Avey. We next elaborate on its architecture and computa-
tional implications.

4.1 BIDIRECTIONAL CONTEXTUALIZATION

Avey-B drops the autoregressive mask in Avey’s contextualizer, allowing each token representation
to condition on both left and right contexts. Specifically, when a split is contextualized with its top-k
selected splits, all token interactions are permitted, without any causal masking. This converts Avey
into an encoder-style architecture while preserving selective global access via the ranker.

Under review as a conference paper at ICLR 2026

d d d
n;’ = Wllng) + w21ng) + W31ng)

n1 = S11€1 + S21€2 + S31€3

ny = S11Wi1€1 + S21W1€82 + S31W3q€3

S11 S21 S31
€1 ez €3
(a) Avey’s Coupled Parametrization (b) Avey-B’s Decoupled Parametrization

Figure 1: A simple illustration of coupled (a) and decoupled (b) parameterizations (e; = embedding
1; s;; = cosine similarity score between e; and e;; n; = neuron i, ni(d) = neuron ¢ in dynamic
layer d; n;(*) = neuron i in static layer s; and w;; = weight corresponding to e; or n;(Y used in the
weighted sum of n; or n; (), respectively).

4.2 DECOUPLED PARAMETRIZATION

In Avey, the contextualizer multiplies (element-wise) a learned, static weight matrix (i.e., V) with
an input-dependent cosine-similarity matrix (i.e., the outcome of N'(Z,.) N'(Z) "), then uses the
result to linearly combine the input embeddings (i.e., Z;,) into contextualized representations (see
Equation [2). This tight coupling of fixed parameters with data-driven relevance scores can induce
pathological behaviors. For instance, a token that is highly similar to a neuron’s current token (thus,
yielding a positive cosine score) can be forced to contribute negatively whenever the corresponding
entry of V is negative. Consequently, the neuron’s update violates monotonicity with respect to
relevance, which entails that a more-relevant token must contribute at least as much as a less-relevant
one, and increasing a token’s relevance must not reduce or invert its contribution.

Fig. [I] (a) offers a simple illustration of the problem. Suppose the cosine similarity so; exceeds
s31; then embedding e, should contribute at least as much to neuron n;’s update as embedding es.
In Avey’s coupled design, the element-wise product with learned weights can invert this ordering.
Specifically, if weight ws; > weight wo; (or the signs differ), the effective contributions waq So1
and w3 s31 can be reversed (especially at inference), undermining evidence accumulation from the
most informative tokens.

Avey-B addresses this problem by decoupling the two parameter sources (i.e., learned weights and
input-driven similarities) and interleaving them across depth (we compare different interleaving pat-
terns in Appendix D). In particular, we define each layer to be either static or dynamic. A static layer
applies a learned linear transformation on embeddings while a dynamic layer weights them solely by
cosine similarity. Alternating these layers preserves monotonicity of similarity-based updates with
respect to relevance (i.e., when sy; > 531, token 2 receives no smaller, and typically larger, positive
influence than token 3 in the dynamic layer).

Fig. [1| (b) demonstrates the effect of decoupled parametrization. If so; > s31, the dynamic layer

for neuron n; ’ assigns a larger normalized weight to e; than to e3, with no learned weights in-
tervening in this similarity-based update. In the following static layer (assuming an interleaved
dynamic-static pattern) for n(ls), both contributions are scaled by the same coefficient wy1; hence,
the ordering established by the dynamic layer is preserved. More generally, because the static layer
is similarity-agnostic, it cannot retroactively modify the normalized dynamic scores or introduce
similarity-conditioned sign flips.

To this end, decoupling static and dynamic computations maintains the monotonicity guarantee at
each dynamic layer while still allowing representation shaping in static layers. Static layers will, of
course, change the representations from which subsequent similarities are computed, but they do not
alter the scores already assigned by a preceding dynamic layer and thus do not violate monotonicity
for that layer. We provide a formal proof for this monotonicity guarantee in Appendix [A|and ablate

Under review as a conference paper at ICLR 2026

this decoupling design choice in Appendix [Hl We further analyze the coupled versus decoupled
parameterizations and their implications in Appendix

Formally, let Z, € RE*4" denote the matrix of contextual, right-tail components for C' enriched
embeddings, where d’ is the contextualizer’s right-tail dimension (see Sectionfor more information
on all notations). In Avey-B, a static layer applies a learned cross-embedding linear transformation
as follows:

Cstatic(z) = U(V Ztr + b(S))a (4)

where V € RE*C is a learned matrix, b(*) € RE*4" is an optional bias, and o () is an activation
function. Intuitively, each neuron first aggregates linearly the C' embeddings and then applies the
pointwise activation o.

On the flip side, an Avey-B’s dynamic layer computes an input-dependent similarity matrix from
Z;, and utilizes it to mix embeddings as follows:

S = N(Ztr)N(Ztr)T S RCXC, (5)
g Si, . o
Si; = 07] (row-wise sum normalization), (6)
Zj:l Si,j +e
Cdyn(z) = 0(g Ztr =+ b(d)) (7)

Here N (-) denotes per-row ¢, normalization to unit length so that S encodes cosine similarities;

€ > 0is a small stabilizer ensuring a positive denominator; b(®) ¢ RE*d" ig an optional bias, and S
is a simple sum-normalized similarity matrix. This row-wise normalization yields a row-stochastic
similarity operator (row sums < 1), which bounds per-row gain and mitigates the growth of large
singular values through depth, improving numerical conditioning and trainability. In the unnor-
malized case (i.e., in Avey), inflated singular values can drive activation and gradient growth with
depth, resulting in unstable optimization and degraded generalization. We ablate this normalization
technique and show consistent gains over softmax-based and RMS-style alternatives in Appendix [E]

4.3 NEURAL COMPRESSION

A key bottleneck in extending Avey to the bidirectional setting is the per-split concatenation strategy,
whereby each current split is concatenated with its top-k retrieved splits for contextualization. This
is manageable in Avey’s autoregressive inference because only the most recent split is expanded. In
the bidirectional regime, however, every split within the contextualizer’s window must be expanded,
which inflates the effective sequence length by a factor of £ + 1.

To mitigate this, Avey-B introduces a neural compressor within the ranker to condense the concate-
nated block of (k 4 1).S tokens back into S tokens (where .S denotes the number of tokens per split)
prior to feeding it to the neural processor. Specifically, the neural processor is an embedding-wise
neural network with (k 4 1)S tokens as input and S representative tokens as output.

Formally, let X, € R(*+1)5%d pe the concatenation of a single split with its top-k retrieved splits,
where d denotes the embedding dimension. Subsequently, Avey-B produces a compressed output

X € RS*4 a5 follows:

X = PXey (®)

where P € RS*(k+1)S 5 learnable matrix that performs a linear cross-token transformation, and X
replaces X, as the input to the neural processor. Because P is a learned matrix, the compressor can
preserve globally informative content while discarding potential redundancy, yielding a favorable
accuracy/throughput trade-off. We study the impact of the compressor on Avey-B’s accuracy and
throughput in Appendix [H]

As discussed in (Hammoud & Acharyal [2025)), computation in the neural processor largely domi-
nates that of the ranker. As such, when Avey-B reduces the number of tokens contextualized per

Under review as a conference paper at ICLR 2026

Table 1: Design and masked language modeling (MLM) choices.

Question Answer Experiments
What is the most effective arrangement of static (S) and Interleaved layers with a Appendix D
dynamic (D) layers? repeating S — D pattern

What is the most effective normalization technique Row-wise normalization Appendix E]

within the dynamic layers, Softmax, RMS Norm, or
Row-wise normalization?

What are the best values for sequence length N, split N =2048, 5 = 256,k =3 Appendix H
size S, and top k splits?

Should the ranker operate bidirectionally as well? No Appendix
What is the best masking rate? 20% Appendix

split from (k+1)S to S, throughput improves by 4.37x (see Fig.[3|in Appendix [H), albeit leaving
Avey’s asymptotic complexity unchanged (still quadratic with respect to the sequence length N).
5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

In this section, we compare Avey-B with widely used and recently introduced Transformer-based
encoders, namely, BERT (Devlin et al.| 2019), RoBERTa (Liu et al., 2019), ModernBERT (Warner,
et al., 2025), and NeoBERT (Breton et al., 2025). We evaluate two Avey-B model sizes, base
and large, each pretrained on 180B tokens drawn from the FineWeb corpus (Hugging Facel [2023).
Pretraining details and information about all the evaluated models are provided in Appendix

To assess effectiveness, we adopt the evaluation protocol of Boukhlef et al. (Gisserot-Boukhlef
et al., 2025), targeting breadth across four downstream categories prevalent in practice, includ-
ing Sequence Classification (SC), Token Classification (TC), Question Answering (QA), and In-
formation Retrieval (IR). Each category is represented by three established benchmarks, namely,
MNLI (Williams et al.l 2018), QQP (Wang et al.l 2017), SST-2 (Socher et al., [2013) under SC;
CoNLL-2003 (Sang & De Meulder, 2003)), OntoNotes (Hovy et al., [2006), and UNER (Mayhew
et al.,|2023) under TC; ReCoRD (Wang et al.,[2019a)), SQuAD (Rajpurkar et al.,[2016), and SQuAD-
v2 (Rajpurkar et al.| 2018) under QA; and MLDR (Multi-Granularity}, 2024), MS MARCO (Bajaj
et al.} 2016)), and NQ (Kwiatkowski et al.,[2019) under IR.

We fine-tuned benchmarks under SC and TC for 1 epoch, QA for 4 epochs, and IR for 1,000 op-
timization steps. For each benchmark, we swept four learning rates {2 x 107>, 6 x 1077, 1 x
10~*, 5 x 10~*} and trained each configuration with 10 independent random seeds. Akin to (Liu
et al.}2019), the reported results for each model are the median scores across seeds at the best learn-
ing rate. SC is evaluated with accuracy, TC and QA with F1 score, and IR with NDCG@10. Lastly,
following Boukhlef et al. (Gisserot-Boukhlef et al., [2025)), we used linear learning-rate decay with
warmup over the first 10% of steps.

To measure efficiency, we report latency (seconds/forward pass) and throughput (tokens/second) as
a function of input context length (with a fixed batch size), benchmarking models on NVIDIA H200
GPUs under identical software and precision settings. These measurements provide a direct com-
parison of scalability and deployment efficiency between Avey-B and Transformer-based encoders.

5.2 DESIGN CHOICES AND ABLATIONS

Following the methodology established in the original Avey work (Hammoud & Acharyal 2025)), we
conduct systematic design—choice studies to identify effective configurations for Avey-B. We also
sweep the masking rate to select a robust setting for pretraining Avey-B. Table [I| summarizes these
studies and links to the supporting experiments for each conclusion.

Moreover, we perform ablation studies to quantify the contribution of each refinement to Avey-B.
Specifically, we measure incremental gains from: (1) decoupling and interleaving static and dynamic
parameterizations, (2) introducing normalization within the dynamic layers, and (3) integrating a
neural compressor into the ranker. Appendix [H presents the full results and analysis.

Under review as a conference paper at ICLR 2026

Table 2: Effectiveness results for several encoders at different scales (M = Medium).

Model e TC QA IR
SQUAD MS
MNLI QQP SST-2 Avg. CONLL Onto. UNER Avg. ReCoRD SQUAD Avg. MLDR NQ Avg.
v2 MARCO

Avey-B 83.58 89.81 92.94 88.78 92.88 93.80 94.10 93.59 44.03 7444 68.88 62.45 63.83 88.14 83.6278.53

9 BERT 81.92 88.57 90.94 87.14 90.25 91.03 88.20 89.82 36.76 72.20 63.99 57.65 57.42 S8I.15 80.66 73.08
& RoBERTa 86.42 89.12 92.78 89.44 90.55 92.11 88.16 90.27 67.86 80.68 76.62 75.05 56.07 86.47 80.30 74.28
ModernBERT 86.72 89.81 92.32 89.61 92.30 93.74 92.30 92.78 65.73 80.23 77.36 74.44 54.29 88.09 75.24 72.54

S NeoBERT 82.53 88.88 84.60 85.36 S87.55 88.88 88.17 88.20 37.74 64.84 64.42 55.67 39.98 70.76 59.43 56.72
Avey-B 85.66 89.22 94.38 89.75 93.60 94.09 94.32 94.00 58.22 77.30 7246 69.32 67.05 88.72 86.2480.67

% BERT 85.08 89.27 92.26 88.87 88.54 90.71 86.09 88.44 52.02 77.93 7296 67.64 61.08 87.71 85.42 78.07
S RoBERTa 90.16 89.49 94.67 91.44 91.71 92.70 88.79 91.07 80.86 84.00 83.04 82.63 58.50 89.43 85.91 77.95

ModernBERT 90.53 90.73 95.99 92.41 92.43 93.79 92.92 93.05 73.05 82.02 79.96 78.34 59.64 88.82 81.36 76.61

5.3 EFFECTIVENESS

We now evaluate Avey-B on standard SC, TC, QA, and IR benchmarks, comparing it against BERT,
RoBERTa, ModernBERT, and NeoBERT. For all baselines we consider base and large configura-
tions (see Table [3] in Appendix [B), except for NeoBERT which is evaluated on its only publicly
available size, that is, medium. Table[2] summarizes all the results.

At the base scale (and medium for NeoBERT), Avey-B surpasses BERT and NeoBERT across all
task categories, despite using ~85M fewer parameters than NeoBERT. It also delivers the strongest
results on TC and IR, outperforming all Transformer-based models in both categories. For SC,
Avey-B attains the best scores on QQP (tied with ModernBERT) and SST-2, while trailing RoBERTa
and ModernBERT on MNLI. For QA, Avey-B leads on SQuAD-v2 but lags RoOBERTa and Modern-
BERT on ReCoRD and SQuAD.

At the large scale (and medium for NeoBERT), Avey-B again outperforms BERT and NeoBERT
across all task categories. It also offers the strongest results on TC and IR, surpassing every
Transformer-based model. Notably, the Avey-B base model even exceeds all large Transformer
encoders on TC and IR (despite also being pretrained on ~11x fewer tokens than ModernBERT,
for example). These results highlight Avey-B’s advantage for both local, span-sensitive decisions
(TC) and long-document encoding (IR).

In summary, at both base and large scales, Avey-B exceeds BERT and NeoBERT on every evaluated
benchmark and delivers consistent gains over all baselines on TC and IR. We attribute these gains
to two design factors: (1) TC tasks hinge on local evidence within short spans, and Avey-B’s split-
based processing with pruning of low-relevance splits/tokens sharpens the signal-to-noise ratio; and
(2) IR benefits from selectively pairing globally relevant content with its immediate local context
when encoding long documents (an inductive bias Avey-B enforces by construction), whereas full
bidirectional processing over all tokens (like in all the Transformer-based models) tends to admit
distractors and dilute relevance as sequence length grows.

5.4 EFFICIENCY

Avey is very recent and does not yet have a fused-kernel (CUDA/Triton) implementation. As such,
we measure Avey-B’s efficiency using an eager PyTorch implementation, making all the reported
throughput and latency numbers conservative lower bounds. For the Transformer-based models, we
utilize ModernBERT and NeoBERT as representative encoders especially since they were recently
modernized and optimized, incorporating FlashAttention (Dao et al.|[2022), RoPE positional encod-
ing (Su et al.,2021), and several other techniques (see Section [2). RoPE enables testing efficiency
beyond the model’s pre-trained context width, which we leverage to probe throughput and latency at
long sequences. While such extrapolation can degrade task effectiveness, it fully meets the objective
of this study because we use it solely to measure efficiency and not model quality.

Interestingly, Avey (and, accordingly, Avey-B) does not suffer from this problem due to its unique
design of decoupling context width from sequence length, thus enabling models that use it to scale
virtually to unlimited sequence lengths without requiring any additional pre-training at those lengths.
For our efficiency study, we therefore extend the sequence length as needed and compare Avey-B
base against ModernBERT base and NeoBERT medium (the only publicly available size) by mea-

Under review as a conference paper at ICLR 2026

ModernBERT-sys-optimized NeoBERT-sys-optimized Avey-B ModernBERT-sys-unoptimized NeoBERT-sys-unoptimized Avey-B

1200000
1000000

800000

Throughput (Tokens/Second)
P
s 8
s 3
S o
s 3
s 3

200000

2K

6K
10K
14K
18K
23K
27K
31K
35K
39K
43K

N
=
o

47K
Z 55K
59K
63K
68K
72K
76K
80K
84K
88K
922K
96K

kel

3
-]
2
o
[
o
"d
I3
o
2
5

n

a

e Lengtl

(a) (b)

S

Q
3

s)

Figure 2: Throughput of Avey-B, ModernBERT, and NeoBERT on NVIDIA H200 GPUs with mixed
precision (BF16). We use Avey-B base, ModernBERT base, and NeoBERT medium (the only pub-
licly available size). Avey-B is shown in (a) and (b) as unoptimized (no fused-kernel implementa-
tion is available). For ModernBERT and NeoBERT we report results for system—optimized (with
FlashAttention) and system—unoptimized (eager) variants in (a) and (b), respectively.

suring throughput (reported in this section) and latency (reported in Appendix [[). The qualitative
observations listed herein, however, apply to both throughput and latency.

For both ModernBERT and NeoBERT, we report throughput with and without FlashAttention, de-
noting the former as sys-optimized and the latter as sys-unoptimized. As shown in Fig. 2] (b), the
unoptimized (eager) Avey-B achieves substantially higher throughput than the sys-optimized Mod-
ernBERT and NeoBERT. Without FlashAttention, ModernBERT and NeoBERT could not scale
beyond 45K and 10K tokens, respectively, due to memory limits. With FlashAttention, both scale
to the maximum tested length (i.e., 96K), yet Avey-B still maintains a lead where ModernBERT
trails it beyond ~25K tokens, and NeoBERT trails it across all sequence lengths (see Fig. 2] (a)).
This is because Avey-B contextualizes each split of fixed size S bidirectionally and independently,
incurring O(S?) time per split; with N/S splits in a sequence of length N, the total time is
(N/S) x S? = NS = O(N) (for fixed S), yielding linear scaling in /N and a throughput advantage
at long context.

Comparing NeoBERT with ModernBERT, NeoBERT underperforms it both with and without
FlashAttention. We attribute this to three factors. First, we evaluate the only publicly available
NeoBERT size, that is, medium (250M parameters; see Table |3] Appendix , which has ~100M
more parameters than ModernBERT base, increasing per-token FLOPs and memory traffic. Second,
NeoBERT scales primarily by depth while keeping the same embedding dimension (model width)
as ModernBERT, lengthening the forward/backward critical path (since layers execute sequentially)
and slowing down inference. Third, NeoBERT does not have some of the efficiency optimizations
present in ModernBERT, most notably the alternating local-global attention organization, which
further contributes to lower throughput.

Taken together, the results depicted in Fig. 2] show that Avey-B encodes long sequences more ef-
ficiently than modernized, system-optimized BERT baselines (i.e., ModernBERT and NeoBERT),
while outperforming all tested Transformer-based bidirectional encoders on TC and IR benchmarks.
This combination of efficiency and effectiveness suggests that Avey-B is a strong alternative for
IR and RAG (Lewis et al.| [2020; Izacard & Grave, 2021} |Guu et al., 2020; Borgeaud et al., 2022
Izacard et al.,|2022) applications that require on-the-fly encoding of long documents or sequences.

6 CONCLUSION

In this paper, we presented Avey-B, a bidirectional encoder built on Avey, a new attention-free
foundation model. Avey-B contributes three architectural innovations: (1) decoupling static and
dynamic parameterizations, (2) row-normalized similarity in the dynamic layers, and (2) a neural
compression module for improving effectiveness and efficiency. Results show that Avey-B deliv-
ers consistent gains over Transformer-based encoders, including BERT, RoBERTa, ModernBERT,
and NeoBERT on token classification and information retrieval, while outperforming BERT and
NeoBERT on every evaluated benchmark. These findings entail that attention might not be the only
viable route to strong bidirectional encoders and motivate further study of retrieval-conditioned,
non-attention architectures.

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY

All results reported in this paper are reproducible. Section[d]specifies Avey-B’s components in detail.
The full experimental methodology is provided in Section and Appendix [B| We attach a repos-
itory with code as supplementary material. The repository includes: (1) training, fine-tuning, and
evaluation scripts; (2) configuration files with the exact hyperparameters used for every experiment;
(3) data preprocessing instructions and dataset references/splits; and (4) environment specifications
and run scripts to regenerate all tables and figures. Using the provided commands on hardware
comparable to our setup reproduces the reported numbers within expected seed variance.

REFERENCES

answerdotai-base. Modernbert-base. https://huggingface.co/answerdotai/
ModernBERT-basel Hugging Face model repository.

answerdotai-large. Modernbert-large. https://huggingface.co/answerdotai/
ModernBERT-1large. Hugging Face model repository.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Ma-
jumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, et al. Ms marco: A human generated
machine reading comprehension dataset. arXiv preprint arXiv:1611.09268, 2016.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Mil-
lican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, Diego
de Las Casas, Arthur Guy, Jacob L. Menick, Roman Ring, Tom Hennigan, Saffron Huang, Luca
Maggiore, Michael Jones, Adhiguna Cassirer, Andrew Brock, Erica Rutherford, Geoffrey Irving,
Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre. Improving language
models by retrieving from trillions of tokens. In International Conference on Machine Learning
(ICML), 2022.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large anno-
tated corpus for learning natural language inference. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2015.

Lola Le Breton, Quentin Fournier, Mariam El Mezouar, John X. Morris, and Sarath Chandar.
Neobert: A next-generation bert. arXiv preprint arXiv:2502.19587, 2025.

chandar-lab. Neobert. https://huggingface.co/chandar—lab/NeoBERT, Hugging
Face model repository.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlés, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger, Lucy
Colwell, and Adrian Weller. Rethinking attention with performers. In International Conference
on Learning Representations (ICLR), 2021.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. In Advances in Neural Information Process-
ing Systems (NeurlPS), 2022.

Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In Proceedings of the 34th International Conference on Machine Learn-
ing (ICML), pp. 933-941. PMLR, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2019.

facebook-roberta-base. Roberta base (roberta-base). https://huggingface.co/
FacebookAI/roberta-base. Hugging Face model repository.

facebook-roberta-large. Roberta large (roberta-large). https://huggingface.co/
FacebookAI/roberta-large. Hugging Face model repository.

10

https://huggingface.co/answerdotai/ModernBERT-base
https://huggingface.co/answerdotai/ModernBERT-base
https://huggingface.co/answerdotai/ModernBERT-large
https://huggingface.co/answerdotai/ModernBERT-large
https://huggingface.co/chandar-lab/NeoBERT
https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/FacebookAI/roberta-large
https://huggingface.co/FacebookAI/roberta-large

Under review as a conference paper at ICLR 2026

Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W. Thomas, Atri Rudra, and Christopher Ré.
Hungry hungry hippos: Towards language modeling with state space models. arXiv preprint
arXiv:2212.14052, 2022.

Hippolyte Gisserot-Boukhlef, Nicolas Boizard, Manuel Faysse, Duarte M Alves, Emmanuel Mal-
herbe, André FT Martins, Céline Hudelot, and Pierre Colombo. Should we still pretrain encoders
with masked language modeling? arXiv preprint arXiv:2507.00994, 2025.

google-bert-base. Bert base uncased (bert-base-uncased). https://huggingface.co/
google-bert/bert-base-uncased. Hugging Face model repository.

google-bert-large. Bert large uncased (bert-large-uncased). https://huggingface.co/
google-bert/bert-large-uncased, Hugging Face model repository.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In Advances in Neural Information Processing Systems (NeurlPS), 2021.

Weiwei Guo, Xiaowei Liu, Sida Wang, Huiji Gao, Ananth Sankar, Zimeng Yang, Qi Guo, Liang
Zhang, Bo Long, Bee-Chung Chen, and Deepak Agarwal. Detext: A deep text ranking frame-
work with BERT. In Proceedings of the 29th ACM International Conference on Information
and Knowledge Management (CIKM °20), Virtual Event, Ireland, 2020. ACM. URL https:
//arxiv.orqg/abs/2008.02460.

Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
state spaces. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Retrieval augmented
language model pre-training. In International Conference on Machine Learning (ICML), 2020.

Mohammad Hammoud and Devang Acharya. Don’t pay attention. arXiv preprint arXiv:2506.11305,
2025.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav2: Further improving deberta using
knowledge distillation. arXiv preprint arXiv:2111.09543, 2021a.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention. In International Conference on Learning Representations (ICLR),
2021b.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style
pre-training with gradient-disentangled embedding sharing. arXiv preprint arXiv:2111.09543,
2023.

Eduard Hovy, Mitch Marcus, Martha Palmer, Lance Ramshaw, and Ralph Weischedel. Ontonotes:
the 90% solution. In Proceedings of the human language technology conference of the NAACL,
Companion Volume: Short Papers, pp. 57-60, 2006.

Hugging Face. Fineweb dataset. https://huggingface.co/datasets/
HuggingFaceFW/finewebl 2023. Accessed: 2025-04-19.

Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open
domain question answering. arXiv preprint arXiv:2007.01282, 2021.

Gautier Izacard, Fabio Petroni, Lucas Hosseini, Majid Yazdani, Pasquale Minervini, Cyprien
de Masson d’Autume, Sebastian Riedel, and Patrick Lewis. Atlas: Few-shot fine-tuning

of pretrained language models for knowledge-intensive language tasks. arXiv preprint
arXiv:2208.03299, 2022.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.

Tinybert: Distilling bert for natural language understanding. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pp. 4163-4174, 2020.

11

https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/google-bert/bert-large-uncased
https://huggingface.co/google-bert/bert-large-uncased
https://arxiv.org/abs/2008.02460
https://arxiv.org/abs/2008.02460
https://huggingface.co/datasets/HuggingFaceFW/fineweb
https://huggingface.co/datasets/HuggingFaceFW/fineweb

Under review as a conference paper at ICLR 2026

Andrej Karpathy. The most dramatic optimization to nanogpt so far ("25% speedup) is to sim-
ply increase vocab size from 50257 to 50304 (nearest multiple of 64). https://x.com/
karpathy/status/1621578354024677377, February 2023. X (formerly Twitter) post.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 6769-6781, 2020.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Frangois Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In Proceedings of the 37th Interna-
tional Conference on Machine Learning (ICML), 2020.

Omar Khattab and Matei Zaharia. Colbert: Efficient and effective passage search via contextualized
late interaction over bert. In Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR), pp. 3948, 2020.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453-466, 2019.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale reading
comprehension dataset from examinations. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 785—794. Association for Computational
Linguistics, 2017.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. Albert: A lite bert for self-supervised learning of language representations. In International
Conference on Learning Representations (ICLR), 2020.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktischel, Sebastian Riedel, and Douwe
Kiela. Retrieval-augmented generation for knowledge-intensive nlp. In Advances in Neural In-
formation Processing Systems (NeurIPS), 2020.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke,
Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. Pytorch distributed: Experi-
ences on accelerating data parallel training. Proceedings of the VLDB Endowment (PVLDB), 13
(12):3005-3018, 2020. doi: 10.14778/3407790.3407832. URL https://www.v1ldb.org/
pvldb/voll3/p3005-1i.pdfl

Hanxiao Liu, Zihang Dai, David So, and Quoc V Le. Pay attention to mlps. Advances in neural
information processing systems, 34:9204-9215, 2021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Stephen Mayhew, Terra Blevins, Shuheng Liu, Marek Suppa, Hila Gonen, Joseph Marvin Imperial,
Borje F Karlsson, Peiqin Lin, Nikola Ljubesi¢, Lester James Miranda, et al. Universal ner: A gold-
standard multilingual named entity recognition benchmark. arXiv preprint arXiv:2311.09122,
2023.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, Nils Reimers, Douwe Kiela, and Timo Schick.
Mteb: Massive text embedding benchmark. arXiv preprint arXiv:2307.16645, 2023.

Multi-Linguality Multi-Functionality Multi-Granularity. M3-embedding: Multi-linguality, multi-
functionality, multi-granularity text embeddings through self-knowledge distillation, 2024.

Tsendsuren Munkhdalai, Lingkai Kong, Tianxiao Zhang, and Jiawei Han. Infini-attention: Long-
context attention in infinite sequence. arXiv preprint arXiv:2404.07143, 2024.

12

https://x.com/karpathy/status/1621578354024677377
https://x.com/karpathy/status/1621578354024677377
https://www.vldb.org/pvldb/vol13/p3005-li.pdf
https://www.vldb.org/pvldb/vol13/p3005-li.pdf

Under review as a conference paper at ICLR 2026

Zach Nussbaum, John X Morris, Brandon Duderstadt, and Andriy Mulyar. Nomic embed: Training
a reproducible long context text embedder. arXiv preprint arXiv:2402.01613, 2024.

OpenAl. How to count tokens with tiktoken. |https://cookbook.openai.com/
examples/how_to_count_tokens_with_tiktoken, 2022. Accessed 2025-09-21.

OpenAl. tiktoken: A fast BPE tokenizer for use with openai models. https://github.com/
openai/tiktoken, 2025. Accessed 2025-09-21.

Antonio Orvieto and Robert Gower. In search of adam’s secret sauce. arXiv preprint
arXiv:2505.21829, May 2025. doi: 10.48550/arXiv.2505.21829. URL https://arxiv.
org/abs/2505.218209.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems (NeurIPS), 2019. URL
https://arxiv.org/abs/1912.01703.

Bo Peng, Ruichong Zhang, Daniel Goldstein, Eric Alcaide, Xingjian Du, Haowen Hou, Jiaju Lin,
Jiaxing Liu, Janna Lu, William Merrill, et al. Rwkv-7" goose” with expressive dynamic state
evolution. arXiv preprint arXiv:2503.14456, 2025.

Jacob Portes, Alex Trott, Sam Havens, Daniel King, Abhinav Venigalla, Moin Nadeem, Nikhil
Sardana, Daya Khudia, and Jonathan Frankle. Mosaicbert: A bidirectional encoder optimized for
fast pretraining. arXiv preprint arXiv:2312.17482,2023. doi: 10.48550/arXiv.2312.17482.

Ofir Press, Noah A. Smith, and Mike Lewis. Train short, test long: Attention with linear biases
(alibi) enables input length extrapolation. arXiv preprint arXiv:2108.12409, 2022.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving lan-
guage understanding by generative pre-training. OpenAl technical report, 2018.
https://cdn.openail.com/research—-covers/language—unsupervised/
language_understanding_paper.pdfl

Prabhakar Raghavan. How ai is powering a more helpful google, October 2020. URL https:
//blog.google/products/search/search-on/. The Keyword (Google). “BERT is
now used in almost every query in English.” Accessed 2025-09-24.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2016.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for squad. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 784-789, 2018.

Erik F Sang and Fien De Meulder. Introduction to the conll-2003 shared task: Language-
independent named entity recognition. arXiv preprint cs/0306050, 2003.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Keshav Santhanam, Omar Khattab, Christopher Potts, and Matei Zaharia. Colbertv2: Effective and
efficient retrieval via lightweight late interaction. arXiv preprint arXiv:2112.01488, 2022.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pp. 1631-1642, 2013.

13

https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken
https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken
https://github.com/openai/tiktoken
https://github.com/openai/tiktoken
https://arxiv.org/abs/2505.21829
https://arxiv.org/abs/2505.21829
https://arxiv.org/abs/1912.01703
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://blog.google/products/search/search-on/
https://blog.google/products/search/search-on/

Under review as a conference paper at ICLR 2026

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. arXiv preprint arXiv:2104.09864, 2021.

Yuxuan Su, Xinglin Wang, Yihan Wang, Dong Yu, Yiming Chen, Jing Lin, Tianyu Liu, Zheng
Liu, Yu Chen, et al. Gte: General text embeddings with weak supervision. arXiv preprint
arXiv:2308.03281, 2023.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. Mobilebert:
a compact task-agnostic bert for resource-limited devices. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics (ACL), pp. 2158-2170, 2020.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. ACM
Computing Surveys, 55(6):1-28, 2022.

Nandan Thakur, Nils Reimers, Johannes Daxenberger, James Cohen, and Iryna Gurevych. Beir:
A heterogeneous benchmark for zero-shot evaluation of information retrieval models. In Pro-
ceedings of the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), pp. 2325-2331, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2017.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. In Advances in Neural Information Processing Systems (NeurIPS),2019a.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bow-
man. Glue: A multi-task benchmark and analysis platform for natural language understand-
ing. In Proceedings of the International Conference on Learning Representations (ICLR), 2019b.
https://gluebenchmark.com/.

Sheng Wang, Ming Zhao, Nguyen Bach, Tao Xu, Zhe Huang, Fei Wu, Tong Wang, Shuo Si,
Zhongqgiang Li, et al. Text embeddings by weakly-supervised contrastive pre-training. arXiv
preprint arXiv:2212.03533, 2022.

Zhiguo Wang, Wael Hamza, and Radu Florian. Bilateral multi-perspective matching for natural
language sentences. arXiv preprint arXiv:1702.03814, 2017.

Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hallstrdom, Said
Taghadouini, Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom Aarsen, Griffin Thomas
Adams, Jeremy Howard, and Iacopo Poli. Smarter, better, faster, longer: A modern bidirec-
tional encoder for fast, memory efficient, and long context finetuning and inference. In Pro-
ceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 2526-2547, Vienna, Austria, July 2025. Association for Compu-
tational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.127. URL
https://aclanthology.org/2025.acl-1long.127/.

Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics (NAACL-HLT), 2018.

Mitchell Wortsman, Peter J Liu, Lechao Xiao, Katie E Everett, Alexander A Alemi, Ben Adlam,
John D Co-Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, Jeffrey Pennington, Jascha
Sohl-Dickstein, Kelvin Xu, Jachoon Lee, Justin Gilmer, and Simon Kornblith. Small-scale prox-
ies for large-scale transformer training instabilities. In The Twelfth International Conference on
Learning Representations (ICLR 2024), 2024. URL https://openreview.net/forum?
1d=d8w0pmvXbZ. Oral.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. In Advances in Neural
Information Processing Systems (NeurlPS), 2019.

14

https://gluebenchmark.com/
https://aclanthology.org/2025.acl-long.127/
https://openreview.net/forum?id=d8w0pmvXbZ
https://openreview.net/forum?id=d8w0pmvXbZ

Under review as a conference paper at ICLR 2026

Jeffrey Zhu. Bing delivers its largest improvement in search experience using azure
gpus, November 2019. URL |https://azure.microsoft.com/en-us/blog/
bing-delivers—its—-largest-improvement—-in-search—-experience-using-azure—-gpus/\
Reports serving >1M BERT inferences/sec worldwide. Accessed 2025-09-24.

A MONOTONICITY UNDER DECOUPLING

In Section 4.2} we claimed that decoupling static and dynamic layers maintains monotonicity with
respect to relevance within each dynamic layer, and that this guarantee is isolated from what a
subsequent static layer does. We now formalize and prove this claim.

Setup 1 (dynamic layer). As defined in Section given Zy, € RE*4" and fixing a target
embedding (row) ¢, Avey-B’s dynamic layer computes:

S =N(Zw) N(Zw) T, (%a)
~ S. .
Sij= il (9b)
Zj’:] Si)j/ + €
C ~
Cdyn,s = O Z Si,j Ztr,j + bgd)) (90)
j=1

where N (+) is per-row ¢ normalization (so S contains cosine similarities), ¢ > 0 is a stabilizer, o
is a pointwise monotone activation, and b(® is an optional bias.

Assumptions. We assume the following:

(A1) Nonnegative similarities. The enricher uses a nonnegative pointwise activation, namely,
ReLU? (Hammoud & Acharya, [2025)), hence, rows of NV (Z;,) are nonnegative, implying Si; > 0.

(A2) Positive normalization. For each row 1, Z]'C:1 Sij +¢e>0withe > 0.

(A3) Monotone activation. o is monotone nondecreasing (e.g., Avey-B uses ReLU in Equation[9c).

Proposition A.1 (dynamic layer monotonicity). For a fixed target row ¢ and any two embeddings
ji1,J2 € {1,...,C}:

(i) Order preservation. If S; ;, > 'S, ;, then gi,jl > S

(ii) Self-monotonicity. Increasing S; ; (while holding {Si,k}k# fixed) weakly increases ’Svm-
and does not increase S; j for k # j.

Consequently, a more relevant token (higher similarity) receives at least as large (and typically
larger) weight than a less relevant token, and increasing its relevance cannot reduce or flip the sign
of its contribution in the update within the dynamic layer (i.e., the update is monotone with respect
to relevance).

Proof. Letd; = 35| S; ; + e; by (A2), d; > 0. Since S;; = S, ;/d; for fixed 4, dividing by a
positive constant preserves order. In addition, treating d; as a function of S; . and using (A1):

8Si; di—Si;

7S, = 7 = >0, since d; > S; ; by (A1) and € > 0, (10a)
dSix Sik .

=<0 k by (Al). 10b
7S, z =0 #J, y (A1) (10b)

15

https://azure.microsoft.com/en-us/blog/bing-delivers-its-largest-improvement-in-search-experience-using-azure-gpus/
https://azure.microsoft.com/en-us/blog/bing-delivers-its-largest-improvement-in-search-experience-using-azure-gpus/

Under review as a conference paper at ICLR 2026

Thus, increasing a token’s similarity weakly increases (or cannot reduce) its own normalized weight
(by Equation [10a) and weakly decreases (or does not increase) others’ (by Equation|[10b). By (A1),

Si; = 0, so each token’s influence enters the pre-activation with a nonnegative coefficient; by
(A3), o cannot invert these contributions. Hence, the dynamic update is monotone with respect to
relevance. u

Setup 2 (static layer). Consider a dynamic layer at depth ¢ followed by a static layer:

hHD = 5(SO Z 4 p@), (11)
vy = o(VR 4 b)), (12)

where (V, b(*)) are learned parameters that do not depend on S(*) or S,

Proposition A.2 (static layer non-violation). A static layer (as in equation [12)) cannot violate the
monotonicity guarantee of Proposition established for a preceding dynamic layer (as in Equa-
tion|[IT)) at depth /.

Proof. The monotonicity statements in Proposition [A.T] concern only the relationship between
the relevance scores S() and the normalized scores S() used inside the dynamic update equa-
tion The static map h(“t1) — y(+2) depends on h(**1) and the similarity-agnostic parameters
(V, b(s)); it neither accesses nor alters S() or S(®). Therefore, composing the dynamic update

with a static layer cannot change the inequalities and partial orders that define monotonicity for the
dynamic layer’s scores. |

Remark. A static layer reshapes representations that subsequent dynamic layers will use to com-
pute new similarities, but it does not retroactively modify the scores already assigned by a preceding
dynamic layer. Thus, monotonicity holds at each dynamic layer, and decoupling preserves this
guarantee throughout the stack.

B PRETRAINING METHODOLOGY

Table 3: A comparison of all the evaluated encoders across different dimensions.

Dimension BERT RoBERTa ModernBERT NeoBERT Avey-B
base large base large base large medium base large
Parameters 120M 350M 125M 355M 149M 395M 250M 165M 391M
BooksCorpus BooksCorpus
Data Sources L OpenWebText Undisclosed RefinedWeb FineWeb
Wikipedia .
Stories / CC-News
Pre-training Context Width 512 512 1,024 — 8,192 1,024 — 4,096 2,048
Inference Sequence Length 512 512 8,192 4,096 00
Masking Rate 15% 15% 30% 20% 20%
Masking Scheme 80/10/10 80/10/10 - 100 100
Tokens Seen 131B 131B ~2T 2.1T 180B

In this section, we detail the pretraining setup. For Avey-B, we adopt the same tokenizer
as Avey (Hammoud & Acharya, 2025), namely, a BPE tokenizer derived from OpenAI’s
p50k_base (OpenAl, 2022; |2025), with the vocabulary size set to 50,304 to align with multiple-
of-64 boundaries and improve hardware efficiency (Karpathy, |[2023)). We retain BERT-style special
tokens for backward compatibility with downstream applications, while using only the [MASK]
token during pre-training.

We pretrain two Avey-B sizes, base (165M) and large (391M), for 180B tokens drawn from
the FineWeb 300BT split (Hugging Face, 2023)), using PyTorch DDP across 16 NVIDIA H200
GPUs (Paszke et al) 2019} |Li et all 2020). The global batch size is set to 512K tokens for both
models and we utilize the AdamW optimizer with 81 = B2 = 0.95 (Orvieto & Gower, [2025),

16

Under review as a conference paper at ICLR 2026

Table 4: Effectiveness results comparing unidirectional vs. bi-directional rankers.

sc TC QA IR
MNLI QQP SST-2 Avg. CONLL Onto. UNER Avg. ReCoRD SQUAD SQuADv2 Avg. MLDR MS MARCO NQ Avg.

Unidirectional ranker 81.39 88.92 91.86 87.39 92.96 93.21 93.97 93.38 30.22 62.26 60.72 51.07 60.27 87.48 76.7174.82
Bi-directional ranker 80.54 88.45 91.74 86.91 92.62 92.91 94.35 93.29 10.64 4534 53.56 36.51 60.05 90.02 48.54 66.20

Ranker Type

e = 10~!8 (Wortsman et al., 2024), weight decay of 0.01, and gradient clipping at 1.0. For the
learning-rate schedule, we employ a 10% linear warmup to 5 x 10~* (base) or 2.5 x 10~* (large),
followed by cosine decay to zero over the remaining 90% of steps.

For ablations and design—choice studies, we use the Avey-B base model, pretrained with a constant
learning rate of 10~2 for 10B tokens. During pretraining, sequences are packed so that each training
example meets the target sequence length, following the original Avey setup. We train with a masked
language modeling (MLM) objective, randomly masking 20% of tokens per example after exploring
several masking rates (see Appendix [G).

Finally, for the Transformer-based encoders, we use publicly available pretrained checkpoints
from the Hugging Face Hub (google-bert-base; [google-bert-large; facebook-roberta-base}; facebook-
roberta-large; lanswerdotai-base; [answerdotai-large; |chandar-lab). TableE] summarizes the evaluated
models along key dimensions, including parameter count, context window, and pretraining tokens,
among others.

C SHOULD THE RANKER OPERATE BIDIRECTIONALLY?

In the original, unidirectional Avey architecture, the ranker attends only to preceding splits (left
context) to preserve the causal constraint of autoregressive modeling. With bidirectional Avey-B,
we ask whether the ranker should, like the neural processor, operate bidirectionally, retrieving from
both left and right contexts of the current split.

To this end, we conduct all our experiments using the Avey-B base variant (165M parameters) (see
Table [3). We pretrain it on 10B FineWeb (Hugging Facel [2023) tokens with a constant learning
rate of 1 x 1073 and a 20% masking rate. As suggested in Section we finetune SC and TC
for one epoch, QA for four epochs, and IR for 1,000 optimization steps. For each task, we run 5
independent seeds with a learning rate of 5 x 10~4, using a 10% warmup followed by linear decay
to zero over the remaining 90% of steps. We report the best-of-5 score for each configuration as
an upper bound. Metrics are accuracy for SC, F1 for TC and QA, and NDCG @10 for IR. Table [4]
shows all the results.

In particular, Table [contrasts a unidirectional ranker with a bidirectional ranker across SC, TC,
QA, and IR task categories. As illustrated, the bidirectional ranker consistently underperforms
the unidirectional ranker. While the gap is modest on SC (87.39 —86.91; A = —0.48) and TC
(93.38—93.29; A = —0.09), it is substantial on QA (51.07 —36.51; A = —14.56) and IR
(74.82 — 66.20; A = —8.62). Notably, QA performance degrades sharply, with F1 of ReCoRD
dropping from 30.22 to 10.64, suggesting that right-context retrieval at the split level may severely
harm evidence selection for reasoning.

We identify two likely causes for this behavior. First, a unidirectional ranker enforces causal order-
ing and encourages the model to accumulate evidence along the discourse flow. Natural language
often exhibits forward dependencies, whereby content in a later split is best interpreted in light
of earlier splits. As such, allowing the current split to pair with future splits can dilute or over-
ride strong signals from its relevant preceding splits. Second, Avey-B already provides look-ahead,
token-level contextualization within each split (the contextualizer operates without a causal mask on
each split) so every position in it except the last has access to rightward tokens. Therefore, additional
look-ahead, split-level contextualization seems often redundant and at times even disruptive.

In summary, these findings suggest that while look-ahead, token-level contextualization within a
split benefits Avey-B, look-ahead, split-level contextualization, driven by the ranker attending to
both left and right split contexts of the current split, is not advantageous and potentially counterpro-
ductive.

17

Under review as a conference paper at ICLR 2026

Table 5: Effectiveness results across different static (S) and dynamic (D) layering patterns.

Pattern sC TC QA IR

MNLI QQP SST-2 Avg. CONLL Onto. UNER Avg. ReCoRD SQUAD SQUADv2 Avg. MLDR MS MARCO NQ Avg.
Interleaved, S— D —- - - 81.39 88.92 91.86 87.39 92.96 93.21 93.97 93.38 30.22 62.26 60.72 51.07 60.27 8748 76.71 74.82
Interleaved, D—S - - - 77.80 87.51 90.37 85.26 91.73 02.48 93.24 9248 21.31 56.93 5577 44.67 52.67 88.47 68.63 69.92
Single dynamic as a head 73.60 86.55 91.06 83.77 9242 9275 93.31 92.83 2242 56.94 5487 4474 60.22 89.70 73.32 7441
Single dynamic as a tail 73.19 87.90 91.63 84.24 9258 93.10 93.80 93.16 24.64 5529 54.06 44.66 60.55 87.72 75.31 74.53

Two-stage stack, S¥/2 — DF/? 75.70 86.56 90.25 84.17 92.51 92.65 94.24 93.13 1529 5218 55.09 40.85 54.97 85.92 67.54 69.48
Two-stage stack, D*/2 — S¥/2 74.37 87.15 91.17 84.23 92.70 93.03 93.72 93.15 29.30 54.36 51.20 44.95 59.28 89.56 76.7475.19
Uniform stack, all-static 77.58 87.97 91.51 85.69 92.66 93.10 94.04 93.27 23.85 56.43 54.73 45.00 62.54 86.38 75.92 74.95
Uniform stack, all-dynamic 68.04 83.26 87.27 79.52 90.31 90.86 91.17 90.78 19.49 47.51 50.44 39.15 57.70 89.33 69.50 72.18

Table 6: Effectiveness results across different normalization schemes.

SC TC QA IR
MNLI QQP SST-2 Avg. CONLL Onto. UNER Avg. ReCoRD SQuAD SQuADv2 Avg. MLDR MS MARCO NQ Avg.
Divide-by-sum norm 81.39 88.92 91.86 87.39 92.96 93.21 93.97 93.38 30.22 62.26 60.72 51.07 60.27 87.48 76.71 74.82

Normalization Scheme

RMS norm 64.70 87.21 88.76 80.22 90.82 92.12 91.89 91.61 21.37 56.09 56.33 44.60 50.27 89.33 66.68 68.76
Softmax 79.31 88.16 91.06 86.18 92.39 92.96 93.45 92.93 27.70 59.29 58.55 48.51 61.83 89.75 74.43 75.34
Scaled softmax 76.70 87.24 91.86 85.27 92.63 93.02 94.07 93.24 24.14 58.79 56.23 46.39 62.24 87.63 74.39 T4.75

D HOW TO ARRANGE STATIC AND DYNAMIC LAYERS?

Decoupling static and dynamic parameterizations into distinct layer types in Avey-B introduces a
key architectural degree of freedom, that is, how to arrange static (S) and dynamic (D) layers across
depth. We therefore evaluate the following families of patterns and report their effectiveness:

1. Interleaved: Alternate S <+ D. With an even number of layers, we test both start points,
S—»D—---andD—S5—---.

2. Single dynamic: Exactly one D and the remainder .S, placing D either at the head (to prime
downstream static transformations) or at the tail (to refine final representations).

3. Two-stage stack: First half one type and second half the other, considering both orders (S*/% —
DY/2 and DF/2 — §L/2),

4. Uniform stack: Either all-static or all-dynamic stack, as boundary conditions.

We utilize the experimental setup described in Appendix [C] Table [5] reports all the results across
SC, TC, QA, and IR task categories. Two consistent trends emerge. First, the interleaved ar-
rangement, S — D — -- ., attains the strongest average performance on SC, TC, and QA, while
remaining competitive on IR. This suggests that a static front layer is potentially providing a sta-
ble representational “scaffold” before any input-dependent mixing, reducing variance introduced by
raw similarity scores and improving downstream contextualization. Second, the interleaved pattern,
D — S — - .-, underperforms the S — D — - - - variant (most notably on QA and IR) likely because
early, similarity-driven updates are fragile without a learned (static) basis to shape features prior to
dynamic contextualization.

The uniform stack, all-static configuration performs worse than interleaved arrangements but only
modestly so (it even slightly outperforms them on IR), indicating that static linear projections alone
already enable strong contextualization, even without any input-dependent adaptation. Conversely,
the uniform stack, all-dynamic pattern performs worse across all benchmark categories (particularly
QA). The single-dynamic and two-stage stack arrangements fall between these extremes, though
they typically trail the interleaved static-first design (except for two-stage stack, D*/? — ST/2 on
IR). Overall, these findings highlight that while dynamic parameterization contributes meaningfully
to performance, it is most effective when interleaved with static layers that supply a stable basis and
representational depth.

E How 7O NORMALIZE?

In Avey-B, dynamic layers contextualize tokens by constructing a cosine similarity matrix from
pairwise cosine scores of the input. Since the similarity scores are used to perform a weighted sum

18

Under review as a conference paper at ICLR 2026

Table 7: Effectiveness results across different sequence length N, split size .S, and top-k values.

N S &k SC TC QA IR
MNLI QQP SST-2 Avg. CONLL Onto. UNER Avg. ReCoRD SQuAD SQuADv2 Avg. MLDR M/Q/IIQSCO NQ Avg.
128 1 80.09 88.82 91.63 86.85 92.69 93.08 93.85 93.21 27.65 60.44 58.82 4897 60.06 88.89 76.11 75.02
512 3 80.9588.89 91.63 87.16 92.74 93.03 93.55 93.11 28.11 60.66 58.79 49.19 60.72 90.11 76.06 75.63

256 1 79.68 88.75 92.32 86.92 92.27 92.94 93.69 92.97 43.70 71.25 64.06 59.67 60.71 88.61 76.29 75.20

1 80.79 88.80 91.63 87.07 92.87 93.03 93.81 93.24 27.42 61.14 58.85 49.14 60.44 88.95 76.05 75.15

128 3 80.02 88.71 91.63 86.79 92.89 93.06 94.43 93.46 28.74 61.55 60.49 50.26 61.17 90.26 75.66 75.70

5 80.64 88.62 91.40 86.89 92.86 93.13 93.88 93.29 28.69 61.49 59.79 49.99 61.81 86.86 75.61 74.76
1024 7 80.70 89.0291.7487.15 92.44 93.14 93.83 93.14 27.96 63.47 59.98 50.47 62.58 86.40 66.73 71.90
1
3
1

256 79.53 88.80 91.28 86.54 92.10 93.02 93.57 92.90 42.82 70.16 62.54 58.51 60.88 88.87 76.34 75.36
3 79.95 88.65 91.40 86.67 92.10 92.84 93.48 92.81 42.51 70.55 63.16 58.74 59.14 89.43 77.05 75.21
512 79.41 88.35 91.51 86.42 92.65 93.18 93.74 93.19 43.96 71.92 63.91 59.93 60.26 89.20 77.8275.76

1 80.60 88.93 91.74 87.09 92.85 93.13 94.05 93.34 28.72 61.50 59.13 49.78 60.21 90.69 75.15 75.35
3 80.94 88.95 91.63 87.17 92.52 93.00 93.68 93.07 28.49 60.95 59.73 49.72 60.71 89.22 75.48 75.14
5 80.98 88.66 91.51 87.05 92.86 93.17 94.02 93.35 27.07 60.27 59.23 48.86 59.02 88.43 75.73 74.39
7 67.24 88.42 91.63 82.43 91.77 92.69 93.00 92.49 27.76 61.81 5845 49.34 57.08 86.89 73.55 72.51
9 80.64 88.84 91.51 87.00 92.54 92.97 93.82 93.11 29.82 62.44 59.52 50.59 60.77 88.27 75.93 74.99
11 80.49 88.75 91.97 87.07 92.63 93.05 93.45 93.04 29.54 59.77 5795 49.09 58.14 89.43 75.54 74.37
13 81.14 88.75 92.20 87.36 92.92 93.13 94.05 93.37 27.36 59.98 58.01 4845 60.21 90.31 78.4876.33
2048 15 80.78 89.01 91.63 87.14 92.51 92.94 94.11 93.19 2827 60.34 59.46 49.36 58.69 88.11 76.03 74.28
1 70.61 88.69 92.09 83.80 92.38 93.18 94.02 93.19 44.32 70.96 63.58 59.62 60.84 88.15 77.24 75.41
3 80.18 88.91 91.74 86.94 92.33 93.05 93.75 93.04 4291 71.99 64.81 59.90 60.02 90.36 76.58 75.65
5 79.45 88.48 90.71 86.21 91.51 92.46 92.77 92.25 38.85 69.88 62.09 56.94 56.72 88.11 73.70 72.84
7 78.98 88.65 91.74 86.46 93.00 92.85 93.66 93.17 42.89 70.64 63.25 5893 59.42 88.35 76.36 74.71
1
3
1

128

256

79.37 88.52 91.63 86.51 92.41 92.77 93.26 92.81 41.67 71.45 62.20 58.44 56.76 88.67 77.94 74.46
79.36 88.67 91.28 86.44 92.15 92.87 94.00 93.01 46.39 72.34 64.06 60.93 55.65 87.32 75.89 72.95
75.29 88.34 91.40 85.01 92.10 92.79 93.57 92.82 44.88 70.47 62.05 59.13 55.86 90.07 73.93 73.29

of input embeddings at every position and the sum of the raw similarity magnitudes can vary signif-
icantly, we tested several normalization strategies to stabilize training and improve generalization,
including divide-by-sum norm (i.e., row-wise normalization by the sum of similarities), RMS norm
(i.e., row-wise normalization by root mean square), softmax, and scaled softmax (with temperature
scaling, analogous to scaled dot-product attention). In all the tests, we used the same experimental
setup discussed in Appendix [C]

As shown in Table[f] the simple divide-by-sum norm method achieves the strongest overall perfor-
mance, outperforming alternatives on SC, TC, and QA, and almost matching or surpassing them
on IR. Notably, divide-by-sum norm provides a balanced distribution of contextual weights while
retaining sign information, which is lost under softmax-based schemes. By contrast, softmax and
scaled softmax yield weaker SC, TC, and QA scores but softmax outperforms divide-by-sum norm
on IR. On average, RMS norm underperforms divide-by-sum norm across all categories.

These findings indicate that unlike self-attention, which benefits from exponential normalization
(as provided by softmax), Avey-B’s cosine-based dynamic layers benefit from a conservative,
structure-preserving normalization. Exponentiation amplifies outliers, distorts relative similarity
ratios, and can swamp the static path. In contrast, divide-by-sum norm preserves the ordering and
margins of similarities, constrains each row to a convex combination (weights in [0, 1] that sum to
1), and effectively bounds the operator norm, yielding stable gradients and preventing the dynamic
stream from overwhelming the static contributions. Empirically, this simple choice delivers strong
gains across SC, TC, QA, and IR while maintaining robust training dynamics.

F WHAT ARE THE BEST SEQUENCE LENGTH, SPLIT SIZE, AND TOP-k
VALUES?

We now analyze how Avey-B’s downstream performance is affected by the ranker’s three hyperpa-
rameters, namely, the training sequence length N, the split size S, and the number of top-k splits
selected for contextualization. N governs the size of the candidate pool available to the ranker, S
determines the size (in tokens) of each candidate split, and the effective context width seen by the
contextualizer is C = S(k+1). We follow the experimental setup described in Appendix Table
illustrates all the results.

19

Under review as a conference paper at ICLR 2026

Table 8: Effectiveness results at different masking rates for Avey-B’s base model.

. SC TC QA IR

Masking %

MNLI QQP SST-2 Avg. CONLL Onto. UNER Avg. ReCoRD SQuAD SQuADv2 Avg. MLDR MS MARCO NQ Avg.
10% 78.07 88.02 91.86 85.98 91.61 92.54 93.50 92.55 36.64 68.57 60.65 55.29 51.02 85.75 71.50 69.42
20% 80.18 88.91 91.74 86.94 92.33 93.0593.75 93.04 42.91 71.99 64.81 59.90 60.02 90.36 76.58 75.65
30% 78.62 88.49 91.97 86.36 92.45 93.01 93.7593.07 42.80 71.26 63.85 59.30 62.16 89.72 76.19 76.02
40% 77.05 88.02 91.51 85.53 92.26 92.90 93.49 92.88 39.70 69.84 6245 57.33 59.67 90.33 74.56 74.85
50% 66.12 88.32 91.06 81.83 92.86 92.62 93.16 92.88 42.15 7044 62.90 58.50 62.03 90.06 77.69 76.59

Table 9: Effectiveness results at different masking percentages for Avey-B’s large model.

. sC TC QA IR

Masking %

MNLI QQP SST-2 Avg. CONLL Onto. UNER Avg. ReCoRD SQuAD SQuADv2 Avg. MLDR MS MARCO NQ Avg.
10% 81.01 88.54 92.09 87.21 92.39 92.91 93.32 92.87 4246 71.53 64.63 59.54 54.58 88.73 75.25 72.85
20% 82.12 89.19 92.32 87.88 92.76 92.94 93.65 93.12 47.93 7284 6579 62.19 63.53 91.54 80.47 78.51
30% 81.54 89.43 91.74 87.57 92.59 92.98 93.83 93.13 48.16 73.44 66.52 62.71 61.72 89.31 81.76 77.60
40% 70.21 89.11 92.20 83.84 92.51 93.13 93.65 93.10 46.29 73.36 65.71 61.79 64.09 90.96 81.35 78.80
50% 78.19 89.02 92.20 86.47 92.83 92.95 93.83 93.20 46.99 71.28 63.89 60.72 61.63 90.49 79.37 77.16

To begin with, the dominant trend across tasks is that performance peaks when the effective context
C = S (k+1) matches or closely approximates the training sequence length N. For example, on
QA with N=2048, the best average occurs at S=512, k=3, giving C=512 X (34+1)=2048=N.
For SC, TC, and IR at N=2048, the strongest averages are at S=128, k=13, yielding C=128 x
(13+1)=1792, close to N. Similar behavior holds for N=512 and N=1024 across categories, with
one slight exception, that is, TC. In particular, on TC, the best setting often lands on C' ~ N/2 (e.g.,
at N=512 the optimum is S=128, k=1, so C=256=N/2, but it is only +0.1 points away from the
effectiveness at N=512, S = 128, k = 3, which yields C=128 x (3+1)=512=N).

In summary, Avey-B’s performance generally improves with a larger training sequence length V.
In our experiments, the best results occur at the largest tested N=2048 for SC, QA, and IR. The
exception is TC, which peaks at N=>512 but is within +0.09 points of the N=1024 setting. Across
these optima, the coverage heuristic C' = S (k+1) ~ N is consistently satisfied (matching or
closely approaching N). This pattern suggests that, for a bidirectional encoder, one should en-
large the candidate pool via larger N while ensuring ample contextual coverage by setting S (k+1)
to match or closely track N. Averaging over all task categories, the best overall configuration is
N=2048, S=256, k=3, hence, it was adopted as Avey-B’s default configuration.

G WHAT IS THE BEST MASKING RATE?

Because Avey-B is pretrained with masked language modeling, the fraction of tokens replaced by
the [MASK] token sets the task difficulty. In particular, too little masking makes reconstruction
nearly trivial, whereas too much masking deprives the model of sufficient contextual signal for
reliable prediction. To calibrate this trade-off, we swept masking rates from 10% to 50% for both
the base and large models (see Table[3]in Appendix[B), while following the same experimental setup
described in Appendix [C| (except for the masking rate since we vary it here).

As shown in Table [§] increasing the masking rate from 10% to 20% improves performance across
SC, TC, QA, and IR for the base model. Overall, scores typically peak at around 20%—-30% masking,
yielding consistent gains on SC, TC, and QA. The exception is IR, which attains its best results at
50% masking. At higher masking levels (40%—-50%), performance can drop markedly (e.g., MNLI),
indicating that the smaller-capacity model struggles when too little context is visible (masking be-
comes overly aggressive, weakening both the input signal and the training target).

The larger model is more robust to masking but still follows a similar trend to the base variant
(see Table). Performance generally improves from 10% to 20-30% masking, which offers the
best cross-task trade-off (an exception is TC, which peaks at 50%). QA and IR benefit the most,
with ReCoRD, MLDR, and NQ rising by over +5, +9, and +6 points, respectively, relative to 10%
masking. Although the large model tolerates 40-50% masking with modest degradation, SC remains
sensitive, whereby at 40% masking, MNLI drops by ~12 points versus 20%, then partially recovers

20

Under review as a conference paper at ICLR 2026

Table 10: Ablations of Avey-B with one component removed while holding all others fixed: (1) w/o
normalization means removing row-wise normalization in the dynamic layers; (2) w/o decoupling
entails reverting to coupled static and dynamic parameterizations; and (3) w/o compression means
omitting the neural compressor.

Model sC TC QA IR
SQuAD MS

MNLI QQP SST-2 Avg. CONLL Onto. UNER Avg. ReCoRD SQuAD V2 Avg. MLDR MARCO NQ Avg.

Avey-B (full design) 80.74 88.91 91.97 87.20 91.84 93.25 93.09 92.72 39.60 68.52 60.48 56.20 57.49 90.38 75.64 74.50

Avey-B w/o normalization 77.47 84.60 90.25 84.10 90.98 92.65 92.12 91.91 29.72 67.15 58.83 51.90 46.43 82.89 59.92 63.08
Avey-B w/o decoupling 79.94 88.60 89.33 85.95 89.10 92.11 91.06 90.75 36.86 67.89 59.57 54.77 55.00 82.77 69.18 68.98
Avey-B w/o compression 80.80 89.03 91.17 87.00 91.52 93.29 92.97 92.59 42.80 70.54 ©59.77 57.70 60.95 89.13 76.92 75.66

—— Avey-B-without-compression Avey-B-with-compression
160000
140000
120000
100000
80000
60000

40000

Throughput (Tokens/Second)

20000

0
1K 2K 3K 4K 5K 6K 7K 8K 9K 10K 11K 12K 13K 14K 15K 16K

Sequence Length (Tokens)

Figure 3: The throughput of Avey-B with and without the neural compressor.

at 50%, going up by ~8 points versus 40%. These patterns indicate that overly aggressive masking
can destabilize training even at higher capacity.

Overall, both models indicate 20-30% masking as near-optimal, thus, we pretrain both at 20%.

H ABLATION STUDY

In this study, we conduct a series of ablation experiments on Avey-B. We fix (1) the sequence length
N, splitsize S, and top-k retrieval depth to the best settings from Appendix[F} (2) the static—dynamic
interleaving pattern to the best arrangement from Appendix [D} and (3) the dynamic-layer normal-
ization to the most effective scheme from Appendix[E} In addition, we follow the experimental setup
described in Appendix [C|

Table [T0]reports ablations over three design choices: (1) decoupling static and dynamic parameteri-
zations, (2) applying row-wise normalization in the dynamic layers, and (3) enabling a compressor
in the neural processor. Coupling the static and dynamic parameterizations (i.e., w/o decoupling)
degrades Avey-B’s performance by averages of 1.43%, 2.12%, 2.53%, and 7.40% for SC, TC, QA,
and IR, respectively. Introducing row-wise normalization consistently improves results; conversely,
removing it yields average drops of 3.55%, 0.87%, 7.65%, and 15.33% for SC, TC, QA, and IR,
respectively.

Finally, as discussed in Section [4.3] Avey-B’s neural compressor reduces the number of tokens
contextualized per split from (k+1)S to S. This change yields a 4.37x throughput increase (see
Fig.[3), while preserving a favorable accuracy/throughput trade-off (see Table [I0). On SC and TC,
compression has negligible impact; we even observe small gains of +0.23% and +0.14%, plausibly
from pruning redundant global tokens that the ranker can admit in the absence of a hard relevance
threshold (i.e., top-k splits are retrieved regardless of absolute relevance). In contrast, QA and IR

21

Under review as a conference paper at ICLR 2026

ModernBERT-sys-optimized NeoBERT-sys-optimized Avey-B ModernBERT-sys-unoptimized NeoBERT-sys-unoptimized Avey-B

N N
o o
=
Y

.

@
=
5]

@

Latency (Seconds/Forward Pass)
.
IS 15

HHHHHH

L
(a) (b)

Figure 4: Latency of Avey-B, ModernBERT, and NeoBERT on NVIDIA H200 GPUs with mixed
precision (BF16). We use Avey-B base, ModernBERT base, and NeoBERT medium (the only pub-
licly available size). Avey-B is shown in (a) and (b) as unoptimized (no fused-kernel implementa-
tion is available). For ModernBERT and NeoBERT we report results for system—optimized (with
FlashAttention) and system—unoptimized (eager) variants in (a) and (b), respectively.

exhibit average drops of 2.68% and 1.56%, respectively, consistent with their greater sensitivity to
fine-grained spans and retrieval cues that compression may partially discard. Overall, the 4.37 %
speedup, paired with minimal losses (or even gains) on SC and TC, and modest reductions on QA
and IR, constitutes a clear efficiency—effectiveness win.

I LATENCY RESULTS

In Section we reported throughput (tokens/second) for Avey-B, ModernBERT, and NeoBERT.
In this section, we present latency results (seconds/forward pass) for the same encoders. As noted in
Section [5.4] Avey is recent and lacks fused-kernel (CUDA/Triton) implementations. Accordingly,
we measure Avey-B’s latency with an eager PyTorch implementation, hence, its reported results
should be viewed as conservative lower bounds. By contrast, both ModernBERT and NeoBERT
have optimized implementations using FlashAttention (Dao et al., [2022). We therefore report their
latencies with and without FlashAttention, referred to as sys-optimized and sys-unoptimized, respec-
tively.

As shown in Fig. [f(b), even in an unoptimized (eager) implementation, Avey-B achieves substan-
tially lower latency than the sys-unoptimized ModernBERT and NeoBERT. Without FlashAttention,
ModernBERT and NeoBERT do not scale beyond 45K and 10K tokens, respectively, due to memory
limits. With FlashAttention, both reach the maximum tested length (i.e., 96K), yet Avey-B main-
tains a sizable lead across the range (see Fig. [f[a)). This advantage follows from Avey-B’s scaling,
whereby it contextualizes each fixed-size split S bidirectionally and independently, incurring O(5?)
time per split; with V/S splits in a length- N sequence, the total time is (N/S)xS? = NS = O(N)
(for fixed S), yielding linear scaling in NV and a latency advantage at long context.

J CoOUPLED VS. DECOUPLED LAYERS: A STATISTICAL ANALYSIS

We now analyze the learned cross-embedding projection matrices (say, V) for the coupled and de-
coupled Avey-B models from the ablation study in Appendix [H] Table[IT|reports summary statistics
for each model. In the coupled case, we observe a clear positivity bias, especially in deeper layers,
wherein the fraction of positive entries (i.e., the number of positive weights divided by the total
number of weights) approaches one in several layers (in layers 8 and 13, it indeed hit 1). This bias
can be explained as follows. Because the enricher employs a nonnegative activation (i.e., ReLU?),
the contextualizer’s similarity matrix (say, S) is elementwise nonnegative. As such, the coupled
mixing M = V © S inherits its signs entirely from V. Any negative entry in V flips a large positive
similarity into a negative contribution, violating monotonicity with respect to relevance (see Ap-
pendix [A) and degrading training. The optimizer therefore pushes V toward nonnegativity to avoid
these destructive sign inversions, yielding the observed late-layer collapse toward positive weights.

22

Under review as a conference paper at ICLR 2026

(@ (b)

Figure 5: Learned static cross-embedding projection matrices for the (a) coupled configuration (left
or red) with 15 matrices uniformly subsampled from 30 static layers and (b) decoupled configuration
(right or blue) with all 15 static matrices (dynamic and static layers are interleaved, hence, only 15
static matrices exist). For comparability, we display 15 layers per panel. The coupled setting exhibits
diffuse, more homogeneous patterns (e.g., see layers 14, 22, 24, and 26) suggestive of redundancy,
whereas the decoupled setting shows sharper, more heterogeneous structure and variability in spread,
indicating greater representational diversity.

Despite this positivity bias, a nontrivial fraction of negative entries persists in the coupled model
(see Table[TT]again). This residual negativity is precisely the failure mode our hypothesis predicts,
that is, wherever a neuron retains negative weights, large positive similarities can be inverted into
negative contributions, yielding local violations of relevance monotonicity.

By contrast, in the decoupled case the dynamic layers alone produce the mixing weights. These
weights are normalized and nonnegative by construction, so monotonicity is enforced at the similar-
ity operator. The static layers are learned separately and no longer need to be driven into nonneg-
ativity to preserve monotonicity. As shown in Table[TT] this yields a near-zero mean with roughly
balanced positive and negative weights (without the late-layer positivity bias), retains inhibitory
patterns (i.e., learned negative influences) where useful, and avoids the sign-flip failure mode.

Beyond sign distribution, the two models also diverge in the dispersion of their weights. Coupled
matrices exhibit reduced standard deviation across layers, indicating more stable transformations
that converge toward smooth and homogeneous patterns. Decoupled matrices, by contrast, sus-
tain larger fluctuations, admitting both stronger positive and stronger negative values. This higher
variance may reflect greater representational flexibility. Norm statistics supports this interpreta-
tion, whereby coupled matrices accumulate larger /1 norm, distributing weight more evenly across
entries, whereas decoupled matrices attain slightly higher ¢5 values, implying that fewer entries
dominate with sharper magnitudes.

Qualitatively, the static matrices in both variants exhibit Toeplitz-like (approximately shift-invariant)
structure reminiscent of gMLP 2021) (see Fig.[5). As in gMLP, where such patterns
emerge without an explicit prior, our static layers converge to diagonally dominant, near-diagonal
matrices indicative of locality. This alignment suggests that locality-preserving, Toeplitz-like struc-
ture can arise naturally in architectures that employ fixed, input-independent transformations to
stabilize and scaffold subsequent dynamic computations.

In summary, coupling tends to regularize the cross-embedding projections toward homogeneous,
nearly nonnegative transformations, whereas decoupling promotes healthy diversity and sharper
structure, while preserving monotonicity with respect to relevance.

23

Under review as a conference paper at ICLR 2026

Table 11: Layer statistics for coupled vs. decoupled settings. For comparability, we display 15 layers
per setting. For the coupled setting, we uniformly subsampled 15 layers from 30 static layers. For
the decoupled setting, all the 15 static layers are shown (dynamic and static layers are interleaved,
hence, only 15 static layers exist). The coupled setting exhibits positivity bias (see the “fraction of
positive” column), while the decoupled setting demonstrates more balanced positive and negative
weights, indicating greater representational diversity.

Coupled
Layer Mean Std Min Median Max Abs.Mean L1 Norm L2Norm Frac. Pos. Frac. Neg.
1 0.00 0.12 -1.67 0.00 1.20 0.05 3369.19 30.68 0.47 0.53
2 —-0.01 011 -1.55 0.00 0.30 0.04 2345.75 27.73 0.53 0.47
3 0.08 0.09 —0.23 0.06 0.68 0.09 5906.35 31.56 0.90 0.10
4 0.00 010 -1.19 0.01 0.29 0.03 2211.32 24.42 0.61 0.39
5 —-0.03 0.13 -1.09 0.00 0.15 0.06 3724.35 33.82 0.55 0.45
6 0.01 0.08 -—1.47 0.00 0.63 0.03 1963.87 21.33 0.57 0.43
7 0.03 0.11 -0.29 0.00 1.00 0.06 3959.52 30.11 0.52 0.49
8 0.11 0.04 -0.14 0.11 0.33 0.11 7525.47 31.17 1.00 0.00
9 0.00 0.10 —-0.38 —0.01 1.43 0.04 2300.72 25.97 0.34 0.66
10 0.09 0.06 -0.07 0.08 0.38 0.09 5844.50 27.45 0.98 0.02
11 —-0.02 0.10 -0.90 0.01 0.12 0.04 2604.39 26.53 0.59 0.41
12 0.07 0.02 -0.04 0.07 0.16 0.07 4697.84 19.12 0.98 0.02
13 0.05 0.03 —-0.04 0.05 0.21 0.05 3487.26 15.28 1.00 0.00
14 0.03 0.02 -0.14 0.03 0.18 0.04 2293.24 9.56 0.95 0.05
15 0.00 0.07 -0.39 -0.01 0.83 0.03 1912.78 18.29 0.34 0.66
Avg. 0.03 0.08 —0.64 0.03 0.53 0.06 3609.77 24.87 0.69 0.31
Decoupled
Layer Mean Std Min Median Max Abs.Mean L1 Norm L2Norm Frac. Pos. Frac. Neg.
1 0.00 0.08 —0.98 0.00 1.04 0.04 2327.62 21.31 0.51 0.49
2 -0.02 012 -1.27 0.00 0.23 0.05 3065.94 30.83 0.51 0.49
3 —-0.01 0.12 -1.93 0.01 0.27 0.04 2312.23 30.24 0.66 0.34
4 —-0.01 012 -1.01 0.01 1.35 0.04 2825.07 29.60 0.60 0.40
5 0.00 0.10 —0.50 —0.01 1.70 0.03 2129.54 26.59 0.42 0.58
6 0.00 0.11 -2.09 0.00 0.68 0.03 1978.08 28.17 0.61 0.39
7 0.00 0.11 -1.60 0.01 0.33 0.03 2050.08 27.01 0.69 0.31
8 —-0.01 0.11 -1.22 0.01 0.30 0.03 2104.69 27.52 0.70 0.30
9 0.00 0.09 -0.26 0.00 1.37 0.03 1697.87 23.67 0.42 0.58
10 0.01 0.12 -0.34 -0.01 1.27 0.03 2145.28 30.16 0.34 0.66
11 0.00 0.09 -0.28 —0.01 1.18 0.03 1775.56 23.28 0.35 0.65
12 0.01 0.11 -0.22 -0.01 1.62 0.03 2019.32 29.24 0.33 0.67
13 —-0.02 011 -1.35 0.00 0.24 0.04 2637.36 28.99 0.58 0.42
14 —0.02 0.10 —-1.04 0.00 0.18 0.04 2292.65 26.27 0.61 0.39
15 0.01 0.08 -0.06 0.00 0.82 0.03 1779.38 19.60 0.51 0.49
Avg. 0.00 0.10 —-0.94 0.00 0.84 0.03 2209.38 26.83 0.52 0.48

24

	Introduction
	Related Work
	Background
	Ranker
	Neural Processor

	Avey-B
	Bidirectional Contextualization
	Decoupled Parametrization
	Neural Compression

	Experiments
	Experimental Setup
	Design Choices and Ablations
	Effectiveness
	Efficiency

	Conclusion
	Reproducibility
	Monotonicity Under Decoupling
	Pretraining Methodology
	Should the ranker operate bidirectionally?
	How to Arrange Static and Dynamic Layers?
	How to Normalize?
	What are the Best Sequence Length, Split Size, and Top-k Values?
	What is the Best Masking Rate?
	Ablation Study
	Latency Results
	Coupled vs. Decoupled Layers: A Statistical Analysis

