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ABSTRACT

Compact pretrained bidirectional encoders remain the backbone of industrial NLP
under tight compute and memory budgets. Their effectiveness stems from self-
attention’s ability to deliver bidirectional contextualization with high parallelism,
as popularized by BERT-style architectures. Recently, Avey was introduced as
an autoregressive, attention-free alternative that naturally admits an encoder-only
adaptation. In this paper, we reformulate Avey for the encoder-only paradigm
and propose several innovations to its architecture, including decoupled static
and dynamic parameterizations, stability-oriented normalization, and neural com-
pression. Results show that this reformulated architecture compares favorably to
four widely used Transformer-based encoders, consistently outperforming them
on standard token-classification and information-retrieval benchmarks while scal-
ing more efficiently to long contexts.

1 INTRODUCTION

Pretrained bidirectional Transformer encoders, most notably BERT (Devlin et al., 2019), have been
especially impactful in resource-constrained, application-specific settings, where compact models
can be efficiently fine-tuned for downstream tasks and deployed under strict latency and memory
budgets. Unlike unidirectional Transformer decoders, bidirectional encoders condition each token
on both its left and right contexts, yielding fully contextualized representations that improve disam-
biguation and translate into stronger performance on certain discriminative tasks (e.g., classification,
retrieval, and extractive question-answering) (Liu et al., 2019; Wang et al., 2019b;a; Karpukhin et al.,
2020; Khattab & Zaharia, 2020; Rajpurkar et al., 2016; 2018). Since BERT’s introduction, such en-
coders have seen broad and sustained adoption across academia and industry (Muennighoff et al.,
2023; Thakur et al., 2021; Santhanam et al., 2022; Wang et al., 2022; Su et al., 2023), particularly
targeting high-throughput, high-precision, and budget-constrained applications (Lan et al., 2020;
Sanh et al., 2019; Sun et al., 2020; Jiao et al., 2020).

The BERT family’s success in research and industry was enabled by the Transformer (Vaswani et al.,
2017), whose self-attention mechanism affords bidirectional contextualization while maintaining
high parallelizability. However, the quadratic time and memory costs of full self-attention remain a
central bottleneck (Tay et al., 2022; Munkhdalai et al., 2024), limiting practical extension of context
windows in cost-sensitive deployments. A large body of work has sought to mitigate this bottleneck
(e.g., via using linear attention (Katharopoulos et al., 2020; Choromanski et al., 2021; Peng et al.,
2025) and RNN-inspired architectures (Gu et al., 2021; Gupta et al., 2022; Fu et al., 2022; Gu &
Dao, 2023)), but little of it has been adapted to the bidirectional, encoder-only paradigm. Mean-
while, BERT itself was modernized through larger pretraining corpora, architectural refinements
(e.g., FlashAttention (Dao et al., 2022), SwiGLU activations (Shazeer, 2020), and RoPE positional
encoding (Su et al., 2021)), and new pretraining and fine-tuning strategies (Liu et al., 2019; Portes
et al., 2023; Warner et al., 2025), among others.

Most recently, Avey (Hammoud & Acharya, 2025) was introduced as an autoregressive architecture
that departs from both Transformer- and RNN-based designs. It partitions a sequence into splits,
ranks and retrieves the most relevant splits for each target split, and applies a dynamically parame-
terized neural processor to contextualize them. By decoupling context width from sequence length,
Avey enables efficient long-range interactions and extrapolation far beyond its training window,
facilitating practical context extensions at realistic compute budgets.
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To elaborate on its technical aspects, Avey is a recurrence- and attention-free architecture com-
prising two principal components, a ranker and a neural processor. The ranker slices each input
sequence into splits of consecutive tokens and selects the top k most relevant splits for each current
split being processed by the neural processor. The neural processor consists of three core units,
the enricher, contextualizer, and fuser. The enricher enhances the quality of token embeddings by
expanding their learnable features using a position-wise neural network. The contextualizer is an
embedding-wise neural network with dynamic parameterization and cosine-similarity–based selec-
tivity, enabling interactions between relevant tokens across the current and top k splits. Lastly, the
fuser learns a function that integrates the contextualized features produced by the contextualizer with
some uncontextualized features bypassed by a partial-embedding bypassing mechanism.

Although originally formulated for causal language modeling, Avey’s cosine-similarity–based se-
lectivity and learned cross-embedding linear transformation make it naturally amenable to a bidirec-
tional, encoder-style adaptation. In this paper, we introduce Avey–B, a bidirectional reformulation
of Avey for the encoder-only setting, and compare it empirically against widely used and recently
introduced Transformer-based encoders, namely, BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), ModernBERT (Warner et al., 2025), and NeoBERT (Breton et al., 2025). We further propose
architectural advances that enhance its effectiveness and efficiency, including: (1) decoupled static
and dynamic parameterizations; (2) a stability-oriented, row-normalized similarity scores in the dy-
namic layers; and (3) a compression module that reduces retrieved context before contextualization
in the neural processor.

Concretely, Avey-B contextualizes tokens via either a learned static linear projection or a dynamic
similarity matrix computed from cosine similarities, in any given layer. This contrasts with Avey,
which multiplicatively couples the learned projection with cosine scores element-wise in every layer.
By decoupling the static and dynamic parameterizations, Avey-B avoids destructive interactions
between fixed weights and input-dependent scores, most notably inversion effects where a token
highly similar to a neuron’s current token is forced to contribute less than a less-similar one. In
addition, we normalize the cosine scores at each position by the sum of that position’s scores over
all tokens, stabilizing training and consistently improving downstream task performance.

Alongside, we observe that extending Avey to the bidirectional paradigm without some modifica-
tions may introduce a scalability issue. Specifically, in the original design of Avey, each split is
concatenated with its top-k relevant splits and jointly contextualized in a single pass through the
neural processor. Performing this for every split inflates the input size to roughly k times the num-
ber of tokens, substantially increasing processing time. In the autoregressive regime, this overhead
is mitigated by training on short context widths, leveraging Avey’s ability to extrapolate well beyond
that. It is also tolerable at inference because only the most recent split is contextualized with its top-
k splits to generate the next token. In the bidirectional inference setting, however, this strategy is
infeasible, since all splits must be contextualized to produce complete token-level representations.

Building on this observation and recognizing that inference efficiency is critical for encoder mod-
els (especially in industry where they are commonly used (Raghavan, 2020; Zhu, 2019; Guo et al.,
2020; Warner et al., 2025)), we introduce a neural compression scheme in the ranker. More pre-
cisely, we compress each split together with its top-k retrieved splits back to the size of a single
split via a learned linear projection. As a result, the neural processor contextualizes only as many
tokens as in the original input sequence, avoiding redundant computations over the appended top-k
splits. Because the neural processor operates on each split independently, Avey-B achieves higher
throughput than Transformer-based encoders, while preserving high accuracy across a wide range
of downstream benchmarks.

To summarize, our main contributions in this paper are as follows:

• We propose Avey-B, a bidirectional encoder architecture that capitalizes on Avey by de-
coupling static and dynamic parameterizations and introducing a lightweight normalization
scheme for dynamic contextualization.

• We redesign Avey’s ranker to compress each split’s top-k retrieved context into a fixed
token budget, making the neural processor’s per-split compute independent of k while pre-
serving the benefits of retrieving larger relevant token sets via increasing k.
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• We conduct extensive design-choice and ablation studies to identify the most effective ar-
chitectural configuration and demonstrate how each proposed idea contributes to the per-
formance gains of Avey-B over the original Avey architecture.

• We show that Avey-B outperforms BERT (Devlin et al., 2019) and NeoBERT (Bre-
ton et al., 2025) across all the evaluated benchmarks, and consistently surpasses
RoBERTa (Liu et al., 2019) and ModernBERT (Warner et al., 2025) on token-classification
and information-retrieval tasks, despite being pretrained on ∼11× fewer tokens than Mod-
ernBERT.

• We illustrate that Avey-B scales efficiently with sequence length, yielding substantially
lower latency than Transformer-based encoders. Across 128–96K tokens, Avey-B is con-
sistently faster than all the evaluated Transformer baselines, and its advantage widens with
sequence length N . For example, at N = 96K, Avey-B outpaces ModernBERT and
NeoBERT by 3.38× and 11.63×, respectively.

• A power-law fit, T (N) ∝ N−α, yields a markedly smaller decay exponent for Avey-B
(α ≈ 0.44) compared to ModernBERT (α ≈ 0.77) and NeoBERT (α ≈ 0.81), indicating
that Avey-B’s throughput decreases at only about half the rate of ModernBERT (and even
more slowly relative to NeoBERT) as sequence length increases.

• We release the full implementation and pretrained checkpoints of Avey-B (see Section 7),
enabling reproducibility and fostering future research.

The rest of the paper is organized as follows. Section 2 reviews related work, and Section 3 provides
background on Avey. We elaborate on the Avey-B architecture, including its bidirectional contextu-
alization, decoupled parameterization, and neural compression in Section 4. Section 5 presents our
experimental setup, design choices and ablations, and effectiveness and efficiency results. Finally,
we conclude in Section 6.

2 RELATED WORK

The introduction of GPT (Radford et al., 2018) in 2018 marked a turning point in large-scale lan-
guage modeling, establishing the now-standard paradigm of pretraining Transformer-based models
on massive unlabeled corpora followed by supervised fine-tuning on task-specific data. GPT op-
timized a causal language modeling (CLM) objective, pretraining a unidirectional, decoder-only
Transformer (Vaswani et al., 2017) for next-token prediction. The resulting pretrained model can
then be effectively fine-tuned with modest labeled data to a broad range of downstream tasks, in-
cluding text classification (Wang et al., 2019b), natural language inference (Bowman et al., 2015;
Williams et al., 2018), and question answering (Rajpurkar et al., 2016; Lai et al., 2017), to mention
just a few. This pretrain–fine-tune paradigm yielded state-of-the-art performance on these tasks at
the time (Radford et al., 2018).

BERT (Devlin et al., 2019) extended this paradigm by replacing the unidirectional decoder with a
fully bidirectional encoder. Concretely, it introduced two pretraining objectives, masked language
modeling (MLM), which reconstructs randomly masked tokens in an input sequence, and next sen-
tence prediction (NSP), which models inter-sentence relationships. By contextualizing tokens in
both directions, BERT delivered substantial gains over causally pretrained models, particularly on
benchmarks such as GLUE (Wang et al., 2019b), MultiNLI (Williams et al., 2018), and SQuAD (Ra-
jpurkar et al., 2016), among others.

RoBERTa (Liu et al., 2019) robustly optimized BERT by retaining its overall architecture while
systematically revisiting nearly every aspect of its pretraining setup. Key modifications included
removing the NSP objective, pretraining with larger batches and longer sequences, adopting dy-
namic masking strategies, and scaling to substantially larger corpora. Building on this foundation,
DeBERTa (He et al., 2021b;a; 2023) introduced disentangled attention, which separates content and
positional information into distinct attention matrices, and improved fine-tuning stability through
virtual adversarial training. Together, these innovations further advanced performance on some
challenging benchmarks such as SuperGLUE (Wang et al., 2019a).

Subsequent work emphasized both architectural refinements and pretraining efficiency. For exam-
ple, MosaicBERT (Portes et al., 2023) integrated FlashAttention (Dao et al., 2022), ALiBi positional
biases (Press et al., 2022), and gated linear units (GLU) (Dauphin et al., 2017; Shazeer, 2020) to ac-
celerate pretraining while maintaining strong downstream accuracy. NomicBERT (Nussbaum et al.,
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2024) adopted SwiGLU (Shazeer, 2020) and rotary positional encodings (RoPE) (Su et al., 2021).
NeoBERT (Breton et al., 2025) combined RoPE, SwiGLU, and RMSNorm (Zhang & Sennrich,
2019) with depth–width rebalancing and large-scale pretraining. ModernBERT (Warner et al., 2025)
pushed this trend further, employing many of these techniques (e.g., RoPE, FlashAttention, and al-
ternating global/local attention), supporting context windows for up to 8,192 tokens, and pretraining
on multi-trillion-token corpora.

All of the above models are Transformer-based, leveraging self-attention to provide effective bidi-
rectional contextualization while maintaining high pretraining parallelism. Recently, a fundamen-
tally different architecture named Avey (Hammoud & Acharya, 2025) was introduced. Avey is
attention-free and can process virtually unlimited sequence lengths (see Section 3). Avey-B capital-
izes on Avey to support bidirectional contextualization, mirroring the shift from GPT-style decoder-
only to BERT-style encoder-only models in the Transformer family. We empirically compare Avey-
B against BERT, RoBERTa, ModernBERT, and NeoBERT in Section 5.

3 BACKGROUND

The original Avey architecture decouples sequence length from context width by pairing a
lightweight ranker with a data-dependent neural processor. We next provide a background on both.
3.1 RANKER

Avey partitions an input sequence of length N into equal-sized splits of S tokens, applying zero-
padding if N is not divisible by S. For a given current split, the ranker computes its relevance to
each preceding split using the MaxSim operator (Khattab & Zaharia, 2020), orders them by their
MaxSim scores, and selects the top-k splits for contextualization.

Before contextualization, the MaxSim scores of the top-k selected splits are normalized by dividing
each score by the maximum among them. Each selected split is then weighted by its normalized
score and concatenated with the current split. This weighted-selective-split mechanism prunes irrel-
evant global tokens and scales the contribution of each retrieved split based on relevance.

Crucially, the ranker is invoked only once per full forward/backward pass, independent of the num-
ber of neural-processor layers. Matching each split against all preceding splits yields a training-time
compute cost of O(N2d), where d is the embedding dimension.

3.2 NEURAL PROCESSOR

The neural processor ingests the current split and its weighted top-k retrieved splits, and processes
them through a layered architecture. Each layer comprises three modules, an enricher, a contextu-
alizer, and a fuser.

The enricher is a single-layer, position-wise neural network applied independently to each token
embedding. Given C input embeddings arranged as X ∈ RC×d, the enricher computes a matrix
Z ∈ RC×m (with m > d) as follows:

Z = σ
(
XU+ b

)
, (1)

where U ∈ Rd×m is a learnable weight matrix, b ∈ RC×m represents biases, and σ(·) is an
activation function. The output Z is partitioned into a head Zh ∈ RC×mh , which is bypassed
directly to the fuser, and a tail Zt ∈ RC×mt (with m = mh + mt), which is forwarded to the
contextualizer. This partial-embedding bypassing technique preserves raw token-specific features
and mitigates degradation effects (e.g., over-smoothing), as the number of layers is increased.

The contextualizer operates on the tail Zt. Each mt-dimensional tail embedding is split evenly into a
gating left half and a contextual right half, yielding Ztl ∈ RC×mt

2 and Ztr ∈ RC×mt
2 , respectively.

Formally, the contextualizer is a single-layer, embedding-wise network that updates Ztr as follows:

c(Zt) = Ztl ⊙ σ
((

V ⊙ N (Ztr)N (Ztr)
⊤)Ztr + b′

)
, (2)

where V ∈ RC×C is a learned cross-embedding matrix, ⊙ denotes element-wise (Hadamard) mul-
tiplication, N (·) applies row-wise ℓ2 normalization (so N (Ztr)N (Ztr)

⊤ computes cosine similar-
ities between embeddings), and b′ is an optional bias. Intuitively, each neuron aggregates statically
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Figure 1: A simple illustration of coupled (a) and decoupled (b) parameterizations (ei = embedding
i; sij = cosine similarity score between ei and ej ; ni = neuron i, ni

(d) = neuron i in dynamic
layer d; ni

(s) = neuron i in static layer s; and wij = weight corresponding to ei or ni
(d) used in the

weighted sum of nj or nj
(s), respectively).

and dynamically weighted contributions from other embeddings, and the resulting update is gated by
Ztl. The learned matrix V provides position-sensitive mixing, so no additional positional encodings
are required within the contextualizer.

The fuser combines the bypassed and contextualized streams and projects the output back to the
model embedding dimension d as follows:

f(Z) = [Zh ∥ c(Zt) ]O, (3)

where O ∈ R(mh+mt/2)×d is a learned projection matrix. As with the enricher, the fuser is applied
independently to each token embedding. Its output is merged with the enricher’s input within the
same layer via a residual, element-wise addition.

Aggregating the costs of the ranker, enricher, contextualizer, and fuser over L layers yields a training
complexity of O(N2d) for an input sequence of length N . At inference, only the most recent split
is contextualized for autoregressive decoding, reducing the complexity to O(N).

4 AVEY-B

Avey-B is a bidirectional reformulation of Avey. We next elaborate on its architecture and computa-
tional implications.

4.1 BIDIRECTIONAL CONTEXTUALIZATION

Avey-B drops the autoregressive mask in Avey’s contextualizer, allowing each token representation
to condition on both left and right contexts. Specifically, when a split is contextualized with its top-k
selected splits, all token interactions are permitted, without any causal masking. This converts Avey
into an encoder-style architecture while preserving selective global access via the ranker.
4.2 DECOUPLED PARAMETRIZATION

In Avey, the contextualizer multiplies (element-wise) a learned, static weight matrix (i.e., V) with
an input-dependent cosine-similarity matrix (i.e., the outcome of N (Ztr)N (Ztr)

⊤), then uses the
result to linearly combine the input embeddings (i.e., Ztr) into contextualized representations (see
Equation 2). This tight coupling of fixed parameters with data-driven relevance scores can induce
pathological behaviors. For instance, a token that is highly similar to a neuron’s current token (thus,
yielding a positive cosine score) can be forced to contribute negatively whenever the corresponding
entry of V is negative. Consequently, the neuron’s update violates monotonicity with respect to
relevance, which entails that a more-relevant token must contribute at least as much as a less-relevant
one, and increasing a token’s relevance must not reduce or invert its contribution.

Fig. 1 (a) offers a simple illustration of the problem. Suppose the cosine similarity s21 exceeds
s31; then embedding e2 should contribute at least as much to neuron n1’s update as embedding e3.
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In Avey’s coupled design, the element-wise product with learned weights can invert this ordering.
Specifically, if weight w31 ≫ weight w21 (or the signs differ), the effective contributions w21s21
and w31s31 can be reversed (especially at inference), undermining evidence accumulation from the
most informative tokens.

Avey-B addresses this problem by decoupling the two parameter sources (i.e., learned weights and
input-driven similarities) and interleaving them across depth (we compare different interleaving pat-
terns in Appendix D). In particular, we define each layer to be either static or dynamic. A static layer
applies a learned linear transformation on embeddings while a dynamic layer weights them solely by
cosine similarity. Alternating these layers preserves monotonicity of similarity-based updates with
respect to relevance (i.e., when s21 > s31, token 2 receives no smaller, and typically larger, positive
influence than token 3 in the dynamic layer).

Fig. 1 (b) demonstrates the effect of decoupled parametrization. If s21 > s31, the dynamic layer
for neuron n

(d)
1 assigns a larger normalized weight to e2 than to e3, with no learned weights in-

tervening in this similarity-based update. In the following static layer (assuming an interleaved
dynamic-static pattern) for n(s)

1 , both contributions are scaled by the same coefficient w11; hence,
the ordering established by the dynamic layer is preserved. More generally, because the static layer
is similarity-agnostic, it cannot retroactively modify the normalized dynamic scores or introduce
similarity-conditioned sign flips.

To this end, decoupling static and dynamic computations maintains the monotonicity guarantee at
each dynamic layer while still allowing representation shaping in static layers. Static layers will, of
course, change the representations from which subsequent similarities are computed, but they do not
alter the scores already assigned by a preceding dynamic layer and thus do not violate monotonicity
for that layer. We provide a formal proof for this monotonicity guarantee in Appendix A and ablate
this decoupling design choice in Appendix H. We further analyze the coupled versus decoupled
parameterizations and their implications in Appendix L.

Formally, let Ztr ∈ RC×d′
denote the matrix of contextual, right-tail components for C enriched

embeddings, where d′ is the contextualizer’s right-tail dimension (see Section 3 for more information
on all notations). In Avey-B, a static layer applies a learned cross-embedding linear transformation
as follows:

cstatic(Z) = σ
(
VZtr + b(s)

)
, (4)

where V ∈ RC×C is a learned matrix, b(s) ∈ RC×d′
is an optional bias, and σ(·) is an activation

function. Intuitively, each neuron first aggregates linearly the C embeddings and then applies the
pointwise activation σ.

On the flip side, an Avey-B’s dynamic layer computes an input-dependent similarity matrix from
Ztr and utilizes it to mix embeddings as follows:

S = N (Ztr)N (Ztr)
⊤ ∈ RC×C , (5)

S̃i,j =
Si,j∑C

j=1 Si,j + ε
(row-wise sum normalization), (6)

cdyn(Z) = σ
(
S̃ Ztr + b(d)

)
. (7)

Here N (·) denotes per-row ℓ2 normalization to unit length so that S encodes cosine similarities;
ε > 0 is a small stabilizer ensuring a positive denominator; b(d) ∈ RC×d′

is an optional bias, and S̃
is a simple sum-normalized similarity matrix. This row-wise normalization yields a row-stochastic
similarity operator (row sums ≤ 1), which bounds per-row gain and mitigates the growth of large
singular values through depth, improving numerical conditioning and trainability. In the unnor-
malized case (i.e., in Avey), inflated singular values can drive activation and gradient growth with
depth, resulting in unstable optimization and degraded generalization. We ablate this normalization
technique and show consistent gains over softmax-based and RMS-style alternatives in Appendix E.
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4.3 NEURAL COMPRESSION

A key bottleneck in extending Avey to the bidirectional setting is the per-split concatenation strategy,
whereby each current split is concatenated with its top-k retrieved splits for contextualization. This
is manageable in Avey’s autoregressive inference because only the most recent split is expanded. In
the bidirectional regime, however, every split within the contextualizer’s window must be expanded,
which inflates the effective sequence length by a factor of k + 1.

To mitigate this, Avey-B introduces a neural compressor within the ranker to condense the con-
catenated (k + 1)S-token block back to S tokens, where S denotes the split size. Specifically, the
compressor is an embedding-wise neural module that maps the (k+1)S input tokens to S represen-
tative tokens, effectively distilling cross-split information before it is passed to the neural processor.
To preserve signal from the block’s current split, Avey-B adds a residual connection between the
compressor output and the split’s original S tokens, which improves stability and downstream ef-
fectiveness. An ablation studying the impact of this residual on Avey-B’s accuracy is presented in
Appendix H.

Formally, let Xcat ∈ R(k+1)S×d be the concatenation of a single split with its top-k retrieved splits,
where d denotes the embedding dimension. Subsequently, Avey-B produces a compressed output
X̂ ∈ RS×d as follows:

X̂ = PXcat (8)

where P ∈ RS×(k+1)S is a learnable matrix that performs a linear cross-token transformation, and X̂
replaces Xcat as the input to the neural processor. Because P is a learned matrix, the compressor can
preserve globally informative content while discarding potential redundancy, yielding a favorable
accuracy/throughput trade-off. We study the effect of the compressor on Avey-B’s accuracy and
throughput in Appendix H.

As discussed in (Hammoud & Acharya, 2025), computation in the neural processor largely domi-
nates that of the ranker. As such, when Avey-B reduces the number of tokens contextualized per
split from (k+1)S to S, throughput improves by 4.37× (see Fig. 3 in Appendix H), albeit leaving
Avey’s asymptotic complexity unchanged (still quadratic with respect to the sequence length N ).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

In this section, we compare Avey-B with widely used and recently introduced Transformer-based
encoders, namely, BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), ModernBERT (Warner
et al., 2025), and NeoBERT (Breton et al., 2025). We evaluate two Avey-B model sizes, base
and large, each pretrained on 180B tokens drawn from the FineWeb corpus (Hugging Face, 2023).
Pretraining details and information about all the evaluated models are provided in Appendix B.

To assess effectiveness, we adopt the evaluation protocol of Boukhlef et al. (Gisserot-Boukhlef
et al., 2025), targeting breadth across four downstream categories prevalent in practice, includ-
ing Sequence Classification (SC), Token Classification (TC), Question Answering (QA), and In-
formation Retrieval (IR). Each category is represented by three established benchmarks, namely,
MNLI (Williams et al., 2018), QQP (Wang et al., 2017), and SST-2 (Socher et al., 2013) under SC;
CoNLL-2003 (Sang & De Meulder, 2003), OntoNotes (Hovy et al., 2006), and UNER (Mayhew
et al., 2023) under TC; ReCoRD (Wang et al., 2019a), SQuAD (Rajpurkar et al., 2016), and SQuAD-
v2 (Rajpurkar et al., 2018) under QA; and MLDR (Multi-Granularity, 2024), MS MARCO (Bajaj
et al., 2016), and NQ (Kwiatkowski et al., 2019) under IR.

We fine-tuned benchmarks under SC and TC for 1 epoch, QA for 4 epochs, and IR for 1,000 op-
timization steps. For each benchmark, we swept four learning rates {2 × 10−5, 6 × 10−5, 1 ×
10−4, 5 × 10−4} and trained each configuration with 10 independent random seeds. Akin to (Liu
et al., 2019), the reported results for each model are the median scores across seeds at the best learn-
ing rate. SC is evaluated with accuracy, TC and QA with F1 score, and IR with NDCG@10. Lastly,
following Boukhlef et al. (Gisserot-Boukhlef et al., 2025), we used linear learning-rate decay with
warmup over the first 10% of steps.
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Table 1: Design and masked language modeling (MLM) choices.

Question Answer Experiments

What is the most effective arrangement of static (S) and
dynamic (D) layers?

Interleaved layers with a
repeating S → D pattern

Appendix D

What is the most effective normalization technique
within the dynamic layers, Softmax, RMS Norm, or
Row-wise normalization?

Row-wise normalization Appendix E

What are the best values for sequence length N , split
size S, and top k splits?

N = 2048, S = 256, k = 3 Appendix F

Should the ranker operate bidirectionally as well? No Appendix C

What is the best masking rate? 20% Appendix G

Table 2: Effectiveness results for several encoders at different scales (M = Medium).

Model SC TC QA IR

MNLI QQP SST-2 Avg. CONLL Onto. UNER Avg. ReCoRD SQuAD SQuAD
v2 Avg. MLDR MS

MARCO NQ Avg.

B
as

e

Avey-B 83.58 89.81 92.94 88.78 92.88 93.80 94.10 93.59 44.03 74.44 68.88 62.45 63.83 88.14 83.62 78.53
BERT 81.92 88.57 90.94 87.14 90.25 91.03 88.20 89.82 36.76 72.20 63.99 57.65 57.42 81.15 80.66 73.08
RoBERTa 86.42 89.12 92.78 89.44 90.55 92.11 88.16 90.27 67.86 80.68 76.62 75.05 56.07 86.47 80.30 74.28
ModernBERT 86.72 89.81 92.32 89.61 92.30 93.74 92.30 92.78 65.73 80.23 77.36 74.44 54.29 88.09 75.24 72.54

M NeoBERT 82.53 88.88 84.69 85.36 87.55 88.88 88.17 88.20 37.74 64.84 64.42 55.67 39.98 70.76 59.43 56.72

L
ar

ge

Avey-B 85.66 89.22 94.38 89.75 93.60 94.09 94.32 94.00 58.22 77.30 72.46 69.32 67.05 88.72 86.24 80.67
BERT 85.08 89.27 92.26 88.87 88.54 90.71 86.09 88.44 52.02 77.93 72.96 67.64 61.08 87.71 85.42 78.07
RoBERTa 90.16 89.49 94.67 91.44 91.71 92.70 88.79 91.07 80.86 84.00 83.04 82.63 58.50 89.43 85.91 77.95
ModernBERT 90.53 90.73 95.99 92.41 92.43 93.79 92.92 93.05 73.05 82.02 79.96 78.34 59.64 88.82 81.36 76.61

To measure efficiency, we report latency (seconds/forward pass) and throughput (tokens/second) as
a function of input context length (with a fixed batch size of 8), benchmarking models on NVIDIA
H200 GPUs under identical software and precision settings. These measurements provide a di-
rect comparison of scalability and deployment efficiency between Avey-B and Transformer-based
encoders.

5.2 DESIGN CHOICES AND ABLATIONS

Following the methodology established in the original Avey work (Hammoud & Acharya, 2025), we
conduct systematic design–choice studies to identify effective configurations for Avey-B. We also
sweep the masking rate to select a robust setting for pretraining Avey-B. Table 1 summarizes these
studies and links to the supporting experiments for each conclusion.

Moreover, we perform ablation studies to quantify the contribution of each refinement to Avey-B.
Specifically, we measure incremental gains from: (1) decoupling and interleaving static and dynamic
parameterizations, (2) introducing normalization within the dynamic layers, and (3) integrating a
neural compressor into the ranker. Appendix H presents the full results and analysis.

5.3 EFFECTIVENESS

We now evaluate Avey-B on standard SC, TC, QA, and IR benchmarks, comparing it against BERT,
RoBERTa, ModernBERT, and NeoBERT. For all baselines we consider base and large configura-
tions (see Table 3 in Appendix B), except for NeoBERT which is evaluated on its only publicly
available size, that is, medium. Table 2 summarizes all the results.

At the base scale (and medium for NeoBERT), Avey-B surpasses BERT and NeoBERT across all
task categories, despite using ∼85M fewer parameters than NeoBERT. It also delivers the strongest
results on TC and IR, outperforming all Transformer-based models in both categories. For SC,
Avey-B attains the best scores on QQP (tied with ModernBERT) and SST-2, while trailing RoBERTa
and ModernBERT on MNLI. For QA, Avey-B leads on SQuAD-v2 but lags RoBERTa and Modern-
BERT on ReCoRD and SQuAD.
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Figure 2: Throughput of Avey-B, ModernBERT, and NeoBERT on NVIDIA B200 GPUs with
mixed precision (BF16). We use Avey-B base, ModernBERT base, and NeoBERT medium (the
only publicly available size). Avey-B is shown in (a) as optimized using torch.compile (no
fused-kernel implementation is available yet) and in (b) as unoptimized (eager). For Modern-
BERT and NeoBERT, throughput is shown for system–optimized (with FlashAttention) and sys-
tem–unoptimized (eager) variants in (a) and (b), respectively.

At the large scale (and medium for NeoBERT), Avey-B again outperforms BERT and NeoBERT
across all task categories. It also offers the strongest results on TC and IR, surpassing every
Transformer-based model. Notably, the Avey-B base model even exceeds all large Transformer
encoders on TC and IR (despite also being pretrained on ∼11× fewer tokens than ModernBERT,
for example). These results highlight Avey-B’s advantage for both local, span-sensitive decisions
(TC) and long-document encoding (IR).

In summary, at both base and large scales, Avey-B exceeds BERT and NeoBERT on every evaluated
benchmark and delivers consistent gains over all baselines on TC and IR. We attribute these gains
to two design factors: (1) TC tasks hinge on local evidence within short spans, and Avey-B’s split-
based processing with pruning of low-relevance splits/tokens sharpens the signal-to-noise ratio; and
(2) IR benefits from selectively pairing globally relevant content with its immediate local context
when encoding long documents (an inductive bias Avey-B enforces by construction), whereas full
bidirectional processing over all tokens (like in all the Transformer-based models) tends to admit
distractors and dilute relevance as sequence length grows.

5.4 EFFICIENCY

Avey is a recent architecture and still lacks a fused-kernel (CUDA/Triton) implementation. Conse-
quently, we evaluate its inference efficiency using torch.compile, which performs graph cap-
ture and backend code generation but stops short of handcrafted, specialized fused kernels available
to mature Transformer encoders. We denote this configuration as Avey-B-torch-compile. To quan-
tify compilation gains and offer a reference without compiler optimizations, we also report Avey-B’s
efficiency in the eager PyTorch mode, referred to as Avey-B-eager. For Transformer baselines, we
employ ModernBERT and NeoBERT as representative encoders, especially since they were both
recently modernized and optimized using FlashAttention (Dao et al., 2022), RoPE positional encod-
ing (Su et al., 2021), and several other engineering techniques (see Section 2).

RoPE enables evaluation beyond a model’s pre-trained context window, which we leverage to mea-
sure throughput and latency for ModernBERT and NeoBERT at long sequence lengths. Although
such extrapolation may degrade task effectiveness, this does not impact our study, as we are con-
cerned solely with efficiency rather than model quality. In contrast, Avey does not face this limitation
because its architecture decouples context width from sequence length, allowing Avey-B to operate
at arbitrarily long sequences without any additional pre-training. Accordingly, we extend sequence
length as needed and compare Avey-B base against ModernBERT base and NeoBERT medium (the
only publicly available variant), reporting throughput in this section and latency in Appendix I. The
qualitative conclusions presented in this section, however, apply to both throughput and latency.

For ModernBERT and NeoBERT, we also report throughput under both optimized and unoptimized
settings, corresponding to execution with and without FlashAttention. We refer to these config-
urations as sys-optimized and sys-unoptimized, respectively. As shown in Fig. 2, the throughput
curves for all encoders across sequence lengths from 128 to 96k tokens and under both settings
exhibit a consistent structure. In particular, throughput increases at short sequences, plateaus at
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medium lengths, and eventually declines as sequence lengths grow large. This behavior follows
from the fixed batch size of eight used in our study. To elaborate, each forward pass incurs a con-
stant memory-loading overhead, which dominates when few tokens are processed, leading to low
GPU utilization. As sequence length increases, more tokens are processed per batch, amortizing
this communication cost and improving utilization. At sufficiently large sequence lengths, how-
ever, computation becomes the dominant bottleneck due to arithmetic intensity, memory-bandwidth
saturation, and large intermediate activations, causing throughput to decline.

Despite sharing this qualitative profile, the encoders differ markedly in their quantitative scaling.
We characterize long-context throughput using a power-law decay model, T (N) ∝ N−α, where N
denotes the sequence length and smaller exponents α indicate better long-context efficiency. Un-
der optimized settings (see Fig. 2 (a)), ModernBERT-sys-optimized and NeoBERT-sys-optimized
demonstrate decay exponents of αModernBERT = 0.77 and αNeoBERT = 0.81, respectively, consistent
with the bandwidth- and memory-driven limitations inherent to quadratic self-attention. In con-
trast, Avey-B-torch-compile displays a substantially milder decay with exponent αAvey-B = 0.44,
sustaining significantly higher throughput across the long-context regime.

The unoptimized measurements further accentuate these differences (see Fig. 2 (b)).
ModernBERT-sys-unoptimized and NeoBERT-sys-unoptimized exhibit considerably steeper decay,
with exponents αModernBERT = 1.03 and αNeoBERT = 1.30, and both encounter out-of-memory fail-
ures well before the maximum tested sequence length. Conversely, Avey-B-eager again achieves
the mildest decay, with αAvey-B = 0.33, and maintains stable throughput across the entire sequence-
length range. These results indicate that Avey-B’s scaling advantage is structural rather than an
artifact of kernel-level or compiler optimizations. Specifically, its neural processor is inherently
less sensitive to sequence length because computation depends on the fixed split size S, not the full
sequence length N . With N/S splits, the total processing cost is (N/S) × S2 = NS = O(N),
yielding linear scaling in N and a growing throughput advantage at long contexts, while still being
the fastest tested encoder at short contexts.

6 CONCLUSION

In this paper, we presented Avey-B, a bidirectional encoder built on Avey, a new attention-free
foundation model. Avey-B contributes three architectural innovations: (1) decoupling static and
dynamic parameterizations, (2) row-normalized similarity in the dynamic layers, and (2) a neural
compression module for improving effectiveness and efficiency. Results show that Avey-B deliv-
ers consistent gains over Transformer-based encoders, including BERT, RoBERTa, ModernBERT,
and NeoBERT on token classification and information retrieval, while outperforming BERT and
NeoBERT on every evaluated benchmark. These findings entail that attention might not be the only
viable route to strong bidirectional encoders and motivate further study of retrieval-conditioned,
non-attention architectures.

7 REPRODUCIBILITY

All results reported in this paper are reproducible. Section 4 specifies Avey-B’s components in detail.
The full experimental methodology is provided in Section 5.1 and Appendix B. We attach a repos-
itory with code as supplementary material. The repository includes: (1) training, fine-tuning, and
evaluation scripts; (2) configuration files with the exact hyperparameters used for every experiment;
(3) data preprocessing instructions and dataset references/splits; and (4) environment specifications
and run scripts to regenerate all tables and figures. Using the provided commands on hardware
comparable to our setup reproduces the reported numbers within expected seed variance.
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A MONOTONICITY UNDER DECOUPLING

In Section 4.2, we claimed that decoupling static and dynamic layers maintains monotonicity with
respect to relevance within each dynamic layer, and that this guarantee is isolated from what a
subsequent static layer does. We now formalize and prove this claim.

Setup 1 (dynamic layer). As defined in Section 4.2, given Ztr ∈ RC×d′
and fixing a target

embedding (row) i, Avey-B’s dynamic layer computes:

S = N (Ztr)N (Ztr)
⊤, (9a)

S̃i,j =
Si,j∑C

j′=1 Si,j′ + ε
, (9b)

cdyn,i = σ

 C∑
j=1

S̃i,j Ztr,j + b
(d)
i

 , (9c)

where N (·) is per-row ℓ2 normalization (so S contains cosine similarities), ε > 0 is a stabilizer, σ
is a pointwise monotone activation, and b(d) is an optional bias.

Assumptions. We assume the following:

(A1) Nonnegative similarities. The enricher uses a nonnegative pointwise activation, namely,
ReLU2 (Hammoud & Acharya, 2025), hence, rows of N (Ztr) are nonnegative, implying Si,j ≥ 0.

(A2) Positive normalization. For each row i,
∑C

j=1 Si,j + ε > 0 with ε > 0.
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(A3) Monotone activation. σ is monotone nondecreasing (e.g., Avey-B uses ReLU in Equation 9c).

Proposition A.1 (dynamic layer monotonicity). For a fixed target row i and any two embeddings
j1, j2 ∈ {1, . . . , C}:

(i) Order preservation. If Si,j1 ≥ Si,j2 then S̃i,j1 ≥ S̃i,j2 .

(ii) Self-monotonicity. Increasing Si,j (while holding {Si,k}k ̸=j fixed) weakly increases S̃i,j

and does not increase S̃i,k for k ̸= j.

Consequently, a more relevant token (higher similarity) receives at least as large (and typically
larger) weight than a less relevant token, and increasing its relevance cannot reduce or flip the sign
of its contribution in the update within the dynamic layer (i.e., the update is monotone with respect
to relevance).

Proof. Let di =
∑C

j=1 Si,j + ε; by (A2), di > 0. Since S̃i,j = Si,j/di for fixed i, dividing by a
positive constant preserves order. In addition, treating di as a function of Si,· and using (A1):

∂ S̃i,j

∂Si,j
=

di − Si,j

d2i
≥ 0, since di ≥ Si,j by (A1) and ε > 0, (10a)

∂ S̃i,k

∂Si,j
= − Si,k

d2i
≤ 0, k ̸= j, by (A1). (10b)

Thus, increasing a token’s similarity weakly increases (or cannot reduce) its own normalized weight
(by Equation 10a) and weakly decreases (or does not increase) others’ (by Equation 10b). By (A1),
S̃i,j ≥ 0, so each token’s influence enters the pre-activation with a nonnegative coefficient; by
(A3), σ cannot invert these contributions. Hence, the dynamic update is monotone with respect to
relevance. ■

Setup 2 (static layer). Consider a dynamic layer at depth ℓ followed by a static layer:

h(ℓ+1) = σ
(
S̃(ℓ) Z

(ℓ)
tr + b(d)

)
, (11)

y(ℓ+2) = σ
(
Vh(ℓ+1) + b(s)

)
, (12)

where (V,b(s)) are learned parameters that do not depend on S(ℓ) or S̃(ℓ).

Proposition A.2 (static layer non-violation). A static layer (as in equation 12) cannot violate the
monotonicity guarantee of Proposition A.1 established for a preceding dynamic layer (as in Equa-
tion 11) at depth ℓ.

Proof. The monotonicity statements in Proposition A.1 concern only the relationship between
the relevance scores S(ℓ) and the normalized scores S̃(ℓ) used inside the dynamic update equa-
tion 11. The static map h(ℓ+1) 7→ y(ℓ+2) depends on h(ℓ+1) and the similarity-agnostic parameters
(V,b(s)); it neither accesses nor alters S(ℓ) or S̃(ℓ). Therefore, composing the dynamic update
with a static layer cannot change the inequalities and partial orders that define monotonicity for the
dynamic layer’s scores. ■

Remark. A static layer reshapes representations that subsequent dynamic layers will use to com-
pute new similarities, but it does not retroactively modify the scores already assigned by a preceding
dynamic layer. Thus, monotonicity holds at each dynamic layer, and decoupling preserves this
guarantee throughout the stack.
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Table 3: A comparison of all the evaluated encoders across different dimensions.

Dimension BERT RoBERTa ModernBERT NeoBERT Avey-B
base large base large base large medium base large

Parameters 120M 350M 125M 355M 149M 395M 250M 165M 391M

Data Sources BooksCorpus
Wikipedia

BooksCorpus
OpenWebText

Stories / CC-News
Undisclosed RefinedWeb FineWeb

Pre-training Context Width 512 512 1,024 → 8,192 1,024 → 4,096 2,048

Inference Sequence Length 512 512 8,192 4,096 ∞
Masking Rate 15% 15% 30% 20% 20%
Masking Scheme 80/10/10 80/10/10 – 100 100
Tokens Seen 131B 131B ∼2T 2.1T 180B

B PRETRAINING METHODOLOGY

In this section, we detail the pretraining setup. For Avey-B, we adopt the same tokenizer
as Avey (Hammoud & Acharya, 2025), namely, a BPE tokenizer derived from OpenAI’s
p50k base (OpenAI, 2022; 2025), with the vocabulary size set to 50,304 to align with multiple-
of-64 boundaries and improve hardware efficiency (Karpathy, 2023). We retain BERT-style special
tokens for backward compatibility with downstream applications, while using only the [MASK]
token during pre-training.

We pretrain two Avey-B sizes, base (165M) and large (391M), for 180B tokens drawn from
the FineWeb 300BT split (Hugging Face, 2023), using PyTorch DDP across 16 NVIDIA H200
GPUs (Paszke et al., 2019; Li et al., 2020). The global batch size is set to 512K tokens for both
models and we utilize the AdamW optimizer with β1 = β2 = 0.95 (Orvieto & Gower, 2025),
ϵ = 10−18 (Wortsman et al., 2024), weight decay of 0.01, and gradient clipping at 1.0. For the
learning-rate schedule, we employ a 10% linear warmup to 5 × 10−4 (base) or 2.5 × 10−4 (large),
followed by cosine decay to zero over the remaining 90% of steps.

For ablations and design–choice studies, we use the Avey-B base model, pretrained with a constant
learning rate of 10−3 for 10B tokens. During pretraining, sequences are packed so that each training
example meets the target sequence length, following the original Avey setup. We train with a masked
language modeling (MLM) objective, randomly masking 20% of tokens per example after exploring
several masking rates (see Appendix G).

Finally, for the Transformer-based encoders, we use publicly available pretrained checkpoints
from the Hugging Face Hub (google-bert-base; google-bert-large; facebook-roberta-base; facebook-
roberta-large; answerdotai-base; answerdotai-large; chandar-lab). Table 3 summarizes the evaluated
models along key dimensions, including parameter count, context window, and pretraining tokens,
among others.

C SHOULD THE RANKER OPERATE BIDIRECTIONALLY?

In the original, unidirectional Avey architecture, the ranker attends only to preceding splits (left
context) to preserve the causal constraint of autoregressive modeling. With bidirectional Avey-B,
we ask whether the ranker should, like the neural processor, operate bidirectionally, retrieving from
both left and right contexts of the current split.

To this end, we conduct all our experiments using the Avey-B base variant (165M parameters) (see
Table 3). We pretrain it on 10B FineWeb (Hugging Face, 2023) tokens with a constant learning
rate of 1 × 10−3 and a 20% masking rate. As suggested in Section 5.1, we finetune SC and TC
for one epoch, QA for four epochs, and IR for 1,000 optimization steps. For each task, we run 5
independent seeds with a learning rate of 5× 10−4, using a 10% warmup followed by linear decay
to zero over the remaining 90% of steps. We report the best-of-5 score for each configuration as
an upper bound. Metrics are accuracy for SC, F1 for TC and QA, and NDCG@10 for IR. Table 4
shows all the results.
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Table 4: Effectiveness results comparing unidirectional vs. bi-directional rankers.

Ranker Type SC TC QA IR

MNLI QQP SST-2 Avg. CONLL Onto. UNER Avg. ReCoRD SQuAD SQuADv2 Avg. MLDR MS MARCO NQ Avg.

Unidirectional ranker 81.39 88.92 91.86 87.39 92.96 93.21 93.97 93.38 30.22 62.26 60.72 51.07 60.27 87.48 76.71 74.82
Bi-directional ranker 80.54 88.45 91.74 86.91 92.62 92.91 94.35 93.29 10.64 45.34 53.56 36.51 60.05 90.02 48.54 66.20

In particular, Table 4 contrasts a unidirectional ranker with a bidirectional ranker across SC, TC,
QA, and IR task categories. As illustrated, the bidirectional ranker consistently underperforms
the unidirectional ranker. While the gap is modest on SC (87.39→ 86.91; ∆ = −0.48) and TC
(93.38→ 93.29; ∆ = −0.09), it is substantial on QA (51.07→ 36.51; ∆ = −14.56) and IR
(74.82→ 66.20; ∆ = −8.62). Notably, QA performance degrades sharply, with F1 of ReCoRD
dropping from 30.22 to 10.64, suggesting that right-context retrieval at the split level may severely
harm evidence selection for reasoning.

We identify two likely causes for this behavior. First, a unidirectional ranker enforces causal order-
ing and encourages the model to accumulate evidence along the discourse flow. Natural language
often exhibits forward dependencies, whereby content in a later split is best interpreted in light
of earlier splits. As such, allowing the current split to pair with future splits can dilute or over-
ride strong signals from its relevant preceding splits. Second, Avey-B already provides look-ahead,
token-level contextualization within each split (the contextualizer operates without a causal mask on
each split) so every position in it except the last has access to rightward tokens. Therefore, additional
look-ahead, split-level contextualization seems often redundant and at times even disruptive.

In summary, these findings suggest that while look-ahead, token-level contextualization within a
split benefits Avey-B, look-ahead, split-level contextualization, driven by the ranker attending to
both left and right split contexts of the current split, is not advantageous and potentially counterpro-
ductive.

D HOW TO ARRANGE STATIC AND DYNAMIC LAYERS?

Decoupling static and dynamic parameterizations into distinct layer types in Avey-B introduces a
key architectural degree of freedom, that is, how to arrange static (S) and dynamic (D) layers across
depth. We therefore evaluate the following families of patterns and report their effectiveness:

1. Interleaved: Alternate S ↔ D. With an even number of layers, we test both start points,
S→D→· · · and D→S→· · ·.

2. Single dynamic: Exactly one D and the remainder S, placing D either at the head (to prime
downstream static transformations) or at the tail (to refine final representations).

3. Two-stage stack: First half one type and second half the other, considering both orders (SL/2→
DL/2 and DL/2→SL/2).

4. Uniform stack: Either all-static or all-dynamic stack, as boundary conditions.

We utilize the experimental setup described in Appendix C. Table 5 reports all the results across
SC, TC, QA, and IR task categories. Two consistent trends emerge. First, the interleaved ar-
rangement, S → D → · · ·, attains the strongest average performance on SC, TC, and QA, while
remaining competitive on IR. This suggests that a static front layer is potentially providing a sta-
ble representational “scaffold” before any input-dependent mixing, reducing variance introduced by
raw similarity scores and improving downstream contextualization. Second, the interleaved pattern,
D→S→· · ·, underperforms the S→D→· · · variant (most notably on QA and IR) likely because
early, similarity-driven updates are fragile without a learned (static) basis to shape features prior to
dynamic contextualization.

The uniform stack, all-static configuration performs worse than interleaved arrangements but only
modestly so (it even slightly outperforms them on IR), indicating that static linear projections alone
already enable strong contextualization, even without any input-dependent adaptation. Conversely,
the uniform stack, all-dynamic pattern performs worse across all benchmark categories (particularly
QA). The single-dynamic and two-stage stack arrangements fall between these extremes, though

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 5: Effectiveness results across different static (S) and dynamic (D) layering patterns.

Pattern SC TC QA IR

MNLI QQP SST-2 Avg. CONLL Onto. UNER Avg. ReCoRD SQuAD SQuADv2 Avg. MLDR MS MARCO NQ Avg.

Interleaved, S→D→· · · 81.39 88.92 91.86 87.39 92.96 93.21 93.97 93.38 30.22 62.26 60.72 51.07 60.27 87.48 76.71 74.82
Interleaved, D→S→· · · 77.89 87.51 90.37 85.26 91.73 92.48 93.24 92.48 21.31 56.93 55.77 44.67 52.67 88.47 68.63 69.92
Single dynamic as a head 73.69 86.55 91.06 83.77 92.42 92.75 93.31 92.83 22.42 56.94 54.87 44.74 60.22 89.70 73.32 74.41
Single dynamic as a tail 73.19 87.90 91.63 84.24 92.58 93.10 93.80 93.16 24.64 55.29 54.06 44.66 60.55 87.72 75.31 74.53

Two-stage stack, SL/2→DL/2 75.70 86.56 90.25 84.17 92.51 92.65 94.24 93.13 15.29 52.18 55.09 40.85 54.97 85.92 67.54 69.48

Two-stage stack, DL/2→SL/2 74.37 87.15 91.17 84.23 92.70 93.03 93.72 93.15 29.30 54.36 51.20 44.95 59.28 89.56 76.74 75.19
Uniform stack, all-static 77.58 87.97 91.51 85.69 92.66 93.10 94.04 93.27 23.85 56.43 54.73 45.00 62.54 86.38 75.92 74.95
Uniform stack, all-dynamic 68.04 83.26 87.27 79.52 90.31 90.86 91.17 90.78 19.49 47.51 50.44 39.15 57.70 89.33 69.50 72.18

Table 6: Effectiveness results across different normalization schemes.

Normalization Scheme SC TC QA IR

MNLI QQP SST-2 Avg. CONLL Onto. UNER Avg. ReCoRD SQuAD SQuADv2 Avg. MLDR MS MARCO NQ Avg.

Divide-by-sum norm 81.39 88.92 91.86 87.39 92.96 93.21 93.97 93.38 30.22 62.26 60.72 51.07 60.27 87.48 76.71 74.82
RMS norm 64.70 87.21 88.76 80.22 90.82 92.12 91.89 91.61 21.37 56.09 56.33 44.60 50.27 89.33 66.68 68.76
Softmax 79.31 88.16 91.06 86.18 92.39 92.96 93.45 92.93 27.70 59.29 58.55 48.51 61.83 89.75 74.43 75.34
Scaled softmax 76.70 87.24 91.86 85.27 92.63 93.02 94.07 93.24 24.14 58.79 56.23 46.39 62.24 87.63 74.39 74.75

they typically trail the interleaved static-first design (except for two-stage stack, DL/2 → SL/2 on
IR). Overall, these findings highlight that while dynamic parameterization contributes meaningfully
to performance, it is most effective when interleaved with static layers that supply a stable basis and
representational depth.

E HOW TO NORMALIZE?

In Avey-B, dynamic layers contextualize tokens by constructing a cosine similarity matrix from
pairwise cosine scores of the input. Since the similarity scores are used to perform a weighted sum
of input embeddings at every position and the sum of the raw similarity magnitudes can vary signif-
icantly, we tested several normalization strategies to stabilize training and improve generalization,
including divide-by-sum norm (i.e., row-wise normalization by the sum of similarities), RMS norm
(i.e., row-wise normalization by root mean square), softmax, and scaled softmax (with temperature
scaling, analogous to scaled dot-product attention). In all the tests, we used the same experimental
setup discussed in Appendix C.

As shown in Table 6, the simple divide-by-sum norm method achieves the strongest overall perfor-
mance, outperforming alternatives on SC, TC, and QA, and almost matching or surpassing them
on IR. Notably, divide-by-sum norm provides a balanced distribution of contextual weights while
retaining sign information, which is lost under softmax-based schemes. By contrast, softmax and
scaled softmax yield weaker SC, TC, and QA scores but softmax outperforms divide-by-sum norm
on IR. On average, RMS norm underperforms divide-by-sum norm across all categories.

These findings indicate that unlike self-attention, which benefits from exponential normalization
(as provided by softmax), Avey-B’s cosine-based dynamic layers benefit from a conservative,
structure-preserving normalization. Exponentiation amplifies outliers, distorts relative similarity
ratios, and can swamp the static path. In contrast, divide-by-sum norm preserves the ordering and
margins of similarities, constrains each row to a convex combination (weights in [0, 1] that sum to
1), and effectively bounds the operator norm, yielding stable gradients and preventing the dynamic
stream from overwhelming the static contributions. Empirically, this simple choice delivers strong
gains across SC, TC, QA, and IR while maintaining robust training dynamics.

F WHAT ARE THE BEST SEQUENCE LENGTH, SPLIT SIZE, AND TOP-k
VALUES?

We now analyze how Avey-B’s downstream performance is affected by the ranker’s three hyperpa-
rameters, namely, the training sequence length N , the split size S, and the number of top-k splits
selected for contextualization. N governs the size of the candidate pool available to the ranker, S
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Table 7: Effectiveness results across different sequence length N , split size S, and top-k values.

N S k SC TC QA IR

MNLI QQP SST-2 Avg. CONLL Onto. UNER Avg. ReCoRD SQuAD SQuADv2 Avg. MLDR MS
MARCO NQ Avg.

512
128 1 80.09 88.82 91.63 86.85 92.69 93.08 93.85 93.21 27.65 60.44 58.82 48.97 60.06 88.89 76.11 75.02

3 80.95 88.89 91.63 87.16 92.74 93.03 93.55 93.11 28.11 60.66 58.79 49.19 60.72 90.11 76.06 75.63
256 1 79.68 88.75 92.32 86.92 92.27 92.94 93.69 92.97 43.70 71.25 64.06 59.67 60.71 88.61 76.29 75.20

1024

128

1 80.79 88.80 91.63 87.07 92.87 93.03 93.81 93.24 27.42 61.14 58.85 49.14 60.44 88.95 76.05 75.15
3 80.02 88.71 91.63 86.79 92.89 93.06 94.43 93.46 28.74 61.55 60.49 50.26 61.17 90.26 75.66 75.70
5 80.64 88.62 91.40 86.89 92.86 93.13 93.88 93.29 28.69 61.49 59.79 49.99 61.81 86.86 75.61 74.76
7 80.70 89.02 91.74 87.15 92.44 93.14 93.83 93.14 27.96 63.47 59.98 50.47 62.58 86.40 66.73 71.90

256 1 79.53 88.80 91.28 86.54 92.10 93.02 93.57 92.90 42.82 70.16 62.54 58.51 60.88 88.87 76.34 75.36
3 79.95 88.65 91.40 86.67 92.10 92.84 93.48 92.81 42.51 70.55 63.16 58.74 59.14 89.43 77.05 75.21

512 1 79.41 88.35 91.51 86.42 92.65 93.18 93.74 93.19 43.96 71.92 63.91 59.93 60.26 89.20 77.82 75.76

2048

128

1 80.60 88.93 91.74 87.09 92.85 93.13 94.05 93.34 28.72 61.50 59.13 49.78 60.21 90.69 75.15 75.35
3 80.94 88.95 91.63 87.17 92.52 93.00 93.68 93.07 28.49 60.95 59.73 49.72 60.71 89.22 75.48 75.14
5 80.98 88.66 91.51 87.05 92.86 93.17 94.02 93.35 27.07 60.27 59.23 48.86 59.02 88.43 75.73 74.39
7 67.24 88.42 91.63 82.43 91.77 92.69 93.00 92.49 27.76 61.81 58.45 49.34 57.08 86.89 73.55 72.51
9 80.64 88.84 91.51 87.00 92.54 92.97 93.82 93.11 29.82 62.44 59.52 50.59 60.77 88.27 75.93 74.99
11 80.49 88.75 91.97 87.07 92.63 93.05 93.45 93.04 29.54 59.77 57.95 49.09 58.14 89.43 75.54 74.37
13 81.14 88.75 92.20 87.36 92.92 93.13 94.05 93.37 27.36 59.98 58.01 48.45 60.21 90.31 78.48 76.33
15 80.78 89.01 91.63 87.14 92.51 92.94 94.11 93.19 28.27 60.34 59.46 49.36 58.69 88.11 76.03 74.28

256

1 70.61 88.69 92.09 83.80 92.38 93.18 94.02 93.19 44.32 70.96 63.58 59.62 60.84 88.15 77.24 75.41
3 80.18 88.91 91.74 86.94 92.33 93.05 93.75 93.04 42.91 71.99 64.81 59.90 60.02 90.36 76.58 75.65
5 79.45 88.48 90.71 86.21 91.51 92.46 92.77 92.25 38.85 69.88 62.09 56.94 56.72 88.11 73.70 72.84
7 78.98 88.65 91.74 86.46 93.00 92.85 93.66 93.17 42.89 70.64 63.25 58.93 59.42 88.35 76.36 74.71

512 1 79.37 88.52 91.63 86.51 92.41 92.77 93.26 92.81 41.67 71.45 62.20 58.44 56.76 88.67 77.94 74.46
3 79.36 88.67 91.28 86.44 92.15 92.87 94.00 93.01 46.39 72.34 64.06 60.93 55.65 87.32 75.89 72.95

1024 1 75.29 88.34 91.40 85.01 92.10 92.79 93.57 92.82 44.88 70.47 62.05 59.13 55.86 90.07 73.93 73.29

determines the size (in tokens) of each candidate split, and the effective context width seen by the
contextualizer is C = S(k+1). We follow the experimental setup described in Appendix C. Table 7
illustrates all the results.

To begin with, the dominant trend across tasks is that performance peaks when the effective context
C = S (k+1) matches or closely approximates the training sequence length N . For example, on
QA with N=2048, the best average occurs at S=512, k=3, giving C=512 × (3+1)=2048=N .
For SC, TC, and IR at N=2048, the strongest averages are at S=128, k=13, yielding C=128 ×
(13+1)=1792, close to N . Similar behavior holds for N=512 and N=1024 across categories, with
one slight exception, that is, TC. In particular, on TC, the best setting often lands on C ≈ N/2 (e.g.,
at N=512 the optimum is S=128, k=1, so C=256=N/2, but it is only +0.1 points away from the
effectiveness at N=512, S = 128, k = 3, which yields C=128× (3+1)=512=N ).

In summary, Avey-B’s performance generally improves with a larger training sequence length N .
In our experiments, the best results occur at the largest tested N=2048 for SC, QA, and IR. The
exception is TC, which peaks at N=512 but is within +0.09 points of the N=1024 setting. Across
these optima, the coverage heuristic C = S (k+1) ≈ N is consistently satisfied (matching or
closely approaching N ). This pattern suggests that, for a bidirectional encoder, one should en-
large the candidate pool via larger N while ensuring ample contextual coverage by setting S (k+1)
to match or closely track N . Averaging over all task categories, the best overall configuration is
N=2048, S=256, k=3, hence, it was adopted as Avey-B’s default configuration.

G WHAT IS THE BEST MASKING RATE?

Because Avey-B is pretrained with masked language modeling, the fraction of tokens replaced by
the [MASK] token sets the task difficulty. In particular, too little masking makes reconstruction
nearly trivial, whereas too much masking deprives the model of sufficient contextual signal for
reliable prediction. To calibrate this trade-off, we swept masking rates from 10% to 50% for both
the base and large models (see Table 3 in Appendix B), while following the same experimental setup
described in Appendix C (except for the masking rate since we vary it here).
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Table 8: Effectiveness results at different masking rates for Avey-B’s base model.

Masking % SC TC QA IR

MNLI QQP SST-2 Avg. CONLL Onto. UNER Avg. ReCoRD SQuAD SQuADv2 Avg. MLDR MS MARCO NQ Avg.

10% 78.07 88.02 91.86 85.98 91.61 92.54 93.50 92.55 36.64 68.57 60.65 55.29 51.02 85.75 71.50 69.42
20% 80.18 88.91 91.74 86.94 92.33 93.05 93.75 93.04 42.91 71.99 64.81 59.90 60.02 90.36 76.58 75.65
30% 78.62 88.49 91.97 86.36 92.45 93.01 93.75 93.07 42.80 71.26 63.85 59.30 62.16 89.72 76.19 76.02
40% 77.05 88.02 91.51 85.53 92.26 92.90 93.49 92.88 39.70 69.84 62.45 57.33 59.67 90.33 74.56 74.85
50% 66.12 88.32 91.06 81.83 92.86 92.62 93.16 92.88 42.15 70.44 62.90 58.50 62.03 90.06 77.69 76.59

Table 9: Effectiveness results at different masking percentages for Avey-B’s large model.

Masking % SC TC QA IR

MNLI QQP SST-2 Avg. CONLL Onto. UNER Avg. ReCoRD SQuAD SQuADv2 Avg. MLDR MS MARCO NQ Avg.

10% 81.01 88.54 92.09 87.21 92.39 92.91 93.32 92.87 42.46 71.53 64.63 59.54 54.58 88.73 75.25 72.85
20% 82.12 89.19 92.32 87.88 92.76 92.94 93.65 93.12 47.93 72.84 65.79 62.19 63.53 91.54 80.47 78.51
30% 81.54 89.43 91.74 87.57 92.59 92.98 93.83 93.13 48.16 73.44 66.52 62.71 61.72 89.31 81.76 77.60
40% 70.21 89.11 92.20 83.84 92.51 93.13 93.65 93.10 46.29 73.36 65.71 61.79 64.09 90.96 81.35 78.80
50% 78.19 89.02 92.20 86.47 92.83 92.95 93.83 93.20 46.99 71.28 63.89 60.72 61.63 90.49 79.37 77.16

As shown in Table 8, increasing the masking rate from 10% to 20% improves performance across
SC, TC, QA, and IR for the base model. Overall, scores typically peak at around 20%–30% masking,
yielding consistent gains on SC, TC, and QA. The exception is IR, which attains its best results at
50% masking. At higher masking levels (40%–50%), performance can drop markedly (e.g., MNLI),
indicating that the smaller-capacity model struggles when too little context is visible (masking be-
comes overly aggressive, weakening both the input signal and the training target).

The larger model is more robust to masking but still follows a similar trend to the base variant
(see Table 9). Performance generally improves from 10% to 20–30% masking, which offers the
best cross-task trade-off (an exception is TC, which peaks at 50%). QA and IR benefit the most,
with ReCoRD, MLDR, and NQ rising by over +5, +9, and +6 points, respectively, relative to 10%
masking. Although the large model tolerates 40–50% masking with modest degradation, SC remains
sensitive, whereby at 40% masking, MNLI drops by ∼12 points versus 20%, then partially recovers
at 50%, going up by ∼8 points versus 40%. These patterns indicate that overly aggressive masking
can destabilize training even at higher capacity.

Overall, both models indicate 20–30% masking as near-optimal, thus, we pretrain both at 20%.

H ABLATION STUDY

In this study, we conduct a series of ablation experiments on Avey-B. To this end, we fix (1) the
sequence length N , split size S, and top-k retrieval depth to the best settings from Appendix F;
(2) the static–dynamic interleaving pattern to the best arrangement from Appendix D; and (3) the
dynamic-layer normalization to the most effective scheme from Appendix E. In addition, we follow
the experimental setup described in Appendix C.

Table 10 reports ablations over five key architectural components of Avey-B: (1) decoupling static
and dynamic parameterizations; (2) applying row-wise normalization in the dynamic layers; (3)
incorporating a neural compressor within the ranker; (4) adding a residual connection between the
compressor output and the original tokens of the current split that is being compressed with its top-k
retrieved splits; and (5) removing the ranker entirely.

As illustrated in Table 10, coupling the static and dynamic parameterizations (i.e., see “full design”
and “w/o decoupling” rows) yields consistent drops of 1.43%, 2.12%, 2.53%, and 7.40% on SC,
TC, QA, and IR, respectively, confirming that separating similarity scoring from neural learning
improves accuracy. Row-wise normalization proves even more critical, whereby removing it leads
to significantly larger degradations of 3.55%, 0.87%, 7.65%, and 15.33% across SC, TC, QA, and
IR, respectively.

As discussed in Section 4.3, the neural compressor reduces the number of contextualized tokens
per split from (k+1)S to S. This reduction yields a substantial 4.37× throughput improvement
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Table 10: Ablations of Avey-B, removing one component at a time while holding all others fixed.
(1) w/o normalization: removes row-wise normalization in the dynamic layers; (2) w/o decoupling:
reverts to coupled static and dynamic parameterizations; (3) w/o compression: omits the neural
compressor; (4) w/o residual: discards the residual connection between the compressor output and
the current split’s tokens; and (5) w/o ranker: disables the ranker entirely.

Model SC TC QA IR

MNLI QQP SST-2 Avg. CONLL Onto. UNER Avg. ReCoRD SQuAD SQuAD
v2 Avg. MLDR MS

MARCO NQ Avg.

Avey-B (full design) 80.74 88.91 91.97 87.20 91.84 93.25 93.09 92.72 39.60 68.52 60.48 56.20 57.49 90.38 75.64 74.50
Avey-B w/o normalization 77.47 84.60 90.25 84.10 90.98 92.65 92.12 91.91 29.72 67.15 58.83 51.90 46.43 82.89 59.92 63.08
Avey-B w/o decoupling 79.94 88.60 89.33 85.95 89.10 92.11 91.06 90.75 36.86 67.89 59.57 54.77 55.00 82.77 69.18 68.98
Avey-B w/o compression 80.80 89.03 91.17 87.00 91.52 93.29 92.97 92.59 42.80 70.54 59.77 57.70 60.95 89.13 76.92 75.66
Avey-B w/o residual 77.53 87.48 90.37 85.12 90.80 92.44 91.17 91.47 34.71 66.08 56.02 52.27 55.22 86.74 71.72 71.22
Avey-B w/o ranker 77.36 87.32 88.76 84.48 90.20 92.39 90.74 91.11 25.85 66.27 57.92 50.01 38.28 85.35 61.93 61.85
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Figure 3: The throughput of Avey-B with and without the neural compressor.

(see Fig. 3) while preserving strong task performance (see Table 10). On SC and TC, compression
has negligible effect and even produces slight average gains of +0.23% and +0.14%, respectively,
likely due to the removal of noisy global tokens that can arise under top-k retrieval1. In contrast, QA
and IR exhibit modest average drops of 2.68% and 1.56%, respectively. These tasks rely more heav-
ily on fine-grained cross-split evidence and subtle retrieval cues, which compression may partially
attenuate. Overall, considering the 4.37× efficiency improvement, the negligible (and sometimes
positive) impact on SC and TC, and the modest reductions on QA and IR, the neural compressor
provides a clear and favorable efficiency–effectiveness trade-off.

Besides compression, Avey-B adds a residual connection between the compressor output and the
current split’s S tokens to preserve local signal. Table 10 shows that removing this residual degrades
every benchmark, with an average reduction of 3.38%, underscoring its role in maintaining lexical
fidelity and stabilizing context integration.

Finally, as described in (Hammoud & Acharya, 2025), the ranker is invoked only once per for-
ward/backward pass, prior to the first layer of the neural processor, and retrieves the top-k relevant
splits for each current split using shallow (initial) embeddings. One might expect that deeper con-
textualized embeddings could yield better retrieval; however, removing the ranker entirely (i.e.,
allowing the neural processor to fit and operate on the entire sequence) results in universal degrada-
tion across all benchmarks, with a large average drop of 7.46% (see Table 10). This corroborates
that retrieval is essential for Avey-B’s effectiveness.

1With a split containing S tokens and the absence of a hard relevance threshold (where the ranker retrieves
the top-k splits for each query split regardless of their absolute relevance), it is possible for some retrieved splits
to contain weakly relevant or noisy tokens.
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Figure 4: Latency of Avey-B, ModernBERT, and NeoBERT on NVIDIA B200 GPUs with mixed
precision (BF16). We use Avey-B base, ModernBERT base, and NeoBERT medium (the only pub-
licly available size). Avey-B is shown in (a) as optimized using torch.compile (no fused-
kernel implementation is available yet) and in (b) as unoptimized (eager). For ModernBERT and
NeoBERT, latency is shown for system–optimized (with FlashAttention) and system–unoptimized
(eager) variants in (a) and (b), respectively.

Importantly, retrieval based on shallow or static embeddings is a standard practice in dense retrieval
and matching systems such as DPR (Karpukhin et al., 2020), ColBERT (Khattab & Zaharia, 2020),
ANCE (Xiong et al., 2021), and CLIP (Radford et al., 2021), among others. These systems deliber-
ately rely on early-layer or fixed representations because deeper contextualized embeddings tend to
become increasingly task-specific, thereby distorting global semantic structure and degrading their
overall retrieval quality.

To evaluate whether deeper-layer retrieval is beneficial, we incorporated the ranker at every layer
such that it operates on contextualized embeddings. This intervention substantially degraded per-
formance, causing an average drop of 27.28% across benchmarks, and slowed efficiency by 5.9×.
These findings reinforce that deeper-layer retrieval is not only computationally prohibitive (as it
would require recomputing MaxSim and reassembling contextualized blocks at each layer) but also
detrimental for effectiveness.

To summarize, these ablations collectively validate Avey-B’s core architectural principles, namely,
(1) decoupling and normalization are critical for both effectiveness and stability (more on this in
Appendix J); (2) the residual connection preserves essential local information; (3) the neural com-
pressor delivers substantial efficiency gains with minimal accuracy loss; and (4) the ranker is indis-
pensable, with shallow-embedding retrieval proving both computationally justified and empirically
optimal.

I LATENCY RESULTS

In Section 5.4, we reported throughput (tokens/second) for Avey-B, ModernBERT, and NeoBERT.
In this section, we present latency (seconds per forward pass) for the same encoders. As noted
in Section 5.4, Avey is recent and lacks a fused-kernel (CUDA/Triton) implementation. Accord-
ingly, we measure Avey-B’s latency using both an eager PyTorch implementation (Avey-B-eager)
and torch.compile (Avey-B-torch-compile). By contrast, both ModernBERT and NeoBERT
have optimized implementations using FlashAttention (Dao et al., 2022). We therefore report their
latencies with and without FlashAttention, and denote the resulting variants as sys-optimized and
sys-unoptimized, respectively.

As with throughput, Avey-B achieves consistently lower latency and markedly superior long-context
scaling (see Fig. 4 (a)), underscoring its computational efficiency even in the absence of a fused
kernel. To quantify long-context behavior, we again fit a power-law model, L(N) ∝ Nβ , where
N denotes the sequence length and larger exponents β indicate worse scaling. Under the optimized
setting, ModernBERT-sys-optimized and NeoBERT-sys-optimized exhibit βModernBERT = 1.17 and
βNeoBERT = 1.20, reflecting the bandwidth and memory-pressure limitations inherent to quadratic
attention. In contrast, Avey-B-torch-compile attains a substantially milder exponent of βAvey-B =
0.68, and delivers more than a 3× and 10× latency advantage over ModernBERT-sys-optimized
and NeoBERT-sys-optimized, respectively, at 96k tokens.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

The unoptimized setting further accentuates these differences (see Fig. 4 (b)).
ModernBERT-sys-unoptimized and NeoBERT-sys-unoptimized exhibit substantially steeper
latency growth, with exponents βModernBERT = 1.42 and βNeoBERT = 1.63, and both models
encounter out-of-memory failures well before the maximum tested sequence length. In contrast,
Avey-B-eager achieves the shallowest growth of all configurations, with βAvey-B = 0.58, and main-
tains stable latency across the entire sequence-length range. These results confirm that Avey-B’s
latency advantage is structural, especially since its neural processor depends on split size rather than
global sequence length, yielding linear O(N) scaling and robust long-context performance even in
the absence of compiler- or kernel-level optimizations.

J CROSS-SEED VARIANCE ANALYSIS

Table 11: Standard deviations across 10 random seeds for all evaluated encoders and benchmarks.

Model SC TC QA IR

MNLI QQP SST-2 CONLL Onto. UNER ReCoRD SQuAD SQuADv2 MLDR MSMARCO NQ

B
as

e

Avey-B 0.92 0.12 0.97 0.71 0.12 2.65 0.67 0.17 0.47 0.67 1.34 0.75
BERT 0.17 0.16 0.31 1.10 0.31 0.69 3.70 0.53 0.32 1.22 0.73 1.44
RoBERTa 0.13 0.10 0.38 0.25 0.14 0.60 0.42 0.11 0.19 0.32 1.02 0.72
ModernBERT 0.37 0.12 0.53 0.24 0.11 0.45 0.70 2.36 0.29 1.40 1.39 2.18

M NeoBERT 0.40 0.14 1.20 0.24 0.17 0.47 5.98 0.91 0.66 4.70 4.30 9.48

L
ar

ge

Avey-B 0.20 0.43 0.52 0.33 0.10 1.06 0.27 0.15 0.30 1.03 1.77 1.06
BERT 0.28 8.24 0.98 0.37 0.13 0.80 2.47 0.97 0.58 0.94 1.54 1.01
RoBERTa 0.16 0.20 0.41 0.26 0.10 0.61 0.26 0.33 0.18 0.50 1.58 0.74
ModernBERT 0.18 0.08 0.35 0.50 0.14 3.67 17.79 0.25 1.35 2.27 1.70 3.06

To complement the median results reported in Table 2, we further evaluate each model’s robust-
ness by examining its sensitivity to random initialization. As described in Section 5.1, for every
benchmark in the SC, TC, QA, and IR categories, we swept four learning rates and fine-tuned each
configuration using 10 independent random seeds. While Table 2 reports the median performance
across seeds at the best learning rate for each benchmark, we additionally compute the standard
deviation (SD) across the 10 runs for each model–benchmark pair. These SD values quantify the
variability induced by initialization and provide an additional perspective on optimization stability
and robustness beyond median performance.

At the base scale (and medium for NeoBERT), RoBERTa exhibits the lowest overall variance, con-
sistent with its well-established fine-tuning stability. Avey-B ranks second, followed by Modern-
BERT, BERT, and NeoBERT, in that order. Across most benchmarks, Avey-B maintains tightly
concentrated variances, with the exception of UNER, where a single outlier resulted in higher vari-
ability (SD = 2.65).

At the large scale, the differences in stability become more pronounced. ModernBERT, despite
strong median performance, exhibits substantial instability on several benchmarks (most notably
ReCoRD, UNER, and NQ), suggesting high sensitivity to initialization arising from its alternating
attention pattern and extended context window. Likewise, BERT demonstrates occasional catas-
trophic variance spikes (e.g., QQP with SD = 8.24), indicating susceptibility to poor optimization
minima. In contrast, Avey-B maintains uniformly low SDs across nearly all benchmarks, with no
signs of pathological instability. Its variances remain tightly bounded (typically below 1.06), often
surpassing most Transformer-based baselines and again ranking just behind RoBERTa.

These variance measurements show that Avey-B is among the most statistically consistent encoders
in our evaluation. We attribute this robustness to three core architectural principles: (1) the decou-
pling of static and dynamic layers, which prevents destructive interactions between fixed parameters
and similarity scores; (2) row-normalized similarity matrices, which stabilize activation magnitudes
and ensure well-behaved gradient flow; and (3) neural compression, which filters out irrelevant sig-
nals in retrieved contexts. Collectively, these mechanisms reduce sensitivity to initialization and
foster smoother optimization dynamics, accounting for Avey-B’s consistently low variance across
tasks.
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Table 12: Needle-in-a-haystack (NIAH-1) accuracy across sequence lengths from 1k to 96k for
several encoders at different scales (M = Medium; OOM = Out-of-Memory).

Model NIAH-1

1k 2k 4k 8k 16k 32k 64k 96k
B

as
e Avey-B 79.41 79.21 78.94 79.19 78.91 77.73 77.18 75.72

ModernBERT 67.74 67.64 68.31 70.67 – – – –

M NeoBERT 79.65 79.13 74.73 – – – – –

L
ar

ge Avey-B 79.69 79.24 79.03 79.58 79.44 78.44 76.76 76.06
ModernBERT 68.80 67.52 67.20 OOM – – – –

Table 13: Needle-in-a-haystack (NIAH-2) accuracy across sequence lengths from 1k to 96k for
several encoders at different scales (M = Medium; OOM = Out-of-Memory).

Model NIAH-2

1k 2k 4k 8k 16k 32k 64k 96k

B
as

e Avey-B 78.29 79.40 79.77 78.53 78.70 75.50 73.78 71.86
ModernBERT 66.99 67.25 69.49 70.48 – – – –

M NeoBERT 79.61 79.52 80.07 – – – – –

L
ar

ge Avey-B 78.94 79.48 79.99 78.71 79.07 78.31 74.47 74.54
ModernBERT 66.96 67.29 68.07 OOM – – – –

K LONG-RANGE BENCHMARK RESULTS

In this section, we evaluate the long-context capabilities of Avey-B, ModernBERT, and NeoBERT
using a synthetic needle-in-a-haystack (NIAH) benchmark formulated as an extractive ques-
tion–answering (QA) task augmented with position-sensitive reasoning. Each instance consists of a
passage of a specified length (e.g., 96k tokens) filled with random distractor tokens and one or more
key–value pairs, where the value constitutes the “needle.” The query contains only the key, and the
model must extract the corresponding value from the passage.

In the single-needle setting, the task measures a model’s ability to semantically locate the correct
span within an extremely long sequence. In the multi-needle setting, all key–value pairs share
the same key, and the query explicitly requests the nth occurrence. This removes any semantic
disambiguation and introduces a position-sensitive reasoning requirement, where the model must
identify all candidate spans and reason over their order to select the correct needle.

The evaluation set comprises 40% single-needle (pure long-context QA) and 60% two-needle
(position-sensitive reasoning) examples, thereby jointly assessing semantic retrieval and positional
reasoning under extreme sequence lengths, with the latter emphasized by design. We further con-
struct two variants of the benchmark with different classes of randomly generated needles, namely,
alphanumeric (NIAH-1) and numeric (NIAH-2), following the setup introduced in Avey (Hammoud
& Acharya, 2025).

Tables 12 and 13 illustrate results for Avey-B base and large, ModernBERT base and large, and
NeoBERT medium (the only publicly available size) on NIAH-1 and NIAH-2 across sequence
lengths from 1k to 96k tokens. For ModernBERT and NeoBERT, we show results only up to their
respective trained context windows (i.e., 8k and 4k tokens). In contrast, Avey-B imposes no fixed
maximum sequence length and generalizes seamlessly beyond its trained 2,048-token context win-
dow, enabling evaluation up to 96k tokens.

On NIAH-1 (Table 12), Avey-B exhibits strong robustness and scalability relative to ModernBERT
and NeoBERT. Both Avey-B base and large maintain near-constant accuracy from 1k to 96k to-
kens, with only a modest 3–4 point decrease over a 96× increase in sequence length. This stability
demonstrates that Avey-B effectively resolves long-range dependencies and generalizes far beyond
its trained context window. By comparison, ModernBERT and NeoBERT cannot operate beyond
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Figure 5: Learned static cross-embedding projection matrices for the (a) coupled configuration (left
or red) with 15 matrices uniformly subsampled from 30 static layers and (b) decoupled configuration
(right or blue) with all 15 static matrices (dynamic and static layers are interleaved, hence, only 15
static matrices exist). For comparability, we display 15 layers per panel. The coupled setting exhibits
diffuse, more homogeneous patterns (e.g., see layers 14, 22, 24, and 26) suggestive of redundancy,
whereas the decoupled setting shows sharper, more heterogeneous structure and variability in spread,
indicating greater representational diversity.

their 8k-token and 4k-token trained windows, respectively. NeoBERT matches Avey-B at very short
contexts (1–2k) but drops by roughly 5 points at 4k, while ModernBERT lags behind Avey-B by
10–12 points even at short sequence lengths2. Moreover, ModernBERT large fails at 8k tokens due
to out-of-memory issues even on NVIDIA B200 GPUs using the smallest feasible batch size.

Results on NIAH-2 (Table 13) mirror the trends observed on NIAH-1 and further reinforce Avey-B’s
long-context robustness. Both Avey-B base and large maintain strong performance across extreme
sequence lengths, with Avey-B base decreasing from 78.3 at 1k to 71.9 at 96k tokens, and Avey-B
large remaining similarly stable (78.9 → 74.5). ModernBERT, by contrast, trails Avey-B by 9–12
points at short contexts and fails at 8k tokens due to memory limitations, preventing any long-context
evaluation. NeoBERT remains competitive at very short lengths (1–4k) but, like ModernBERT,
cannot operate beyond its 4k-token window, and therefore cannot be evaluated in the long-context
regime.

In summary, Avey-B is the only model capable of sustaining high accuracy up to 96k tokens on this
question–answering, reasoning-intensive benchmark, despite being trained with a context window
of only 2,048 tokens. These results demonstrate that Avey-B not only generalizes far beyond its
trained context width, but also preserves long-range reasoning fidelity in regimes where existing
Transformer-based encoders either fail to extrapolate or collapse entirely.

L COUPLED VS. DECOUPLED LAYERS: A STATISTICAL ANALYSIS

We now analyze the learned cross-embedding projection matrices (say, V) for the coupled and de-
coupled Avey-B models from the ablation study in Appendix H. Table 14 reports summary statistics
for each model. In the coupled case, we observe a clear positivity bias, especially in deeper layers,
wherein the fraction of positive entries (i.e., the number of positive weights divided by the total
number of weights) approaches one in several layers (in layers 8 and 13, it indeed hit 1). This bias
can be explained as follows. Because the enricher employs a nonnegative activation (i.e., ReLU2),
the contextualizer’s similarity matrix (say, S) is elementwise nonnegative. As such, the coupled
mixing M = V⊙S inherits its signs entirely from V. Any negative entry in V flips a large positive
similarity into a negative contribution, violating monotonicity with respect to relevance (see Ap-
pendix A) and degrading training. The optimizer therefore pushes V toward nonnegativity to avoid
these destructive sign inversions, yielding the observed late-layer collapse toward positive weights.

2For ModernBERT versus NeoBERT, we hypothesize that the consistently lower scores of ModernBERT
stem from its local–global alternating attention pattern, compared to the full bidirectional self-attention used in
NeoBERT.
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Despite this positivity bias, a nontrivial fraction of negative entries persists in the coupled model
(see Table 14 again). This residual negativity is precisely the failure mode our hypothesis predicts,
that is, wherever a neuron retains negative weights, large positive similarities can be inverted into
negative contributions, yielding local violations of relevance monotonicity.

By contrast, in the decoupled case the dynamic layers alone produce the mixing weights. These
weights are normalized and nonnegative by construction, so monotonicity is enforced at the similar-
ity operator. The static layers are learned separately and no longer need to be driven into nonneg-
ativity to preserve monotonicity. As shown in Table 14, this yields a near-zero mean with roughly
balanced positive and negative weights (without the late-layer positivity bias), retains inhibitory
patterns (i.e., learned negative influences) where useful, and avoids the sign-flip failure mode.

Beyond sign distribution, the two models also diverge in the dispersion of their weights. Coupled
matrices exhibit reduced standard deviation across layers, indicating more stable transformations
that converge toward smooth and homogeneous patterns. Decoupled matrices, by contrast, sus-
tain larger fluctuations, admitting both stronger positive and stronger negative values. This higher
variance may reflect greater representational flexibility. Norm statistics supports this interpreta-
tion, whereby coupled matrices accumulate larger ℓ1 norm, distributing weight more evenly across
entries, whereas decoupled matrices attain slightly higher ℓ2 values, implying that fewer entries
dominate with sharper magnitudes.

Qualitatively, the static matrices in both variants exhibit Toeplitz-like (approximately shift-invariant)
structure reminiscent of gMLP (Liu et al., 2021) (see Fig. 5). As in gMLP, where such patterns
emerge without an explicit prior, our static layers converge to diagonally dominant, near-diagonal
matrices indicative of locality. This alignment suggests that locality-preserving, Toeplitz-like struc-
ture can arise naturally in architectures that employ fixed, input-independent transformations to
stabilize and scaffold subsequent dynamic computations.

In summary, coupling tends to regularize the cross-embedding projections toward homogeneous,
nearly nonnegative transformations, whereas decoupling promotes healthy diversity and sharper
structure, while preserving monotonicity with respect to relevance.
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Table 14: Layer statistics for coupled vs. decoupled settings. For comparability, we display 15 layers
per setting. For the coupled setting, we uniformly subsampled 15 layers from 30 static layers. For
the decoupled setting, all the 15 static layers are shown (dynamic and static layers are interleaved,
hence, only 15 static layers exist). The coupled setting exhibits positivity bias (see the “fraction of
positive” column), while the decoupled setting demonstrates more balanced positive and negative
weights, indicating greater representational diversity.

Coupled
Layer Mean Std Min Median Max Abs. Mean L1 Norm L2 Norm Frac. Pos. Frac. Neg.

1 0.00 0.12 −1.67 0.00 1.20 0.05 3369.19 30.68 0.47 0.53

2 −0.01 0.11 −1.55 0.00 0.30 0.04 2345.75 27.73 0.53 0.47

3 0.08 0.09 −0.23 0.06 0.68 0.09 5906.35 31.56 0.90 0.10

4 0.00 0.10 −1.19 0.01 0.29 0.03 2211.32 24.42 0.61 0.39

5 −0.03 0.13 −1.09 0.00 0.15 0.06 3724.35 33.82 0.55 0.45

6 0.01 0.08 −1.47 0.00 0.63 0.03 1963.87 21.33 0.57 0.43

7 0.03 0.11 −0.29 0.00 1.00 0.06 3959.52 30.11 0.52 0.49

8 0.11 0.04 −0.14 0.11 0.33 0.11 7525.47 31.17 1.00 0.00

9 0.00 0.10 −0.38 −0.01 1.43 0.04 2300.72 25.97 0.34 0.66

10 0.09 0.06 −0.07 0.08 0.38 0.09 5844.50 27.45 0.98 0.02

11 −0.02 0.10 −0.90 0.01 0.12 0.04 2604.39 26.53 0.59 0.41

12 0.07 0.02 −0.04 0.07 0.16 0.07 4697.84 19.12 0.98 0.02

13 0.05 0.03 −0.04 0.05 0.21 0.05 3487.26 15.28 1.00 0.00

14 0.03 0.02 −0.14 0.03 0.18 0.04 2293.24 9.56 0.95 0.05

15 0.00 0.07 −0.39 −0.01 0.83 0.03 1912.78 18.29 0.34 0.66

Avg. 0.03 0.08 −0.64 0.03 0.53 0.06 3609.77 24.87 0.69 0.31

Decoupled
Layer Mean Std Min Median Max Abs. Mean L1 Norm L2 Norm Frac. Pos. Frac. Neg.

1 0.00 0.08 −0.98 0.00 1.04 0.04 2327.62 21.31 0.51 0.49

2 −0.02 0.12 −1.27 0.00 0.23 0.05 3065.94 30.83 0.51 0.49

3 −0.01 0.12 −1.93 0.01 0.27 0.04 2312.23 30.24 0.66 0.34

4 −0.01 0.12 −1.01 0.01 1.35 0.04 2825.07 29.60 0.60 0.40

5 0.00 0.10 −0.50 −0.01 1.70 0.03 2129.54 26.59 0.42 0.58

6 0.00 0.11 −2.09 0.00 0.68 0.03 1978.08 28.17 0.61 0.39

7 0.00 0.11 −1.60 0.01 0.33 0.03 2050.08 27.01 0.69 0.31

8 −0.01 0.11 −1.22 0.01 0.30 0.03 2104.69 27.52 0.70 0.30

9 0.00 0.09 −0.26 0.00 1.37 0.03 1697.87 23.67 0.42 0.58

10 0.01 0.12 −0.34 −0.01 1.27 0.03 2145.28 30.16 0.34 0.66

11 0.00 0.09 −0.28 −0.01 1.18 0.03 1775.56 23.28 0.35 0.65

12 0.01 0.11 −0.22 −0.01 1.62 0.03 2019.32 29.24 0.33 0.67

13 −0.02 0.11 −1.35 0.00 0.24 0.04 2637.36 28.99 0.58 0.42

14 −0.02 0.10 −1.04 0.00 0.18 0.04 2292.65 26.27 0.61 0.39

15 0.01 0.08 −0.06 0.00 0.82 0.03 1779.38 19.60 0.51 0.49

Avg. 0.00 0.10 −0.94 0.00 0.84 0.03 2209.38 26.83 0.52 0.48
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