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Abstract

With the exponential growth of video content, aiming at localizing relevant video
moments based on natural language queries, video moment retrieval (VMR) has
gained significant attention. Existing weakly supervised VMR methods focus on
designing various feature modeling and modal interaction modules to alleviate
the reliance on precise temporal annotations. However, these methods have poor
generalization capabilities on compositional queries with novel syntactic structures
or vocabulary in real-world scenarios. To this end, we propose a new task: weakly
supervised compositional moment retrieval (WSCMR). This task trains models
using only video-query pairs without precise temporal annotations, while enabling
generalization to complex compositional queries. Furthermore, a proposal-centric
network (PC-Net) is proposed to tackle this challenging task. First, video and
query features are extracted through frozen feature extractors, followed by modal-
ity interaction to obtain multimodal features. Second, to handle compositional
queries with explicit temporal associations, a dual-granularity proposal genera-
tor decodes multimodal global and frame-level features to obtain query-relevant
proposal boundaries with fine-grained temporal perception. Third, to improve the
discrimination of proposal features, a proposal feature aggregator is constructed to
conduct semantic alignment of frames and queries, and employ a learnable peak-
aware Gaussian distributor to fit the frame weights within the proposals to derive
proposal features from the video frame features. Finally, the proposal quality is
assessed based on the results of reconstructing the masked query using the obtained
proposal features. To further enhance the model’s ability to capture semantic asso-
ciations between proposals and queries, a quality margin regularizer is constructed
to dynamically stratify proposals into high and low query-relevance subsets and
enhance the association between queries and common elements within proposals,
and suppress spurious correlations via inter-subset contrastive learning. Notably,
PC-Net achieves superior performance with 54% fewer parameters than prior works
by parameter-efficient design. Experiments on Charades-CG and ActivityNet-CG
demonstrate PC-Net’s ability to generalize across diverse compositional queries.
Code is available at https://github.com/mingyao1120/PC-Net.

1 Introduction

Video moment retrieval aims to identify the precise timestamps in videos corresponding to user
queries, which has gained significant research attention. Fully supervised methods heavily rely on
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ii) Evaluation phasei) Training phase

Query: person opens a closet door. Test-Trivial: person opens a closet door.

Novel-Composition: person put clothing on the shelf.

Novel-Words: person with a blanket in hand open closet door.

VMR Test-Trivial

low-scalability: time-consuming & laborious

Timestamps 15.5s 22.7s

WSCMR Test-Trivial Novel-Words Novel-Composition

VMR Query-video pair

WSCMR

Fine-grained timestamps

Query-video pair

(a) The proposed WSCMR i) does not require precise timestamps for
training and ii) includes generalization evaluation on compositional
queries with unseen grammatical structures or words.
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Figure 1: Comparison of the proposed method with existing methods on paradigm and performance.
Here, QD-DETRs [1] is the fully supervised method, and PPS [2] is the weakly supervised method.

datasets with labor-intensive precise timestamps, limiting their scalability in practical applications [3,
4, 5], as illustrated in Figure 1(a). Although weakly supervised methods [2, 6, 7] alleviate the
annotations burden by training solely on video-query pairs, yet they fail to address a core practical
challenge: generalization to queries with novel syntactic structures or unseen vocabulary [8, 9].

Recently, the compositional moment retrieval task has focused on the generalization of VMR methods
across various query styles in real-world scenarios, utilizing compositional queries with novel
syntactic structures and vocabulary to evaluate the generalization ability of models [1, 8, 9]. However,
this task is still fully supervised and relies on massive, precise timestamps. To this end, we propose
a new task, named Weakly Supervised Compositional Moment Retrieval (WSCMR), which aims
to train models without requiring timestamps and enables them to generalize across compositional
queries. This task is fundamentally challenging due to weak pairwise supervision and limited query
style in training, and the need to generalize to compositional queries with diverse temporal and
semantic dependencies.

An intuitive approach to address the proposed WSCMR is to leverage existing weakly supervised
models [7, 10]. However, their inherent limitations hinder them from effectively handling composi-
tional queries. Specifically, these models typically follow a three-stage process around the proposal:
boundary generation, feature aggregation, and quality assessment. First, existing methods only gener-
ate proposal boundaries through global video-query associations, which lack fine-grained temporal
perception and are difficult to handle compositional queries with explicit temporal logic such as “the
second person turns on the light” [11, 12, 13]. In feature aggregation, existing methods employ a fixed
Gaussian distribution based on the proposal boundaries to aggregate proposal features from video
frame features. These methods ignore the semantic gap between frame and query features [14, 15],
and the variability in action durations across different query compositions [8, 9], resulting in low
discrimination of proposal features. Furthermore, after the quality assessment based on autore-
gressively reconstructing the masked query with proposal features, existing methods [2, 6, 7, 10]
construct negative samples only from the proposal with the lowest reconstruction loss. This discards
partially relevant proposals, preventing the model from learning to associate visual representations
with specific query elements and undermining compositional generalization [1].

To address these challenges, a proposal-centric network (PC-Net) is constructed. First, the video and
query features are extracted through frozen feature extractors, and the modal interaction based on
attention mechanism is then conducted to obtain multimodal features consistent with prior works [2, 7].
Secondly, to capture explicit temporal associations in compositional queries and enhance semantic
consistency, the dual-granularity proposal generator decodes frame-level and global multimodal
features to produce relevant boundaries with fine-grained temporal perception. Thirdly, to alleviate
the semantic gap between the frames and the query and difficulty in modeling the variability of
action duration of the fixed Gaussian distribution, the proposal feature aggregator first constructs
feature triplets (queries, relevant frames, and irrelevant frames) to map them to a unified semantic
space, and then dynamically adjusts the Gaussian peak region for ensuring discriminative proposal
features that align with compositional query semantics. Finally, to assist the model in capturing the
semantic associations between visual representations and query elements, a quality margin regularizer
is constructed. The regularizer divides the proposals into subsets with high and low query relevance,
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then helps the model capture the query-related visual elements that co-occur in the proposals and
suppresses potential spurious associations through contrastive learning between subsets, indirectly
optimizing the proposal representation to cope with potential compositional queries.

PC-Net uses a generator with fewer parameters and efficient constraint losses to optimize feature
aggregation and quality assessment around proposals. Experiments show a 54% parameter reduction
while outperforming baselines in novel query generalization, demonstrating high efficiency and strong
generalization. In summary, the contributions of this paper are as follows:

• The Weakly Supervised Compositional Moment Retrieval (WSCMR) task is introduced,
aiming to train a moment retrieval model capable of generalizing to queries with novel
syntactic structures and vocabulary while eliminating the need for precise timestamps.
Furthermore, the limitations of existing methods are analyzed and validated.

• PC-Net is proposed, which employs a compact proposal generator, complemented by
an efficient aggregator and regularizer to guide proposal feature aggregation and capture
semantic associations for enhancing the model’s ability of compositional generalization.

• The framework achieves superior performance using 54% fewer parameters than comparable
methods, demonstrating the efficiency of the design and the generalizability of the proposed
framework for novel queries.

2 Related Works

2.1 Video Moment Retrieval

Video moment retrieval aims to locate specific temporal segments in videos that semantically match
textual queries. This field has evolved through two primary paradigms: fully supervised and weakly
supervised approaches. Fully supervised methods, pioneered by Gao et al. [16], employ either
proposal-based [16, 17, 18, 19] or regression-based [20, 21, 22, 23, 24] strategies. Proposal-based
methods generate candidate segments using sliding windows [16] or learnable networks [18], followed
by ranking based on query relevance. However, these methods face computational inefficiency due to
dense proposal sampling and sensitivity to proposal quality [4]. Regression-based alternatives [20, 23]
directly predict temporal boundaries by fusing multimodal features, enabling end-to-end training but
struggling with compositional queries due to rigid annotation patterns [9]. Recent advances improve
compositional generalization through decompose-and-reconstruct strategies [8] and saliency-aware
contrastive learning with large language models [1]. Despite progress, fully supervised methods
remain constrained by their reliance on precise temporal annotations, which are labor-intensive and
prone to subjective inconsistencies [25, 26], weakening their scalability.

Weakly supervised methods eliminate temporal annotations by learning from relevant video-query
pairs. Multiple instance learning (MIL)-based approaches [27, 28, 29, 30] optimize global video-
query alignment but often miss fine-grained correspondences. Masked query reconstruction methods
[6, 10, 31, 32] enhance semantic alignment through cross-modal reconstruction. SCN [33] integrates
masked reconstruction and contrastive losses, while CNM [10] introduces Gaussian masks and
triplet learning to refine proposals. Subsequent innovations include CPL [7] with learnable Gaussian
distributions, counterfactual reasoning extensions [32], and mixed Gaussian frameworks [2]. Methods
like PPS [34] and QMN [35] further explore iterative refinement but remain limited by fixed feature
aggregation and simple contrastive objectives. Notably, weakly supervised methods ignore the
generalization requirements of diverse query styles in practical applications, making it difficult to
cope with queries with novel grammatical structures or words. In contrast, the proposed WSCMR
task not only abandons the need for accurate timestamps but also requires the model to have good
generalization capabilities for novel queries, improving practical usability.

2.2 Multi-modal Semantic Alignment

To address the inherent heterogeneity of multimodal data across temporal, spatial, and semantic
dimensions [36, 37], modality alignment has evolved from shallow feature matching to deep joint
feature modeling. Early approaches, such as projecting inputs into a shared latent space [38], reduced
intra-class variation while enhancing inter-class discrimination. Recent advances leverage semantic-
level alignment [39] and contrastive learning objectives [40, 41, 42] to model interactions. For
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Figure 2: The overall framework of the proposed PC-Net for solving the WSCMR task consists of a
dual-granularity proposal generator that uses the dual-granularity association of video-query pairs to
obtain query-relevant boundaries with frame-level temporal perception, a proposal feature aggregator
for modeling discriminative features, and a query margin regularizer that enables the model to capture
visual elements relevant to the query and suppresses potential spurious correlations.

instance, cycle-consistency loss aligns video segments with query words [36], while multi-level
contrastive objectives capture hierarchical video-query relationships for improved retrieval [37].
Cheng et al. [1] further refine this paradigm by generating curriculum-based negative queries via large
language models. Considering that the video contains a large number of frames that are irrelevant
to the query and relevant timestamps are not available, the alignment of the proposed method is not
directly aligned at the video level, but based on the proposal frames related to the query, to perform
feature alignment, which facilitates reliable proposal quality assessment.

3 Methods

3.1 Feature Extraction and Modality Interaction

Consistent with existing weakly supervised methods [2, 7, 10], GLoVe [43] is used to extract query
features, and I3D [44] and C3D [45] are used to extract Charades-CG [16] and ActivityNet-CG [46]
features, respectively. The word-level query features are represented as: Q = [q1, q2, . . . , qN ] ∈
RN×dq , where N is the number of words and dq is the hidden dimension of the query words.
The frame-wise video features are represented as: V = [v1, v2, . . . , vT ] ∈ RT×dv , where T is
the number of video frames and dv is the hidden dimension of the video frames. Q and V will
be mapped to the same latent dimension d to facilitate subsequent proposal generation, namely
Q̂ = Linear(Q) ∈ RN×d, V̂ = Linear(V) ∈ RT×d. Among them, Linear(·) is a linear layer. To
fully explore the semantics of a given query and cope with potentially novel queries, an attention
mechanism is used to fuse the query’s word-level features Q̂ with the video’s frame-level features
V̂ , resulting in a multimodal features Hglobal ∈ R1×d with the overall semantics understanding and
Hlocal ∈ RT×d with fine-grained temporal information. More details can be found in Appendix A.1.

3.2 Dual-granularity Proposal Generator

Existing weakly supervised methods [2, 7, 10, 32] rely solely on global multimodal associations
to generate proposals. This approach inherently lacks fine-grained temporal perception and ig-
nores frame-level query relevance, resulting in imprecise boundaries with blurred temporal logic.
Consequently, these methods exhibit limited generalization to queries involving explicit temporal de-
pendencies [11, 12]. To address this limitation, the dual-granularity proposal generator is constructed
to capture global semantic consistency and local temporal precision jointly, for generating boundaries
with both holistic scene understanding and fine-grained temporal awareness.

First, the global multimodal feature Hglobal is linearly mapped to global proposals: Pglobal =

Linear(Hglobal) ∈ Rnump×2. Pglobal = {(cglobal
i , wglobal

i )}nump

i=1 ∈ [0, 1]nump×2 contains propos-
als with global semantic coherence. Here, ci and wi respectively refer to the center point and duration
of the i-th proposal; the same notation applies hereafter. Second, to incorporate frame-level temporal
details, frame-wise multimodal features Hlocal are processed using a slot attention mechanism [47].
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nump all-zero learnable proposal slots P local
0 ∈ Rnump×d are initialized and are iteratively refined

via K rounds of attention interactions with Hlocal. The update rule at the k-th iteration is defined as:

P local
k = Softmax

(
(Hlocal)(P local

k−1)
T

√
d

)
· Hlocal + P local

k−1. (1)

After K iterations, local proposals P local
K = {(clocal

i , wlocal
i )}nump

i=1 ∈ [0, 1]nump×2 are generated,
which involve explicit temporal boundaries and query-related frame semantics.

To combine the strengths of global and local proposals, the Hungarian matching [48] is employed to
adaptively match and fuse their boundaries. This adaptive fusion mechanism ensures that the final
proposal set P fused = {(cfused

i , wfused
i )}nump

i=1 retains both global semantic consistency and fine-grained
temporal perception. More details can be found in Appendix A.2.

3.3 Proposal Feature Aggregator with Semantic Alignment

Existing weakly supervised methods [7, 32] rely on constructing a fixed Gaussian distribution based
on the proposal boundary to aggregate proposal features from frame features. This approach has
two key limitations: i) there is a semantic gap between frame features and query features [14,
15]; ii) the fixed distribution is difficult to fit the diversity of action durations across different
query combinations, which ultimately leads to a decrease in feature discrimination ability [2]. To
address these issues, a proposal feature aggregator with two components (Figure 2(b)) is constructed.
First, cross-modal semantic alignment constructs a unified feature space via triplets of queries,
related/irrelevant video frames, bridging the semantic gap between queries and frames. Second, a
learnable peak-aware Gaussian distributor dynamically adjusts the Gaussian peak region to simulate
diverse durations, ensuring discriminative proposal features consistent with the compositional query
semantics (Figure 7).

Cross-modal Semantic Alignment. To bridge the gap between videos and queries, feature triplets
of queries, relevant video segments, and irrelevant video segments are constructed to map them
into a unified semantic space based on contrastive learning. First, the query-relevant video feature
V̂p
i ∈ R1×d extraction process by a weighted average of the original video features V̂ as follows.

V̂p
i =

1

|Mi|
∑
t∈Mi

V̂t ∈ R1×d,Mi =

{
t | ⌊cfused

i T ⌋ − wfused
i T

2
≤ t < ⌊cfused

i T ⌋+ wfused
i T

2

}
. (2)

Here, ⌊·⌋ represents a floor operation and T is the number of frames in the video. (cfused
i , wfused

i ) is
the center and width of the i-th proposal P fused

i . Mi is the start and end frame sequence of the i-th
proposal, and |Mi| is the number of frames in the video feature that fall within the i-th proposal. The
query-irrelative video feature V̂n

i ∈ R1×d is obtained by a weighted average of the complement of
the relevant area or the average of the global video, as follows:

V̂n
i =

1

T − |Mi|
∑
t/∈Mi

V̂t · 1{|Mi|<T} +
1

T

T∑
t=1

V̂t · 1{|Mi|=T}. (3)

Here, conditional branch 1{A} = 1 where condition A is true otherwise 0. The semantic contrastive
loss is as follows. Here, γ = 0.5 is the margin coefficient. sim(·) is the cosine similarity function.

Lsem =
1

nump

nump∑
i=1

max
(
0, sim(qglobal, V̂n

i )− sim(qglobal, V̂p
i ) + γ

)
, (4)

where qglobal contains the global context of the query from modality interaction, see Appendix A.1.

Learnable Peak-aware Gaussian Distributor. Following existing works [6, 7, 10], the boundary
of the i-th proposal is used to generate the corresponding initial fixed Gaussian distribution Gi ∈ RT

(Appendix A.3). Gi is the frame-level weight of the i-th proposal. However, a fixed Gaussian
distribution has difficulty modeling the duration of various action compositions [9]. Therefore, we
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propose to adaptively redistribute the peak weights of the Gaussian distribution as follows.

Mi(t) =
1

1 + e−1000·ηi(t)
,where ηi(t) = βσi − |xt − cfused

i |, (5)

Wi(t) = Gi(t) · (1−Mi(t)) +Mi(t). (6)

Here, Wi ∈ RT denotes the dynamically adjusted frame-level weight of the i-th proposal. ηi(t)
determines whether to retain the original Gaussian value by measuring the distance between each
time point xt and the proposal center cfused

i . Specifically, the closer xt is to the proposal center (peak
area), the larger ηi(t) becomes (greater than 0), and thus the value of Mi(t) approaches 1, effectively
assigning a weight of 1 to the frame at time xt. Conversely, as Mi(t) approaches 0, the original
Gaussian value is preserved. The parameter β is a learnable scaling factor that adjusts the width of
the peak area to capture diverse action durations across compositional queries. Details of σi and xt

are provided in Appendix A.3.

3.4 Proposal Quality Assessment via Quality Margin Regularizer

To accurately measure the proposal quality and select the best proposals, the proposal quality
assessment process follows previous work [7, 10]. The original query is partially masked and then
reconstructed from the proposal features aggregated from the original video frame features using the
adjusted Gaussian distribution, and the reconstruction loss is used to measure the proposal quality.
However, existing methods [2, 6, 7, 32] only construct negative proposals based on the proposal
with the smallest reconstruction loss for contrastive learning, discarding partially relevant proposals,
which makes it difficult for the model to capture the subtle semantic associations between relevant
proposals and queries. Therefore, the quality margin regularizer is built to use the reconstruction
quality of the reference proposal (i.e.,whole video frames) to dynamically divide the proposal set into
high and low query-relevance subsets, and correlations of co-occurring visual elements related to the
query are established in proposals through inter-subset contrastive learning.

Proposal Quality Assessment. Consistent with previous methods [2, 7, 10], the reference and
negative proposals are generated to constrain the contrast of the best proposals. The weight of
the referenced proposal is a vector of all ones of length N , and the reconstruction loss through
Formula (18) is Lre

r , more details can be found in Appendix A.4. Suppose the proposal with the
smallest reconstruction loss is denoted as P fused

O , then the corresponding center point and duration
are (cfused

O , wfused
O ) respectively. The reconstruction loss of P fused

O through Formula (18) is Lre
O . The

complement of (cfused
O , wfused

O ) is shown in Figure 2 (c), including left negative proposal P fused
n1

and
right negative proposal P fused

n2
. Through the above proposal feature aggregation and mask query

reconstruction, the corresponding two negative proposal reconstruction losses Lre
n1

and Lre
n2

are
obtained. The contrast loss based on the optimal proposal P fused

O is as follows. Among them, θ1 and
θ2 are hyperparameters, and θ1 < θ2.

Lcon = max (0, Lre
O − Lre

r + θ1) + max
(
0, Lre

O − Lre
n1

+ θ2
)
+max

(
0, Lre

O − Lre
n2

+ θ2
)
, (7)

Quality Margin Regularizer. Previous relatively simple negative sample contrast makes it difficult
for the model to identify subtle semantic differences between query-relevant proposals and avoid
spurious associations. Therefore, the quality margin regularizer is built to fully utilize the given query
and amplify the feature representation distinctions between high and low query relevance proposals,
as shown in Figure 2 (c). First, the original positive proposals Lre ∈ Rnump are split into two subsets
according to the quality of the reference proposal Lre

r , and then extract the average quality of the
high and low query-relevance proposal sets for contrast.

Lhigh =
1

|X |
∑
i∈X

Lre
i ,X =

{
i
∣∣ Lre

i < Lre
r

}
. Llow =

1

|Y|
∑
i∈Y

Lre
i ,Y =

{
i
∣∣ Lre

i ≥ Lre
r

}
. (8)

Among them, Lhigh and Llow are the average quality of high/low query-relevance proposals, respec-
tively. The final quality contrastive loss between proposals is Lqua = max (Lhigh − Llow + θ3, 0).
Here, θ3 is a margin hyperparameter that controls the strictness of the contrast.
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3.5 Optimization Goals

The loss in this paper consists of five parts: proposal reconstruction loss Lre
O , proposal contrast loss

Lcon, proposal diversity constraint Ldiv = ∥WW⊤ − λI∥2F from CPL [7] calculated by proposal
frame-level weights W ∈ Rnump×T , semantic alignment loss Lsem, and quality contrastive loss Lqua.

Ltotal = Lre
O + λconLcon + λdivLdiv + λsemLsem + λquaLqua (9)

Among them, λ*, ∗ ∈ {con, div, sem, qua} is the coefficient of the corresponding loss. During
inference, the proposal with the smallest reconstruction loss Lre

O is taken as the retrieval result.

4 Experiments

Table 1: Comparative performance on the Charades-CG dataset. Here, Rn@m denotes the Recall@n
metric under an IoU threshold of m. Results in bold are optimal, underlined results are suboptimal.
“Full Supervision” represents methods that use precise timestamp annotations during training, and
“Weak Supervision” represents methods that train only on video-text pairs without timestamp annota-
tions (results are reproduced based on public implementations). Same as below.

Method Params Test-Trivial Novel-Composition Novel-Word

R1@0.5 R1@0.7 mIoU R1@0.5 R1@0.7 mIoU R1@0.5 R1@0.7 mIoU

Fu
ll

Su
pe

rv
is

io
n

TMN [49] - 18.75 8.16 19.82 8.68 4.07 10.14 9.43 4.96 11.23
TSP-PRL [22] - 39.86 21.07 38.41 16.30 2.04 13.52 14.83 2.61 14.03
VSLNet [50] - 45.91 19.80 41.63 24.25 11.54 31.43 25.60 10.07 30.21
2D-TAN [18] - 48.06 27.10 43.72 32.74 15.25 31.50 37.12 18.99 35.04
2D-TANSSL [51] - 53.91 31.82 46.84 35.42 17.95 33.07 43.60 25.32 39.32
LGI [52] - 49.45 23.80 45.01 29.42 12.73 30.09 26.48 12.47 27.62
MS-2D-TAN [53] - 57.85 37.63 50.51 43.17 23.27 38.06 45.76 27.19 40.80
MS-2D-TANSSL [51] - 58.14 37.98 50.58 46.54 25.10 40.00 50.36 28.78 43.15
VISA [9] - 53.20 26.52 47.11 45.41 22.71 42.03 42.35 20.88 40.18
Deco [8] - 58.75 28.71 49.06 47.39 21.06 40.70 - - -
Moment-DETR [54] - 49.48 28.04 44.82 39.42 18.62 36.61 46.76 24.75 41.70
Moment-DETRS [1] - 57.14 33.85 49.32 44.65 23.21 39.86 47.05 24.32 41.57
QD-DETR [55] 7.12M 59.24 33.43 50.92 42.30 21.09 38.55 46.04 26.33 42.89
QD-DETRS [1] 7.12M 60.66 38.60 52.53 50.23 27.69 44.14 55.25 35.25 48.10

W
ea

k
Su

pe
rv

is
io

n WSSL [31] - 15.33 5.46 18.31 3.61 1.21 8.26 2.79 0.73 7.92
CNM [10] 2.52M 36.37 15.25 37.88 25.04 9.12 30.79 31.37 13.24 34.38
CPL [7] 3.01M 53.04 24.71 45.82 40.79 16.15 37.46 42.45 21.44 39.20
CCR [32] 9.01M 50.58 24.61 45.62 39.57 16.15 37.03 41.73 21.15 38.19
QMN [6] 12.51M 51.65 22.64 45.85 40.67 15.72 37.91 46.91 21.58 41.07
PPS [2] 7.31M 51.74 25.87 45.63 40.09 17.11 37.07 42.01 21.44 38.23
PC-Net(Ours) 3.34M 54.84 26.68 47.12 41.69 16.73 38.04 46.91 23.60 41.06

Table 2: Comparative performance on ActivityNet-CG datasets.

Method Params Test-Trivial Novel-Composition Novel-Word

R1@0.5 R1@0.7 mIoU R1@0.5 R1@0.7 mIoU R1@0.5 R1@0.7 mIoU

Fu
ll

Su
pe

rv
is

io
n

TSP-PRL [22] - 34.27 18.80 37.05 14.74 1.43 12.61 18.05 3.15 14.34
TMN [49] - 16.82 7.01 17.13 8.74 4.39 10.08 9.93 5.12 11.38
2D-TAN [18] - 44.50 26.03 42.12 22.80 9.95 28.49 23.86 10.37 28.88
LGI [52] - 43.56 23.29 41.37 23.21 9.02 27.86 23.10 9.03 26.95
VLSNet [50] - 39.27 23.12 42.51 20.21 9.18 29.07 21.68 9.94 29.58
VISA [9] - 47.13 29.64 44.02 31.51 16.73 35.85 30.14 15.90 35.13
Deco [8] - 43.98 24.25 43.47 27.35 11.66 31.27 - - -
Moment-DETR [54] - 42.73 25.31 42.19 29.29 13.71 31.63 26.84 13.34 29.95
Moment-DETRS [1] - 44.19 25.81 43.49 30.60 14.40 33.13 29.59 15.10 32.43
QD-DETR [55] 7.92M 41.80 20.88 41.15 26.91 10.96 31.01 27.09 11.38 31.21
QD-DETRS [1] 7.92M 43.76 25.98 42.86 29.56 14.37 32.44 27.60 13.11 30.98

W
ea

k
Su

pe
rv

is
io

n WSSL [31] - 11.03 4.14 15.07 2.89 0.76 7.65 3.09 1.13 7.10
CNM [10] 2.38M 28.55 13.44 35.06 18.38 7.22 28.19 21.07 9.59 29.71
CPL [7] 4.64M 27.62 11.80 32.73 19.31 7.05 26.95 22.50 9.29 28.33
CCR [32] 268.96M 27.67 12.90 33.56 19.59 7.66 27.50 21.66 9.18 28.42
QMN [6] 272.38M 24.27 13.19 33.82 15.88 6.09 27.30 19.31 7.76 28.96
PPS [2] 8.94M 30.00 15.84 32.98 20.60 9.45 26.27 22.98 11.25 27.69
PC-Net(Ours) 4.97M 29.62 14.35 36.45 20.16 8.05 29.51 22.88 9.85 30.76

4.1 Experimental Setup

Datasets. To validate the proposed PC-Net for the WSCMR task, Charades-CG and ActivityNet-CG
are applied, where accurate timestamp annotations are only used for evaluating the model rather
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than training, and annotations with novel queries are sourced from the literature [9]. Charades-CG
(8,312 videos) includes 8,281 training queries and three test subsets: Test-Trivial (3,096 queries
with training-style phrases), Novel-Composition (3,442 queries covering verb-noun, noun-noun,
verb-adverb, adjective-noun, and preposition-noun combinations [9]), and Novel-Word (703 queries
with unseen vocabulary). ActivityNet-CG (20,647 videos) follows a similar split: 36,724 training
queries, 15,712 Test-Trivial, 12,028 Novel-Composition, and 3,944 Novel-Word.

Evaluation Metrics. Two metrics are introduced. “mIoU” is the mean Intersection over Union
(IoU), which reflects the average overlap between predicted timestamps and ground truth, indicating
overall performance. “Rn@m” measures recall at top-n predictions under an IoU threshold of m.

Implementation Details. The implementation details are presented in Appendix A.5.

4.2 Comparisons with SOTAs

In addition to recent fully-supervised compositional moment retrieval methods [1, 8, 9], we also
reproduce several recent weakly supervised methods from publicly available repositories [2, 6, 7, 10,
32] for comparative evaluation. To fully verify the effectiveness of the proposed method, this paper
also provides comparative experiments on testing weakly supervised moment retrieval on two long
video datasets (Appendix B.1), model robustness (Appendix B.2) and efficiency (Appendix B.3).

The proposed PC-Net is evaluated on Charades-CG and ActivityNet-CG under weak supervision.
As shown in Table 1, PC-Net achieves state-of-the-art performance on Charades-CG, particularly
in novel composition and unseen vocabulary scenarios. Under the Novel-Composition split, it
obtains R1@0.5/mIoU of 41.69%/38.04%, outperforming prior weakly supervised methods (CPL:
40.79%/37.46%; QMN: 40.67%/37.91%) with only 3.34M parameters—significantly fewer than fully
supervised QD-DETR (7.12M) and weakly supervised QMN (12.51M). The performance gain stems
from two key innovations: (1) a dual-granularity proposal generator combining global and local
multimodal features for robust query understanding and frame-wise temporal association, achieving
54.84% R1@0.5 on Test-Trivial (vs. 53.04% for CPL); and (2) peak-aware feature aggregation
with semantic alignment via differentiable weight redistribution and contrastive learning to obtain
discriminative proposal features. Notably, PC-Net achieves 89.7% mIoU (47.12%/52.53%) on
Test-Trivial with 53.01% fewer parameters than the prior SOTA QD-DETRS .

On the ActivityNet-CG dataset (Table 2), PC-Net continues to outperform existing weakly supervised
methods, achieving state-of-the-art mIoU scores across all splits: 36.45% (Test-Trivial), 29.51%
(Novel-Composition), and 30.76% (Novel-Word). These results highlight PC-Net’s strong semantic
alignment capability and query generalization. Although PC-Net’s R1@0.5 and R1@0.7 scores are
occasionally lower than those of other models on ActivityNet-CG, this is mainly due to the dataset’s
long average video duration (117.6 seconds) and sparse feature sampling. Nevertheless, its strong
mIoU performance confirms the model’s capability to fully exploit the query semantics and generate
high-quality proposals. Notably, PC-Net remains highly parameter-efficient, requiring only 4.97M
parameters—dramatically fewer than CCR (268.86M) and QMN (272.38M). The proposed semantic
alignment and quality margin regularizer further enforces the semantic consistency of proposal
features and the capability of capturing nuance discrepancy between queries and proposals, making
PC-Net a compact yet effective solution for compositional moment retrieval under weak supervision.

Table 3: Detailed ablation experiments are conducted on the Charades-CG dataset.

Setting DPG PFA Lqua
Test-Trivial Novel-Composition Novel-Word

LPG Lsem R1@0.5 R1@0.7 mIoU R1@0.5 R1@0.7 mIoU R1@0.5 R1@0.7 mIoU

(a) 53.04 24.71 45.82 40.79 16.15 37.46 42.45 21.44 39.20

(b) ✓ 54.39 24.87 46.89 40.97 16.40 37.77 46.06 22.32 40.98
(c) ✓ 51.87 23.19 45.41 40.38 16.56 37.36 42.16 22.30 38.98
(d) ✓ 54.43 24.06 46.42 41.61 16.13 38.02 46.06 21.44 40.98
(e) ✓ 51.52 23.55 45.66 39.80 17.00 37.57 43.60 22.16 40.07

(f) ✓ ✓ 54.07 25.65 47.08 40.74 16.64 37.72 46.20 23.45 41.04
(g) ✓ ✓ 54.04 24.94 46.59 41.48 16.91 37.49 46.91 23.60 41.17
(h) ✓ ✓ ✓ 53.26 24.97 46.28 40.99 16.39 36.94 45.18 22.01 40.28
(i) ✓ ✓ ✓ 54.65 25.16 46.91 40.78 16.55 37.62 45.76 21.73 39.93
(j) ✓ ✓ ✓ 53.88 24.52 46.61 41.04 16.82 38.01 46.19 23.60 40.41
(k) ✓ ✓ ✓ 54.33 25.55 46.75 41.52 17.81 37.74 45.32 22.45 40.71

Ours ✓ ✓ ✓ ✓ 54.84 26.68 47.12 41.69 16.73 38.04 46.91 23.60 41.06
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4.3 Ablations

Comprehensive ablation studies are conducted on the Charades-CG dataset (Table 3) to assess the
impact of each proposed module. Specifically, ‘DPG’ denotes the dual-granularity proposal generator,
and ‘PFA’ refers to the proposal feature aggregator, which incorporates both cross-modal semantic
contrastive loss (Lsem) and the learnable peak-aware Gaussian distributor (‘LPG’). The contrastive
loss in quality margin regularizer is denoted as Lqua. Introducing the dual-granularity proposal
generator (DPG) (b) consistently improves performance across all metrics compared to the baseline
(a), highlighting its role in enhancing temporal perception and proposal boundaries. However,
the LPG and quality margin contrastive loss (c, e) slightly degrade performance, possibly due to
suboptimal query semantics utilization or re-weighting side effects. Incorporating DPG in settings (j,
h) yields performance gains over the full model (“Ours”), underscoring the value of query-driven
proposals. Joint DPG and LPG application (f) enhances generalization, particularly on Test-Trivial
and Novel-Word splits. Integrating Lsem and Lqua (f&ours) significantly boosts semantic alignment
and quality assessment. The full model (“Ours”) achieves SOTA results, validating the necessity
of each module in addressing the existing limitations in generalizing to compositional queries with
diverse temporal and semantic dependencies. More ablation experiments in Appendix B.4.
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Figure 3: Detailed ablation of the alignment loss and quality contrastive loss on Charades-CG.

To deeply analyze the role of the two losses of the proposed semantic alignment loss (Lsem) and the
quality contrastive loss (Lqua), the coefficients of Lsem and Lqua are independently ablated as shown
in Figure 3. It can be seen that the model performs best when the coefficient of Lsem is 0.5 and the
coefficient of Lqua is 1.0. As the coefficient increases, the model’s performance gradually decreases.
In addition, to analyze the synergistic effect of the two coefficients, the coefficient combination is
also ablated here, thoroughly verifying that the model performs best when λsem is 0.5 and λqua is 1.0.

Query : the person is throwing shoes.
0.0s 5.9s 11.7s 17.6s 23.4s 29.3s

Ground Truth
[0.9s, 10.7s]

PPS
[13.3s, 23.2s]

Ours
[0.0s, 7.9s]

Query : the person pours some water into the glass.
0.0s 5.9s 11.8s 17.7s 23.5s 29.4s

Ground Truth
[7.3s, 17.3s]

PPS
[13.3s, 23.4s]

Ours
[7.5s, 17.7s]

(a) Two Samples from the Test-Trivial split.
Query :  a person runs into the garage.

0.0s 1.8s 3.6s 5.4s 7.3s 9.1s 10.9s 12.7s 14.5s 16.3s 18.1s 20.0s

Ground Truth
[0.0s, 7.0s]

PPS
[12.1s, 18.9s]

Ours
[0.0s, 5.0s]

Query :  a person is putting on clothes.
0.0s 2.8s 5.6s 8.4s 11.2s 14.1s 16.9s 19.7s 22.5s 25.3s 28.1s 30.9s

Ground Truth
[3.3s, 15.3s]

PPS
[0.6s, 11.1s]

Ours
[3.4s, 13.9s]

(b) Two Samples from the Novel-Composition split.
Query :  second person walks down stairs holding a cup.

0.0s 6.0s 12.0s 18.0s 24.0s 30.0s

Ground Truth
[11.2s, 21.7s]

PPS
[18.1s, 28.4s]

Ours
[12.2s, 22.3s]

Query :  a person is talking on the phone.
0.0s 6.4s 12.7s 19.1s 25.4s 31.8s

Ground Truth
[13.8s, 22.5s]

PPS
[0.6s, 11.4s]

Ours
[12.8s, 23.5s]

(c) Two Samples from the Novel-Word split.

Figure 4: Qualitative comparison on Charades-CG dataset.
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Query :  We see the ending screen.
0.0s 12.5s 25.0s 37.5s 50.0s 62.5s

Ground Truth
[60.0s, 62.5s]

Ours
[0.0s, 17.1s]

Query :  A female individual is located outdoors, clearing snow with a shovel.
0.0s 13.2s 26.4s 39.6s 52.8s 66.1s

Ground Truth
[6.9s, 42.6s]

Ours
[0.0s, 60.5s]

Figure 5: Failure case study on the Test-Trivial split of ActivityNet-CG dataset.

Query :  A person can be observed viewing a television.
0.0s 3.9s 7.9s 11.8s 15.8s 19.7s

Ground Truth
[0.0s, 3.6s]

Ours
[0.0s, 4.9s]

QD-DETRs
[0.0s, 7.0s]

0

1
Ours Relevant Scores

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time (seconds)

0

1
QD-DETRs Relevant Scores

Query :  An individual transferring liquid into a drinking glass.
0.0s 5.9s 11.8s 17.7s 23.5s 29.4s

Ground Truth
[7.3s, 17.3s]

Ours
[6.8s, 17.2s]

QD-DETRs
[3.5s, 10.0s]

0

1
Ours Relevant Scores

0 5 10 15 20 25
Time (seconds)

0

1
QD-DETRs Relevant Scores

Figure 6: Relevance study on the rewritten Test-Trivial split of Charades-CG dataset.

4.4 Visualization

To evaluate the proposed method’s retrieval performance, qualitative results on the Charades-CG
dataset are presented in Figure 4. In the test-trivial subset (matching the training query style), the
method generates high-quality proposals guided by query semantics and selects retrieval results with
accurate timestamp alignment via precise boundary modeling. For novel action combinations within
compositional queries, Gaussian distribution peak adjustment captures various durations of diverse
actions, aggregating them into discriminative features for quality assessment. In the Novel-word
scenario (where unseen words are encountered during training), the model leverages deep query
associations and explicit semantic alignment to demonstrate robust generalization.

In addition, a failure case study is presented in Figure 5. These examples show that actions with
long durations tend to exhibit lower boundary accuracy. This issue arises from the model’s inability
to accurately capture the association between the start and end points of an action when generating
proposals. In future work, we plan to employ more powerful feature extractors, capture query
correlations, to adjust and improve proposal boundaries dynamically.

To thoroughly investigate the interpretability of fully supervised versus weakly supervised methods,
we conducted visualizations of correlation scores between queries and video frames on the rephrased
Charades Test-Trivial dataset, as shown in Figure 6. The results demonstrate that, compared to
the fully supervised QD-DETRs trained with precise timestamp annotations, our proposed PC-Net
not only comprehensively understands unseen complex query semantics but also more accurately
aligns query content with the visual features of video frames. This capability produces more rational
and discriminative correlation score curves. Specifically, for the query “A person can be observed
viewing a television.” PC-Net generates significantly higher correlation scores within the critical
action interval [0.0s, 4.9s] than QD-DETRs, indicating a stronger ability to capture the semantics
of “viewing a television.” Similarly, in the task “An individual transferring liquid into a drinking
glass.” although QD-DETRs exhibit responses in certain intervals, PC-Net’s correlation scores are
more concentrated and consistently surpass the baseline in the true action interval [7.3s, 17.3s]. This
suggests a more stable alignment between query semantics and relevant visual moments.

5 Conclusion

This paper analyzes the shortcomings of existing methods, and proposes a more practical and
scalable task, namely WSCMR. By fully mining the dual-granularity query semantics and temporal
perception to obtain query-relevant and well-bounded proposals, and improving feature discrimination
through the semantic alignment and peak optimization, and the quality margin regularizer is used
to establish associations between common visual elements in proposals and queries and to suppress
spurious associations, a proposal-centric optimization pipeline is implemented. Extensive experiments
demonstrate PC-Net’s excellent performance with fewer parameters. Future work will explore
improving the query generalization of weakly supervised moment retrieval in long videos.
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Justification: As analyzed in the introduction, the WSCMR task proposed in this paper
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Answer: [NA]
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
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faith effort.

12. Licenses for existing assets
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license and terms of use.
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• The authors should cite the original paper that produced the code package or dataset.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For existing datasets that are re-packaged, both the original license and the license of
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
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and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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16. Declaration of LLM usage
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non-standard component of the core methods in this research? Note that if the LLM is used
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scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
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A More Technical Details

A.1 Multi-modal Feature Fusion

To effectively model the interaction between video features V̂ and query features Q̂, we propose a two-
stage framework that first extracts global query semantics and then establishes both global and local
multimodal associations. The pipeline is formalized as follows: the input query features Q̂ ∈ RN×d

(where N is the number of query tokens, d is the feature dimension) are augmented with a learnable
CLS token qcls ∈ R1×d to encode global semantics. The concatenated input [qcls∥Q̂] ∈ R(N+1)×d is
processed through a self-attention mechanism to generate the global query feature qglobal ∈ R1×d and
an encoded query representation Q̂enc ∈ RN×d. This is mathematically expressed as:

qglobal, Q̂enc = SelfAttn([qcls∥Q̂]), (10)

where the CLS token qcls acts as an aggregator for global query semantics, and the self-attention
mechanism computes pairwise attention scores between all tokens in the input sequence. The
output qglobal captures the global context of the query, while Q̂enc retains refined local query features
influenced by the global context. The self-attention operation follows the standard formulation:

Attention(Q,K, V ) = Softmax
(
QKT

√
d

)
V, (11)

where Q,K, V are linear projections of the input sequence [qcls∥Q̂] using learnable weight matrices.
This stage ensures that the model learns a compact, global representation of the query while preserving
local interactions among query tokens.

In the subsequent cross-attention stage, the input video features V̂ ∈ RT×d (where T is the number
of video frames) are also augmented with a learnable CLS token vcls ∈ R1×d to capture global
association between video and query. Then, the global query feature qglobal and encoded query
features Q̂enc are concatenated as a new query vector [qglobal∥Q̂enc] ∈ R(N+1)×d to attend over the
video features [vcls∥V̂] ∈ R(T+1)×d (where T is the number of video frames) through the cross-
attention mechanism. This process generates two outputs: Hglobal ∈ R1×d, a multimodal feature
capturing the global association between the query and video, and Hlocal ∈ RT×d, frame-wise
multimodal features modeling local query-video interactions. The operation is formalized as:

Hglobal,Hlocal = CrossAttn([vcls∥V̂], [qglobal∥Q̂enc], [qglobal∥Q̂enc]), (12)

where the cross-attention mechanism computes:

CrossAttn(Q,K, V ) = Softmax
(
QKT

√
dk

)
V, (13)

with Q derived from the concatenated video features [vcls∥V̂] and K,V as linear projections of
[qglobal∥Q̂enc]. The output Hglobal aggregates attention-weighted video features to encode holistic
relationships for generation proposals with the semantic consistency of the video-query pair, while
Hlocal preserves frame-level interactions for fine-bounded proposals with fine-grained temporal
perception.

A.2 Details of the Fusion of Global and Local Proposals

Given that single-granularity proposals are subject to corresponding limitations, that is, global
proposals Pglobal have blurred boundaries due to the inability to perceive frame-level video-query
correlation, while local proposals P local

K are difficult to avoid interference from irrelevant frame
features due to the lack of overall query semantic guidance. Therefore, we propose to use adaptive
fusion to alleviate the single-granularity limitation, thereby obtaining a set of proposals with query-
related boundaries and temporal logic. First, the Hungarian matching distance [48] is calculated for
measuring the correlation between the corresponding proposals of two sets, as follows:

Π∗ = arg min
Π∈AN

N∑
i=1

∥∥∥∥∥
[
cglobal
i

wglobal
i

]
−

[
clocal
Π(i)

wlocal
Π(i)

]∥∥∥∥∥
2

, (14)
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Figure 7: Comparison of the original Gaussian scores and the proposed learnable peak-aware
redistribution. β is a learnable parameter for controlling peak range to capture diverse durations of
various actions in compositional queries.

where AN is the permutation and combination space between Pglobal and P local
K , Π∗ is the optimal

matching function. Global-local proposal boundary fusion based on the best match Π∗.

cfused
i = σ(α) · cglobal

i + [1− σ(α)] · clocal
Π∗(i), (15)

wfused
i = σ(α) · wglobal

i + [1− σ(α)] · wlocal
Π∗(i), (16)

where σ(x) = 1
1+e−x and α is the learnable coefficient. P fused = {(cfused

i , wfused
i )}nump

i=1 is the final
proposal set injected by global semantic consistency and local temporal dynamics.

A.3 Original Gaussian Scores Vs. the Proposed Learnable Peak-aware Redistribution

This paper first obtains the corresponding frame-level weights according to the proposal boundary
according to the existing work. However, the rigid Gaussian distribution is difficult to fit the duration
characteristics of various actions in different compositional queries, resulting in low discriminability
of the proposal features aggregated by these weights. Therefore, we propose a learnable peak-aware
Gaussian distributor to better cope with the diverse continuous frames of novel action compositions.
Gaussian distribution is first used to generate corresponding weights according to the center and
duration of each proposal. For the i-th proposal in P fused = {(cfused

i , wfused
i )}nump

i=1 and normalized
frame number xt, calculate the Gaussian weights:

Gi(t) =
1

σi

√
2π

· exp

(
−
(
xt − cfused

i

)2
2σ2

i

)
,where xt =

t− 1

T − 1
(t = 1, 2, . . . , T ), (17)

where cfused
i is the center point in P fused

i , Gi ∈ RT is the frame-level weight of the i-th proposal and

σi =
max(wfused

i ,10−2)
9 following existing works [10, 7, 6]. As can be seen from Figure 7, the learnable

peak of the model is not a single frame but more potential key frames relevant to compositional
queries are included to improve the discriminability of proposal features.

A.4 Masked Query Reconstruction

To accurately evaluate the quality of proposals, we follow the principle of existing work [7, 35]:
the closer the proposal and query are semantically, the higher the proposal quality. Consistent
with prior works [10, 6], some words in the original query will be masked and restored through
the corresponding proposal features through autoregressive operations. The restored queries by
responding proposals will be compared with the original query, and the negative logarithmic loss
will be used to quantify the quality of the proposal. Specifically, the words in the original query
S = {si}Ni are replaced by a specific symbol [MASK] at a ratio of 1/3 to obtain the query Ŝ to be
reconstructed. The word prediction is made based on before the current word to be reconstructed and
the proposal features through autoregression [56]. Finally, the reconstruction loss is used to measure
the proposal quality.

Lre
i = −

N−1∑
j=1

logP
(
sj+1

∣∣∣ V̂ ⊙Wi, Ŝ1:j

)
. (18)
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Among them, ⊙ is the Hadamard dot product for extracting proposal-specific features based on video
features V̂ and Wi is the frame-level weights of i-th proposal from the learnble peak-aware Gaussian
distributor. Lre

i is the reconstruction loss of the i-th proposal, that is, the corresponding quality.

A.5 Implementation Details

We use GloVe [43] to extract textual features with a hidden dimension of 300. For video features,
I3D [44] is used for Charades-CG and C3D [45] for ActivityNet-CG, yielding feature dimensions
of 1024 and 500, respectively. The number of proposals is set to 8, and the slot attention module is
iterated 4 times. The initial value of the proposal fusion coefficient α is 0.2. The loss coefficient for
cross-modal semantic alignment is 0.5, and the margin quality of contrastive loss is 0.146, consistent
with θ2 [7]. We use a batch size of 32 and train for 30 epochs. All experiments are conducted on a
single NVIDIA GeForce RTX 4090 GPU. All configuration parameters have been open sourced for
easy reproduction, see the supplementary materials.

B More Experiments

B.1 Performance Comparison in the Context of Weakly-Supervised Video Moment Retrieval

Table 4: Comparative performance on TACoS [57] and Ego4D [58] datasets. Rn@m denotes the
Recall@n metric under an IoU threshold of m. Bold results indicate the best-performing methods,
while underlined results represent the second-best methods.

Method TACoS Ego4D
Params R1@0.1 R1@0.3 R1@0.5 mIoU Params R1@0.1 R1@0.3 R1@0.5 mIoU

CNM [10] 3.30M 27.77 7.05 2.32 8.73 2.84M 4.40 0.97 0.49 2.06
CPL [7] 3.95M 30.14 9.50 - 9.52 3.72M 6.12 1.23 - 2.35
CCR [32] 17.77M 31.04 7.95 - 9.28 33.53M 6.20 1.63 - 2.41
QMN [6] 21.18M 32.59 9.07 - 9.27 36.94M 6.03 1.72 - 2.38
PPS [2] 8.26M 24.44 10.07 3.87 8.08 8.03M 4.46 0.91 0.26 2.08

Ours 4.28M 30.64 10.25 4.00 9.79 4.05M 6.23 1.52 0.69 2.50

To further prove the effectiveness of the proposed method, the proposed method is also experimented
on two public long video positioning datasets, namely TACoS [57] and Ego4D [58], and the ex-
perimental settings are consistent with previous works [6, 59]. The TACoS dataset is derived from
the MPII cooking activity dataset [60] and focuses on action recognition in a laboratory kitchen
environment. The challenge is to accurately locate the fuzzy temporal boundaries of short-term
and subtle actions (such as “cutting vegetable”) in long videos, and solve the semantic alignment
problem of natural language queries and dynamic visual content. At the same time, it is limited
by the high-density annotation of laboratory scenes, and the generalization ability of the model is
facing a test; the Ego4D-NLQ dataset contains first-person videos of multiple scenes around the
world, requiring the model to handle occlusion, perspective changes, and long-term cross-modal
understanding in complex dynamic environments. At the same time, it needs to adapt to the open
domain generalization challenges brought by multi-national and multi-cultural differences. We use
C3D [45] and SlowFast [61] to extract video features of TACoS and Ego4D respectively.

On TACoS, our method (Ours) achieves R1@0.1 30.64% and mIoU 9.79% with 6.66M parameters,
which is better than high-parameter methods (such as QMN’s 23.55M parameters only improve
R1@0.1 to 32.59%), and significantly outperforms CNM (2.32%) and PPS (3.87%) at high IoU
threshold (R1@0.5). On the Ego4D dataset, our method surpasses the same-scale methods (such as
CNM’s 4.40% and 0.97%) in R1@0.1 (6.23%) and R1@0.3 (1.52%) with 6.42M parameters, while
mIoU reaches 2.50%, close to high-parameter methods (such as CCR’s 2.41%). Experiments show
that the proposed method achieves a balance between parameter efficiency and retrieval precision in
long video temporal localization tasks in complex scenes by optimizing the lightweight architecture
design, especially in fine-grained action and cross-modal alignment.
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Table 5: Comparison of Test-Trivial split rewriting queries based on the Charades-CG and ActivityNet-
CG datasets, using Qwen3 for query rewriting to obtain semantically consistent and diverse queries.
‘†’ means the fully supervised method. Bold results indicate the best-performing methods, while
underlined results represent the second-best methods.

Model Rewritten
Query

Charades-CG ActivityNet-CG
R1@0.3 R1@0.5 R1@0.7 mIoU R1@0.1 R1@0.3 R1@0.5 mIoU

QD-DETR†
s - 60.66 38.60 52.53 - 43.76 25.98 42.86

PC-Net(Ours) 70.87 54.84 26.68 47.12 52.78 29.62 14.35 36.45

QD-DETR†
s ✓ 65.67 53.62 32.53 46.27 53.18 35.76 20.23 38.04

CNM ✓ 43.86 29.46 14.02 29.49 45.86 25.23 13.43 33.01
CPL ✓ 44.64 31.88 14.50 29.85 45.77 24.00 11.60 31.26
CCR ✓ 59.14 45.06 21.38 39.28 44.65 26.95 10.58 33.92
QMN ✓ 55.94 40.50 18.67 37.08 45.79 24.42 13.14 33.73
PPS ✓ 59.82 43.02 20.93 39.31 48.36 26.13 13.24 31.71
PC-Net(Ours) ✓ 61.18 47.13 22.61 40.90 49.85 27.64 14.38 34.59

B.2 Model Robustness Comparison

To test the robustness of models to diverse query expressions, we have additionally used Qwen3 [62]
to perform query rewriting on the Test-trivial set of the most representative Charades-CG and
ActivityNet-CG datasets. We will further add these convincing experiments to the original paper to
demonstrate the PC-Net’s effectiveness. As shown in Table 5, our method maintains good performance
under this new expression style, fully demonstrating its generalization ability to different query styles.
Even under the more challenging ActivityNet-CG mIoU metric, PC-Net experiences less performance
degradation (-1.86%) than the fully supervised method QD-DETRs (-4.82%) when faced with queries
with widely varying expression styles. This is due to the adaptation of the constructed dual-granularity
proposal generator to potentially complex temporal logic queries, the good proposal boundaries
obtained, and the powerful proposal representation ability of the aligned proposal feature aggregator,
which makes the discriminative proposal easy to select. In subsequent work, we will further explore
more complex forms of semantic combination.

Here are the query rewriting tips we use to allow Qwen3 [62] to rewrite semantically consistent
queries with multiple expression styles.

messages = [
{

"role": "system",
"content": (
"You are a video content retrieval assistant

specialized in query rewriting. "
"Your task is to generate semantically identical

but linguistically diverse versions "
"of video -related queries while strictly

preserving their original meaning."
)

},
{

"role": "user",
"content": (
f"Rewrite the following video moment retrieval

query into a semantically equivalent "
f"but linguistically diverse version.

Requirements :\n"
f"1. Preserve the exact meaning of the original

query.\n"

25



f"2. Alter phrasing (e.g., syntax , vocabulary ,
active/passive voice).\n"

f"3. Ensure compatibility with video content
retrieval (e.g., action/object/scene
descriptions).\n\n"

f"Original Query: \"{ original_query }\"\n\n"
f"Rewritten Query:"
)

}
]

B.3 Model Efficiency Comparison

Table 6: Performance and efficiency comparison on Charades-CG and ActivityNet-CG Test-Trivial
sets [9]. FLOPs are measured in giga operations (G), parameters in millions (M), and inference time
in milliseconds per sample (ms). Best results are in bold.

Method Charades-CG ActivityNet-CG

FLOPs ↓ Params ↓ Time ↓ mIoU ↑ FLOPs ↓ Params ↓ Time ↓ mIoU ↑
CNM [10] 0.30 2.52 0.13 37.88 0.29 2.38 0.13 35.06
CPL [7] 1.91 3.01 0.70 45.82 2.98 4.64 0.87 32.73
CCR [32] 2.36 9.01 0.83 45.62 36.17 268.96 3.15 33.56
QMN [6] 10.04 12.51 1.70 45.85 43.85 272.38 3.96 33.82
PPS [2] 3.28 7.31 1.27 45.63 2.94 8.94 1.15 32.98

PC-Net (Ours) 1.94 3.34 1.45 47.12 3.18 4.97 2.78 36.45

As shown in Table 6, our proposed PC-Net demonstrates superior performance across both Charades-
CG and ActivityNet-CG benchmarks, achieving state-of-the-art mIoU scores of 47.12% and 36.45%,
respectively, while maintaining competitive efficiency. On Charades-CG, PC-Net outperforms the
previous best method (QMN [6]) by +1.27% mIoU with 80.7% fewer FLOPs (1.94G vs. 10.04G) and
73.3% fewer parameters (3.34M vs. 12.51M). For ActivityNet-CG, our method surpasses CNM [10]
by +1.39% mIoU despite a modest increase in computational cost (3.18G FLOPs vs. 0.29G FLOPs),
highlighting its scalability to larger-scale datasets. Notably, PC-Net achieves these gains without
excessive parameter growth, retaining model compactness (4.97M parameters) compared to resource-
heavy alternatives like CCR [32] (268.96M parameters). The balance between accuracy and efficiency
emphasizes the high-quality output of dual-granularity proposal generation fusion and the role of
semantic alignment and quality contrast loss in assisting the model to learn efficient parameters for
effective cross-modal association.

B.4 More Hyperparameter Ablation Details

To further investigate the impact of the number of iterations K and the initialization value of
the learnable proportional factor β on the model performance, we conducted a detailed ablation
experiment on Charades-CG (Test-Trivial), as shown in Figure 8. Ablation studies reveal that
the optimal number of iterations K=4 in the dual-granularity proposal generator balances global
coherence and local temporal logic, achieving 47.12% Recall@1 with mean IoU. For the proposal
feature aggregator, a peak width coefficient β=0.2 dynamically adjusts Gaussian distributions to
suppress irrelevant frames while preserving key semantic cues, yielding 26.7% R@1 with IoU@0.7.
These parameters outperform baselines and demonstrate the necessity of adaptive temporal modeling
and feature aggregation in weakly supervised settings, enabling robust generalization to diverse query
styles and explicit temporal logic. The proposed framework achieves state-of-the-art performance,
highlighting its potential for real-world applications in compositional moment retrieval.

To validate the efficacy of key modules in PC-Net, ablation studies are conducted based on the
dynamic coefficients in Figure 9. The dual-granularity proposal generator addresses coarse temporal
perception by adaptively fusing global and frame-level boundaries, where the fusion coefficient
α exhibits an exponential growth phase (epochs 1-12) followed by a stable phase (epochs 13-30),
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Figure 8: Ablation of the iteration number K for generating local proposals in the dual-granularity
proposal generator and the initialization of weight redistribution peak width coefficients β in the
proposal feature aggregator.

0 5 10 15 20 25 30
Training Epoch

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Le
ar

na
bl

e 
C

oe
ff

ic
ie

nt
 

SOTA Epoch

 modulates proposal fusion

Exponential Growth Phase
(epochs 1-12)

Stable Learning Phase
(epochs 13-30)

(a) Visualization of dynamic proposal fusion coefficients
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Figure 9: Visualization of proposal fusion coefficients α in the dual-granularity proposal generator
and peak width coefficients β in the proposal feature aggregator.

indicating progressive adaptation to query-specific temporal logic. For feature aggregation, the
learnable peak width coefficient β converges to a normalized width (0.248), demonstrating that the
dynamic Gaussian distribution effectively mitigates semantic gaps and captures diverse durations of
compositional actions by focusing on query-relevant regions. These results collectively validate that
the proposed modules alleviate limitations in boundary generation, feature aggregation, and semantic
association modeling under weak supervision.

C Limitations

The modular design of PC-Net, with its dynamic boundary modeling and semantic consistency
modeling, demonstrates strong cross-task adaptability, enabling direct application to tasks like
temporal action localization [63, 64, 65] or event detection [66, 67]. While PC-Net has achieved
promising results in weakly supervised compositional moment retrieval (WSCMR), the recall at high
IoU thresholds is less impressive in complex dynamic scenes with occlusion or viewpoint changes
(e.g., Ego4D). To address these limitations, future work will focus on dense temporal modeling via
adaptive frame sampling that prioritizes query-relevant keyframes in long videos, thereby reducing
information loss and optimizing proposal boundaries.
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