
Published in Transactions on Machine Learning Research (10/2025)

Adjoint sharding for very long context training of state space
models

Xingzi Xu, Amir Tavanaei, Kavosh Asadi, Karim Bouyarmane

Amazon

{xingzixu,atavanae,kavasadi,bouykari}@amazon.com

Reviewed on OpenReview: https://openreview.net/forum?id=kQCuMcEneq

Abstract

Despite fast progress, efficiently training large language models (LLMs) in extremely long
contexts remains challenging. Existing methods fall back to training LLMs with short contexts
(up to a few thousand tokens) and use inference time techniques when evaluating on very
long contexts (above 1M tokens). Training on very long contexts is limited by GPU memory
availability and the prohibitively long training times it requires on state-of-the-art hardware.
Meanwhile, many real-life applications require training/fine-tuning with long context on
specific tasks. Such applications include, for example, augmenting the context with various
sources of raw reference information for extraction, summarization, or fact reconciliation tasks.
We propose adjoint sharding, a novel technique that comprises sharding gradient calculation
during training to reduce memory requirements by orders of magnitude, making training on
very long contexts computationally tractable. At the core of our adjoint sharding algorithm
lies the adjoint method, which efficiently computes gradients that are provably equivalent
to the gradients computed using standard backpropagation. We also propose truncated
adjoint sharding to accelerate the algorithm while maintaining performance. We provide a
distributed and a parallel-computing version of adjoint sharding to speed up training and to
show that adjoint sharding is compatible with these standard memory-reduction techniques.
Empirical results show the proposed adjoint sharding algorithm reduces memory usage by
up to 3× on a large language model with 1.27B parameters on 1M context length training.
This reduction in memory usage allows increasing the maximum context length of training a
1.27B parameter model from 35K tokens to above 100K tokens on a training infrastructure
composed of five AWS P4 instances.

1 Introduction

Foundation models are a new paradigm in artificial intelligence research focused on building large, general-
purpose models that adapt to different tasks OpenAI et al. (2024); Meta et al. (2024); Cai et al. (2024);
Pióro et al. (2024). Extensive training on large datasets equips foundation models with broad capabilities.
We then fine-tune the foundation models on smaller datasets for specific applications. Foundation models
commonly employ the transformer architecture Vaswani et al. (2023). Despite the immense success, training
transformer-based models requires memory growing quadratically with the context length L, limiting their
applications on long context tasks Li et al. (2024). Researchers developed various techniques to conquer this
problem, ranging from inference time context window expansion (Ding et al., 2024b;a), IO-aware algorithms
(Dao et al., 2022; Dao, 2023; Shah et al., 2024), and various linearly scaling language model architectures
(Gu & Dao, 2024b; Dao & Gu, 2024b; Peng et al., 2023a; Beltagy et al., 2020). On another note, distributed
learning enables training large models with many GPUs, and efficient training methods like activation
checkpointing, model/gradient sharding, and mixed-precision computing have further reduced the memory

1

https://openreview.net/forum?id=kQCuMcEneq

Published in Transactions on Machine Learning Research (10/2025)

Figure 1: Compared to backpropagation (red lines), adjoint sharding (blue lines) significantly reduces memory
requirements at training. Showing memory cost to train 32M, 63M, 127M, 225M, and 1.27B parameter State
Space Model (SSM) with batch size 2 and Adam optimizer on one GPU.

requirement of training a large model Verbraeken et al. (2020); Zhao et al. (2023); Rajbhandari et al. (2020b);
Micikevicius et al. (2018); Herrmann et al. (2019). However, current methodologies are entirely based on
backpropagation and compute the gradient as a whole, inevitably requiring a memory growing rapidly with
model size and context length (Damadi et al., 2023). Current sharding methods ignore the activations and
only consider the model weights and optimizer states, constituting only a minor amount of the total memory
cost (Sohoni et al., 2022). Activation checkpointing is among the limited techniques that consider activation
values. Activation checkpointing offloads necessary intermediate states to the CPU and recomputes them on
the fly, trading compute time for memory reduction (Sohoni et al., 2022; Rajbhandari et al., 2020a). The
substantial time required for offloading to the CPU hinders the effectiveness of activation checkpointing. We
propose adjoint sharding to disassemble the gradient computation of residual and/or recurrent-based models
to achieve orders of magnitude lower memory usage during training.

Adjoint method The adjoint sharding method roots in the adjoint method for recurrent models (Cao
et al., 2002; Johnson, 2007). Given an optimization problem of a parametric recurrent forward process,
the adjoint method is concerned with the computation of the gradients regarding the process’s parameters.
Backpropagation saves intermediate states to calculate gradients, whereas the adjoint method relies on a
backward adjoint process to compute gradients. The adjoint method is a constant-memory optimization
technique for dynamical systems Chen et al. (2019); Xu et al. (2022). In this paper, we are only concerned
with the adjoint method for recurrent relations.

Vector-Jacobian product Adjoint sharding disassembles the gradient computation of a large language
model (LLM) into independent vector-Jacobian product (VJP) computations. By multiplying the Jacobian
on the left with a vector, it becomes unnecessary to compute the expensive Jacobian. Modern VJPs are as
fast as a forward function call of the model, and can be thousands of times faster than Jacobian computations
Balestriero & Baraniuk (2021). We speed up adjoint sharding by employing the VJPs.

Truncated adjoint sharding Sharding the gradient computation allows us to prioritize the essential
gradients and disregard the rest, resulting in faster computation. We term this novel method truncated
adjoint sharding, and empirically showcase its performance.

Distributed and parallel computation In addition, we have developed a distributed multi-GPU variant
of adjoint sharding to improve the scalability of LLM training further. We also analyze the memory cost of
parallel computation of adjoint sharding, opening up directions for massive speedups.

2

Published in Transactions on Machine Learning Research (10/2025)

State-space models and residual networks Residual networks (ResNets) are a commonly applied neural
network structure. We illustrate adjoint sharding assuming a ResNet structure (He et al., 2015). State-space
models (Mamba) have achieved performances on par with attention-based models while possessing a linear
scaling regarding the context length L, a polynomial speedup compared to the L2 scaling of transformers
Vaswani et al. (2023); Gu & Dao (2024a).

2 Related works

Figure 2: Adjoint sharding disassembles large
models’ gradient computations along the sequence
dimension t and the layer dimension k. When
evaluating the gradient at time t, we perform t
vector-Jacobian products along the adjoint dimen-
sion i for every layer index k.

Linear LLMs (De et al., 2024; Beck et al., 2024; Peng
et al., 2023a) proposed LLM architectures with a linear
inference time complexity. We form each linear LLM by
stacking K residual layers together, where each layer has
a recurrent relation. However, their temporal relation-
ships are nonlinear, which limits the application of adjoint
sharding to disassemble the gradients into independent
vector-Jacobian products.

Backpropagation through time Applying the adjoint
method for recurrent models leads to backpropagation
through time (BPTT) (Werbos, 1990). BPTT is a training
algorithm developed for recurrent neural networks (RNNs).
RNN models suffer from the exploding and vanishing gradi-
ent because of the

∏t
j=i+1 ∂f(xj , hj−1, Wh)/∂hj−1 term

(Pascanu et al., 2013). SSMs provide remedies with careful
parameterization of the recurrent dynamics inspired by
classical SSM theory (Fu et al., 2023; Gu et al., 2021;
2022; Gupta et al., 2023; Orvieto et al., 2023; Kaul, 2020).
Linear temporal relations allow efficient evaluations of the
model, while preserving universal approximation capabil-
ities (Wang & Xue, 2023). By a similar token, truncated
adjoint sharding can be seen as a more general version
of the truncated backpropagation through time (Jaeger,
2005; Tallec & Ollivier, 2017).

Neural ordinary differential equations The adjoint method also applies to the optimization of continuous
systems, especially the ordinary differential equations (ODEs) (Chen et al., 2019; Dupont et al., 2019).
Optimizing neural ODEs with autograd requires backpropagating through numerical solvers along every step,
using an unrealistic amount of memory. The adjoint method does not backpropagate through the operations
of the solver and uses a constant amount of memory. However, applying the adjoint method for continuous
systems requires solving a costly ODE initial value problem with dimensionality equal to the number of
parameters.

Low memory training methods Researchers proposed various low memory training techniques to train
big models in very long contexts. ZERO provides data- and model-parallel training while retaining low
communication volume, while eliminating memory redundancies (Rajbhandari et al., 2020b). PyTorch FSDP
streamlines model, gradient, and data parallelization (Zhao et al., 2023). Activation checkpointing discards
intermediate values during the forward step, and recomputes on the fly during the training phase (Sohoni
et al., 2022). CPU offloading scales large model training by offloading data and computations to the CPU,
trading computing time for memory reduction (Ren et al., 2021). Ring attention leverages the blockwise
computation of self-attention and feedforward to distribute long sequences across multiple devices while fully
overlapping the communication of key-value blocks with blockwise attention computations, enabling very-long
context training of attention-based methods (Liu et al., 2023; 2024). Mini-Sequence Transformers segment
sequences but still require full gradient computation within each segment (Luo et al., 2024). Cut Your
Losses optimizes vocabulary-level computations, which is orthogonal to our sequence-level memory reduction
approach (Wijmans et al., 2025). StreamBP targets long sequences through a different memory-time trade-off

3

Published in Transactions on Machine Learning Research (10/2025)

strategy (Luo et al., 2025). Unlike these approaches that focus on segmentation, vocabulary optimization, or
memory-time trade-offs, adjoint sharding fundamentally changes the gradient computation mechanism itself
by decomposing gradients into independent vector-Jacobian products that can be computed in parallel for
recurrent architectures. The proposed adjoint sharding distributes state-space model computations across
multiple devices and multiple multi-GPU instances (MIG) to enable very-long context training of state-space
models.

Context length extension methods The Existing context length extension method separates into two
classes. The first type is fine-tuning free methods, including Positional Interpolation (PI) (Chen et al., 2023),
the NTKAware Scale ROPE (NTK) (users, 2023), and StreamingLLM (Xiao et al., 2024). The second type is
fine-tuning methods, including LongChat (Li* et al., 2023), LongAlpaca (Chen et al., 2024), YaRN (Peng
et al., 2023b), and LongLlama (Chen et al., 2024). Additional methods like activation beacon tune a network
separate from the LLM (Zhang et al., 2024). As shown in Figure 3, fine-tuning methods achieve better
performances than fine-tuning-free methods at lengths where we perform fine-tuning. However, fine-tuning
methods suffer from a high computational cost and require a potentially intractable amount of GPU memory
during fine-tuning.

10.0

15.0

PG
19

2.50
5.00
7.50

Pr
oo

f-
Pi

le

104 105
Inference context length

2.00

4.00

C
od

eP
ar

ro
t

PI
NTK
StreamingLLM
YaRN-128K
LongChat-32K
LongAlpaca-16K
LongLlama

Figure 3: Lines in red and in blue are fine-tuning free and fine-tuning methods. Fine-tuning methods achieve
better performances than the fine-tuning-free method but often suffer from out-of-memory issues (Chen et al.,
2023; users, 2023; Xiao et al., 2024; Li* et al., 2023; Chen et al., 2024; Peng et al., 2023b; Zhang et al., 2024;
Tworkowski et al., 2023). Lower values are better across all three tasks.

3 Background

We first give a concise introduction to the state-space models, the residual networks, and the adjoint method.

3.1 State-space models

While our method generally applies to all recurrent models, we illustrate the idea using state-space models
(SSMs), which have shown performances at least on par with transformers at small to medium scale (Dao &
Gu, 2024a). Given an input token sequence {xt}T

t=1, the SSMs first calculate the corresponding matrices At,
Bt, and Ct to evolve the dynamics as follows:

At = A(xt); Bt = B(xt); Ct = C(xt).

The SSMs evolve a latent dynamics ht, whose initial condition h0 is often assumed to be zero. With h0 and
At, Bt defined, the dynamics evolves as:

ht = Atht−1 + Btxt.

4

Published in Transactions on Machine Learning Research (10/2025)

The matrices Ct then maps the latent dynamics ht back to token space as yt = Ctht, with yt being the
predicted token at t. For a sequence of T tokens, we denote:

A = (A1, A2, . . . , AT), B = (B1, B2, . . . , BT),
C = (C1, C2, . . . , CT), H = (h1, h2, . . . , hT),
X = (x1, x2, . . . , xT), Y = (y1, y2, . . . , yT).

In the most general case, we have H ∈ RT ×N , A ∈ RT ×N×N , B ∈ RT ×N×P , C ∈ RT ×P ×N , X ∈ RT ×P , Y ∈
RT ×P , where N is the hidden state dimension, and P is the input/output dimension. We evolve the dynamics
for t = 1, . . . , T , and assume that h0 is a fixed and predefined constant. The input to an SSM is X and h0,
and the output is Y. We define SSM(·) as performing the following five steps:

1. {At}T
t=1 = {A(xt)}T

t=1,

2. {Bt}T
t=1 = {B(xt)}T

t=1,

3. {Ct}T
t=1 = {C(xt)}T

t=1,

4. {ht}T
t=1 = {Atht−1 + Btxt}T

t=1;

5. {yt}T
t=1 = {Ctht}T

t=1.

The input to the five steps is X, and the output is Y. We can then write SSM(X) = Y. SSMs reduce the
quadratic computational complexity with sequence length on transformers to linear, and the inference-time
memory requirements from the key-value cache. SSM-based models at small to medium scales have shown
performances on par with or better than transformer-based models. For instance, (Pióro et al., 2024; Anthony
et al., 2024) shows that the SSM-based mixture-of-experts (MOE) model outperforms the baseline transformer-
based MOE model on model sizes as big as 2400M parameters. (Waleffe et al., 2024) performed an extensive
empirical study and found that while SSMs outperform transformers on various tasks, they underperform
on tasks that require stellar copying, in-context learning, or long-context reasoning abilities. (Waleffe et al.,
2024) also experimented with an SSM-transformer hybrid model, which outperforms transformers and is up
to eight times faster when generating tokens at inference time. (Lieber et al., 2024) trained a 52B parameter
model and further affirmed the hybrid model’s performance.

3.2 Residual Networks

In practice, we have K SSMs stacked together, and we have a large language head (LLH) Ω ∈ RT×P , where
T is the number of all possible tokens. To predict a token, we have ot = Ωŷt

K . Define (y1
K , . . . , yT

K) = YK , a
ResNet computes YK as follows:

(y1
K , . . . , yT

K) = YK−1 + SSMK(ŶK−1)
= Y0 + SSM1(Ŷ0) + · · · + SSMK(ŶK−1)

= Y0 +
K∑

k=1
SSMk(Ŷk−1) = Y0 +

K∑
k=1

Ỹk,

where
Ŷk = (ŷ1

k, . . . , ŷT
k) = (Norm(y1

k), . . . , Norm(yT
k)),

and SSMk(Ŷk−1) = Ỹk. Therefore, for a latent state at time t we have yt
K = yt

0 +
∑K

k=1 ỹt
k.

ResNet has been the foundation of numerous modern networks, including the transformers, diffusion models,
segmentation models, SSMs, and more (He et al., 2016; Guo et al., 2022; Kirillov et al., 2023; Peebles &
Xie, 2023). ResNet’s residual structure allows for a separation between gradients of each layer by applying
differentiation on summations.

5

Published in Transactions on Machine Learning Research (10/2025)

3.3 Adjoint method

The adjoint method is concerned with optimizing y(h(θ), θ) with respect to θ, where h(θ) ∈ RP is the
solution to f(h(θ), θ) = 0 (Cao et al., 2002). To employ gradient-based algorithms like the stochastic gradient
descent (SGD) or the Adam, we compute the derivative of y regarding θ ∈ R|θ|:

dy
dθ

= ∂y
∂θ

+ ∂y
∂h

∂h
∂θ

, (1)

with d being the total derivative, and ∂ being the partial derivative. The adjoint method converts computing
dy/dθ to solving an adjoint equation. In our case, we need the adjoint method for recurrence relations, where
y is given by y = yt ≡ y(ht(θ), θ), and h is given by{

h0 = b(θ),
ht = f(t, ht−1, θ).

(2)

We have
df(t, ht−1, θ)

dθ
= ∂f(t, ht−1, θ)

∂θ
+ ∂f(t, ht−1, θ)

∂ht−1
∂ht−1

∂θ
. (3)

Proposition 3.1. (Cao et al., 2002) When the states h are defined as Equation 2, the gradient of y with
respect to θ is given as: 

dyt

dθ = ∂yt

∂θ + λ0b(θ) +
∑t

i=1 λi ∂f(i,hi−1,θ)
∂θ ,

λt = ∂yt/∂ht,

λi−1 = λi
(
∂f(i, hi−1, θ)/∂hi−1) .

(4)

Equivalently, we have

λi = (∂yt/∂ht)

i+1∏
j=t

(
∂f(j, hj−1, θ)/∂hj−1)

(Johnson, 2007).

After computing adjoint states {λi}t
i=0, the computation of the elements of λi(∂f(i, hi−1, θ)/∂θ) are indepen-

dent, allowing parallelism. This computation is a vector-Jacobian product (vjp), with λi as the vector and
∂f(i, hi−1, θ)/∂θ as the Jacobian. vjps can be evaluated with the reverse-mode automatic differentiation and
initializing the reverse phase with λi Baydin et al. (2018a). As each vjp only requires saving its corresponding
computation graph, and can be disposed of after the computation, we can compute vjps in parallel on modern
GPUs. We will discuss this further in subsection 4.5. Adjoint sharding aims to use the adjoint method to
replace backpropagation, which solves:

dyt

dθ
= ∂yt

∂θ
+ ∂yt

∂ht

{
∂f(t, ht−1, θ)

∂θ
+ ∂f(t, ht−1, θ)

∂ht−1

[
∂f(t − 1, ht−2, θ)

∂θ
+ ∂f(t − 1, ht−2, θ)

∂ht−2(
∂f(t − 2, ht−3, θ)

∂θ
+ . . .

)]}
.

The backpropagation requires a sequential accumulation of the gradients, computing from the outermost
layer inwards, therefore needs to save the computation graph for computations at all times t, and creates
memory bottlenecks.

4 Adjoint sharding

We now introduce the adjoint sharding technique. We first illustrate the method assuming only one layer of
SSM, and generalize to K layers.

6

Published in Transactions on Machine Learning Research (10/2025)

4.1 Adjoint sharding for one SSM

Large-scale neural networks usually train with the autograd framework (Baydin et al., 2018b; Paszke et al.,
2019). However, this framework suffers from a high memory cost when used with networks of recurrent nature
(Baydin et al., 2018b). Although activation checkpointing proves a strong tool, which discards part of the
intermediate values and recomputes them later on the fly, the memory cost is still high (Herrmann et al.,
2019). We employ the adjoint method for recurrence relations to reduce the memory cost further, and more
importantly, to break the temporal dependencies of activations and parallelize their computations.

Define θ = ⟨θA, θB, θC⟩ as A’s, B’s, and C’s parameters, for loss lt = l(yt), in the context of a single-layer
SSM, we prove

Proposition 4.1. The gradient dlt/dθ is given as

dlt

dθ
=
[

t∑
i=1

vjpAi(dlt

dyt
λt,i ⊗ hi−1)

]
⊕

[
t∑

i=1
vjpBi(dlt

dyt
λt,i ⊗ x̂i)

]
⊕ vjpCt(dlt

dyt
⊗ ht), (5)

where the adjoint state λt,τ = Ct(
∏t−τ

i=1 At+1−i), vjpNeti(v) = v · Netθ(Inputi), with θ being Net’s parameters
and i being the index of Input, ⊗ is the vector outer product, and ⊕ is vector concatenation.

The proof of proposition 4.1 is in section A.1. The gradient for parameters of A, and B are each separated
into {vjpAi(dlt

dyt λt,i ⊗ hi−1)}t
i=1, {vjpBi(dlt

dyt λt,i ⊗ x̂i}t
i=1, and the gradient for parameters of C only depend

on inputs at time t. After computing the adjoint states, these vjp computations are separated on both the
network and the temporal level.

Figure 4: The adjoint states are computed sequentially backwards.

4.2 Adjoint sharding for multiple SSMs

We now generalize the results from subsection 4.1 to the general case of K SSMs concatenated. As introduced
in subsection 3.2, the outputs of each SSM layer are added to the results of the last layer and normalized
before feeding into the next layer. Define the loss over all token predictions L =

∑T
t=1 lt, using the residual

structure we have

dL

dθ
=

T∑
t=1

dlt

dyt
K

dyt
K

dθ

=
T∑

t=1

dlt

dyt
K

d(yt
0 +

∑K
k=1 ỹt

k)
dθ

=
T∑

t=1

dlt

dyt
K

K∑
k=1

dỹt
k

dθ
.

Combining with proposition 4.1, we have

7

Published in Transactions on Machine Learning Research (10/2025)

Proposition 4.2. The gradient of the total loss L with respect to the SSM parameters θ is given as

dL

dθ
=
(

T∑
t=1

K∑
k=1

t∑
i=1

vjpAi
k
(dlt

dyt
K

λt,i
k ⊗ hi−1

k)
)

⊕

(
T∑

t=1

K∑
k=1

t∑
i=1

vjpBi
k
(dlt

dyt
K

λt,i
k ⊗ ŷi

k−1)
)

⊕

(
T∑

t=1

K∑
k=1

vjpCt
k
(dlt

dyt
K

⊗ ht
k)
)

,

(6)

where the input to vjpCt
k
(dlt

dyt
K

⊗ ht
k), vjpAi

k
(dlt

dyt
K

λt,i
k ⊗ hi−1

k), and vjpBi
k
(dlt

dyt
K

λt,i
k ⊗ ŷi

k−1) are computed with
the k-th SSM and the ŷi

k−1 = Norm(yi
k−2 + SSMk−1(Ŷk−2)i) (the normalized output sequence of the (k-1)-th

SSM). The adjoint state at layer k is defined as λt,τ
k = Ct

k(
∏t−τ

i=1 At+1−i
k).

Figure 5: Computation schematic of dlt/dθAk
, dlt/dθBk

, and dlt/dθCk
.

We provide the proof of proposition 4.2 in section A.2. Define Λt
k = {λt,τ

k }t
τ=1, proposition 4.2 shows that

the gradients of each network’s parameters computed with each token only correlate through the adjoint
states {Λt

k}K,T
k,t=1,1. We can efficiently compute the adjoint states after a forward pass. We can also compute

the adjoint states on the fly in the gradient computation phase, as it only depends on Ct
k and At

k and
has no dependencies on the network Jacobians regarding the network parameters. The adjoint sharding
method breaks down the backpropagation computation from layer-wise and token-wise into foundational vjp
computations that do not have any dependencies on each other.

8

Published in Transactions on Machine Learning Research (10/2025)

We show a schematic of the computations to dlt/dθAk
, dlt/dθBk

, and dlt/dθCk
in Figure 5 and a schematic

for computing the adjoint states in Figure 4.

4.3 Truncated adjoint sharding

One limitation of adjoint sharding is that the number of vjps performed increases polynomially with the
number of tokens T . In particular, adjoint sharding computes the vjp for Ak and Bk (1 + T)T/2 times,
and for Ck T times. When training large networks with many layers and a long context length T , applying
adjoint sharding becomes computationally expensive. We propose truncated adjoint sharding, with which
we argue that we can get similar results by computing a linearly growing number of vjps, and empirically
showcase its performance.

Attention mechanisms have suffered from the O(T 2) complexities arising from the self-attention structure
(Vaswani et al., 2023). To enable training with longer context lengths, global-local attention has been
proposed, where we divide the contexts into sections, and compute the attention between sections rather
than tokens (Yang et al., 2021). (Tallec & Ollivier, 2017) proposed truncated backpropagation through time
(T-BPTT) to avoid gradient explosion/vanishing when training with very long contexts by only counting a
fixed number of state transitions. Here, inspired by global-local attention and T-BPTT, instead of computing
the full gradient given in Equation 11, we propose to train the SSMs to depend on up to T̄ states:

dL

dθ
=
(

T∑
t=1

K∑
k=1

vjpCt
k
(dlt

dyt
K

⊗ ht
k)
)

⊕

[
T̄∑

t=1

K∑
k=1

t∑
i=1

vjpAi
k
(dlt

dyt
K

λt,i
k ⊗ hi−1

k)

+
T∑

t=T̄ +1

K∑
k=1

t∑
i=t+1−T̄

vjpAi
k
(dlt

dyt
K

λt,i
k ⊗ hi−1

k)
]

⊕

[
T̄∑

t=1

K∑
k=1

t∑
i=1

vjpBi
k
(dlt

dyt
K

λt,i
k ⊗ ŷi

k−1)

+
T∑

t=T̄ +1

K∑
k=1

t∑
i=t+1−T̄

vjpBi
k
(dlt

dyt
K

λt,i
k ⊗ ŷi

k−1

]
(7)

As shown in Equation 7 above, we perform the same computations for t = 1, . . . , T̄ as before, and only perform
the vjps back to the last T̄ states for t > T̄ . With truncated adjoint sharding, we perform T̄ T + T̄ (T̄ − 1)/2
vjps, which grows linearly with T . We show the number of vjps performed with and without truncated
adjoint sharding in Figure 6. When T̄ = 2000, truncated adjoint sharding reduces 64% of the vjps when
training with a context length of 10K. The essence of the truncated adjoint sharding method is that we
only explicitly count gradients related to the last T̄ states. As each state depends on its prior state, states
still implicitly depend on all their prior states. The choice of truncation parameter T̄ involves a trade-off
between computational efficiency and gradient fidelity. In practice, we find choosing T̄ =

√
T provides a good

balance between memory savings and gradient fidelity, as it keeps computation time in check while preserving
sufficient gradient information. The optimal choice depends on the specific model architecture and sequence
characteristics. We leave the investigation of T̄ ’s impact on performances for future work.

We provide the algorithm for evaluating adjoint states for token index t and ResNet index k with truncated
adjoint sharding T̄ in algorithm 1, and the algorithm for evaluating the vjps for token index t and ResNet
index k with truncated adjoint sharding T̄ in algorithm 2.

4.4 Distributed training

We now discuss how to distribute the storage and compute of the adjoint sharding method, assuming that
we have Υ GPUs. Given the networks {Ak, Bk, Ck}K

k=1, initial tokens {ŷt
0}T

t=1 = {Norm(xt)}T
t=1, and initial

conditions {h0
k}K

k=1 (usually set to 0), we can call algorithm 3 to get all necessary vectors for computing the
gradient with adjoint sharding. As shown in algorithm 2, to compute the vjps’ for token index t and ResNet
index k, we only need t, k, dl(ot)/dyt

K , {hi
k}t

i=0, Ct
k, {ŷi

k−1}t
i=1, {Ai

k}t
i=2. To compute all the gradients for

layer k, we only need A, h, and C from the k-th layer, and ŷ from the k − 1-th layer. Therefore, we can
divide the K layers into Υ pieces, as shown in the appendix B. As the computations are fully independent

9

Published in Transactions on Machine Learning Research (10/2025)

Algorithm 1 Evaluating adjoint states for token index t and ResNet index k with truncated adjoint sharding
T̄

1: Inputs: t, k, T̄ , Ct
k, {Ai

k}t
i=t+2−T̄

2: Initialize adjoint state λt,t
k = Ct

k

3: Compute: intermediate values:
4: ζT̄ = (At

kAt−1
k . . . At+2−T̄

k ,

At
kAt−1

k . . . At+3−T̄
k , . . . , At

kAt−1
k , At

k, I).
5: Compute: adjoint states
6: Λ̄T̄

k = (λt,t+1−T̄
k , λt,t+2−T̄

k , . . . , λt,t
k) = Ct

kζT̄ .

7: Return: Λ̄T̄
k .

Algorithm 2 Evaluating the vjp’s for token index t and ResNet index k with truncated adjoint sharding T̄

1: Inputs: t, k, T̄ , dl(ot)
dyt

K
, {hi

k}t
i=t−T̄

, Ct
k, {yi

k−1}t
i=t+1−T̄

, {Ai
k}t

i=t+2−T̄

2: Call alg. 1 to compute {λt,i
k }t

i=t+1−T̄

3: Compute: dl(ot)
dyt

K
⊗ ht

k, { dl(ot)
dyt

K
λt,i

k ⊗ hi−1
k }t

i=t+1−T̄
, { dl(ot)

dyt
K

λt,i
k ⊗ ŷi

k−1}t
i=t+1−T̄

4: Compute:
(

vjpCt
k

(dl(ot)
dyt

K

⊗ ht
k),
∑t

i=t+1−T̄
vjpAi

k
(dl(ot)

dyt
K

λt,i
k

⊗ hi−1
k

),
∑t

i=t+1−T̄
vjpBi

k
(dl(ot)

dyt
K

λt,i
k

⊗ ŷi
k−1)

)
5: Return:

(
vjpCt

k
(dl(ot)

dyt
K

⊗ ht
k),
∑t

i=t+1−T̄
vjpAi

k
(dl(ot)

dyt
K

λt,i
k

⊗ hi−1
k

),
∑t

i=t+1−T̄
vjpBi

k
(dl(ot)

dyt
K

λt,i
k

⊗ ŷi
k−1)

)

Algorithm 3 Forward step in evaluation mode on a distributed system
1: Inputs: {ŷt

0}T
t=1, {h0

k}K
k=1, {Ak, Bk, Ck}K

k=1, Ω
2: On devices υ = 1, . . . , Υ, in parallel do
3: for SSM model index k = (υ − 1)(K//Υ) + 1, . . . , υ(K//Υ) do
4: for Time step index t = 1, . . . , T do
5: Compute: At

k = Ak(ŷt
k−1); Bt

k = Bk(ŷt
k−1); Ct

k = Ck(ŷt
k−1); ht

k = At
kht−1

k + Bt
kŷt

k−1; yt
k = Ct

kht
k.

6: Compute: yt
k = yt

k−1 + ỹt
k.

7: Compute: ŷt
k = Norm(yt

k).
8: end for
9: end for

10: Store: {ht
k}T,υ(K//Υ)

(t,k)=(1,(υ−1)(K//Υ)+1), {Ct
k}T,υ(K//Υ)

(t,k)=(1,(υ−1)(K//Υ)+1), {ŷt
k}T,υ(K//Υ)−1

(t,k)=(1,(υ−1)(K//Υ)),
{At

k}T,υ(K//Υ)
(t,k)=(2,(υ−1)(K//Υ)+1) on device υ.

11: Pass: {yt
υ(K//Υ)−1}T

t=1, {ŷt
υ(K//Υ)−1}T

t=1 to device υ + 1
12: for Time step index t = 1, . . . , T do
13: Compute: {ot = Ωyt

K}T
t=1, {l(ot)}, { dl(ot)

dyt
K

}T
t=1.

14: end for
15: Store: { dl(ot)

dyt
K

}T
t=1 on all Υ devices.

and we compute the gradients using only data on local devices, we additionally distribute the model and
the gradients, as shown in Table 6, where θk represents the parameters of Ak, Bk, and Ck, and Gradientk

represents the optimizer states for θk. The complete training streamline is provided in algorithm 4. We
distribute the activations, computations, gradients, and optimization states across Υ devices. While the
forward evaluation pass results across different devices, as shown in algorithm 3, the computation of gradients
is parallel across the Υ devices. This parallelization will speed up the training as the gradient computation
takes most of the computation budget. We will also get a memory per GPU close to Mem/Υ, with Mem
being the memory cost if we only have a single GPU. If we have Υ > K devices, we can further speed up the
forward evaluation by first evaluating A, B, C in parallel, and then adding them together on the distributed
devices.

10

Published in Transactions on Machine Learning Research (10/2025)

Algorithm 4 Evaluating dL
dθ with truncated adjoint sharding T̄ on Υ devices

1: Inputs: {yt
0}T

t=1, {h0
k}K

k=1, {Ak, Bk, Ck}K
k=1, Ω, T̄ , Υ

2: Call alg. 3 for {At
k, Ct

k, ht
k, ŷt

k}(T,K)
(t,k)=(1,1), { dl(ot)

dyt
K

}T
t=1 and saved on each GPU device.

3: On each device υ, in parallel do
4: Initialize gradient dL

dθ

5: for Time step index t = 1, . . . , T̄ , layer index k = (υ − 1)(K//Υ) + 1, . . . , υ(K//Υ) do
6: Call alg. 2 for Ξ =

[
vjpCt

k
(dl(ot)

dyt
K

⊗ ht
k),
∑t

i=1
vjpAi

k
(dl(ot)

dyt
K

λt,i
k

⊗ hi−1
k

),
∑t

i=1
vjpBi

k
(dl(ot)

dyt
K

λt,i
k

⊗ ŷi
k−1)

]
7: Compute: dL

dθ + = Ξ
8: end for
9: for Time step index t = T̄ + 1, . . . , T , layer index k = (υ − 1)(K//Υ) + 1, . . . , υ(K//Υ) do

10: Call alg. 2 for Ξ =

(
vjpCt

k
(dl(ot)

dyt
K

⊗ ht
k),
∑t

i=t+1−T̄
vjpAi

k
(dl(ot)

dyt
K

λt,i
k

⊗ hi−1
k

),
∑t

i=t+1−T̄
vjpBi

k
(dl(ot)

dyt
K

λt,i
k

⊗ ŷi
k−1)

)
11: Compute: dL

dθ + = Ξ
12: end for
13: Return: dL

dθ

4.5 Parallel computing

Adjoint sharding converts the sequential process of backpropagation gradient computation into individ-
ual independent vjps, allowing for parallel computation. We analyze the time and memory cost of
vjpAi

k
((dlt/dyt

K)λt,i
k ⊗ hi−1

k), vjpBi
k
((dlt/dyt

K)λt,i
k ⊗ ŷi

k−1), and vjpCt
k
((dlt/dyt

K) ⊗ ht
k). vjp has a simi-

lar time complexity as a forward pass, and a memory complexity of bs(|θ| + O) + |θ|, where bs is the batch
size, O is the number of elements in the network output, and |θ| is the number of parameters (Novak et al.,
2022). We provide the memory and FLOPs required to compute the vjps in Table 1 (NVIDIA, 2024).

We analyze training with a dataset containing contexts of lengths T , with Υ NVIDIA H100 GPUs, and
performing computations in FP16. We use a selective diagonal SSM with K layers, and each Ak, Bk,
and Ck network is a single-layer multi-layer perceptron (MLP). For each data point {xt}T

t=1, we store
{At

k, Ct
k, ht

k, yt
k}(T,K)

(t,k)=(1,1) and {dl(ot)/dyt
K}T

t=1, which is TK(2N + P) + TP FP16 numbers. We also save
θA, θB, and θC, each taking PN +N FP16 numbers. We need to store T (2NK +PK +P)+3N(P +1) FP16
numbers before computing the vjp. As computing all adjoint state sequences takes up to N(2P +1)(1+T)T/2

vjpA vjpB vjpC

Unstructured SSM Memory bs(N2 + |θA|∗) + |θA| bs(NP + |θB|∗) + |θB| bs(NP + |θC|∗) + |θC|
FLOPs bs(N2(2P + 1)) bs(NP (2P + 1)) bs(NP × (2P + 1))

Diagonal SSM Memory bs(N + |θA|∗) + |θA| bs(N + |θB|∗) + |θB| bs(N + |θC|∗) + |θC|
FLOPs bs(N(2P + 1)) bs(N(2P + 1)) bs(N(2P + 1))

Scalar SSM Memory bs(1 + |θA|∗) + |θA| bs(N + |θB|∗) + |θB| bs(N + |θC|∗) + |θC|
FLOPs bs(2P + 1) bs((N(2P + 1)) bs(N(2P + 1))

Table 1: Memory and FLOPs required to compute the vjps. |θA|∗, |θB|∗, and |θC|∗ represents the number of
elements of the biggest parameter vector of A, B, and C.

FLOPs, it takes NP (1 + T)/T FLOPs on average for each adjoint state. For T large enough, (1 + T)/T ≈ 1,
we approximate the average FLOPs for each adjoint state with NP . Each vjp then takes bs(7NP + 3N)
FLOPs of computation.

When computing with a selective diagonal SSM with P = 128, N = 225, and bs = 8, while storing and
performing computations in FP16, computing vjpA, vjpB, and vjpC each takes around 0.6MB memory and
1798144 FLOPs. We characterize the capacity of a modern GPU with FLOPs/sec, which measures the
computation speed; GPU memory bandwidth, which is the rate at which a GPU can move data between its
memory and processing cores; GPU Memory, which is the amount of data a GPU can hold; and number of
Multi-Instance GPU (MIG) instances, which is the number of fully isolated GPU instances with its own high-
bandwidth memory, cache, and compute cores a GPU can host. An NVIDIA H100 Tensor Core GPU has a

11

Published in Transactions on Machine Learning Research (10/2025)

GPU memory bandwidth 3.35TB/s and performs 1, 979 tera FP16 FLOPS per second. Therefore, the memory
bandwidth allows computing (3.35TB/s)/0.6MB = 5.58×10E6 batches of vjps per second, and the computing
speed allows computing (1979tera/s)/1798144 = 3.76 × 1.1E9 batches of vjps per second. At the same time,
since the H100 GPU has 80GB memory, it can hold up to 80GB/(0.6MB/vjp) = 133 batches of vjps at the same
time if we do not consider any memory overhead. As each H100 GPU can hold up to 7 instances in parallel, we
perform the adjoint sharding algorithm with 7Υ instances, offering as much as a 56x speedup on one AWS P4
instance (8 H100 GPUs). We can not achieve such speedup for backpropagation because of its sequential nature.

complexity.drawio https://drawio.corp.amazon.com/

1 of 1 9/30/24, 8:11 PM

complexity.drawio https://drawio.corp.amazon.com/

1 of 1 9/30/24, 8:11 PM

Tr
ai

ni
ng

 t
im

e
pe

r
ep

oc
h

(/
da

y)

Figure 6: Training time (/day) per epoch comparison for
adjoint sharding, truncated adjoint sharding, and backprop-
agation with different context lengths. Assumed a 100-layer
SSM-ResNet model, a 280x acceleration for adjoint sharding
from parallel computing (achievable with five Amazon P4
instances), and T̄ from 15 to 2500.

Limitation The adjoint sharding method
provides an alternative method of computing
gradients to backpropagation. While we ana-
lytically proved that the gradients computed
from adjoint sharding are equal to those from
backpropagation, adjoint sharding suffers from
a polynomial time complexity regarding the
training context length when computing equiv-
alent gradients. We provided the truncated
adjoint sharding as a linear time complexity
alternative, and leave the analysis of its conver-
gence and further improvements on it for future
work. We also provided a distributed and paral-
lel computing algorithm for performing adjoint
sharding. However, the overhead of naïve im-
plementations of such an algorithm with multi-
threading or multiprocessing overweights the
speedups when the training context length is
small. We leave the efficient implementation of
the parallel algorithm on a CUDA kernel for
future work. Our work focuses specifically on
State Space Models (SSMs) like Mamba, which
have fundamentally different computational structures than transformers. The adjoint sharding method we
developed leverages the recurrent nature of SSMs, where the sequential dependencies allow for efficient VJP
decomposition. Transformers, with their attention mechanisms and different architectures, would require a
separate analysis to determine how to apply adjoint methods. Unlike SSMs’ Markovian recurrent structure
that enables clean temporal decomposition, transformers’ self-attention creates all-to-all dependencies that
break the sequential dependency structure the adjoint method relies on. This architectural constraint
represents an important direction for future work, as extending memory-efficient training techniques to
Transformer architectures would significantly broaden the impact of this approach.

Conclusion We introduced adjoint sharding, a distributed and parallel computing algorithm, to facilitate
the training of LLMs on very long contexts. Unlike the sequential backpropagation, the adjoint sharding
computes gradients of each LLM layer against each token independently through vector-Jacobian product,
allowing for parallel computation. We propose truncated adjoint sharding to focus on essential gradients
to avoid the limitation of vjps increasing polynomially regarding context length. Our approach provides an
algorithmic alternative to existing memory reduction techniques such as activation checkpointing, model
sharding, and vocabulary optimization methods. While these techniques address different aspects of the
memory bottleneck, adjoint sharding specifically targets the gradient computation mechanism in recurrent
architectures. The method is currently applicable to State Space Models, where the sequential recurrent
structure enables clean VJP decomposition. We analyzed the memory and FLOP cost of each computation
block in adjoint sharding and proposed a method to accelerate it through parallel computing. Empirical results
suggest orders of magnitude of memory reduction in training while maintaining the same training results as
backpropagation. By enabling training on contexts previously intractable due to memory constraints, adjoint
sharding opens new possibilities for fine-tuning SSM-based models on very long sequence tasks.

12

Published in Transactions on Machine Learning Research (10/2025)

References
Quentin Anthony, Yury Tokpanov, Paolo Glorioso, and Beren Millidge. Blackmamba: Mixture of experts for

state-space models, 2024. URL https://arxiv.org/abs/2402.01771.

Randall Balestriero and Richard Baraniuk. Fast jacobian-vector product for deep networks, 2021. URL
https://arxiv.org/abs/2104.00219.

Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind. Automatic
differentiation in machine learning: a survey, 2018a. URL https://arxiv.org/abs/1502.05767.

Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind. Automatic
differentiation in machine learning: a survey, 2018b. URL https://arxiv.org/abs/1502.05767.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova, Michael
Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended long short-term
memory, 2024. URL https://arxiv.org/abs/2405.04517.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer, 2020. URL
https://arxiv.org/abs/2004.05150.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, et al. Internlm2 technical report,
2024. URL https://arxiv.org/abs/2403.17297.

Yang Cao, Shengtai Li, and Linda Petzold. Adjoint sensitivity analysis for differential-algebraic equations:
algorithms and software. Journal of Computational and Applied Mathematics, 149(1):171–191, 2002. ISSN
0377-0427. doi: https://doi.org/10.1016/S0377-0427(02)00528-9. URL https://www.sciencedirect.
com/science/article/pii/S0377042702005289. Scientific and Engineering Computations for the 21st
Century - Me thodologies and Applications Proceedings of the 15th Toyota Conference.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
equations, 2019. URL https://arxiv.org/abs/1806.07366.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window of large
language models via positional interpolation, 2023. URL https://arxiv.org/abs/2306.15595.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora: Efficient
fine-tuning of long-context large language models, 2024. URL https://arxiv.org/abs/2309.12307.

Saeed Damadi, Golnaz Moharrer, and Mostafa Cham. The backpropagation algorithm for a math student,
2023. URL https://arxiv.org/abs/2301.09977.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning, 2023. URL
https://arxiv.org/abs/2307.08691.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality, 2024a. URL https://arxiv.org/abs/2405.21060.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality, 2024b. URL https://arxiv.org/abs/2405.21060.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness, 2022. URL https://arxiv.org/abs/2205.14135.

Soham De, Samuel L. Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Albert Gu,
Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, Guillaume Desjardins, Arnaud
Doucet, David Budden, Yee Whye Teh, Razvan Pascanu, Nando De Freitas, and Caglar Gulcehre. Griffin:
Mixing gated linear recurrences with local attention for efficient language models, 2024. URL https:
//arxiv.org/abs/2402.19427.

13

https://arxiv.org/abs/2402.01771
https://arxiv.org/abs/2104.00219
https://arxiv.org/abs/1502.05767
https://arxiv.org/abs/1502.05767
https://arxiv.org/abs/2405.04517
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2403.17297
https://www.sciencedirect.com/science/article/pii/S0377042702005289
https://www.sciencedirect.com/science/article/pii/S0377042702005289
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/2306.15595
https://arxiv.org/abs/2309.12307
https://arxiv.org/abs/2301.09977
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2405.21060
https://arxiv.org/abs/2405.21060
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2402.19427
https://arxiv.org/abs/2402.19427

Published in Transactions on Machine Learning Research (10/2025)

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan Yang, and Mao
Yang. Longrope: Extending llm context window beyond 2 million tokens. arXiv preprint arXiv:2402.13753,
2024a.

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan Yang,
and Mao Yang. Longrope: Extending llm context window beyond 2 million tokens, 2024b. URL https:
//arxiv.org/abs/2402.13753.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes, 2019. URL https://arxiv.
org/abs/1904.01681.

Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W. Thomas, Atri Rudra, and Christopher Ré. Hungry hungry
hippos: Towards language modeling with state space models, 2023. URL https://arxiv.org/abs/2212.
14052.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024a. URL
https://arxiv.org/abs/2312.00752.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024b. URL
https://arxiv.org/abs/2312.00752.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Combining
recurrent, convolutional, and continuous-time models with linear state-space layers, 2021. URL https:
//arxiv.org/abs/2110.13985.

Albert Gu, Isys Johnson, Aman Timalsina, Atri Rudra, and Christopher Ré. How to train your hippo: State
space models with generalized orthogonal basis projections, 2022. URL https://arxiv.org/abs/2206.
12037.

Meng-Hao Guo, Tian-Xing Xu, Jiang-Jiang Liu, Zheng-Ning Liu, Peng-Tao Jiang, Tai-Jiang Mu, Song-Hai
Zhang, Ralph R Martin, Ming-Ming Cheng, and Shi-Min Hu. Attention mechanisms in computer vision: A
survey. Computational visual media, 8(3):331–368, 2022.

Ankit Gupta, Harsh Mehta, and Jonathan Berant. Simplifying and understanding state space models with
diagonal linear rnns, 2023. URL https://arxiv.org/abs/2212.00768.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition,
2015. URL https://arxiv.org/abs/1512.03385.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

Julien Herrmann, Olivier Beaumont, Lionel Eyraud-Dubois, Julien Hermann, Alexis Joly, and Alena Shilova.
Optimal checkpointing for heterogeneous chains: how to train deep neural networks with limited memory,
2019. URL https://arxiv.org/abs/1911.13214.

Herbert Jaeger. A tutorial on training recurrent neural networks , covering bppt , rtrl , ekf and the " echo
state network " approach - semantic scholar. In National Research Center for Information Technology,
2002, 2005. URL https://api.semanticscholar.org/CorpusID:192593367.

Steven Johnson. Adjoint methods and sensitivity analysis for recurrence, 01 2007.

Shiva Kaul. Linear dynamical systems as a core computational primitive. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 16808–16820. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/c3581d2150ff68f3b33b22634b8adaea-Paper.pdf.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 4015–4026, 2023.

14

https://arxiv.org/abs/2402.13753
https://arxiv.org/abs/2402.13753
https://arxiv.org/abs/1904.01681
https://arxiv.org/abs/1904.01681
https://arxiv.org/abs/2212.14052
https://arxiv.org/abs/2212.14052
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2110.13985
https://arxiv.org/abs/2110.13985
https://arxiv.org/abs/2206.12037
https://arxiv.org/abs/2206.12037
https://arxiv.org/abs/2212.00768
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1911.13214
https://api.semanticscholar.org/CorpusID:192593367
https://proceedings.neurips.cc/paper_files/paper/2020/file/c3581d2150ff68f3b33b22634b8adaea-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c3581d2150ff68f3b33b22634b8adaea-Paper.pdf

Published in Transactions on Machine Learning Research (10/2025)

Dacheng Li*, Rulin Shao*, Anze Xie, Ying Sheng, Lianmin Zheng, Joseph E. Gonzalez, Ion Stoica, Xuezhe
Ma, and Hao Zhang. How long can open-source llms truly promise on context length?, June 2023. URL
https://lmsys.org/blog/2023-06-29-longchat.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. Long-context llms struggle with long
in-context learning, 2024. URL https://arxiv.org/abs/2404.02060.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi, Shaked
Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, Omri Abend, Raz Alon, Tomer Asida, Amir Bergman,
Roman Glozman, Michael Gokhman, Avashalom Manevich, Nir Ratner, Noam Rozen, Erez Shwartz,
Mor Zusman, and Yoav Shoham. Jamba: A hybrid transformer-mamba language model, 2024. URL
https://arxiv.org/abs/2403.19887.

Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for near-infinite
context, 2023. URL https://arxiv.org/abs/2310.01889.

Hao Liu, Wilson Yan, Matei Zaharia, and Pieter Abbeel. World model on million-length video and language
with blockwise ringattention, 2024. URL https://arxiv.org/abs/2402.08268.

Cheng Luo, Jiawei Zhao, Zhuoming Chen, Beidi Chen, and Anima Anandkumar. Mini-sequence transformer:
Optimizing intermediate memory for long sequences training, 2024. URL https://arxiv.org/abs/2407.
15892.

Qijun Luo, Mengqi Li, Lei Zhao, and Xiao Li. Streambp: Memory-efficient exact backpropagation for long
sequence training of llms, 2025. URL https://arxiv.org/abs/2506.03077.

Meta et al. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia, Boris
Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed precision training,
2018. URL https://arxiv.org/abs/1710.03740.

Roman Novak, Jascha Sohl-Dickstein, and Samuel S. Schoenholz. Fast finite width neural tangent kernel,
2022. URL https://arxiv.org/abs/2206.08720.

NVIDIA. Matrix multiplication background user’s guide, 2024. URL https://docs.nvidia.com/
deeplearning/performance/dl-performance-matrix-multiplication/index.html.

OpenAI et al. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu, and
Soham De. Resurrecting recurrent neural networks for long sequences, 2023. URL https://arxiv.org/
abs/2303.06349.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural networks,
2013. URL https://arxiv.org/abs/1211.5063.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library, 2019. URL
https://arxiv.org/abs/1912.01703.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi Cao, Xin
Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, Xuzheng He, Haowen Hou, Jiaju Lin, Przemyslaw
Kazienko, Jan Kocon, Jiaming Kong, Bartlomiej Koptyra, Hayden Lau, Krishna Sri Ipsit Mantri, Ferdinand
Mom, Atsushi Saito, Guangyu Song, Xiangru Tang, Bolun Wang, Johan S. Wind, Stanislaw Wozniak,

15

https://lmsys.org/blog/2023-06-29-longchat
https://arxiv.org/abs/2404.02060
https://arxiv.org/abs/2403.19887
https://arxiv.org/abs/2310.01889
https://arxiv.org/abs/2402.08268
https://arxiv.org/abs/2407.15892
https://arxiv.org/abs/2407.15892
https://arxiv.org/abs/2506.03077
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/1710.03740
https://arxiv.org/abs/2206.08720
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.06349
https://arxiv.org/abs/2303.06349
https://arxiv.org/abs/1211.5063
https://arxiv.org/abs/1912.01703

Published in Transactions on Machine Learning Research (10/2025)

Ruichong Zhang, Zhenyuan Zhang, Qihang Zhao, Peng Zhou, Qinghua Zhou, Jian Zhu, and Rui-Jie Zhu.
Rwkv: Reinventing rnns for the transformer era, 2023a. URL https://arxiv.org/abs/2305.13048.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window extension
of large language models, 2023b. URL https://arxiv.org/abs/2309.00071.

Maciej Pióro, Kamil Ciebiera, Krystian Król, Jan Ludziejewski, Michał Krutul, Jakub Krajewski, Szymon
Antoniak, Piotr Miłoś, Marek Cygan, and Sebastian Jaszczur. Moe-mamba: Efficient selective state space
models with mixture of experts, 2024. URL https://arxiv.org/abs/2401.04081.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations toward
training trillion parameter models, 2020a. URL https://arxiv.org/abs/1910.02054.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations toward
training trillion parameter models, 2020b. URL https://arxiv.org/abs/1910.02054.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Minjia
Zhang, Dong Li, and Yuxiong He. Zero-offload: Democratizing billion-scale model training, 2021. URL
https://arxiv.org/abs/2101.06840.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao. Flashattention-3:
Fast and accurate attention with asynchrony and low-precision, 2024. URL https://arxiv.org/abs/
2407.08608.

Nimit S. Sohoni, Christopher R. Aberger, Megan Leszczynski, Jian Zhang, and Christopher Ré. Low-memory
neural network training: A technical report, 2022. URL https://arxiv.org/abs/1904.10631.

Corentin Tallec and Yann Ollivier. Unbiasing truncated backpropagation through time, 2017. URL https:
//arxiv.org/abs/1705.08209.

Szymon Tworkowski, Konrad Staniszewski, Mikołaj Pacek, Yuhuai Wu, Henryk Michalewski, and Piotr Miłoś.
Focused transformer: Contrastive training for context scaling, 2023. URL https://arxiv.org/abs/2307.
03170.

Reddit users. Ntk-aware scaled rope, 2023. URL https://www.reddit.com/r/LocalLLaMA/comments/
14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.org/abs/1706.03762.

Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen, and Jan S.
Rellermeyer. A survey on distributed machine learning. ACM Computing Surveys, 53(2):1–33, March 2020.
ISSN 1557-7341. doi: 10.1145/3377454. URL http://dx.doi.org/10.1145/3377454.

Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao, Albert Gu, Ali
Hatamizadeh, Sudhakar Singh, Deepak Narayanan, Garvit Kulshreshtha, Vartika Singh, Jared Casper, Jan
Kautz, Mohammad Shoeybi, and Bryan Catanzaro. An empirical study of mamba-based language models,
2024. URL https://arxiv.org/abs/2406.07887.

Shida Wang and Beichen Xue. State-space models with layer-wise nonlinearity are universal approximators
with exponential decaying memory, 2023. URL https://arxiv.org/abs/2309.13414.

P.J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE, 78(10):
1550–1560, 1990. doi: 10.1109/5.58337.

Erik Wijmans, Brody Huval, Alexander Hertzberg, Vladlen Koltun, and Philipp Krähenbühl. Cut your losses
in large-vocabulary language models, 2025. URL https://arxiv.org/abs/2411.09009.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming language
models with attention sinks, 2024. URL https://arxiv.org/abs/2309.17453.

16

https://arxiv.org/abs/2305.13048
https://arxiv.org/abs/2309.00071
https://arxiv.org/abs/2401.04081
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/2101.06840
https://arxiv.org/abs/2407.08608
https://arxiv.org/abs/2407.08608
https://arxiv.org/abs/1904.10631
https://arxiv.org/abs/1705.08209
https://arxiv.org/abs/1705.08209
https://arxiv.org/abs/2307.03170
https://arxiv.org/abs/2307.03170
https://www.reddit.com/r/LocalLLaMA/comments/ 14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/.
https://www.reddit.com/r/LocalLLaMA/comments/ 14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/.
https://arxiv.org/abs/1706.03762
http://dx.doi.org/10.1145/3377454
https://arxiv.org/abs/2406.07887
https://arxiv.org/abs/2309.13414
https://arxiv.org/abs/2411.09009
https://arxiv.org/abs/2309.17453

Published in Transactions on Machine Learning Research (10/2025)

Xingzi Xu, Ali Hasan, Khalil Elkhalil, Jie Ding, and Vahid Tarokh. Characteristic neural ordinary differential
equations, 2022. URL https://arxiv.org/abs/2111.13207.

Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai, Bin Xiao, Lu Yuan, and Jianfeng Gao. Focal
self-attention for local-global interactions in vision transformers, 2021. URL https://arxiv.org/abs/
2107.00641.

Peitian Zhang, Zheng Liu, Shitao Xiao, Ninglu Shao, Qiwei Ye, and Zhicheng Dou. Soaring from 4k to 400k:
Extending llm’s context with activation beacon, 2024. URL https://arxiv.org/abs/2401.03462.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania, Bernard Nguyen,
Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. Pytorch fsdp: Experiences on scaling fully
sharded data parallel, 2023. URL https://arxiv.org/abs/2304.11277.

A Proof

A.1 Proof for proposition 4.1

Proof. Define ∂ỹ/∂ht = ỹt
ht , ∂h̃t/∂ht−1 = h̃t

ht−1 , and ∂ỹ/∂θ = ỹt
θ, ∂h̃t/∂θ = h̃t

θ, by plugging in the
expression for ỹt from subsection 3.2, proposition 3.1 states that

dỹt

dθ
= ỹt

ht

[
(
t−1∏
i=1

ht−i+1
ht−i)h1

θ + (
t−2∏
i=1

ht−i+1
ht−i)h2

θ + · · · + ht
ht−1ht−1

θ + ht
θ

]
+ ỹt

θ.

In the context of SSM, we have:

ht = Atht−1 + Btx̂t, ht
ht−1 = At, ht

θ = At
θht−1 + Bt

θx̂t, ỹt = Ctht, ỹt
ht = Ct, ỹt

θ = Ct
θht. (8)

Plugging in these relations, we get:

dỹt

dθ
= Ct

[
(
t−1∏
i=1

At+1−i)h1
θ + (

t−2∏
i=1

At+1−i)h2
θ + · · · + (

2∏
i=1

At+1−i)ht−2
θ + Atht−1

θ + ht
θ

]
+ ỹt

θ. (9)

Define the adjoint state λt,τ = Ct(
∏t−τ

i=1 At+1−i), we have

dỹt

dθ
= λt,1h1

θ + λt,2h2
θ + · · · + λt,t−1ht−1

θ + λt,tht
θ + ỹt

θ

Therefore, we have
dlt

dθ
= dlt

dyt

d(ỹt + x̂t)
dθ

= dlt

dyt

dỹt

dθ

= dlt

dyt
[λt,1h1

θ + λt,2h2
θ + · · · + λt,t−1ht−1

θ + λt,tht
θ + ỹt

θ]

Plug in everything, we have
dlt

dθ
= dlt

dyt
[λt,1(A1

θh0 + B1
θx̂1) + λt,2(A2

θh1 + B2
θx̂2) + · · · + λt,t(At

θht−1 + Bt
θx̂t) + Ct

θht

=
[

t∑
i=1

dlt

dyt
λt,i(Ai

θhi−1 + Bi
θx̂i)

]
+ dlt

dyt
Ct

θht

=
[

t∑
i=1

vjpAi(dlt

dyt
λt,i ⊗ hi−1) + vjpBi(dlt

dyt
λt,i ⊗ x̂i)

]
+ vjpCt(dlt

dyt
⊗ ht)

17

https://arxiv.org/abs/2111.13207
https://arxiv.org/abs/2107.00641
https://arxiv.org/abs/2107.00641
https://arxiv.org/abs/2401.03462
https://arxiv.org/abs/2304.11277

Published in Transactions on Machine Learning Research (10/2025)

where we define vjpNNi(v) = v · NNθ(Inputi), with θ being NN ’s parameters and i being the index of Input.
Now, as vjpAi(dlt

dyt λt,i ⊗ hi−1), vjpBi(dlt

dyt λt,i ⊗ x̂i), and vjpCt(dlt

dyt ⊗ ht)are separate, we have

dlt

dθ
=
[

t∑
i=1

vjpAi(dlt

dyt
λt,i ⊗ hi−1)

]
⊕

[
t∑

i=1
vjpBi(dlt

dyt
λt,i ⊗ x̂i)

]
⊕ vjpCt(dlt

dyt
⊗ ht), (10)

where ⊕ is vector concatenation.

A.2 Proof for proposition 4.2

Proof. First, using the structure of ResNet, we have

dL

dθ
=

T∑
t=1

dlt

dyt
K

dyt
K

dθ

=
T∑

t=1

dlt

dyt
K

d(yt
0 +

∑K
k=1 ỹt

k)
dθ

=
T∑

t=1

dlt

dyt
K

K∑
k=1

dỹt
k

dθ

=
T∑

t=1

K∑
k=1

dlt

dyt
K

dỹt
k

dθ

from proposition 4.1, we have proven that for a single SSM model, we have

dlt

dθ
=
[

t∑
i=1

vjpAi(dlt

dyt
λt,i ⊗ hi−1)

]
⊕

[
t∑

i=1
vjpBi(dlt

dyt
λt,i ⊗ x̂i)

]
⊕ vjpCt(dlt

dyt
⊗ ht),

so for the ResNet model, we have

dL

dθ
=

T∑
t=1

K∑
k=1

dlt

dyt
K

dỹt
k

dθ

=
T∑

t=1

K∑
k=1

{[
t∑

i=1
vjpAi

k
(dlt

dyt
K

λt,i
k ⊗ hi−1

k)
]

⊕

[
t∑

i=1
vjpBi

k
(dlt

dyt
K

λt,i
k ⊗ x̂i

k)
]

⊕ vjpCt
k
(dlt

dyt
K

⊗ ht
k)
}

=
(

T∑
t=1

K∑
k=1

vjpCt
k
(dlt

dyt
K

⊗ ht
k)
)

⊕

(
T∑

t=1

K∑
k=1

t∑
i=1

vjpAi
k
(dlt

dyt
K

λt,i
k ⊗ hi−1

k)
)

⊕

(
T∑

t=1

K∑
k=1

t∑
i=1

vjpBi
k
(dlt

dyt
K

λt,i
k ⊗ x̂i

k)
)

=
(

T∑
t=1

K∑
k=1

vjpCt
k
(dlt

dyt
K

⊗ ht
k)
)

⊕

(
T∑

t=1

K∑
k=1

t∑
i=1

vjpAi
k
(dlt

dyt
K

λt,i
k ⊗ hi−1

k)
)

⊕

(
T∑

t=1

K∑
k=1

t∑
i=1

vjpBi
k
(dlt

dyt
K

λt,i
k ⊗ ŷi

k−1)
)

(11)

18

Published in Transactions on Machine Learning Research (10/2025)

where the input to vjpCt
k
(dlt

dyt
K

⊗ ht
k), vjpAi

k
(dlt

dyt
K

λt,i
k ⊗ hi−1

k), and vjpBi
k
(dlt

dyt
K

λt,i
k ⊗ ŷi

k−1) are computed with
the k-th SSM and the x̂i

k = ŷi
k−1 = RMSNorm(yi

k−2 + SSMk−1(Ŷk−2)i) (the normalized output sequence of
the (k-1)-th SSM), and the adjoint state λt,τ

k = Ct
k(
∏t−τ

i=1 At+1−i
k).

A.3 Proof of concept for VJP computation

As a proof of concept of why (dlt/dyt)Ct
θht can computed with vjp, we present an explicit and simple

example. We have y = [y1, y2], h = [h1, h2, h3], θ = θ⃗. We then have

dl

dy =
[
ly1 ly2

]
∈ R1×P

Cθ =
[

C θ⃗
11 C θ⃗

12 C θ⃗
13

C θ⃗
21 C θ⃗

22 C θ⃗
23

]
∈ RP ×N×|θ|

h =

h1
h2
h3

 ∈ RN×1

With each C θ⃗
ij = [∂Cij/∂θ1, . . . , ∂Cij/∂θ|θ|] ∈ R|θ|. We have

dl

dy
Cθh = C θ⃗

11ly1h1 + C θ⃗
21ly2h1 + C θ⃗

12ly1h2 + C θ⃗
22ly2h2 + C θ⃗

13ly1h3 + C θ⃗
23ly2h3

= [ly1h1 ly1h2 ly1h3 ly2h1 ly2h2 ly2h3] · [C θ⃗
11 C θ⃗

12 C θ⃗
13C θ⃗

21 C θ⃗
22 C θ⃗

23]

= sum
(

(
[
ly1

ly2

]
⊗
[
h1 h2 h3

]
) ◦

[
C θ⃗

11 C θ⃗
12 C θ⃗

13
C θ⃗

21 C θ⃗
22 C θ⃗

23

])

where · is vector dot product, ⊗ is vector outer product, ◦ is element-wise product, and sum means summing
all elements in a matrix.

B Distributed tensors’ locations

We provide the specific location for each tensors in distributed training:

Table 2: Tensors stored on each GPU, part 1.

GPU index dl(ot)/dyt
K ht

k

υ = 1 t = 1, . . . , T t = 1, . . . , T ; k = 1, . . . K//Υ
υ = 2 t = 1, . . . , T t = 1, . . . , T ; k = K//Υ + 1, . . . , 2(K//Υ)
.
υ = Υ − 1 t = 1, . . . , T t = 1, . . . , T ; k = (Υ − 2)(K//Υ) + 1, . . . , (Υ − 1)(K//Υ)
υ = Υ t = 1, . . . , T t = 1, . . . , T ; k = (Υ − 1)(K//Υ) + 1, . . . , K

19

Published in Transactions on Machine Learning Research (10/2025)

Table 3: Tensors stored on each GPU, part 2.

GPU index Ct
k

υ = 1 t = 1, . . . , T ; k = 1, . . . K//Υ
υ = 2 t = 1, . . . , T ; k = K//Υ + 1, . . . , 2(K//Υ)
.
υ = Υ − 1 t = 1, . . . , T
υ = Υ t = 1, . . . , T ; k = (Υ − 1)(K//Υ) + 1, . . . , K

Table 4: Tensors stored on each GPU, part 3.

GPU index ŷt
k

υ = 1 t = 1, . . . , T ; k = 0, . . . K//Υ − 1
υ = 2 t = 1, . . . , T ; k = K//Υ, . . . , 2(K//Υ) − 1
.
υ = Υ − 1 t = 1, . . . , T ; k = (Υ − 2)(K//Υ), . . . , (Υ − 1)(K//Υ) − 1
υ = Υ t = 1, . . . , T ; k = (Υ − 1)(K//Υ), . . . , K − 1

Table 5: Tensors stored on each GPU, part 4.

GPU index At
k

υ = 1 t = 2, . . . , T ; k = 1, . . . K//Υ
υ = 2 t = 2, . . . , T ; k = K//Υ + 1, . . . , 2(K//Υ)
.
υ = Υ − 1 t = 2, . . . , T ; k = (Υ − 2)(K//Υ) + 1, . . . , (Υ − 1)(K//Υ)
υ = Υ t = 2, . . . , T ; k = (Υ − 1)(K//Υ) + 1, . . . , K

Table 6: Tensors stored on each GPU, part 5.

GPU index θk Gradientk

υ = 1 k = 1, . . . K//Υ k = 1, . . . K//Υ
υ = 2 k = K//Υ + 1, . . . , 2(K//Υ) k = K//Υ + 1, . . . , 2(K//Υ)
.
υ = Υ − 1 k = (Υ − 2)(K//Υ) + 1, . . . , (Υ − 1)(K//Υ) k = (Υ − 2)(K//Υ) + 1, . . . , (Υ − 1)(K//Υ)
υ = Υ k = (Υ − 1)(K//Υ) + 1, . . . , K k = (Υ − 1)(K//Υ) + 1, . . . , K

20

	Introduction
	Related works
	Background
	State-space models
	Residual Networks
	Adjoint method

	Adjoint sharding
	Adjoint sharding for one SSM
	Adjoint sharding for multiple SSMs
	Truncated adjoint sharding
	Distributed training
	Parallel computing

	Proof
	Proof for proposition 4.1
	Proof for proposition 4.2
	Proof of concept for VJP computation

	Distributed tensors' locations

