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Abstract

Recent successes of foundation models in var-
ious domains have spurred interest in time se-
ries foundation models (TSFMs), especially for
zero-shot forecasting. We challenge the neces-
sity of zero-shot forecasting, and demonstrate that
a simpler model, PCA+Linear, can effectively
serve as a TSFM. PCA+Linear uses Principal
Component Analysis (PCA) as a universal fea-
ture extractor and a linear head trained specifi-
cally on each downstream dataset. Experiments
show PCA+Linear achieves results competitive
with state-of-the-art TSFMs. We further evalu-
ate the robustness of transformer-encoder-based
TSFMs on out-of-distribution data, highlighting
the importance of the final linear layer in addition
to the attention mechanism. Our findings also
emphasize the effectiveness of diverse pretraining
data over extensive datasets from limited sources.

1. Introduction
The success of foundation models in Natural Language
Processing and Computer Vision has inspired a growing
body of work on developing time series foundation models
(TSFMs) (Das et al., 2024; Ansari et al., 2024; Ekambaram
et al., 2024; Liu et al.; Woo et al., 2024; Darlow et al., 2024).
Unlike traditional approaches that train separate models for
each dataset or task, a time series foundation model (TSFM)
is trained on a large-scale corpora of time series datasets,
often from multiple domains. By learning patterns trans-
ferable across domains, a single TSFM can be applied to
different downstream datasets to solve various tasks. Among
these tasks, most work focuses on benchmarking and im-
proving zero-shot forecasting ability of TSFMs. Zero-shot
forecasting means that, given past time steps in the form of
a context window, we do not alter the trained model weights,
and directly apply inference to generate predictions.
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<anon.email@domain.com>.
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However, we argue that the practical necessity for zero-shot
forecasting in real-world applications is often overstated.
Large Language Models (LLMs) focus on zero-shot learn-
ing since they directly face the end users, and thus require a
low level of latency. Conversely, most time series forecast-
ing applications either (i) have plenty of downstream data
available if they require a low latency due to the high fre-
quency of the dataset (e.g., stock trading (Cao et al., 2024)
or wearable sensors (Zhang et al., 2023)), or (ii) have lim-
ited downstream data available, but it is often due to the low
frequency of data collection, which inherently allows for
higher latency as decisions are less time-critical.

Motivated by this observation, we propose an alternative:
pretrain a PCA as a universal feature extractor, and repur-
pose the context window itself to train a lightweight linear
head based on the features extracted by PCA. By incorpo-
rating key design components from TSFMs, we can achieve
performance on par with state-of-the-art TSFMs. The only
notable overhead is that the linear layer could take up to a
minute to train and tune its hyperparameters, but it should
be affordable in most practical applications where data are
limited. Moreover, we conduct a thorough robustness anal-
ysis of two transformer-encoder based TSFMs variants on
out-of-distribution (OOD) downstream data.

Contributions. We introduce PCA+Linear as a simple,
lightweight baseline for zero-shot forecasting and demon-
strate its competitive performance relative to contemporary
TSFMs. Additionally, we analyze the OOD performance of
two transformer-encoder based TSFMs, and show that the
final linear layer, which was previously shown to be critical
for transformer-based time series models (Li et al., 2024;
Tan et al., 2024), might still be critical for generalizability
in the age of time series foundation models. Our findings
also suggest that incorporating diverse data sources during
pretraining is more beneficial than merely expanding data
volume from limited sources.

2. Can PCA+Linear also be a TSFM?
In real-world settings, the number of time steps available in
the history often varies widely, while the number of time
steps that we need to predict into the future also varies due
to different business needs. For example, hourly energy
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consumption (Lai et al., 2018; Trindade, 2015) can easily
accumulate tens of thousands of time steps, and the goal is
often to predict several hundred time steps into the future.
On the other hand, for daily strawberry yield, we may hardly
gather more than several hundred time steps, and the desired
forecast horizon is also much shorter. To enable zero-shot
forecasting in various downstream scenarios, time series
foundation models must be capable of handling a flexible
context window length, as well as a flexible forecast horizon.

We argue that a simple PCA model coupled with a domain-
specific linear layer head can also satisfy the two require-
ments above. Specifically, PCA is used as the universal
encoder to extract features, while a linear layer is used to
transform the features into the predictions.

2.1. Patch-Level Pretraining

Inspired by the recent success of grouping adjacent time
steps into patches in deep learning methods (Nie et al.,
2023), we divide the context window of arbitrary length
into patches and apply PCA to each individual patch. In
the pretraining stage, analogous to time series foundation
models, we fit the PCA model on the patches extracted
from various pretraining datasets. For multivariate time
series, we process each variable independently, following
DLinear (Zeng et al., 2023). Specifically, given a multi-
variate time series X ∈ RT×d, we divide it into n =

⌊
T
p

⌋
non-overlapping patches Xi ∈ Rp×d. For each patch Xi,
and each variable j = 1, . . . , d, we extract the univariate
segment x(j)

i = Xi[:, j] ∈ Rp, and apply PCA:

z
(j)
i = W(j)⊤

(
x
(j)
i − µ(j)

)
, W(j) ∈ Rp×k

where W(j) and µ(j) are the PCA projection matrix and
mean vector respectively, learned during pretraining. We
then concatenate the reduced embeddings z

(j)
i across the

context window to form the final embedding:

z(j) = concat
(
z
(j)
1 , z

(j)
2 , . . . , z(j)n

)
∈ Rk·n

This patch-level PCA embedding serves as the input repre-
sentation for downstream tasks.

2.2. Any-Horizon Decoding

To generate predictions on each downstream dataset, instead
of using the entire context window for zero-shot inference,
we use it as both the training set and the validation set for a
linear head specific to the dataset. To train the linear head,
we use a shorter context window than the original context
window for zero-shot inference. Additionally, we recog-
nize several key design components from recent time series

foundation models are also applicable to linear models, and
thus incorporate them into our framework. To allow for
flexible forecast horizon, we generate the predictions au-
toregressively in a decoder fashion. Since autoregressive
predictions are prone to error accumulation (Zeng et al.,
2023), we follow DecOnly (Das et al., 2024) and let the
linear head predict more time steps than the input patch size
at once.

2.3. Pretraining Details

For fair comparisons with state-of-the-art TSFMs, we follow
their procedures by first fitting the PCA model on selected
datasets1 from LOTSA (Woo et al., 2024), DAM (Darlow
et al., 2024), and Monash (Godahewa et al., 2021). Since the
datasets and even the different variables in the same dataset
can differ widely in terms of magnitude, we follow Moirai’s
approach to assign a sampling weight to each variable in the
dataset depending on its number of available time steps. Ad-
ditionally, instead of loading the entire LOTSA corpus into
memory, we first determine the dataset and the variable to
sample from based on the sampling weights. However, load-
ing the entire sequence can still be overly time-consuming.
Instead, we use Numpy to access it as a memory-mapped
file, which is useful for accessing small segments of large
files on disk, without reading the entire file into memory.
We then determine the appropriate window to select, before
finally loading the selected window into memory. This pro-
cedure drastically speeds up the dataloader, enabling the
use of larger pretraining datasets within the memory con-
straints2. This is particularly useful when we train large
TSFMs in Section 3. However, for PCA, we need to load
all the patches into the memory at once in order to perform
necessary matrix manipulations, so we presample 10,000
windows of 2016 steps each. In practice, we found the
gain from additional pretraining windows to be marginal for
PCAs.

2.4. Experiment Results

We first compare PCA+Linear with Moirai (Woo et al.,
2024) on the ETT, Electricity, and Weather datasets. In Fig-
ure 1, instead of using a context window of 100−5000 steps
for zero-shot forecasting as in MOIRAI, we use it as the
training and validation set to train a linear layer from scratch,
as described in Section 2.2. On the original validation set
of both Electricity and Weather, we see that PCA+Linear
is able to consistently outperform Moirai across the major-
ity of context window sizes. Notably, with as few as 100
timesteps, PCA+Linear is able to achieve significantly lower

1We filter out datasets that do not appear to be predictive, as
well as subsampling overly large dataset due to limited budget. See
Appendix A.

2See Appendix B.1.
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Dataset PCA+Linear GP ARIMA TCN llmtime DecOnly NAIVE
AirPassengers 30.78 34.67 24.03 54.96 34.37 14.75 81.45
AusBeer 24.11 102.05 17.13 30.90 16.13 10.25 96.35
GasRateCO2 2.20 2.27 2.37 2.64 3.50 2.69 2.29
MonthlyMilk 24.27 30.33 37.19 70.86 9.68 22.46 85.71
Sunspots 61.01 53.74 43.56 51.82 47.34 50.88 48.24
Wine 2882.18 4552.06 2306.70 3287.14 1569.32 2462.11 4075.28
Wooly 478.85 649.98 588.78 1158.79 808.73 917.10 1210.33
HeartRate 5.30 5.65 5.56 5.49 6.21 5.44 5.92

Arithmetic Mean 0.6144 0.8193 0.6045 0.8427 0.6641 0.6829 1
Geometric Mean 0.5065 0.7509 0.5219 0.7946 0.4882 0.5767 1

Table 1: MAE on the Darts Datasets. To compute the arithmetic and geometric means, we first scale each MAE by dividing
by the corresponding MAE of the naive baseline, which simply predicts the last values in the context window repeatedly.

MAE than Moirai on both datasets. For the hourly Elec-
tricity dataset, 100 timesteps are just over four days of data.
The full results on all six datasets are shown in Appendix
Table 6.

Next, we compare PCA+Linear against another state-of-
the-art TSFM, DecOnly (Das et al., 2024). We perform the
same experiments on the Darts datasets (Herzen et al., 2022).
We refer readers to DecOnly (Das et al., 2024) for more
detailed experiment settings and baseline descriptions. The
results presented in Table 1 show that PCA+Linear achieves
the best geometric mean and is second only to ARIMA in
terms of arithmetic mean. It outperforms established large
foundation models like llmtime (Nate Gruver & Wilson,
2023) and DecOnly. We also show similar observations on
the ETT datasets in Appendix Table 5.
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Figure 1: MAE of PCA+Linear against Moirai on increas-
ing context length with a prediction length of 96 on the
validation sets of Electricity and Weather.

3. Zero-Shot Evaluation of TSFMs
To assess the practical readiness of existing time series foun-
dation models (TSFMs) for zero-shot forecasting, we ana-
lyze the performance of two transformer variants. The first
variant, Encoder-Only, involves dividing the context win-
dow into patches, padding the forecast horizon with mask
tokens, and feeding both into a transformer encoder. We
linearly project the output embeddings of the mask tokens
to get the predictions. The second variant, Encoder-Flat, is

similar to PatchTST (Nie et al., 2023). We only feed the
context window into the encoder-only transformer without
the mask tokens, flatten the output embeddings, and linearly
project them to get the final predictions. We use the first
80% of each dataset for pretraining, and the last 20% for
validation.

Figure 2: Optimal learning rates for different model sizes.

3.1. Optimal Learning Rates Across Model Scales

We explore six different model sizes for both Encoder-Only
and Encoder-Flat architectures, spanning from 1.6 million to
92.4 million parameters (see Appendix A.2). Following the
procedure of Edwards et al. (2025), we first determine the
optimal learning rate for each model size. Figure 2 shows
validation MSE across different learning rates. Note that the
MSE reported here is considered to be in-distribution, since
we use the same datasets for validation as we did during
pretraining.

For all sizes, validation MSE decreases as the learning rate
increases, until beyond a certain threshold the model di-

3
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30% Datasets 10% Datasets 30% Timesteps 10% Timesteps

Model %MSE↑ %MAE↑ %MSE↑ %MAE↑ %MSE↑ %MAE↑ %MSE↑ %MAE↑
Encoder-Flat 12.71% 8.14% 42.82% 25.06% 6.28% 5.05% 17.72% 12.83%
Encoder-Only 14.77% 8.52% 42.06% 27.06% 8.07% 5.17% 18.59% 11.58%

Table 2: Comparison on the number of data sources versus the number of timesteps per data source.

verges. We also find that smaller models generally require
higher learning rates than larger models. For both architec-
tures, we find that the in-distribution validation performance
varies only slightly with model size under the optimal learn-
ing rate. We note that a recent work (Yao et al., 2025)
shows that parameterizing a student-t distribution instead
of directly predicting the mean as the loss objective can be
helpful to stabilize the convergence, due to the many outliers
in the pretraining corpus. This will be left as a next step of
our work.

3.2. Out-Of-Distribution Performance

Using optimal learning rate we identified in Section 3.1, we
evaluate each of the model sizes on the widely recognized
long-sequence prediction benchmark (Wu et al., 2022). We
first verify the correctness of our implementation by com-
paring it with Moirai (Woo et al., 2024). The results are
shown in Table 7 and Table 8 in the Appendix. Next, in
Figure 3, we plot the percentage increase in MAE and MSE,
scaled using the minimum MAE or MSE across the six sizes
and two architectures.

We find that as we increase the model size for Encoder-Flat,
the OOD performance generally improves. However, this
pattern is less consistent on Encoder-Only. This discrepancy
might stem from previous observations (Li et al., 2024)
indicating that linear layers significantly influence large
transformer models’ performance in time series forecasting,
and the flattening operation in Encoder-Flat allows the final
linear layer to access the entire context window.

Figure 3: Performance on the OOD downstream datasets.

3.3. Insights for Expanding Pretraining Data

Lastly, increasing the size of pretraining corpora is known
to be crucial for foundation models. Therefore, we want to

provide some insights on what to focus on when expanding
the pretraining data. We compare two strategies for data
expansion: (1) adding more distinct data sources versus
(2) gathering more timesteps from each data source. To
answer this question, we randomly choose 30% and 10%
from all the pretraining datasets. For comparison, for each
pretraining dataset, we only use the first 30% and 10% of
the available timesteps. Due to the large variance when
subsampling the datasets, we repeat the experiment three
times and report the average performance across the forecast
horizons ∈ {96, 192, 336, 720} on the OOD downstream
datasets. The results are shown in Table 2.

Our results show that incorporating a greater diversity of
data sources yields substantially better OOD performance
than simply increasing the number of timesteps within the
same sources. This might imply that the foundation model
is able to quickly generalize a pattern without having to
see similar patterns repeatedly. However, when confronted
with patterns that deviate strongly from the pretraining dis-
tribution, it can fail to generalize well to this new pattern.
Additionally, we observe that Encoder-Flat is more robust
to the limited sizes of the pretraining data than Encoder-
Only. We suspect that allowing the linear layer to access the
entire context window might be critical for it to generalize
well, although this comes at the cost of many extra weight
parameters.

4. Conclusion
The conventional expectations of a time series foundation
model are the abilities to handle flexible input length and
predict an arbitrary number of steps into the future. For
the popular zero-shot forecasting task, we present a sim-
ple baseline with PCA serving as the role of a foundation
model for feature extraction and a linear head as the pre-
dictor. We show that it can achieve comparable perfor-
mances against state-of-the-art TSFMs. Additionally, we
benchmark the OOD performance of TSFMs based on two
transformer-encoder variants, and show that the final linear
head might still play a critical role in the generalization abil-
ity of TSFMs. Our findings also underline the importance
of diverse data sources in pretraining over extensive data
volume from limited sources.
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A. Experiment Settings
We collect our pretraining data from three sources: LOTSA (Woo et al., 2024), DAM (Darlow et al., 2024), and Monash
(Godahewa et al., 2021).

LOTSA is a large-scale, open archive of time series datasets, containing over 17 billion timesteps across 39 datasets. Due
to computational constraints, we subsample and only use the first 5% of some overly large datasets: Azure VM Traces
2017, Borg Cluster Data 2011, Buildings900K, Residential Load Power. For CMIP6 and ERA5, we only use the first 5% of
CMIP6_1850, CMIP6_2010, ERA5_1989, and ERA5_2018. We exclude the PEMS datasets under LibCity and the LargeST
dataset since they contain data very similar to the traffic dataset that is reserved for OOD evaluation.

For Monash, we manually examine and filter out datasets that do not appear to be predictable. For DAM, we only select
datasets that are not already included in LOTSA and Monash: UCI Power, HuaweiPubM, HuaweiPvtM, UCI Metro Traffic
Volume, UCI Tetouan City Power, UCI Beijing PM2.5 Data, UCI Beijing Air Quality, and UCI Air Quality. Notably, we
remove datasets related to stocks since they are not predictable.

All experiments are conducted on NVIDIA 3090, 4090, and A100 GPUs.

A.1. PCA + Linear

For a given context window, we use a smaller context window ∈ {96, 144, 192, 240, 288, 336, 512} to train the linear
layer. The prediction patch length, or the output size of the linear layer, is a multiplier of the training context window size
∈ {0.1, 0.25, 0.5, 0.75, 1}. We reserve the last 20% of the original given context window for validation. We use an input
patch length of 24, and tune the number of principal components ∈ {15, 17, 19, 21, 23, 24}.

Note that only using the context window for the training and validation set is different from the few-shot forecasting setting
in prior works (Jin et al., 2024; Zhou et al., 2023), where the first 5% or 10% of the original train set is used as the new train
set and the entire validation set is used. We believe that our setting better aligns with the practical scenarios of limited data
settings, where both the train set and the validation set need to scale down, and need to come immediately before the test set.

A.2. Encoder-Only & Encoder-Flat

Patch size and stride size are both 32, and dropout is set to 0.1. The maximum length of context window and forecast
horizon are set to 2016 and 736, respectively, resulting in 63 and 23 patches.

Size 1 Size 2 Size 3 Size 4 Size 5 Size 6

num_layers 3 4 6 8 8 12
d_model 256 256 512 512 768 768
d_ff 512 512 1024 1024 1536 1536
num_heads 8 8 16 16 24 24

Encoder–Only 1.60 M 2.13 M 12.65 M 16.86 M 37.87 M 56.78 M
Encoder–Flat 13.46 M 13.99 M 36.38 M 40.58 M 73.45 M 92.36 M

Table 3: The list of hyperparameters in the six model sizes for Encoder-Only and Encoder-Flat, along with the total parameter
counts.

B. Model Details
B.1. Pretrain Dataset Weighting and Sampling Procedure

Let D = {X1, . . . ,XM} be the collection of (uni- or multi-variate) time-series datasets for pretraining. For each dataset
Xd, let it contain variables xd,1, . . . , xd,nd

. We first store each variable as a separate file. Let Td,i be the number of
timesteps in xd,i in the corresponding split (train or validation), so that the total number of timesteps in the dataset Xd is

7
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Td =
∑nd

i=1 Td,i. We first compute a raw dataset weight

w̃d = min
(
10−3,

Td∑M
d′=1 Td′

)
.

Here, we cap the weight of any dataset to 10−3 in order to prevent some large datasets to dominate training. Next, we
renormalize the weights across all datasets:

wd =
w̃d∑M

d′=1 w̃d′
.

Within each dataset, we further split weight by variable:

wd,i = wd ×
Td,i

Td
,

M∑
d=1

nd∑
i=1

wd,i = 1.

During pretraining we repeatedly draw one variable from a dataset according to the assigned weights wd,i. Then, we sample
a training window of total length L+H (context L, forecast horizon H) as follows:

1. Let T = Td,i. Uniformly pick a starting index

s ∼ Unif{0, . . . , T − (L+H)}.

2. If the context or the forecast horizon contains fewer than two unique values (which we observe is quite common in some
variables of certain datasets), we reject and resample a different window.

Note that in this process, since even a single variable can be very long in some datasets, we access the variable as a
memory-mapped file and only load the window into the memory, allowing us to support much larger pretrain datasets given
limited compute resources. If 20 consecutive rejections occur, we skip this variable and move on to the next variable.

B.2. Encoder-Only and Encoder-Flat

We explain the architectures of Encoder-Only and Encoder-Flat in more detail. An overview is illustrated in Figure 4.

Each input begins as a univariate time series window sampled according to the procedures described in Section B.1. This
window includes both a context segment and a forecast horizon. Prior to feeding the data into the transformer, we apply
instance normalization to the context window, followed by patching, which divides the context into fixed-length patches.

For the Encoder-Only architecture, we append special [MASK] tokens to represent each patch in the forecast horizon. The
combined sequence of context patches and [MASK] tokens is then fed into a transformer encoder. After processing, we
extract the output embeddings corresponding only to the [MASK] positions. Each of these embeddings is passed through a
linear layer to reconstruct the associated patch in the forecast horizon.

For the Encoder-Flat architecture, we process only the context patches without any [MASK] tokens. All output embeddings
from the transformer are flattened and concatenated into a single vector. A single linear layer is then applied to this flattened
representation to predict the entire forecast horizon in one step.

C. Additional Experiment Results
C.1. Ablation Study of PCA+Linear

We conduct an ablation study on the Darts datasets (Herzen et al., 2022). We compare our full PCA+Linear model against
two ablated variants:

• w/o PCA: raw timesteps are fed directly into the linear head instead of the features extracted by PCA, and

• w/o pretrain: PCA is fitted only on each context window rather than on the larger pretraining dataset.

Table 4 shows that both applying PCA and pretraining it consistently improve performance. PCA is particularly beneficial
for dimension reduction, especially in the Darts datasets where the number of available time steps is very limited. Also, if
we only fit PCA on the context window, PCA cannot reconstruct the original context window very well, causing the overall
model to behave worse than using the raw time steps directly.
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Figure 4: The architectures of Encoder-Only and Encoder-Flat.

Dataset PCA+Linear w/o PCA w/o Pretrain

AirPassengers 32.18 30.78 33.41
AusBeer 16.79 24.11 24.89
GasRateCO2 2.21 2.20 2.21
MonthlyMilk 23.42 24.27 24.72
Sunspots 56.07 61.01 61.17
Wine 3016.00 2882.18 2788.00
Wooly 375.11 478.85 769.41
HeartRate 5.30 5.30 5.31

Arithmetic Mean 0.6144 0.6419 0.6759
Geometric Mean 0.5065 0.5481 0.5895

Table 4: Ablation study of PCA+Linear on the Darts datasets.

C.2. Comparing PCA+Linear against DecOnly

Following llmtime (Nate Gruver & Wilson, 2023), we report the MAE on the last test window of the original test split on the
four ETT datasets in Table 5. The context window has a length of 512, and we evaluate on two forecast horizons of 96 and
192 steps. We see that PCA+Linear is able to outperform models with orders of more weight parameters.

Dataset llmtime(ZS) PatchTST FEDFormer AutoFormer TimesFM(ZS) PCA+Linear
ETTh1 (horizon=96) 0.42 0.41 0.58 0.55 0.45 0.38
ETTh1 (horizon=192) 0.50 0.49 0.64 0.64 0.53 0.43
ETTh2 (horizon=96) 0.33 0.28 0.67 0.65 0.35 0.24
ETTh2 (horizon=192) 0.70 0.68 0.82 0.82 0.62 0.37
ETTm1 (horizon=96) 0.37 0.33 0.41 0.54 0.19 0.32
ETTm1 (horizon=192) 0.71 0.31 0.49 0.46 0.26 0.47
ETTm2 (horizon=96) 0.29 0.23 0.36 0.29 0.24 0.23
ETTm2 (horizon=192) 0.31 0.25 0.25 0.30 0.27 0.33

Number of Wins 0 1 0 0 3 5

Table 5: MAE on the ETT Datasets.

C.3. Comparing PCA+Linear against Moirai

We show the full results on the six ETT, Electricity, and Weather datasets in Table 6. For each setting, we highlight
the minimum context length required by our model in order to outperform Moirai, which requires a context length of

9
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5000 timesteps. If Moirai performs the best across these context lengths, we highlight Moirai instead. We see that the
simple PCA+Linear can perform comparably with Moirai, which has 91 million parameters. Under quite a few settings,
PCA+Linear only needs as few as 1000 historical time steps in order to outperform Moirai.

Figure 5: Plot of MSEs/MAEs over increasing context window lengths, with a forecast horizon of 96, 192, 336 and 720
steps on the ETTh1 dataset. The red line indicates the performances of the Moirai base model with a context length of 5000.

10



550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Are Time Series Foundation Models Ready for Zero-Shot Forecasting?

M
od

el
M

oi
ra

iB
as

e
PC

A
+

L
in

ea
r(

O
ur

s)

C
on

te
xt

W
in

do
w

50
00

84
0

10
00

14
40

21
60

43
20

86
40

D
at

as
et

St
ep

s
M

SE
M

A
E

M
SE

M
A

E
M

SE
M

A
E

M
SE

M
A

E
M

SE
M

A
E

M
SE

M
A

E
M

SE
M

A
E

E
T

T
h1

96
0.

38
4

0.
40

2
0.

40
62

0.
41

72
0.

38
01

0.
40

29
0.

38
45

0.
40

62
0.

38
03

0.
40

46
0.

37
62

0.
40

12
0.

37
00

0.
39

36
E

T
T

h1
19

2
0.

42
5

0.
42

9
0.

44
61

0.
44

05
0.

42
56

0.
43

11
0.

43
15

0.
43

74
0.

42
30

0.
43

24
0.

41
28

0.
42

40
0.

40
82

0.
41

83
E

T
T

h1
33

6
0.

45
6

0.
45

0
0.

46
33

0.
45

92
0.

45
00

0.
45

25
0.

46
33

0.
46

28
0.

45
45

0.
45

66
0.

44
25

0.
44

61
0.

43
75

0.
44

03
E

T
T

h1
72

0
0.

47
0

0.
47

3
0.

44
41

0.
46

74
0.

43
29

0.
45

93
0.

46
16

0.
48

20
0.

45
66

0.
47

82
0.

43
42

0.
45

99
0.

42
85

0.
45

38
E

T
T

h2
96

0.
27

7
0.

32
7

0.
32

23
0.

38
06

0.
33

32
0.

39
61

0.
29

50
0.

36
05

0.
28

71
0.

35
08

0.
27

84
0.

33
53

0.
27

24
0.

33
54

E
T

T
h2

19
2

0.
34

0
0.

37
4

0.
37

24
0.

42
00

0.
42

38
0.

46
00

0.
36

33
0.

41
30

0.
35

29
0.

40
11

0.
33

59
0.

37
70

0.
32

96
0.

37
61

E
T

T
h2

33
6

0.
37

1
0.

40
1

0.
38

93
0.

43
76

0.
45

09
0.

48
21

0.
39

18
0.

43
88

0.
37

58
0.

42
48

0.
35

26
0.

39
65

0.
34

67
0.

39
46

E
T

T
h2

72
0

0.
39

4
0.

42
6

0.
44

73
0.

47
25

0.
50

20
0.

50
91

0.
46

63
0.

48
44

0.
44

03
0.

46
65

0.
41

53
0.

44
08

0.
39

96
0.

43
35

E
T

T
m

1
96

0.
33

5
0.

36
0

0.
31

51
0.

35
21

0.
32

26
0.

35
33

0.
32

94
0.

34
91

0.
31

49
0.

34
26

0.
29

80
0.

33
91

0.
30

58
0.

34
64

E
T

T
m

1
19

2
0.

36
6

0.
37

9
0.

37
51

0.
38

52
0.

37
21

0.
38

44
0.

36
33

0.
37

53
0.

35
65

0.
37

08
0.

33
63

0.
36

34
0.

34
35

0.
37

12
E

T
T

m
1

33
6

0.
39

1
0.

39
4

0.
42

72
0.

41
54

0.
41

71
0.

41
06

0.
40

38
0.

40
71

0.
41

13
0.

40
88

0.
37

47
0.

38
99

0.
38

11
0.

39
68

E
T

T
m

1
72

0
0.

43
4

0.
41

9
0.

56
29

0.
48

23
0.

54
15

0.
47

32
0.

47
77

0.
45

25
0.

49
35

0.
45

92
0.

44
42

0.
43

48
0.

44
58

0.
43

73
E

T
T

m
2

96
0.

19
5

0.
26

9
0.

20
49

0.
28

61
0.

20
04

0.
28

38
0.

18
96

0.
27

55
0.

17
97

0.
26

62
0.

17
48

0.
26

15
0.

16
65

0.
25

36
E

T
T

m
2

19
2

0.
24

7
0.

30
3

0.
29

67
0.

34
09

0.
28

94
0.

33
68

0.
27

61
0.

32
94

0.
25

93
0.

31
87

0.
24

90
0.

31
35

0.
23

20
0.

30
09

E
T

T
m

2
33

6
0.

29
1

0.
33

3
0.

36
23

0.
37

61
0.

35
30

0.
37

13
0.

35
03

0.
37

00
0.

34
23

0.
36

38
0.

34
90

0.
36

85
0.

32
76

0.
35

52
E

T
T

m
2

72
0

0.
35

5
0.

37
7

0.
43

51
0.

42
03

0.
42

55
0.

41
57

0.
41

93
0.

41
26

0.
41

07
0.

40
69

0.
42

16
0.

41
16

0.
41

48
0.

40
63

W
ea

th
er

96
0.

16
7

0.
20

3
0.

19
72

0.
24

76
0.

19
00

0.
23

97
0.

18
40

0.
23

31
0.

17
70

0.
22

72
0.

18
03

0.
23

02
0.

17
86

0.
22

57
W

ea
th

er
19

2
0.

20
9

0.
24

1
0.

24
71

0.
28

63
0.

24
02

0.
27

97
0.

23
43

0.
27

37
0.

22
86

0.
26

87
0.

22
61

0.
26

69
0.

22
35

0.
26

25
W

ea
th

er
33

6
0.

25
6

0.
27

6
0.

30
27

0.
32

38
0.

29
50

0.
31

74
0.

28
88

0.
31

13
0.

28
20

0.
30

60
0.

27
57

0.
30

22
0.

27
22

0.
29

76
W

ea
th

er
72

0
0.

32
1

0.
32

3
0.

36
32

0.
36

52
0.

35
84

0.
36

15
0.

35
49

0.
35

72
0.

34
93

0.
35

38
0.

34
61

0.
35

10
0.

34
32

0.
34

76
E

le
ct

ri
ci

ty
96

0.
15

8
0.

24
8

0.
14

57
0.

24
34

0.
14

55
0.

24
29

0.
14

46
0.

24
22

0.
14

44
0.

24
16

0.
14

45
0.

24
10

0.
14

29
0.

23
94

E
le

ct
ri

ci
ty

19
2

0.
17

4
0.

26
3

0.
16

74
0.

26
31

0.
16

69
0.

26
26

0.
16

64
0.

26
25

0.
16

42
0.

25
96

0.
16

27
0.

25
78

0.
15

97
0.

25
47

E
le

ct
ri

ci
ty

33
6

0.
19

1
0.

27
8

0.
19

26
0.

28
64

0.
19

19
0.

28
58

0.
19

07
0.

28
48

0.
19

14
0.

28
50

0.
18

62
0.

28
02

0.
18

33
0.

27
74

E
le

ct
ri

ci
ty

72
0

0.
22

9
0.

30
7

0.
23

02
0.

31
70

0.
23

06
0.

31
78

0.
23

06
0.

31
85

0.
22

98
0.

31
75

0.
22

96
0.

31
69

0.
22

78
0.

31
49

Ta
bl

e
6:

C
om

pa
ri

so
n

ov
er

di
ff

er
en

tc
on

te
xt

le
ng

th
s

ac
ro

ss
th

e
co

m
m

on
lo

ng
-t

er
m

fo
re

ca
st

in
g

da
ta

se
ts

.F
or

ea
ch

se
tti

ng
,w

e
hi

gh
lig

ht
th

e
m

in
im

um
co

nt
ex

tl
en

gt
h

re
qu

ire
d

by
ou

rm
od

el
in

or
de

rt
o

ou
tp

er
fo

rm
M

oi
ra

i,
w

hi
ch

re
qu

ire
s

50
00

tim
es

te
ps

as
co

nt
ex

t.
If

M
oi

ra
ip

er
fo

rm
s

th
e

be
st

ac
ro

ss
th

es
e

co
nt

ex
tl

en
gt

hs
,w

e
hi

gh
lig

ht
M

oi
ra

ii
ns

te
ad

.

11



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Are Time Series Foundation Models Ready for Zero-Shot Forecasting?

M
od

el
M

oi
ra

i(
91

M
)

Si
ze

1
(1

3.
46

M
)

Si
ze

2
(1

3.
99

M
)

Si
ze

3
(3

6.
38

M
)

Si
ze

4
(4

0.
58

M
)

Si
ze

5
(7

3.
45

M
)

Si
ze

6
(9

2.
36

M
)

D
at

as
et

St
ep

s
M

SE
M

A
E

M
SE

M
A

E
M

SE
M

A
E

M
SE

M
A

E
M

SE
M

A
E

M
SE

M
A

E
M

SE
M

A
E

E
T

T
h1

96
0.

38
4

0.
40

2
0.

37
61

0.
41

02
0.

36
67

0.
40

04
0.

38
19

0.
41

02
0.

36
77

0.
40

13
0.

36
56

0.
40

07
0.

37
58

0.
40

51
E

T
T

h1
19

2
0.

42
5

0.
42

9
0.

41
57

0.
43

72
0.

39
96

0.
42

12
0.

42
12

0.
43

51
0.

39
97

0.
42

25
0.

39
25

0.
41

84
0.

41
04

0.
42

65
E

T
T

h1
33

6
0.

45
6

0.
45

0.
45

01
0.

45
81

0.
42

08
0.

43
31

0.
45

11
0.

45
29

0.
42

11
0.

43
68

0.
40

85
0.

42
84

0.
43

59
0.

44
21

E
T

T
h1

72
0

0.
47

0.
47

3
0.

49
24

0.
49

32
0.

45
67

0.
46

11
0.

49
97

0.
49

37
0.

45
06

0.
46

55
0.

43
52

0.
45

40
0.

48
14

0.
47

74
E

T
T

h2
96

0.
27

7
0.

32
7

0.
30

15
0.

34
96

0.
28

91
0.

34
48

0.
29

22
0.

35
24

0.
27

60
0.

33
67

0.
27

01
0.

33
13

0.
28

20
0.

34
22

E
T

T
h2

19
2

0.
34

0.
37

4
0.

37
65

0.
39

29
0.

35
88

0.
38

89
0.

35
65

0.
39

40
0.

33
61

0.
37

78
0.

32
74

0.
37

07
0.

34
20

0.
38

36
E

T
T

h2
33

6
0.

37
1

0.
40

1
0.

40
87

0.
41

42
0.

39
99

0.
41

44
0.

39
07

0.
41

97
0.

37
96

0.
40

90
0.

36
35

0.
39

67
0.

37
97

0.
41

25
E

T
T

h2
72

0
0.

39
4

0.
42

6
0.

42
16

0.
43

38
0.

41
77

0.
43

77
0.

45
48

0.
46

64
0.

43
09

0.
44

79
0.

39
52

0.
42

26
0.

43
09

0.
44

87
E

T
T

m
1

96
0.

33
5

0.
36

0.
32

21
0.

36
55

0.
32

31
0.

36
39

0.
32

39
0.

36
26

0.
31

32
0.

36
06

0.
31

17
0.

36
02

0.
31

69
0.

36
06

E
T

T
m

1
19

2
0.

36
6

0.
37

9
0.

34
64

0.
38

30
0.

34
80

0.
38

16
0.

34
95

0.
38

08
0.

33
83

0.
37

76
0.

33
61

0.
37

69
0.

34
19

0.
37

80
E

T
T

m
1

33
6

0.
39

1
0.

39
4

0.
36

57
0.

39
76

0.
36

75
0.

39
61

0.
36

65
0.

39
38

0.
35

64
0.

39
06

0.
35

40
0.

39
01

0.
35

98
0.

39
20

E
T

T
m

1
72

0
0.

43
4

0.
41

9
0.

39
77

0.
42

11
0.

39
78

0.
41

70
0.

39
40

0.
41

36
0.

38
76

0.
41

23
0.

38
11

0.
40

83
0.

38
83

0.
41

30
E

T
T

m
2

96
0.

19
5

0.
26

9
0.

18
99

0.
28

24
0.

19
49

0.
28

77
0.

19
66

0.
28

78
0.

19
45

0.
28

71
0.

19
13

0.
28

34
0.

19
04

0.
28

44
E

T
T

m
2

19
2

0.
24

7
0.

30
3

0.
24

42
0.

32
05

0.
24

86
0.

32
50

0.
25

38
0.

32
70

0.
25

08
0.

32
50

0.
24

41
0.

32
00

0.
24

66
0.

32
41

E
T

T
m

2
33

6
0.

29
1

0.
33

3
0.

29
27

0.
35

36
0.

29
23

0.
35

55
0.

30
45

0.
36

03
0.

30
08

0.
35

80
0.

28
92

0.
35

00
0.

29
55

0.
35

77
E

T
T

m
2

72
0

0.
35

5
0.

37
7

0.
36

93
0.

40
31

0.
36

43
0.

40
28

0.
38

40
0.

40
93

0.
37

70
0.

40
63

0.
35

54
0.

39
31

0.
37

47
0.

40
89

W
ea

th
er

96
0.

16
7

0.
20

3
0.

17
47

0.
23

34
0.

17
89

0.
23

56
0.

17
61

0.
23

32
0.

16
95

0.
22

60
0.

16
81

0.
22

34
0.

16
79

0.
22

31
W

ea
th

er
19

2
0.

20
9

0.
24

1
0.

23
00

0.
27

98
0.

23
76

0.
28

38
0.

23
13

0.
27

93
0.

22
34

0.
27

26
0.

22
20

0.
27

03
0.

22
06

0.
26

94
W

ea
th

er
33

6
0.

25
6

0.
27

6
0.

29
10

0.
32

09
0.

30
27

0.
32

59
0.

29
15

0.
31

91
0.

28
53

0.
31

47
0.

28
59

0.
31

27
0.

28
14

0.
31

13
W

ea
th

er
72

0
0.

32
1

0.
32

3
0.

38
16

0.
37

96
0.

40
10

0.
38

77
0.

38
86

0.
37

86
0.

37
82

0.
37

29
0.

37
77

0.
36

86
0.

37
58

0.
36

96
E

le
ct

ri
ci

ty
96

0.
15

8
0.

24
8

0.
13

78
0.

23
66

0.
13

79
0.

23
55

0.
14

33
0.

24
37

0.
14

18
0.

24
12

0.
14

22
0.

24
16

0.
14

38
0.

24
39

E
le

ct
ri

ci
ty

19
2

0.
17

4
0.

26
3

0.
15

52
0.

25
24

0.
15

51
0.

25
13

0.
16

11
0.

25
99

0.
15

90
0.

25
65

0.
15

85
0.

25
58

0.
16

11
0.

25
92

E
le

ct
ri

ci
ty

33
6

0.
19

1
0.

27
8

0.
17

35
0.

27
02

0.
17

36
0.

26
92

0.
17

89
0.

27
72

0.
17

67
0.

27
32

0.
17

61
0.

27
27

0.
17

88
0.

27
61

E
le

ct
ri

ci
ty

72
0

0.
22

9
0.

30
7

0.
21

57
0.

30
58

0.
21

74
0.

30
59

0.
22

10
0.

31
25

0.
21

99
0.

30
84

0.
21

79
0.

30
79

0.
22

12
0.

31
10

Tr
af

fic
96

N
/A

N
/A

0.
37

86
0.

27
37

0.
37

67
0.

27
00

0.
38

17
0.

27
67

0.
38

41
0.

27
95

0.
38

81
0.

28
10

0.
38

64
0.

27
95

Tr
af

fic
19

2
N

/A
N

/A
0.

39
40

0.
27

94
0.

39
28

0.
27

59
0.

39
82

0.
28

32
0.

40
00

0.
28

56
0.

40
14

0.
28

45
0.

40
19

0.
28

52
Tr

af
fic

33
6

N
/A

N
/A

0.
40

86
0.

28
56

0.
40

77
0.

28
23

0.
41

40
0.

29
04

0.
41

42
0.

29
18

0.
41

39
0.

28
90

0.
41

56
0.

29
05

Tr
af

fic
72

0
N

/A
N

/A
0.

44
64

0.
30

48
0.

44
47

0.
30

16
0.

45
24

0.
31

06
0.

45
04

0.
31

09
0.

44
79

0.
30

67
0.

45
05

0.
30

80

Ta
bl

e
7:

Pe
rf

or
m

an
ce

co
m

pa
ri

so
n

of
va

ri
ou

s
si

ze
s

of
E

nc
od

er
-F

la
ta

ga
in

st
th

e
M

oi
ra

iB
as

e
m

od
el

on
th

e
O

O
D

da
ta

se
ts

.M
et

ri
cs

fo
rT

ra
ffi

c
ar

e
no

tp
ro

vi
de

d
fo

r
M

oi
ra

is
in

ce
m

an
y

si
m

ila
rt

ra
ffi

c
da

ta
se

ts
ar

e
us

ed
du

rin
g

pr
et

ra
in

in
g.

W
e

al
so

hi
gh

lig
ht

th
e

nu
m

be
ro

fp
ar

am
et

er
s

in
ea

ch
m

od
el

in
pa

re
nt

he
si

s.
O

ur
im

pl
em

en
ta

tio
n

is
co

m
pa

ra
bl

e
to

th
e

pe
rf

or
m

an
ce

of
M

oi
ra

iu
nd

er
m

os
ts

et
tin

gs
,s

om
et

im
es

ev
en

w
ith

a
m

uc
h

sm
al

le
rm

od
el

si
ze

.

12



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Are Time Series Foundation Models Ready for Zero-Shot Forecasting?

M
od

el
M

oi
ra

i(
91

M
)

Si
ze

1
(1

.6
0M

)
Si

ze
2

(2
.1

3M
)

Si
ze

3
(1

2.
65

M
)

Si
ze

4
(1

6.
86

M
)

Si
ze

5
(3

7.
87

M
)

Si
ze

6
(5

6.
78

M
)

D
at

as
et

St
ep

s
M

SE
M

A
E

M
SE

M
A

E
M

SE
M

A
E

M
SE

M
A

E
M

SE
M

A
E

M
SE

M
A

E
M

SE
M

A
E

E
T

T
h1

96
0.

38
4

0.
40

2
0.

36
81

0.
40

29
0.

37
32

0.
40

87
0.

38
10

0.
40

59
0.

37
57

0.
40

35
0.

37
46

0.
39

88
0.

37
31

0.
39

91
E

T
T

h1
19

2
0.

42
5

0.
42

9
0.

40
27

0.
42

55
0.

40
81

0.
43

12
0.

42
12

0.
43

00
0.

41
60

0.
42

86
0.

41
98

0.
42

69
0.

41
40

0.
42

29
E

T
T

h1
33

6
0.

45
6

0.
45

0
0.

42
60

0.
43

91
0.

43
28

0.
44

59
0.

45
10

0.
44

78
0.

44
78

0.
44

68
0.

45
36

0.
44

63
0.

43
84

0.
43

45
E

T
T

h1
72

0
0.

47
0

0.
47

3
0.

44
59

0.
46

11
0.

46
92

0.
47

46
0.

49
37

0.
48

14
0.

48
54

0.
47

49
0.

50
23

0.
48

32
0.

46
92

0.
45

89

E
T

T
h2

96
0.

27
7

0.
32

7
0.

28
75

0.
33

96
0.

27
84

0.
33

46
0.

28
29

0.
33

70
0.

27
41

0.
33

28
0.

28
86

0.
33

97
0.

27
43

0.
33

57
E

T
T

h2
19

2
0.

34
0

0.
37

4
0.

35
04

0.
37

85
0.

33
95

0.
37

36
0.

35
32

0.
38

06
0.

34
06

0.
37

47
0.

36
52

0.
38

82
0.

33
65

0.
37

85
E

T
T

h2
33

6
0.

37
1

0.
40

1
0.

38
30

0.
40

22
0.

37
74

0.
40

02
0.

39
97

0.
41

20
0.

38
52

0.
40

50
0.

42
15

0.
42

48
0.

37
34

0.
40

45
E

T
T

h2
72

0
0.

39
4

0.
42

6
0.

41
23

0.
43

18
0.

40
83

0.
42

81
0.

42
85

0.
43

98
0.

43
82

0.
44

07
0.

48
05

0.
46

68
0.

41
64

0.
43

78

E
T

T
m

1
96

0.
33

5
0.

36
0

0.
33

81
0.

36
30

0.
33

45
0.

36
26

0.
33

77
0.

36
37

0.
33

23
0.

36
17

0.
34

71
0.

36
53

0.
33

44
0.

36
15

E
T

T
m

1
19

2
0.

36
6

0.
37

9
0.

35
71

0.
37

74
0.

35
97

0.
37

98
0.

36
13

0.
38

17
0.

36
06

0.
38

14
0.

37
55

0.
38

46
0.

36
06

0.
38

07
E

T
T

m
1

33
6

0.
39

1
0.

39
4

0.
37

05
0.

38
85

0.
37

88
0.

39
32

0.
37

67
0.

39
45

0.
37

22
0.

39
34

0.
39

04
0.

39
75

0.
37

54
0.

39
34

E
T

T
m

1
72

0
0.

43
4

0.
41

9
0.

39
97

0.
40

68
0.

41
18

0.
41

41
0.

40
09

0.
41

27
0.

39
09

0.
40

79
0.

41
09

0.
41

41
0.

39
83

0.
41

00

E
T

T
m

2
96

0.
19

5
0.

26
9

0.
18

43
0.

27
57

0.
19

44
0.

28
46

0.
19

36
0.

28
22

0.
18

28
0.

27
19

0.
19

04
0.

27
97

0.
18

61
0.

27
43

E
T

T
m

2
19

2
0.

24
7

0.
30

3
0.

23
54

0.
31

22
0.

25
03

0.
32

41
0.

25
12

0.
32

23
0.

23
61

0.
31

03
0.

25
09

0.
32

06
0.

24
07

0.
31

34
E

T
T

m
2

33
6

0.
29

1
0.

33
3

0.
28

17
0.

34
45

0.
29

90
0.

35
75

0.
29

95
0.

35
63

0.
28

13
0.

34
18

0.
30

38
0.

35
61

0.
28

66
0.

34
56

E
T

T
m

2
72

0
0.

35
5

0.
37

7
0.

35
94

0.
39

49
0.

36
99

0.
40

54
0.

37
47

0.
40

56
0.

35
47

0.
39

03
0.

38
01

0.
40

77
0.

35
84

0.
39

36

W
ea

th
er

96
0.

16
7

0.
20

3
0.

17
58

0.
22

99
0.

17
25

0.
22

52
0.

17
07

0.
22

43
0.

16
98

0.
22

12
0.

17
32

0.
22

51
0.

16
42

0.
21

87
W

ea
th

er
19

2
0.

20
9

0.
24

1
0.

23
18

0.
27

72
0.

22
66

0.
27

16
0.

22
68

0.
27

30
0.

22
93

0.
27

18
0.

23
41

0.
27

79
0.

22
05

0.
26

80
W

ea
th

er
33

6
0.

25
6

0.
27

6
0.

29
26

0.
31

80
0.

28
47

0.
31

04
0.

29
48

0.
31

69
0.

29
50

0.
31

60
0.

30
02

0.
32

32
0.

28
46

0.
31

07
W

ea
th

er
72

0
0.

32
1

0.
32

3
0.

36
43

0.
36

56
0.

36
53

0.
36

21
0.

40
34

0.
37

89
0.

38
82

0.
37

46
0.

39
67

0.
38

16
0.

36
94

0.
36

38

E
le

ct
ri

ci
ty

96
0.

15
8

0.
24

8
0.

14
26

0.
24

40
0.

14
06

0.
24

14
0.

14
03

0.
24

02
0.

14
04

0.
23

94
0.

13
85

0.
23

68
0.

14
12

0.
24

18
E

le
ct

ri
ci

ty
19

2
0.

17
4

0.
26

3
0.

15
90

0.
25

82
0.

15
71

0.
25

62
0.

15
74

0.
25

52
0.

15
70

0.
25

41
0.

15
61

0.
25

28
0.

15
79

0.
25

69
E

le
ct

ri
ci

ty
33

6
0.

19
1

0.
27

8
0.

17
57

0.
27

42
0.

17
40

0.
27

26
0.

17
48

0.
27

15
0.

17
36

0.
27

02
0.

17
42

0.
27

03
0.

17
40

0.
27

26
E

le
ct

ri
ci

ty
72

0
0.

22
9

0.
30

7
0.

21
57

0.
30

76
0.

21
50

0.
30

69
0.

21
63

0.
30

53
0.

21
27

0.
30

38
0.

21
62

0.
30

58
0.

21
22

0.
30

51

Tr
af

fic
96

N
/A

N
/A

0.
38

08
0.

27
36

0.
38

24
0.

27
41

0.
38

00
0.

27
30

0.
37

71
0.

26
75

0.
37

43
0.

26
78

0.
38

05
0.

27
34

Tr
af

fic
19

2
N

/A
N

/A
0.

39
62

0.
27

87
0.

39
81

0.
27

97
0.

39
71

0.
27

97
0.

39
30

0.
27

37
0.

39
12

0.
27

45
0.

39
59

0.
27

88
Tr

af
fic

33
6

N
/A

N
/A

0.
40

88
0.

28
36

0.
41

19
0.

28
58

0.
41

20
0.

28
62

0.
40

81
0.

28
07

0.
40

58
0.

28
07

0.
41

01
0.

28
50

Tr
af

fic
72

0
N

/A
N

/A
0.

44
42

0.
30

24
0.

44
74

0.
30

42
0.

44
84

0.
30

57
0.

44
38

0.
29

98
0.

44
35

0.
30

05
0.

44
52

0.
30

33

Ta
bl

e
8:

Pe
rf

or
m

an
ce

co
m

pa
ri

so
n

of
va

ri
ou

s
si

ze
s

of
E

nc
od

er
-O

nl
y

ag
ai

ns
tt

he
M

oi
ra

iB
as

e
m

od
el

on
th

e
O

O
D

da
ta

se
ts

.M
et

ri
cs

fo
rT

ra
ffi

c
ar

e
no

tp
ro

vi
de

d
fo

r
M

oi
ra

is
in

ce
m

an
y

si
m

ila
rt

ra
ffi

c
da

ta
se

ts
ar

e
us

ed
du

rin
g

pr
et

ra
in

in
g.

W
e

al
so

hi
gh

lig
ht

th
e

nu
m

be
ro

fp
ar

am
et

er
s

in
ea

ch
m

od
el

in
pa

re
nt

he
si

s.
O

ur
im

pl
em

en
ta

tio
n

is
co

m
pa

ra
bl

e
to

th
e

pe
rf

or
m

an
ce

of
M

oi
ra

iu
nd

er
m

os
ts

et
tin

gs
,s

om
et

im
es

ev
en

w
ith

a
m

uc
h

sm
al

le
rm

od
el

si
ze

.

13


