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Abstract

Despite fast progress, efficiently training large language models (LLMs) in extremely long
contexts remains challenging. Existing methods fall back to training LLMs with short contexts
(up to a few thousand tokens) and use inference time techniques when evaluating on very
long contexts (above 1M tokens). Training on very long contexts is limited by GPU memory
availability and the prohibitively long training times it requires on state-of-the-art hardware.
Meanwhile, many real-life applications require training/fine-tuning with long context on
specific tasks. Such applications include, for example, augmenting the context with various
sources of raw reference information for extraction, summarization, or fact reconciliation tasks.
We propose adjoint sharding, a novel technique that comprises sharding gradient calculation
during training to reduce memory requirements by orders of magnitude, making training on
very long contexts computationally tractable. At the core of our adjoint sharding algorithm
lies the adjoint method, which efficiently computes gradients that are provably equivalent
to the gradients computed using standard backpropagation. We also propose truncated
adjoint sharding to accelerate the algorithm while maintaining performance. We provide a
distributed and a parallel-computing version of adjoint sharding to speed up training and to
show that adjoint sharding is compatible with these standard memory-reduction techniques.
Empirical results show the proposed adjoint sharding algorithm reduces memory usage by
up to 3× on a large language model with 1.27B parameters on 1M context length training.
This reduction in memory usage allows increasing the maximum context length of training a
1.27B parameter model from 35K tokens to above 100K tokens on a training infrastructure
composed of five AWS P4 instances.

1 Introduction

Foundation models are a new paradigm in artificial intelligence research focused on building large, general-
purpose models that adapt to different tasks OpenAI et al. (2024); Meta et al. (2024); Cai et al. (2024);
Pióro et al. (2024). Extensive training on large datasets equips foundation models with broad capabilities.
We then fine-tune the foundation models on smaller datasets for specific applications. Foundation models
commonly employ the transformer architecture Vaswani et al. (2023). Despite the immense success, training
transformer-based models requires memory growing quadratically with the context length L, limiting their
applications on long context tasks Li et al. (2024). Researchers developed various techniques to conquer this
problem, ranging from inference time context window expansion (Ding et al., 2024b;a), IO-aware algorithms
(Dao et al., 2022; Dao, 2023; Shah et al., 2024), and various linearly scaling language model architectures
(Gu & Dao, 2024b; Dao & Gu, 2024b; Peng et al., 2023a; Beltagy et al., 2020). On another note, distributed
learning enables training large models with many GPUs, and efficient training methods like activation
checkpointing, model/gradient sharding, and mixed-precision computing have further reduced the memory
requirement of training a large model Verbraeken et al. (2020); Zhao et al. (2023); Rajbhandari et al. (2020b);
Micikevicius et al. (2018); Herrmann et al. (2019). However, current methodologies are entirely based on
backpropagation and compute the gradient as a whole, inevitably requiring a memory growing rapidly with
model size and context length (Damadi et al., 2023). Current sharding methods ignore the activations and
only consider the model weights and optimizer states, constituting only a minor amount of the total memory
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Figure 1: Compared to backpropagation (red lines), adjoint sharding (blue lines) significantly reduces memory
requirements at training. Showing memory cost to train 32M, 63M, 127M, 225M, and 1.27B parameter State
Space Model (SSM) with batch size 2 and Adam optimizer on one GPU.

cost (Sohoni et al., 2022). Activation checkpointing is among the limited techniques that consider activation
values. Activation checkpointing offloads necessary intermediate states to the CPU and recomputes them on
the fly, trading compute time for memory reduction (Sohoni et al., 2022; Rajbhandari et al., 2020a). The
substantial time required for offloading to the CPU hinders the effectiveness of activation checkpointing. We
propose adjoint sharding to disassemble the gradient computation of residual and/or recurrent-based models
to achieve orders of magnitude lower memory usage during training.

Adjoint method The adjoint sharding method roots in the adjoint method for recurrent models (Cao
et al., 2002; Johnson, 2007). Given an optimization problem of a parametric recurrent forward process,
the adjoint method is concerned with the computation of the gradients regarding the process’s parameters.
Backpropagation saves intermediate states to calculate gradients, whereas the adjoint method relies on a
backward adjoint process to compute gradients. The adjoint method is a constant-memory optimization
technique for dynamical systems Chen et al. (2019); Xu et al. (2022). In this paper, we are only concerned
with the adjoint method for recurrent relations.

Vector-Jacobian product Adjoint sharding disassembles the gradient computation of a large language
model (LLM) into independent vector-Jacobian product (VJP) computations. By multiplying the Jacobian
on the left with a vector, it becomes unnecessary to compute the expensive Jacobian. Modern VJPs are as
fast as a forward function call of the model, and can be thousands of times faster than Jacobian computations
Balestriero & Baraniuk (2021). We speed up adjoint sharding by employing the VJPs.

Truncated adjoint sharding Sharding the gradient computation allows us to prioritize the essential
gradients and disregard the rest, resulting in faster computation. We term this novel method truncated
adjoint sharding, and empirically showcase its performance.

Distributed and parallel computation In addition, we have developed a distributed multi-GPU variant
of adjoint sharding to improve the scalability of LLM training further. We also analyze the memory cost of
parallel computation of adjoint sharding, opening up directions for massive speedups.

State-space models and residual networks Residual networks (ResNets) are a commonly applied neural
network structure. We illustrate adjoint sharding assuming a ResNet structure (He et al., 2015). State-space
models (Mamba) have achieved performances on par with attention-based models while possessing a linear
scaling regarding the context length L, a polynomial speedup compared to the L2 scaling of transformers
Vaswani et al. (2023); Gu & Dao (2024a).
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Figure 2: Adjoint sharding disassembles large models’ gradient computations along the sequence dimension t
and the layer dimension k. When evaluating the gradient at time t, we perform t vector-Jacobian products
along the adjoint dimension i for every layer index k.

2 Related works

Linear LLMs (De et al., 2024; Beck et al., 2024; Peng et al., 2023a) proposed LLM architectures with a
linear inference time complexity. We form each linear LLM by stacking K residual layers together, where
each layer has a recurrent relation. However, their temporal relationships are nonlinear, which limits the
application of adjoint sharding to disassemble the gradients into independent vector-Jacobian products.

Backpropagation through time Applying the adjoint method for recurrent models leads to backprop-
agation through time (BPTT) (Werbos, 1990). BPTT is a training algorithm developed for recurrent
neural networks (RNNs). RNN models suffer from the exploding and vanishing gradient because of the∏t

j=i+1 ∂f(xj , hj−1, Wh)/∂hj−1 term (Pascanu et al., 2013). SSMs provide remedies with careful parameter-
ization of the recurrent dynamics inspired by classical SSM theory (Fu et al., 2023; Gu et al., 2021; 2022;
Gupta et al., 2023; Orvieto et al., 2023; Kaul, 2020). Linear temporal relations allow efficient evaluations of
the model, while preserving universal approximation capabilities (Wang & Xue, 2023). By a similar token,
truncated adjoint sharding can be seen as a more general version of the truncated backpropagation through
time (Jaeger, 2005; Tallec & Ollivier, 2017).

Neural ordinary differential equations The adjoint method also applies to the optimization of continuous
systems, especially the ordinary differential equations (ODEs) (Chen et al., 2019; Dupont et al., 2019).
Optimizing neural ODEs with autograd requires backpropagating through numerical solvers along every step,
using an unrealistic amount of memory. The adjoint method does not backpropagate through the operations
of the solver and uses a constant amount of memory. However, applying the adjoint method for continuous
systems requires solving a costly ODE initial value problem with dimensionality equal to the number of
parameters.

Low memory training methods Researchers proposed various low memory training techniques to train
big models in very long contexts. ZERO provides data- and model-parallel training while retaining low
communication volume, while eliminating memory redundancies (Rajbhandari et al., 2020b). PyTorch FSDP
streamlines model, gradient, and data parallelization (Zhao et al., 2023). Activation checkpointing discards
intermediate values during the forward step, and recomputes on the fly during the training phase (Sohoni
et al., 2022). CPU offloading scales large model training by offloading data and computations to the CPU,
trading computing time for memory reduction (Ren et al., 2021). Ring attention leverages the blockwise
computation of self-attention and feedforward to distribute long sequences across multiple devices while
fully overlapping the communication of key-value blocks with blockwise attention computations, enabling
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very-long context training of attention-based methods (Liu et al., 2023; 2024). The proposed adjoint sharding
distributes state-space model computations across multiple devices and multiple multi-GPU instances (MIG)
to enable very-long context training of state-space models.

Context length extension methods The Existing context length extension method separates into two
classes. The first type is fine-tuning free methods, including Positional Interpolation (PI) (Chen et al., 2023),
the NTKAware Scale ROPE (NTK) (users, 2023), and StreamingLLM (Xiao et al., 2024). The second type is
fine-tuning methods, including LongChat (Li* et al., 2023), LongAlpaca (Chen et al., 2024), YaRN (Peng
et al., 2023b), and LongLlama (Chen et al., 2024). Additional methods like activation beacon tune a network
separate from the LLM (Zhang et al., 2024). As shown in Figure 3, fine-tuning methods achieve better
performances than fine-tuning-free methods at lengths where we perform fine-tuning. However, fine-tuning
methods suffer from a high computational cost and require a potentially intractable amount of GPU memory
during fine-tuning.
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Figure 3: Lines in red and in blue are fine-tuning free and fine-tuning methods. Fine-tuning methods achieve
better performances than the fine-tuning-free method but often suffer from out-of-memory issues (Chen et al.,
2023; users, 2023; Xiao et al., 2024; Li* et al., 2023; Chen et al., 2024; Peng et al., 2023b; Zhang et al., 2024;
Tworkowski et al., 2023). Lower values are better across all three tasks.

3 Background

We first give a concise introduction to the state-space models, the residual networks, and the adjoint method.

3.1 State-space models

While our method generally applies to all recurrent models, we illustrate the idea using state-space models
(SSMs), which have shown performances at least on par with transformers at small to medium scale (Dao &
Gu, 2024a). Given an input token sequence {xt}T

t=1, the SSMs first calculate the corresponding matrices At,
Bt, and Ct to evolve the dynamics as follows:

At = A(xt); Bt = B(xt); Ct = C(xt).

The SSMs evolve a latent dynamics ht, whose initial condition h0 is often assumed to be zero. With h0 and
At, Bt defined, the dynamics evolves as:

ht = Atht−1 + Btxt.
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The matrices Ct then maps the latent dynamics ht back to token space as yt = Ctht, with yt being the
predicted token at t. For a sequence of T tokens, we denote:

A = (A1, A2, . . . , AT ), B = (B1, B2, . . . , BT ),
C = (C1, C2, . . . , CT ), H = (h1, h2, . . . , hT ),
X = (x1, x2, . . . , xT ), Y = (y1, y2, . . . , yT ).

In the most general case, we have H ∈ RT ×N , A ∈ RT ×N×N , B ∈ RT ×N×P , C ∈ RT ×P ×N , X ∈ RT ×P , Y ∈
RT ×P , where N is the hidden state dimension, and P is the input/output dimension. We evolve the dynamics
for t = 1, . . . , T , and assume that h0 is a fixed and predefined constant. The input to an SSM is X and h0,
and the output is Y. We define SSM(·) as performing the following five steps:

1. {At}T
t=1 = {A(xt)}T

t=1,

2. {Bt}T
t=1 = {B(xt)}T

t=1,

3. {Ct}T
t=1 = {C(xt)}T

t=1,

4. {ht}T
t=1 = {Atht−1 + Btxt}T

t=1;

5. {yt}T
t=1 = {Ctht}T

t=1.

The input to the five steps is X, and the output is Y. We can then write SSM(X) = Y. SSMs reduce the
quadratic computational complexity with sequence length on transformers to linear, and the inference-time
memory requirements from the key-value cache. SSM-based models at small to medium scales have shown
performances on par with or better than transformer-based models. For instance, (Pióro et al., 2024; Anthony
et al., 2024) shows that the SSM-based mixture-of-experts (MOE) model outperforms the baseline transformer-
based MOE model on model sizes as big as 2400M parameters. (Waleffe et al., 2024) performed an extensive
empirical study and found that while SSMs outperform transformers on various tasks, they underperform
on tasks that require stellar copying, in-context learning, or long-context reasoning abilities. (Waleffe et al.,
2024) also experimented with an SSM-transformer hybrid model, which outperforms transformers and is up
to eight times faster when generating tokens at inference time. (Lieber et al., 2024) trained a 52B parameter
model and further affirmed the hybrid model’s performance.

3.2 Residual Networks

In practice, we have K SSMs stacked together, and we have a large language head (LLH) Ω ∈ RT×P , where
T is the number of all possible tokens. To predict a token, we have ot = Ωŷt

K . Define (y1
K , . . . , yT

K) = YK , a
ResNet computes YK as follows:

(y1
K , . . . , yT

K) = YK−1 + SSMK(ŶK−1)
= Y0 + SSM1(Ŷ0) + · · · + SSMK(ŶK−1)

= Y0 +
K∑

k=1
SSMk(Ŷk−1) = Y0 +

K∑
k=1

Ỹk,

where
Ŷk = (ŷ1

k, . . . , ŷT
k ) = (Norm(y1

k), . . . , Norm(yT
k )),

and SSMk(Ŷk−1) = Ỹk. Therefore, for a latent state at time t we have yt
K = yt

0 +
∑K

k=1 ỹt
k.

ResNet has been the foundation of numerous modern networks, including the transformers, diffusion models,
segmentation models, SSMs, and more (He et al., 2016; Guo et al., 2022; Kirillov et al., 2023; Peebles &
Xie, 2023). ResNet’s residual structure allows for a separation between gradients of each layer by applying
differentiation on summations.
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3.3 Adjoint method

The adjoint method is concerned with optimizing y(h(θ), θ) with respect to θ, where h(θ) ∈ RP is the
solution to f(h(θ), θ) = 0 (Cao et al., 2002). To employ gradient-based algorithms like the stochastic gradient
descent (SGD) or the Adam, we compute the derivative of y regarding θ ∈ R|θ|:

dy
dθ

= ∂y
∂θ

+ ∂y
∂h

∂h
∂θ

, (1)

with d being the total derivative, and ∂ being the partial derivative. The adjoint method converts computing
dy/dθ to solving an adjoint equation. In our case, we need the adjoint method for recurrence relations, where
y is given by y = yt ≡ y(ht(θ), θ), and h is given by{

h0 = b(θ),
ht = f(t, ht−1, θ).

(2)

We have
df(t, ht−1, θ)

dθ
= ∂f(t, ht−1, θ)

∂θ
+ ∂f(t, ht−1, θ)

∂ht−1
∂ht−1

∂θ
. (3)

Proposition 3.1. (Cao et al., 2002) When the states h are defined as Equation 2, the gradient of y with
respect to θ is given as: 

dyt

dθ = ∂yt

∂θ + λ0b(θ) +
∑t

i=1 λi ∂f(i,hi−1,θ)
∂θ ,

λt = ∂yt/∂ht,

λi−1 = λi
(
∂f(i, hi−1, θ)/∂hi−1) .

(4)

Equivalently, we have

λi = (∂yt/∂ht)

i+1∏
j=t

(
∂f(j, hj−1, θ)/∂hj−1)

(Johnson, 2007).

After computing adjoint states {λi}t
i=0, the computation of the elements of λi(∂f(i, hi−1, θ)/∂θ) are indepen-

dent, allowing parallelism. This computation is a vector-Jacobian product (vjp), with λi as the vector and
∂f(i, hi−1, θ)/∂θ as the Jacobian. vjps can be evaluated with the reverse-mode automatic differentiation and
initializing the reverse phase with λi Baydin et al. (2018a). As each vjp only requires saving its corresponding
computation graph, and can be disposed of after the computation, we can compute vjps in parallel on modern
GPUs. We will discuss this further in subsection 4.5. Adjoint sharding aims to use the adjoint method to
replace backpropagation, which solves:

dyt

dθ
= ∂yt

∂θ
+ ∂yt

∂ht

{
∂f(t, ht−1, θ)

∂θ
+ ∂f(t, ht−1, θ)

∂ht−1

[
∂f(t − 1, ht−2, θ)

∂θ
+ ∂f(t − 1, ht−2, θ)

∂ht−2(
∂f(t − 2, ht−3, θ)

∂θ
+ . . .

)]}
.

The backpropagation requires a sequential accumulation of the gradients, computing from the outermost
layer inwards, therefore needs to save the computation graph for computations at all times t, and creates
memory bottlenecks.

4 Adjoint sharding

We now introduce the adjoint sharding technique. We first illustrate the method assuming only one layer of
SSM, and generalize to K layers.
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4.1 Adjoint sharding for one SSM

Large-scale neural networks usually train with the autograd framework (Baydin et al., 2018b; Paszke et al.,
2019). However, this framework suffers from a high memory cost when used with networks of recurrent nature
(Baydin et al., 2018b). Although activation checkpointing proves a strong tool, which discards part of the
intermediate values and recomputes them later on the fly, the memory cost is still high (Herrmann et al.,
2019). We employ the adjoint method for recurrence relations to reduce the memory cost further, and more
importantly, to break the temporal dependencies of activations and parallelize their computations.

Define θ = ⟨θA, θB, θC⟩ as A’s, B’s, and C’s parameters, for loss lt = l(yt), in the context of a single-layer
SSM, we prove

Proposition 4.1. The gradient dlt/dθ is given as

dlt

dθ
=
[

t∑
i=1

vjpAi( dlt

dyt
λt,i ⊗ hi−1)

]
⊕

[
t∑

i=1
vjpBi( dlt

dyt
λt,i ⊗ x̂i)

]
⊕ vjpCt( dlt

dyt
⊗ ht), (5)

where the adjoint state λt,τ = Ct(
∏t−τ

i=1 At+1−i), vjpNeti(v) = v · Netθ(Inputi), with θ being Net’s parameters
and i being the index of Input, ⊗ is the vector outer product, and ⊕ is vector concatenation.

The proof of proposition 4.1 is in section A.1. The gradient for parameters of A, and B are each separated
into {vjpAi( dlt

dyt λt,i ⊗ hi−1)}t
i=1, {vjpBi( dlt

dyt λt,i ⊗ x̂i}t
i=1, and the gradient for parameters of C only depend

on inputs at time t. After computing the adjoint states, these vjp computations are separated on both the
network and the temporal level.

Figure 4: The adjoint states are computed sequentially backwards.

4.2 Adjoint sharding for multiple SSMs

We now generalize the results from subsection 4.1 to the general case of K SSMs concatenated. As introduced
in subsection 3.2, the outputs of each SSM layer are added to the results of the last layer and normalized
before feeding into the next layer. Define the loss over all token predictions L =

∑T
t=1 lt, using the residual

structure we have

dL

dθ
=

T∑
t=1

dlt

dyt
K

dyt
K

dθ

=
T∑

t=1

dlt

dyt
K

d(yt
0 +

∑K
k=1 ỹt

k)
dθ

=
T∑

t=1

dlt

dyt
K

K∑
k=1

dỹt
k

dθ
.

Combining with proposition 4.1, we have
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Proposition 4.2. The gradient of the total loss L with respect to the SSM parameters θ is given as

dL

dθ
=
(

T∑
t=1

K∑
k=1

t∑
i=1

vjpAi
k
( dlt

dyt
K

λt,i
k ⊗ hi−1

k )
)

⊕

(
T∑

t=1

K∑
k=1

t∑
i=1

vjpBi
k
( dlt

dyt
K

λt,i
k ⊗ ŷi

k−1)
)

⊕

(
T∑

t=1

K∑
k=1

vjpCt
k
( dlt

dyt
K

⊗ ht
k)
)

,

(6)

where the input to vjpCt
k
( dlt

dyt
K

⊗ ht
k), vjpAi

k
( dlt

dyt
K

λt,i
k ⊗ hi−1

k ), and vjpBi
k
( dlt

dyt
K

λt,i
k ⊗ ŷi

k−1) are computed with
the k-th SSM and the ŷi

k−1 = Norm(yi
k−2 + SSMk−1(Ŷk−2)i) (the normalized output sequence of the (k-1)-th

SSM). The adjoint state at layer k is defined as λt,τ
k = Ct

k(
∏t−τ

i=1 At+1−i
k ).

Figure 5: Computation schematic of dlt/dθAk
, dlt/dθBk

, and dlt/dθCk
.

We provide the proof of proposition 4.2 in section A.2. Define Λt
k = {λt,τ

k }t
τ=1, proposition 4.2 shows that

the gradients of each network’s parameters computed with each token only correlate through the adjoint
states {Λt

k}K,T
k,t=1,1. We can efficiently compute the adjoint states after a forward pass. We can also compute

the adjoint states on the fly in the gradient computation phase, as it only depends on Ct
k and At

k and
has no dependencies on the network Jacobians regarding the network parameters. The adjoint sharding
method breaks down the backpropagation computation from layer-wise and token-wise into foundational vjp
computations that do not have any dependencies on each other.
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We show a schematic of the computations to dlt/dθAk
, dlt/dθBk

, and dlt/dθCk
in Figure 5 and a schematic

for computing the adjoint states in Figure 4.

4.3 Truncated adjoint sharding

One limitation of adjoint sharding is that the number of vjps performed increases polynomially with the
number of tokens T . In particular, adjoint sharding computes the vjp for Ak and Bk (1 + T )T/2 times,
and for Ck T times. When training large networks with many layers and a long context length T , applying
adjoint sharding becomes computationally expensive. We propose truncated adjoint sharding, with which
we argue that we can get similar results by computing a linearly growing number of vjps, and empirically
showcase its performance.

Attention mechanisms have suffered from the O(T 2) complexities arising from the self-attention structure
(Vaswani et al., 2023). To enable training with longer context lengths, global-local attention has been
proposed, where we divide the contexts into sections, and compute the attention between sections rather
than tokens (Yang et al., 2021). (Tallec & Ollivier, 2017) proposed truncated backpropagation through time
(T-BPTT) to avoid gradient explosion/vanishing when training with very long contexts by only counting a
fixed number of state transitions. Here, inspired by global-local attention and T-BPTT, instead of computing
the full gradient given in Equation 11, we propose to train the SSMs to depend on up to T̄ states:

dL

dθ
=
(

T∑
t=1

K∑
k=1

vjpCt
k
( dlt

dyt
K

⊗ ht
k)
)

⊕

[
T̄∑

t=1

K∑
k=1

t∑
i=1

vjpAi
k
( dlt

dyt
K

λt,i
k ⊗ hi−1

k )

+
T∑

t=T̄ +1

K∑
k=1

t∑
i=t+1−T̄

vjpAi
k
( dlt

dyt
K

λt,i
k ⊗ hi−1

k )
]

⊕

[
T̄∑

t=1

K∑
k=1

t∑
i=1

vjpBi
k
( dlt

dyt
K

λt,i
k ⊗ ŷi

k−1)

+
T∑

t=T̄ +1

K∑
k=1

t∑
i=t+1−T̄

vjpBi
k
( dlt

dyt
K

λt,i
k ⊗ ŷi

k−1

]
(7)

As shown in Equation 7 above, we perform the same computations for t = 1, . . . , T̄ as before, and only perform
the vjps back to the last T̄ states for t > T̄ . With truncated adjoint sharding, we perform T̄ T + T̄ (T̄ − 1)/2
vjps, which grows linearly with T . We show the number of vjps performed with and without truncated adjoint
sharding in Figure 6. When T̄ = 2000, truncated adjoint sharding reduces 64% of the vjps when training
with a context length of 10K. The essence of the truncated adjoint sharding method is that we only explicitly
count gradients related to the last T̄ states. As each state depends on its prior state, states still implicitly
depend on all their prior states. We leave the investigation of T̄ ’s impact on performances for future work.

We provide the algorithm for evaluating adjoint states for token index t and ResNet index k with truncated
adjoint sharding T̄ in algorithm 1, and the algorithm for evaluating the vjps for token index t and ResNet
index k with truncated adjoint sharding T̄ in algorithm 2.

Algorithm 1 Evaluating adjoint states for token index t and ResNet index k with truncated adjoint sharding
T̄

1: Inputs: t, k, T̄ , Ct
k, {Ai

k}t
i=t+2−T̄

2: Initialize adjoint state λt,t
k = Ct

k

3: Compute: intermediate values:
4: ζT̄ = (At

kAt−1
k . . . At+2−T̄

k ,

At
kAt−1

k . . . At+3−T̄
k , . . . , At

kAt−1
k , At

k, I).
5: Compute: adjoint states
6: Λ̄T̄

k = (λt,t+1−T̄
k , λt,t+2−T̄

k , . . . , λt,t
k ) = Ct

kζT̄ .

7: Return: Λ̄T̄
k .
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Algorithm 2 Evaluating the vjp’s for token index t and ResNet index k with truncated adjoint sharding T̄

1: Inputs: t, k, T̄ , dl(ot)
dyt

K
, {hi

k}t
i=t−T̄

, Ct
k, {yi

k−1}t
i=t+1−T̄

, {Ai
k}t

i=t+2−T̄

2: Call alg. 1 to compute {λt,i
k }t

i=t+1−T̄

3: Compute: dl(ot)
dyt

K
⊗ ht

k, { dl(ot)
dyt

K
λt,i

k ⊗ hi−1
k }t

i=t+1−T̄
, { dl(ot)

dyt
K

λt,i
k ⊗ ŷi

k−1}t
i=t+1−T̄

4: Compute:
(

vjpCt
k

( dl(ot)
dyt

K

⊗ ht
k),
∑t

i=t+1−T̄
vjpAi

k
( dl(ot)

dyt
K

λt,i
k

⊗ hi−1
k

),
∑t

i=t+1−T̄
vjpBi

k
( dl(ot)

dyt
K

λt,i
k

⊗ ŷi
k−1)

)
5: Return:

(
vjpCt

k
( dl(ot)

dyt
K

⊗ ht
k),
∑t

i=t+1−T̄
vjpAi

k
( dl(ot)

dyt
K

λt,i
k

⊗ hi−1
k

),
∑t

i=t+1−T̄
vjpBi

k
( dl(ot)

dyt
K

λt,i
k

⊗ ŷi
k−1)

)

4.4 Distributed training

We now discuss how to distribute the storage and compute of the adjoint sharding method, assuming that
we have Υ GPUs. Given the networks {Ak, Bk, Ck}K

k=1, initial tokens {ŷt
0}T

t=1 = {Norm(xt)}T
t=1, and initial

conditions {h0
k}K

k=1 (usually set to 0), we can call algorithm 3 to get all necessary vectors for computing the
gradient with adjoint sharding. As shown in algorithm 2, to compute the vjps’ for token index t and ResNet

Algorithm 3 Forward step in evaluation mode on a distributed system
1: Inputs: {ŷt

0}T
t=1, {h0

k}K
k=1, {Ak, Bk, Ck}K

k=1, Ω
2: On devices υ = 1, . . . , Υ, in parallel do
3: for SSM model index k = (υ − 1)(K//Υ) + 1, . . . , υ(K//Υ) do
4: for Time step index t = 1, . . . , T do
5: Compute: At

k = Ak(ŷt
k−1); Bt

k = Bk(ŷt
k−1); Ct

k = Ck(ŷt
k−1); ht

k = At
kht−1

k + Bt
kŷt

k−1; yt
k = Ct

kht
k.

6: Compute: yt
k = yt

k−1 + ỹt
k.

7: Compute: ŷt
k = Norm(yt

k).
8: end for
9: end for

10: Store: {ht
k}T,υ(K//Υ)

(t,k)=(1,(υ−1)(K//Υ)+1), {Ct
k}T,υ(K//Υ)

(t,k)=(1,(υ−1)(K//Υ)+1), {ŷt
k}T,υ(K//Υ)−1

(t,k)=(1,(υ−1)(K//Υ)),
{At

k}T,υ(K//Υ)
(t,k)=(2,(υ−1)(K//Υ)+1) on device υ.

11: Pass: {yt
υ(K//Υ)−1}T

t=1, {ŷt
υ(K//Υ)−1}T

t=1 to device υ + 1
12: for Time step index t = 1, . . . , T do
13: Compute: {ot = Ωyt

K}T
t=1, {l(ot)}, { dl(ot)

dyt
K

}T
t=1.

14: end for
15: Store: { dl(ot)

dyt
K

}T
t=1 on all Υ devices.

index k, we only need t, k, dl(ot)/dyt
K , {hi

k}t
i=0, Ct

k, {ŷi
k−1}t

i=1, {Ai
k}t

i=2. To compute all the gradients for
layer k, we only need A, h, and C from the k-th layer, and ŷ from the k − 1-th layer. Therefore, we can
divide the K layers into Υ pieces, as shown in the appendix B. As the computations are fully independent
and we compute the gradients using only data on local devices, we additionally distribute the model and
the gradients, as shown in Table 6, where θk represents the parameters of Ak, Bk, and Ck, and Gradientk

represents the optimizer states for θk. The complete training streamline is provided in algorithm 4. We
distribute the activations, computations, gradients, and optimization states across Υ devices. While the
forward evaluation pass results across different devices, as shown in algorithm 3, the computation of gradients
is parallel across the Υ devices. This parallelization will speed up the training as the gradient computation
takes most of the computation budget. We will also get a memory per GPU close to Mem/Υ, with Mem
being the memory cost if we only have a single GPU. If we have Υ > K devices, we can further speed up the
forward evaluation by first evaluating A, B, C in parallel, and then adding them together on the distributed
devices.
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Algorithm 4 Evaluating dL
dθ with truncated adjoint sharding T̄ on Υ devices

1: Inputs: {yt
0}T

t=1, {h0
k}K

k=1, {Ak, Bk, Ck}K
k=1, Ω, T̄ , Υ

2: Call alg. 3 for {At
k, Ct

k, ht
k, ŷt

k}(T,K)
(t,k)=(1,1), { dl(ot)

dyt
K

}T
t=1 and saved on each GPU device.

3: On each device υ, in parallel do
4: Initialize gradient dL

dθ

5: for Time step index t = 1, . . . , T̄ , layer index k = (υ − 1)(K//Υ) + 1, . . . , υ(K//Υ) do
6: Call alg. 2 for Ξ =

[
vjpCt

k
( dl(ot)

dyt
K

⊗ ht
k),
∑t

i=1
vjpAi

k
( dl(ot)

dyt
K

λt,i
k

⊗ hi−1
k

),
∑t

i=1
vjpBi

k
( dl(ot)

dyt
K

λt,i
k

⊗ ŷi
k−1)

]
7: Compute: dL

dθ + = Ξ
8: end for
9: for Time step index t = T̄ + 1, . . . , T , layer index k = (υ − 1)(K//Υ) + 1, . . . , υ(K//Υ) do

10: Call alg. 2 for Ξ =

(
vjpCt

k
( dl(ot)

dyt
K

⊗ ht
k),
∑t

i=t+1−T̄
vjpAi

k
( dl(ot)

dyt
K

λt,i
k

⊗ hi−1
k

),
∑t

i=t+1−T̄
vjpBi

k
( dl(ot)

dyt
K

λt,i
k

⊗ ŷi
k−1)

)
11: Compute: dL

dθ + = Ξ
12: end for
13: Return: dL

dθ

4.5 Parallel computing

Adjoint sharding converts the sequential process of backpropagation gradient computation into individ-
ual independent vjps, allowing for parallel computation. We analyze the time and memory cost of
vjpAi

k
((dlt/dyt

K)λt,i
k ⊗ hi−1

k ), vjpBi
k
((dlt/dyt

K)λt,i
k ⊗ ŷi

k−1), and vjpCt
k
((dlt/dyt

K) ⊗ ht
k). vjp has a simi-

lar time complexity as a forward pass, and a memory complexity of bs(|θ| + O) + |θ|, where bs is the batch
size, O is the number of elements in the network output, and |θ| is the number of parameters (Novak et al.,
2022). We provide the memory and FLOPs required to compute the vjps in Table 1 (NVIDIA, 2024).

We analyze training with a dataset containing contexts of lengths T , with Υ NVIDIA H100 GPUs, and
performing computations in FP16. We use a selective diagonal SSM with K layers, and each Ak, Bk,
and Ck network is a single-layer multi-layer perceptron (MLP). For each data point {xt}T

t=1, we store
{At

k, Ct
k, ht

k, yt
k}(T,K)

(t,k)=(1,1) and {dl(ot)/dyt
K}T

t=1, which is TK(2N + P ) + TP FP16 numbers. We also save
θA, θB, and θC, each taking PN +N FP16 numbers. We need to store T (2NK +PK +P )+3N(P +1) FP16
numbers before computing the vjp. As computing all adjoint state sequences takes up to N(2P +1)(1+T )T/2

vjpA vjpB vjpC

Unstructured SSM Memory bs(N2 + |θA|∗) + |θA| bs(NP + |θB|∗) + |θB| bs(NP + |θC|∗) + |θC|
FLOPs bs(N2(2P + 1)) bs(NP (2P + 1)) bs(NP × (2P + 1))

Diagonal SSM Memory bs(N + |θA|∗) + |θA| bs(N + |θB|∗) + |θB| bs(N + |θC|∗) + |θC|
FLOPs bs(N(2P + 1)) bs(N(2P + 1)) bs(N(2P + 1))

Scalar SSM Memory bs(1 + |θA|∗) + |θA| bs(N + |θB|∗) + |θB| bs(N + |θC|∗) + |θC|
FLOPs bs(2P + 1) bs((N(2P + 1)) bs(N(2P + 1))

Table 1: Memory and FLOPs required to compute the vjps. |θA|∗, |θB|∗, and |θC|∗ represents the number of
elements of the biggest parameter vector of A, B, and C.

FLOPs, it takes NP (1 + T )/T FLOPs on average for each adjoint state. For T large enough, (1 + T )/T ≈ 1,
we approximate the average FLOPs for each adjoint state with NP . Each vjp then takes bs(7NP + 3N)
FLOPs of computation.

When computing with a selective diagonal SSM with P = 128, N = 225, and bs = 8, while storing and
performing computations in FP16, computing vjpA, vjpB, and vjpC each takes around 0.6MB memory and
1798144 FLOPs. We characterize the capacity of a modern GPU with FLOPs/sec, which measures the
computation speed; GPU memory bandwidth, which is the rate at which a GPU can move data between its
memory and processing cores; GPU Memory, which is the amount of data a GPU can hold; and number
of Multi-Instance GPU (MIG) instances, which is the number of fully isolated GPU instances with its own
high-bandwidth memory, cache, and compute cores a GPU can host. An NVIDIA H100 Tensor Core GPU
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Figure 6: Training time (/day) per epoch comparison for adjoint sharding, truncated adjoint sharding, and
backpropagation with different context lengths. Assumed a 100-layer SSM-ResNet model, a 280x acceleration
for adjoint sharding from parallel computing (achievable with five Amazon P4 instances), and T̄ from 15 to
2500.

has a GPU memory bandwidth 3.35TB/s and performs 1, 979 tera FP16 FLOPS per second. Therefore, the
memory bandwidth allows computing (3.35TB/s)/0.6MB = 5.58 × 10E6 batches of vjps per second, and the
computing speed allows computing (1979tera/s)/1798144 = 3.76 × 1.1E9 batches of vjps per second. At the
same time, since the H100 GPU has 80GB memory, it can hold up to 80GB/(0.6MB/vjp) = 133 batches of
vjps at the same time if we do not consider any memory overhead. As each H100 GPU can hold up to 7
instances in parallel, we perform the adjoint sharding algorithm with 7Υ instances, offering as much as a 56x
speedup on one AWS P4 instance (8 H100 GPUs). We can not achieve such speedup for backpropagation
because of its sequential nature.

Limitation The adjoint sharding method provides an alternative method of computing gradients to
backpropagation. While we analytically proved that the gradients computed from adjoint sharding are equal
to those from backpropagation, adjoint sharding suffers from a polynomial time complexity regarding the
training context length when computing equivalent gradients. We provided the truncated adjoint sharding as
a linear time complexity alternative, and leave the analysis of its convergence and further improvements on it
for future work. We also provided a distributed and parallel computing algorithm for performing adjoint
sharding. However, the overhead of naïve implementations of such an algorithm with multi-threading or
multiprocessing overweights the speedups when the training context length is small. We leave the efficient
implementation of the parallel algorithm on a CUDA kernel for future work.

Conclusion We introduced adjoint sharding, a distributed and parallel computing algorithm, to facilitate
the training of LLMs on very long contexts. Unlike the sequential backpropagation, the adjoint sharding
computes gradients of each LLM layer against each token independently through vector-Jacobian product,
allowing for parallel computation. We propose truncated adjoint sharding to focus on essential gradients to
avoid the limitation of vjps increasing polynomially regarding context length. We analyzed the memory and
FLOP cost of each computation block in adjoint sharding and proposed a method to accelerate it through
parallel computing. Empirical results suggest orders of magnitude of memory reduction in training while
maintaining the same training results as backpropagation.
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A Proof

A.1 Proof for proposition 4.1

Proof. Define ∂ỹ/∂ht = ỹt
ht , ∂h̃t/∂ht−1 = h̃t

ht−1 , and ∂ỹ/∂θ = ỹt
θ, ∂h̃t/∂θ = h̃t

θ, by plugging in the
expression for ỹt from subsection 3.2, proposition 3.1 states that

dỹt

dθ
= ỹt

ht

[
(
t−1∏
i=1

ht−i+1
ht−i )h1

θ + (
t−2∏
i=1

ht−i+1
ht−i )h2

θ + · · · + ht
ht−1ht−1

θ + ht
θ

]
+ ỹt

θ.

In the context of SSM, we have:

ht = Atht−1 + Btx̂t, ht
ht−1 = At, ht

θ = At
θht−1 + Bt

θx̂t, ỹt = Ctht, ỹt
ht = Ct, ỹt

θ = Ct
θht. (8)

Plugging in these relations, we get:

dỹt

dθ
= Ct

[
(
t−1∏
i=1

At+1−i)h1
θ + (

t−2∏
i=1

At+1−i)h2
θ + · · · + (

2∏
i=1

At+1−i)ht−2
θ + Atht−1

θ + ht
θ

]
+ ỹt

θ. (9)

Define the adjoint state λt,τ = Ct(
∏t−τ

i=1 At+1−i), we have

dỹt

dθ
= λt,1h1

θ + λt,2h2
θ + · · · + λt,t−1ht−1

θ + λt,tht
θ + ỹt

θ

Therefore, we have
dlt

dθ
= dlt

dyt

d(ỹt + x̂t)
dθ

= dlt

dyt

dỹt

dθ

= dlt

dyt
[λt,1h1

θ + λt,2h2
θ + · · · + λt,t−1ht−1

θ + λt,tht
θ + ỹt

θ]

Plug in everything, we have
dlt

dθ
= dlt

dyt
[λt,1(A1

θh0 + B1
θx̂1) + λt,2(A2

θh1 + B2
θx̂2) + · · · + λt,t(At

θht−1 + Bt
θx̂t) + Ct

θht

=
[

t∑
i=1

dlt

dyt
λt,i(Ai

θhi−1 + Bi
θx̂i)

]
+ dlt

dyt
Ct

θht

=
[

t∑
i=1

vjpAi( dlt

dyt
λt,i ⊗ hi−1) + vjpBi( dlt

dyt
λt,i ⊗ x̂i)

]
+ vjpCt( dlt

dyt
⊗ ht)

where we define vjpNNi(v) = v · NNθ(Inputi), with θ being NN ’s parameters and i being the index of Input.
Now, as vjpAi( dlt

dyt λt,i ⊗ hi−1), vjpBi( dlt

dyt λt,i ⊗ x̂i), and vjpCt( dlt

dyt ⊗ ht)are separate, we have

dlt

dθ
=
[

t∑
i=1

vjpAi( dlt

dyt
λt,i ⊗ hi−1)

]
⊕

[
t∑

i=1
vjpBi( dlt

dyt
λt,i ⊗ x̂i)

]
⊕ vjpCt( dlt

dyt
⊗ ht), (10)

where ⊕ is vector concatenation.
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A.2 Proof for proposition 4.2

Proof. First, using the structure of ResNet, we have

dL

dθ
=

T∑
t=1

dlt

dyt
K

dyt
K

dθ

=
T∑

t=1

dlt

dyt
K

d(yt
0 +

∑K
k=1 ỹt

k)
dθ

=
T∑

t=1

dlt

dyt
K

K∑
k=1

dỹt
k

dθ

=
T∑

t=1

K∑
k=1

dlt

dyt
K

dỹt
k

dθ

from proposition 4.1, we have proven that for a single SSM model, we have

dlt

dθ
=
[

t∑
i=1

vjpAi( dlt

dyt
λt,i ⊗ hi−1)

]
⊕

[
t∑

i=1
vjpBi( dlt

dyt
λt,i ⊗ x̂i)

]
⊕ vjpCt( dlt

dyt
⊗ ht),

so for the ResNet model, we have

dL

dθ
=

T∑
t=1

K∑
k=1

dlt

dyt
K

dỹt
k

dθ

=
T∑

t=1

K∑
k=1

{[
t∑

i=1
vjpAi

k
( dlt

dyt
K

λt,i
k ⊗ hi−1

k )
]

⊕

[
t∑

i=1
vjpBi

k
( dlt

dyt
K

λt,i
k ⊗ x̂i

k)
]

⊕ vjpCt
k
( dlt

dyt
K

⊗ ht
k)
}

=
(

T∑
t=1

K∑
k=1

vjpCt
k
( dlt

dyt
K

⊗ ht
k)
)

⊕

(
T∑

t=1

K∑
k=1

t∑
i=1

vjpAi
k
( dlt

dyt
K

λt,i
k ⊗ hi−1

k )
)

⊕

(
T∑

t=1

K∑
k=1

t∑
i=1

vjpBi
k
( dlt

dyt
K

λt,i
k ⊗ x̂i

k)
)

=
(

T∑
t=1

K∑
k=1

vjpCt
k
( dlt

dyt
K

⊗ ht
k)
)

⊕

(
T∑

t=1

K∑
k=1

t∑
i=1

vjpAi
k
( dlt

dyt
K

λt,i
k ⊗ hi−1

k )
)

⊕

(
T∑

t=1

K∑
k=1

t∑
i=1

vjpBi
k
( dlt

dyt
K

λt,i
k ⊗ ŷi

k−1)
)

(11)

where the input to vjpCt
k
( dlt

dyt
K

⊗ ht
k), vjpAi

k
( dlt

dyt
K

λt,i
k ⊗ hi−1

k ), and vjpBi
k
( dlt

dyt
K

λt,i
k ⊗ ŷi

k−1) are computed with
the k-th SSM and the x̂i

k = ŷi
k−1 = RMSNorm(yi

k−2 + SSMk−1(Ŷk−2)i) (the normalized output sequence of
the (k-1)-th SSM), and the adjoint state λt,τ

k = Ct
k(
∏t−τ

i=1 At+1−i
k ).

18



Under review as submission to TMLR

A.3 Proof of concept for VJP computation

As a proof of concept of why (dlt/dyt)Ct
θht can computed with vjp, we present an explicit and simple

example. We have y = [y1, y2], h = [h1, h2, h3], θ = θ⃗. We then have

dl

dy =
[
ly1 ly2

]
∈ R1×P

Cθ =
[

C θ⃗
11 C θ⃗

12 C θ⃗
13

C θ⃗
21 C θ⃗

22 C θ⃗
23

]
∈ RP ×N×|θ|

h =

h1
h2
h3

 ∈ RN×1

With each C θ⃗
ij = [∂Cij/∂θ1, . . . , ∂Cij/∂θ|θ|] ∈ R|θ|. We have

dl

dy
Cθh = C θ⃗

11ly1h1 + C θ⃗
21ly2h1 + C θ⃗

12ly1h2 + C θ⃗
22ly2h2 + C θ⃗

13ly1h3 + C θ⃗
23ly2h3

= [ly1h1 ly1h2 ly1h3 ly2h1 ly2h2 ly2h3] · [C θ⃗
11 C θ⃗

12 C θ⃗
13C θ⃗

21 C θ⃗
22 C θ⃗

23]

= sum
(

(
[
ly1

ly2

]
⊗
[
h1 h2 h3

]
) ◦

[
C θ⃗

11 C θ⃗
12 C θ⃗

13
C θ⃗

21 C θ⃗
22 C θ⃗

23

])

where · is vector dot product, ⊗ is vector outer product, ◦ is element-wise product, and sum means summing
all elements in a matrix.

B Distributed tensors’ locations

We provide the specific location for each tensors in distributed training:

Table 2: Tensors stored on each GPU, part 1.

GPU index dl(ot)/dyt
K ht

k

υ = 1 t = 1, . . . , T t = 1, . . . , T ; k = 1, . . . K//Υ
υ = 2 t = 1, . . . , T t = 1, . . . , T ; k = K//Υ + 1, . . . , 2(K//Υ)
. . . . . . . . .
υ = Υ − 1 t = 1, . . . , T t = 1, . . . , T ; k = (Υ − 2)(K//Υ) + 1, . . . , (Υ − 1)(K//Υ)
υ = Υ t = 1, . . . , T t = 1, . . . , T ; k = (Υ − 1)(K//Υ) + 1, . . . , K

Table 3: Tensors stored on each GPU, part 2.

GPU index Ct
k

υ = 1 t = 1, . . . , T ; k = 1, . . . K//Υ
υ = 2 t = 1, . . . , T ; k = K//Υ + 1, . . . , 2(K//Υ)
. . . . . .
υ = Υ − 1 t = 1, . . . , T
υ = Υ t = 1, . . . , T ; k = (Υ − 1)(K//Υ) + 1, . . . , K
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Table 4: Tensors stored on each GPU, part 3.

GPU index ŷt
k

υ = 1 t = 1, . . . , T ; k = 0, . . . K//Υ − 1
υ = 2 t = 1, . . . , T ; k = K//Υ, . . . , 2(K//Υ) − 1
. . . . . .
υ = Υ − 1 t = 1, . . . , T ; k = (Υ − 2)(K//Υ), . . . , (Υ − 1)(K//Υ) − 1
υ = Υ t = 1, . . . , T ; k = (Υ − 1)(K//Υ), . . . , K − 1

Table 5: Tensors stored on each GPU, part 4.

GPU index At
k

υ = 1 t = 2, . . . , T ; k = 1, . . . K//Υ
υ = 2 t = 2, . . . , T ; k = K//Υ + 1, . . . , 2(K//Υ)
. . . . . .
υ = Υ − 1 t = 2, . . . , T ; k = (Υ − 2)(K//Υ) + 1, . . . , (Υ − 1)(K//Υ)
υ = Υ t = 2, . . . , T ; k = (Υ − 1)(K//Υ) + 1, . . . , K

Table 6: Tensors stored on each GPU, part 5.

GPU index θk Gradientk

υ = 1 k = 1, . . . K//Υ k = 1, . . . K//Υ
υ = 2 k = K//Υ + 1, . . . , 2(K//Υ) k = K//Υ + 1, . . . , 2(K//Υ)
. . . . . . . . .
υ = Υ − 1 k = (Υ − 2)(K//Υ) + 1, . . . , (Υ − 1)(K//Υ) k = (Υ − 2)(K//Υ) + 1, . . . , (Υ − 1)(K//Υ)
υ = Υ k = (Υ − 1)(K//Υ) + 1, . . . , K k = (Υ − 1)(K//Υ) + 1, . . . , K
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