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ABSTRACT

Model fairness is becoming important in class-incremental learning for Trustwor-
thy AI. While accuracy has been a central focus in class-incremental learning,
fairness has been relatively understudied. However, naively using all the samples
of the current task for training results in unfair catastrophic forgetting for certain
sensitive groups including classes. We theoretically analyze that forgetting occurs
if the average gradient vector of the current task data is in an “opposite direction”
compared to the average gradient vector of a sensitive group, which means their
inner products are negative. We then propose a fair class-incremental learning
framework that adjusts the training weights of current task samples to change
the direction of the average gradient vector and thus reduce the forgetting of un-
derperforming groups and achieve fairness. For various group fairness measures,
we formulate optimization problems to minimize the overall losses of sensitive
groups while minimizing the disparities among them. We also show the problems
can be solved with linear programming and propose an efficient Fairness-aware
Sample Weighting (FSW) algorithm. Experiments show that FSW achieves better
accuracy-fairness tradeoff results than state-of-the-art approaches on real datasets.

1 INTRODUCTION

Trustworthy Al is becoming critical in various continual learning applications including autonomous
vehicles, personalized recommendations, healthcare monitoring, and more (Liu et al., 2021} Kaur et al.|
2023)). In particular, it is important to improve model fairness along with accuracy when developing
models incrementally in dynamic environments. Unfair model predictions have the potential to
undermine the trust and safety in human-related automated systems, especially as observed frequently
in the context of continual learning. There are largely three continual learning scenarios (van de Ven &
Tolias, |2019): task-incremental, domain-incremental, and class-incremental learning where the task,
domain, or class may change over time, respectively. In this paper, we focus on class-incremental
learning, where the objective is to incrementally learn new classes as they appear.

The main challenge of class-incremental learning is to learn new classes of data, while not forgetting
previously-learned classes (Belouadah et al., 2021} [Lange et al., [2022)). If we simply fine-tune the
model on the new classes, the model will gradually forget about the previously-learned classes. This
phenomenon called catastrophic forgetting (McCloskey & Cohenl |1989; Kirkpatrick et al.,[2016) may
easily occur in real-world scenarios where the model needs to continuously learn new classes. We
cannot stop learning new classes to avoid this forgetting either. Instead, we need to have a balance
between learning new information and retaining previously-learned knowledge, which is called the
stability-plasticity dilemma (Abraham & Robins, |2005; Mermillod et al., [2013; |Kim & Hanl 2023).

In this paper, we solve the problem of fair class-incremental learning where the goal is to satisfy var-
ious notions of fairness among sensitive groups including classes in addition to classifying accurately.
In some scenarios, the class itself can be considered a sensitive attribute, especially in classification
tasks where a model produces biased predictions toward a specific group of classes (Truong et al.|
2023). In continual learning, unfair forgetting may occur if the current task data has similar character-
istics to previous data, but belongs to different sensitive groups including classes, which negatively
affects the performance on the previous data during training. Despite the importance of the problem,
the existing research (Chowdhury & Chaturvedil 2023} [Truong et al.,2023) is still nascent and has
limitations in terms of technique or scope (see Sec.[2). In comparison, we support fairness more
generally in class-incremental learning by satisfying various notions of group fairness for sensitive
groups including classes.



Under review as a conference paper at ICLR 2025

O by

—6

o~ . < )
><72 ‘ﬁ -:-.
—4 o . o4

Class 0 (old)
Class 1 (old)
Class 2 (new)

Accuracy

=== Class 0
Class 1
== Class 2

-8

—6-4-20 2 4 6 81012

X1

(@)

2
Task

(b)

95

92

== Class 0
Class 1
== Class 2

p)
Task

(d)

Figure 1: (a) A synthetic dataset for class-incremental learning. (b) After training on Classes 0 and 1,
training on Class 2 results in unfair forgetting for Class 1 only. (c) The reason is that the average
gradient vector of Class 2, gs, is more than 90° apart from Class 1’s g;, which means the model is
being trained in an opposite direction. Our method adjusts g3 to g5 through sample weighting to be
closer to g1, but not too far from the original gs. (d) As a result, the unfair forgetting is mitigated
while minimally sacrificing accuracy for Class 2.

We demonstrate how unfair forgetting can occur on a synthetic dataset with two attributes (z1, z2),
and one true label y as shown in Fig. We sample data for each class from three different
normal distributions: (x1, z2)|ly = 0 ~ N ([—2; —2], [1;1]), (z1,z2)|y = 1 ~ N ([2;4], [1;1]), and
(x1,22)|y = 2 ~ N([4; 2], [1;1]). Note that each data distribution can also be defined as a sensitive
group with a sensitive attribute z. To simulate class-incremental learning, we introduce data for Class
0 (blue) and Class 1 (orange) in Task 1, followed by Class 2 (green) data in Task 2, where Class 2’s
data is similar to Class 1’s data. We observe that this setting frequently occurs in real datasets, where
different classes of data exhibit similar features or characteristics, as shown in Sec. We assume a
data replay setting where only a small amount of previous data from Classes 0 and 1 are stored and
utilized together when training on Class 2 data. After training the model for Task 1, we observe how
the model accuracies on the three classes change when training for Task 2 in Fig. As the accuracy
on Class 2 improves, there is a catastrophic forgetting of Class 1 only, which leads to unfairness.

To analytically understand the unfair forgetting, we project the average gradient vector for each class
data on a 2-dimensional space in Fig. Here gg, g1, and go represent the average gradient vectors
of the samples of Classes 0, 1, and 2, respectively. We observe that g is 127° apart from g;, but
88° from g¢g, which means that the inner products (g2, ¢1) and (gs, go) are negative and close to
0, respectively. In Sec. we theoretically show that a negative inner product between average
gradient vectors of current and previous data results in higher loss for the previous data as the model
is being updated in an opposite direction and identify a sufficient condition for unfair forgetting. As a
result, Class 1’s accuracy decreases, while Class 0’s accuracy remains stable.

Our solution to mitigate unfair forgetting is to adjust the average gradient vector of the current task
data by weighting its samples. The light-green vectors in Fig.[Ic|are the gradient vectors of individual
samples from Class 2, and by weighting them we can adjust g, to g5 to make the inner product
with g; less negative. At the same time, we do not want g3 to be too different from g» and lose
accuracy. In Sec. we formalize this idea using the weighted average gradient vector of the
current task data. We then optimize the sample weights such that unfair forgetting and accuracy
reduction over sensitive groups including classes are both minimized. We show this optimization
can be solved with linear programming and propose our efficient Fairness-aware Sample Weighting
(FSW) algorithm. Fig.|ld|shows how using FSW mitigates the unfair forgetting between Classes 0
and 1 without harming Class 2’s accuracy much. Our framework supports the group fairness measures
equal error rate (Venkatasubramanian, [2019), equalized odds (Hardt et al.,|2016), and demographic
parity (Feldman et al.,|2015) and can be potentially extended to other measures.

In our experiments, we show that FSW achieves better fairness and competitive accuracy compared
to state-of-the-art baselines on various image, text, and tabular datasets. The benefits come from
assigning different training weights to the current task samples with accuracy and fairness in mind.

Summary of Contributions: (1) We theoretically analyze how unfair catastrophic forgetting can
occur in class-incremental learning; (2) We formulate optimization problems for mitigating the
unfairness for various group fairness measures and propose an efficient fairness-aware sample
weighting algorithm, FSW; (3) We demonstrate how FSW outperforms state-of-the-art baselines in
terms of fairness with comparable accuracy on various datasets.
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2 RELATED WORK

Class-incremental learning is a challenging type of continual learning where a model continuously
learns new tasks, each composed of new disjoint classes, and the goal is to minimize catastrophic
forgetting (Mai et al., 2022 Masana et al., 2023)). Data replay techniques (Lopez-Paz & Ranzato|
2017;Chaudhry et al., 2019b)) store a small portion of previous data in a buffer to utilize for training
and is widely used with other techniques including knowledge distillation, model rectification, and
dynamic networks (see more details in Sec. [C). Simple buffer sample selection methods such as
random or herding-based approaches (Rebuffi et al.,2017) are also commonly used as well. There
are also more advanced gradient-based sample selection techniques like GSS (Aljundi et al., |2019)
and OCS (Yoon et al.,[2022)) that manage buffer data to have samples with diverse and representative
gradient vectors. All these works do not consider fairness and simply assume that the entire incoming
data is used for model training, which may result in unfair forgetting as we show in our experiments.

Model fairness research mitigates bias by ensuring that a model’s performance is equitable across
different sensitive groups, thereby preventing discrimination based on race, gender, age, or other
sensitive attributes (Mehrabi et al.,[2022). Existing model fairness techniques can be categorized as
pre-processing, in-processing, and post-processing (see more details in Sec. [C). In addition, there are
other techniques that assign adaptive weights for samples to improve fairness (Chai & Wang] 2022
Jung et al., [2023)). However, most of these techniques assume that the training data is given all at
once, which may not be realistic. There are techniques for fairness-aware active learning (Anahideh
et al.|[2022; Pang et al., [2024; |Tae et al.,[2024), in which the training data evolves with the acquisition
of samples. However, these techniques store all labeled data and use them for training, which is
impractical in continual learning settings.

A recent study addresses model fairness in class-incremental learning where there is a risk of dispro-
portionately forgetting previously-learned sensitive groups including classes, leading to unfairness
across different groups. A recent study (Hel 2024) addresses the dual imbalance problem involving
both inter-task and intra-task imbalance by reweighting gradients. However, the bias is not only
caused by the data imbalance, but also by the inherent or acquired characteristics of data (Mehrabi
et al., 2021 |Angwin et al., 2022). CLAD (Xu et al., 2024)) first discovers imbalanced forgetting
between learned classes caused by conflicts in representation and proposes a class-aware disentangle-
ment technique to improve accuracy. Among the fairness-aware techniques, FaIRL (Chowdhury &
Chaturvedi, |2023) supports group fairness measures like demographic parity for class-incremental
tasks, but proposes a representation learning method that does not directly optimize the given fairness
measure and thus has limitations in improving fairness as we show in experiments. FairCL (Truong
et al., 2023) also addresses fairness in a continual learning setup, but only focuses on resolving the
imbalanced class distribution based on the number of pixels of each class in an image for semantic
segmentation tasks. In comparison, we support fairness more generally in class-incremental learning
by satisfying multiple notions of group fairness for sensitive groups including classes.

3 FRAMEWORK

In this section, we first theoretically analyze unfair forgetting using gradient vectors of sensitive
groups and the current task data. Next, we propose sample weighting to mitigate unfairness by
adjusting the average gradient vector of the current task data and provide an efficient algorithm. We
use the following notations for class-incremental learning and fairness.

Notations In class-incremental learning, a model incrementally learns new current task data along
with previous buffer data using data replay. Suppose we train a model to incrementally learn L tasks
{Ty,Ty,..., Ty} over time, and there are N classes in each task as C7t = {C?’,Cgl, ceey C’]:Gl}
with no overlapping classes between different tasks (i.e., CTr N CTi2 = () if I; # I5). After learning
the [*" task T}, we would like the model to remember all (I — 1) - N previous task classes and an
additional N current task classes. We assume the buffer has a fixed size of M samples. For L tasks,
we allocate m = M /L samples of buffer data per task. If each task consists of N classes, then we
allocate m/N = M/(L - N) samples of buffer data per class (Chaudhry et al., [2019a; Mirzadeh
et al., 2020; Chaudhry et al., 2021). Each task T; = {d; = (X;,y;) }¥_, is composed of feature-label
pairs where a feature X; € R” and a true label y; € R°. We also use M; = {d; = (X;,y;)}-, to

represent the buffer data for each previous [* task 7;. We assume the buffer data per task is small,
i.e., m < k (Chaudhry et al.,[2019b).
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When defining fairness for class-incremental learning, we utilize sensitive groups including classes.
According to the fairness literature, sensitive groups are divided by sensitive attributes like gender and
race. For example, if the sensitive attribute is gender, the sensitive groups can be Male and Female.
The classes of class-incremental learning can also be viewed as sensitive groups where the sensitive
attribute is the class. Since we would like to support any sensitive group in a class-incremental setting,
we use the following unifying notations: (1) if the sensitive groups are classes, then they form the set
Gy ={(X,y) € D:y=y,y € Y} where D is a dataset, y is a class attribute, and Y is the set of
classes; (2) if we are using sensitive attributes in addition to classes, we can further divide the classes
into the set G, . = {(X,y,z) € D:y=y,z=z,y € Y,z € Z} where z is a sensitive attribute,
and Z is the set of sensitive attribute values.

3.1 UNFAIR FORGETTING

Catastrophic forgetting occurs when a model adapts to a new task and exhibits a drastic decrease in
performance on previously-learned tasks (Parisi et al.,2019). We take inspiration from GEM (Lopez+
Paz & Ranzato, [2017)), which theoretically analyzes catastrophic forgetting by utilizing the angle
between gradient vectors of data. If the inner products of gradient vectors for previous tasks and the
current task are negative (i.e., 90° < angle < 180°), the loss of previous tasks increases after learning
the current task. Catastrophic forgetting thus occurs when the gradient vectors of different tasks
point in opposite directions. Intuitively, the opposite gradient vectors update the model parameters in
conflicting directions, leading to forgetting while learning.

Using the notion of catastrophic forgetting, we propose theoretical results for unfair forgetting:

Lemma 1. Denote G as a sensitive group of data composed of features X and true labels y. Also,
denote fé_l as a previous model and fy as the updated model after training on the current task Tj.
Let { be any differentiable standard loss function (e.g., cross-entropy loss), and n be a learning rate.
Then, the loss of the sensitive group of data after training with a current task sample d; € T} is
approximated as follows:

U fo, G) = L(f5~ 1, G) = nVol(fy~ ", G) T Vel(fy~", i), €0

where [ (fo, G) is the approximated average loss between model predictions fy(X) and true labels y,
whereas £( féfl, Q) is the exact average loss, Vol( féfl, Q) is the average gradient vector for the
samples in the group G, and Vgl( fflfl, d;) is the gradient vector for a sample d;, each with respect
to the previous model fé_l.

The proof is in Sec.[A.I] We employ first-order Taylor series approximation for the proof, which
is widely used in the continual learning literature, by assuming that the loss function is locally
linear in small optimization steps and considering the first-order term as the cause of catastrophic
forgetting (Lopez-Paz & Ranzatol 2017} |Aljundi et al., 2019} |Lee et al., 2019). We empirically find
that the approximation error is large when a new task begins because new samples with unseen classes
are introduced. However, the error gradually becomes quite small as the number of epochs increases
while training a model for the task, as shown in Sec.[B.2]

To define fairness in class-incremental learning with the approximated loss, we adopt the definition
of approximate fairness that considers a model to be fair if it has approximately the same loss on
the positive class, independent of the group membership (Donini et al.,2018]). In this paper, we use
the cross-entropy loss for training and compute fairness measures based on the disparity between
approximated cross-entropy losses, which are derived from Lemma [T|using gradients. The following
proposition shows how using the cross-entropy loss can effectively approximate common group
fairness metrics such as equalized odds and demographic parity (see Sec.[A.2]for more details).

Proposition 1. (From|Roh et al.|(2021}12023)); Shen et al.|(2022))) Using cross-entropy loss to measure
fairness is empirically verified to provide reasonable proxies for common group fairness metrics.

Using Lemma [I] and Proposition [T} the following theorem suggests a sufficient condition for unfair
forgetting. Intuitively, if a training sample’s gradient is in an opposite direction to the average
gradient of an underperforming group, but not for an overperforming group, the training causes more
unfairness between the two groups.
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Theorem 1. Let ¢ be the cross-entropy loss and we denote G1 and G2 as the overperforming
and underperforming sensitive groups of data, and d; as a training sample that satisfy the fol-
lowing conditions: £(fy",G1) < L(f5~', Go) while Vol(fi G1)"Vel(fit,di) > 0 and
Vol (fi,G2) TVel(fi, d;) < 0. Then |€(fo, G1) — £(fo, Go)| > |€(fy,G1) — £(f5, G2)|-

The proof is in Sec.[A.T] The result shows that the disparity of loss between the two groups could
become larger after training on the current task sample, which leads to worse fairness. This theorem
can be extended to when we have a set of current task samples 7; = {d; = (X;,v;)}F_, where
we can replace Vo/(fi™!, d;) with \lel Y a.er Vol \~1 d;). If the average gradient vector of the
current task data satisfies the derived sufficient condition, training with all of the current task samples
using equal weights could thus result in unfair catastrophic forgetting.

3.2 SAMPLE WEIGHTING FOR UNFAIRNESS MITIGATION

To mitigate unfairness, we propose sample weighting as a way to suppress samples that negatively
impact fairness and promote samples that help. Finding the weights is not trivial as there can be many
sensitive groups, and even a single sample may improve the fairness of a pair of groups, but worsen
the fairness for another pair of groups. Given training weights w; € [0, 1] il for the samples in the
current task data, the approximated loss of a group G after training is now:

U(fo, G) = L(f5 . G) —nVel(fy ', G) (| 7 > wivel(fi! d)) @)

d; €Ty

where w/ is a training weight for the current task sample d;. We then formulate an optimiza-
tion problem to find the weights such that both loss and unfairness are minimized. Here we
define Y as the set of all classes and Y. as the set of classes in the current task. We rep-
resent accuracy as the average loss over the current task data and minimize the cost function

Lace = U(fs,Gy,) = \Tlclzerc U(fo,Gy) = mzyEYc,zEZ {(fs,Gy..). For fairness, the

cost function L .4, depends on the group fairness measure as we explain below. We then minimize
Ltair + ALgcc where A is a hyperparameter that balances fairness and accuracy.

Equal Error Rate (EER) This measure (Venkatasubramanian, 2019) is defined as Pr(y # y1|y =
y1) = Pr(y # yaly = y2) for y1,y2 € Y, where y is the predicted class and y is the true class.
We define the cost function for EER as the average absolute difference between the loss of a class
and the average loss of all classes, following the definition of group fairness metrics: Lgpr =

T Lyev 10(fo,Gy) — g(f@, Gvy)|. The entire optimization problem is:

min o V] Z |6(fo, Gy) — U(fo, Gy)| +/\‘ Y, > Ufo:Gy), (©)
yeY yeYe
where £(fg,G,) = €(f571,Gy) —nVel(fi,G,) ( > wivel(fy! d))
d €T,

Equalized Odds (EOQ) This measure (Hardt et al.,2016) is satisfied when sensitive groups have
the same accuracy, i.e., £(fg, Gy 2, ) = £(fo, Gy 2,) fory € Y and 21, 2z, € Z. We design the cost

function for EO as Lgo = W Y oyev.aez (U fo, Gy,2) — (fg,Gy)| to compute the EO disparity,
and the entire optimization problem is:

1 ~ ~ -
N -—— E G z —E , )\ @ 7Gy72 ) 4

yeY,z€Z yeY,,z€Z

where 0(fp, Gy.) = L(f),Gy2) —nVel(f)1, Gy ) ( > wivel(fi! d))

d €T

Demographic Parity (DP) This measure (Feldman et al., 2015) is satisfied by minimizing the
difference in positive prediction rates between sensitive groups. Here, we extend the notion of
demographic parity to the multi-class setting (Alabdulmohsin et al.l 2022; Denis et al., [2023)), i.e.,
Pr(y = ylz = z1) = Pr(y = yl|z = 22) fory € Y and 21,22 € Z. In the binary setting of
Y = Z = {0, 1}, a sufficient condition for demographic parity is suggested using the loss multiplied
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Algorithm 1 Fair Class-Incremental Learn- Algorithm 2 Fairness-aware Sample Weighting
ing (FSW)
Input: Current task data 7T}, previous buffer data  Input: Current task data 7; = {du,...,dx}, previous
M = {Mi,...,M;_1}, previous model f,~*, buffer data M = Uyev_v, :ezGy =, previous model
loss function /, learning rate 7, hyperparameters féfl, loss function ¢, hyperparameters {c, A}, fairness
{a, A, 7}, fairness measure F measure F’

Output: Optimal training weights w;" for current task data

b =[0(fs ", Gra), .. L(fo  Gryyz)]
ga = [Vel(fy ", Gra),....,Vel(f3 " Gy pz)]

ga = [Vol(fi " d1), ..., Vol(fi ", di)]
switch ' do

case EER: w; « Solve Eq.

1: for each epoch do
20w =FSW(Ti, M, fi ' £,a, \, F)
3: GJeurr = ﬁ d%:Tl Wl*zveg(féilf d7)

4: Gprev = VQK( é_l,M)

5: 91 = 6171 - n(gcur'r + Tgpre'u)
6: M, = Buffer Sample Selection(1;)
7 M=MUM,

case EO: w; < Solve Eq.
case DP: w; « Solve Eq.
return w;

PN ER D

by the ratios of sensitive groups (Roh et al.,[2021). By extending the setting to multi-class, we derive a
sufficient condition for demographic parity as follows: =L é( fo,Gy2y) = =2224(fy, G, ,) Where

my. =iy, =y,zi =z} andm, , = [{i :z; = z}| The proof is in Sec. Let us define
U(fo,Gy,z) = Z’;‘::E(fg,Gyﬁz) and 0'(fp,Gy) = IT%I Z‘HZ' L Zy = é(fg, v, zn)- We then define
the cost function for DP using the sufficient condition as Lpp = \YllZ\ ZyEY,zEZ 0 (fo,Gy,z) —

'(fg,G,)|. The entire optimization problem is:
1

n——— 0 (fo,Gy,z) — 0 (fo, Gy)| + Ao U(f9,Gy.2), 5)
w; |Y||Z| yEYZJEZ| ( Y, ) ( )| |Y ||Z| Eéez ( Yy )
where £(fg,Gy..) = L(fo ', Gy.) — nVel(fi, Gy ) <| 7 > wivel(fy! d)>
d; €Ty

To find the optimal sample weights for the current task data considering both model accuracy and
fairness, we first transform the defined optimization problems of Eq. 3] [4] and [5]into the form of
linear programming (LP) problems.

Theorem 2. The fairness-aware optimization problems (Eq. andd)) can be transformed into the
form of linear programming (LP) problems.

The loss of each group can be approximated as a linear function, as described in Lemmal(l] This
implies that the optimization problems, consisting of the loss of each group, can likewise be trans-
formed into LP problems. A comprehensive proof of this assertion can be found in Sec. We then
solve the LP problems using linear optimization solvers (e.g., CPLEX (Cplex} 2009)).

3.3 ALGORITHM

We describe the overall process of fair class-incremental learning in Alg. |1} For the recently arrived
current task data, we first perform fairness-aware sample weighting (FSW) to assign training weights
that can help learn new knowledge of the current task while retaining accurate and fair memories of
previous tasks (Step 2). Next, we train the model using the current task data with its corresponding
weights and stored buffer data of previous tasks (Steps 3-5), where 7 is a learning rate, and 7 is a hy-
perparameter to balance between them during training. The sample weights are computed once at the
beginning of each epoch, and they are applied to all batches for computational efficiency (Killamsetty:
et al.,|2021ba). This procedure is repeated until the model converges (Steps 1-5). Before moving
on to the next task, we employ buffer sample selection to store a small data subset for the current
task (Steps 6-7). Buffer sample selection can also be done with consideration for fairness, but our
experimental observations indicate that selecting representative and diverse samples for the buffer,
as previous studies have shown, results in better accuracy and also fairness performance. We thus
employ a simple random sampling technique for the buffer sample selection in our framework.

Alg.[2] shows the fairness-aware sample weighting (FSW) algorithm for the current task data. We
first divide both the previous buffer data and the current task data into groups based on each class
and sensitive attribute. Next, we compute the average loss and gradient vectors for each group
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Table 1: Experimental settings for the five datasets. If the class is used as the sensitive attribute, the
number of classes is the same as the number of sensitive groups.

Dataset Size #Features #Classes #Tasks #Sensitive groups
MNIST 60K 28x%28 10 5 10
FMNIST 60K 2828 10 5 10
Biased MNIST 60K 3x28x%28 10 5 2
DRUG 1.3K 12 6 3 2
BiasBios 253K 128x768 25 5 2

(Steps 1-2), and individual gradient vectors for the current task data (Step 3). To compute gradient
vectors, we use the last layer approximation, which only considers the gradients of the model’s last
layer, that is efficient and known to be reasonable (Katharopoulos & Fleuret, 2018} |Ash et al., 2020;
Mirzasoleiman et al.,2020). We then solve linear programming to find the optimal sample weights
for a user-defined target fairness measure such as EER (Step 5), EO (Step 6), and DP (Step 7). We
use CPLEX as a linear optimization solver that employs an efficient simplex-based algorithm. Since
the gradient norm of the current task data is significantly larger than that of the buffer data, we utilize
normalized gradients to update the loss of each group and replace the learning rate parameter n with
a hyperparameter « in the equations. Finally, we return the weights for the current task samples to be
used during training (Step 8).

Training with FSW theoretically guarantees model convergence under the assumptions that the
training loss is Lipschitz continuous and strongly convex, and that a proper learning rate is
used (Killamsetty et al., |2021a; |(Chai & Wang] 2022; [Lu et al} 2020). The computational com-
plexity of FSW is quadratic to the number of current task samples, as CPLEX generally has quadratic
complexity with respect to the number of variables when solving LP problems (Bixbyl, 2002)). How-
ever, our empirical results show that for about ten thousand current task samples, the time to solve an
LP problem is a few seconds, which leads to a few minutes of overall runtime for MNIST datasets
(see Sec. [B.3]for details). Since we focus on continual offline training of large batches or separate
tasks, rather than online learning, the overhead is manageable enough to deploy updated models in
real-world applications. If the task size becomes too large, clustering similar samples and assigning
weights to the clusters, rather than samples, could be a solution to reduce the computational overhead.

4 EXPERIMENTS

We implement FSW using Python and PyTorch. All evaluations are performed on separate test sets
and repeated with five random seeds. We write the average and standard deviation of performance
results and run experiments on Intel Xeon Silver 4114 CPUs and NVIDIA TITAN RTX GPUs.

Metrics We evaluate all methods using accuracy and fairness metrics as in the fair continual
learning literature (Chowdhury & Chaturvedil, 2023} Truong et al., 2023).

* Average Accuracy: We denote A; = % Ef&:1 a;; as the accuracy at the It task, where aj; is the
accuracy of the t*" task after learning the I*" task. We measure accuracy for each task and then

take the average across all tasks to produce the final average accuracy, denoted as A; = % Zlel Ay
where L represents the total number of tasks.

» Average Fairness: We measure fairness for each task and then take the average across all tasks to
produce the final average fairness. We use one of three measures for per-task fairness: (1) Equal
Error Rate (EER) disparity, which computes the average difference in test error rates among classes:
ﬁ > yey | Pr(y # yly = y) —Pr(§ # y)|; (2) Equalized Odds (EO) disparity, which computes the
average difference in accuracy among sensitive groups for all classes: W > yeY, z€Z | Pr(y =
yly = y,z = z) — Pr(y = yly = y)|; and (3) Demographic Parity (DP) disparity, which
computes the average difference in class prediction ratios among sensitive groups for all classes:
W > yev.zez | Pr(§ =ylz = z) — Pr(§ = y)|. For all measures, low disparity is desirable.

Datasets We use a total of five datasets as shown in Table [I] We first utilize commonly used
benchmarks for continual image classification tasks, which include MNIST and Fashion-MNIST
(FMNIST). Here we regard the class as the sensitive attribute and evaluate fairness with EER disparity.
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‘We also use multi-class fairness benchmark datasets that have sensitive attributes (Xu et al., [2020;
Putzel & Leel |2022} (Churamani et al., 2023} |Denis et al., [2023)): Biased MNIST, Drug Consumption
(DRUG), and BiasBios. We consider background color as the sensitive attribute for Biased MNIST,
and gender for DRUG and BiasBios, respectively. We use EO disparity and DP disparity to evaluate
fairness on these datasets. We also consider using standard benchmark datasets in the fairness field,
but they are unsuitable for class-incremental learning experiments because either there are only two
classes, or it is difficult to compute fairness (see Sec. [B.4]for more details). For datasets with a total
of C classes, we divide the datasets into L sequences of tasks where each task consists of C/L classes,
and assume that task boundaries are available (van de Ven & Tolias| |[2019)).

Models Following the experimental setups of Chaudhry et al.|(2019a)); Mirzadeh et al.| (2020), we
use a two-layer MLP with each 256 neurons for the MNIST, FMNIST, Biased MNIST, and DRUG
datasets. For BiasBios, we use a pre-trained BERT language model (Devlin et al., 2019; Xian et al.,
2023). We employ single-head evaluation where a final layer of the model is shared for all the
tasks (Farquhar & Gall, [2018;/Chaudhry et al., 2018)). For training, we use an SGD optimizer with
momentum 0.9 for all the experiments. We set appropriate learning rates and epochs for each dataset,
with detailed experimental settings provided in Sec.

Baselines In the continual learning literature (Aljundi et al., 2019;|Yoon et al., 2022), it is natural
for all the baselines to be continual learning methods. In particular, we consider FalRL (Chowdhury &
Chaturvedi, |2023)) to be the first fairness paper for continual learning. We thus compare our algorithm
with the following baselines categorized into four types:

» Naive methods: Joint Training assumes access to all the data of previous classes for training and
thus has an upper-bound performance; Fine Tuning trains a model using only new classes of data
without access to previous data and thus has a lower-bound performance.

* State-of-the-art methods: iCaRL (Rebufti et al.||2017) performs herding-based buffer selection
and representation learning using additional knowledge distillation loss; WA (Zhao et al., 2020) is
a model rectification method designed to correct the bias in the last fully-connected layer of the
model. WA uses weight aligning techniques to align the norms of the weight vectors over classes;
CLAD (Xu et al.| 2024) is a representation learning method that disentangles the representation
interference between old and new classes.

* Sample selection methods: GSS (Aljundi et al.||2019) and OCS (Yoon et al., [2022) are gradient-
based sample selection methods. GSS selects a buffer with diverse gradients of samples; OCS uses
gradient-based similarity, diversity, and affinity scores to rank and select samples for both current
and buffer data.

» Fairness-aware methods: Fa/RL (Chowdhury & Chaturvedil |2023) performs fair representation
learning by controlling the rate-distortion function of representations. FairCL (Truong et al., [2023))
addresses fairness in semantic segmentation tasks arising from the imbalanced class distribution of
pixels, but we consider this problem to be unrelated from ours to add the method as a baseline.

Hyperparameters For our buffer storage, we evenly divide the buffer by the sensitive groups in-
cluding classes. We store 32 samples per sensitive group for all experiments. For the hyperparameters
a, A, and 7 used in our algorithms, we perform cross-validation with a sequential grid search to find
their optimal values one by one while freezing the other parameters. See Sec. for more details.

4.1 ACCURACY AND FAIRNESS RESULTS

We compare FSW against other baselines on the five datasets with respect to accuracy and corre-
sponding fairness metrics as shown in Table[2] The results for DP disparity and BiasBios dataset are
similar and shown in Sec. We mark the best and second-best results with bold and underline,
respectively, excluding the upper-bound results of Joint Training and the lower-bound results of Fine
Tuning. For any method, we store a fixed number of samples per task in a buffer, which may not be
identical to its original setup, but necessary for a fair comparison. The detailed accuracy-fairness
tradeoff and sequential performance results are shown in Sec. and Sec. respectively.

Overall, FSW achieves better accuracy-fairness tradeoff results compared to the baselines for all
the datasets. For the DRUG dataset, although FSW does not achieve the best performance in either
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Table 2: Accuracy and fairness results on the four datasets with respect to (1) EER disparity, where
class is considered the sensitive attribute for the MNIST and FMNIST datasets, and (2) EO disparity,
where background color and gender are the sensitive attributes for the Biased MNIST and DRUG
datasets, respectively. We compare FSW with four types of baselines: naive (Joint Training and Fine
Tuning), state-of-the-art (iCaRL, WA, and CLAD), sample selection (GSS and OCS), and fairness-
aware (FalRL) methods.

Methods | MNIST FMNIST Biased MNIST DRUG
| Acc. EER Disp. Acc. EER Disp. Acc. EO Disp. Acc. EO Disp.

Joint Training | .970+.004 .014+.006 .895+010 .035+£.004 .945+002 .053+002 .441+015 .179+052
Fine Tuning | .453+000 3234000 .450+.000 .324+.000 .448+.001 .010+.003 .3574.009 .125+.034
iCaRL 9341004 .037+003 .862+.002 .053+003 .818+o011 .347+o025 .458+.014 2164056
WA 9114007 .052+.006 .809+.005 .088+.003 .447+001 .018+.002 .358+009 .112+.038
CLAD 835+015  .099+.015 .775+018 .115+019 .872+001 .195+t020 .410+026 .114+.043
GSS 886+.007 .080+.009 .730+.013 .150+.011 8194000 .313+.021 .433+011 .177+.045
OCS 901+003 .061+004 .785+012 .092+007 .833+o012 .303+024 .429+007 .169+.026
FalRL \ A458+.008  .306+.004 .455+005 .316+.001  .759+.008 .408+.018 .318+.006 .015+.009
FSW ‘ 924+ 003 .032+.004 .825+.006 .037+.007 .909+t.003 .060+004 .429+020 .138+.037
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Figure 2: Distribution of sample weights for EO in sequential tasks of the Biased MNIST dataset.

accuracy or fairness, FSW shows the best fairness results among the baselines with similar accuracies
(e.g., CLAD, GSS, and OCS) and thus has the best accuracy-fairness tradeoff. We observe that
FSW sometimes improves model accuracy while enhancing the performance of underperforming
groups for fairness. The state-of-the-art method, iCaRL, generally achieves high accuracy with low
EER disparity results. However, since iCaRL uses a nearest-mean-of-exemplars approach for its
classification model, the predictions are significantly affected by sensitive attribute values, resulting in
high disparities for EO. Although WA also performs well, the method sometimes increases the model
weights for the current task classes, which leads to more forgetting of previous tasks and unstable
results. The closest work to FSW is CLAD, which disentangles the representations of new classes
and a fixed proportion of conflicting old classes to mitigate imbalanced forgetting across classes.
However, the proportion of conflicts may vary by task in practice, limiting CLAD’s ability to achieve
group fairness. The two sample selection methods GSS and OCS perform worse. While storing
diverse and representative samples in the buffer, these methods sometimes result in an imbalance in
the number of buffer samples across sensitive groups. The fairness-aware method FalRL leverages
an adversarial debiasing framework combined with a rate-distortion function, but the method loses
significant accuracy because training the feature encoder and discriminator together is unstable. In
comparison, FSW explicitly utilizes approximated loss and fairness measures to adjust the training
weights for the current task samples, which leads to much better model accuracy and fairness.

4.2 SAMPLE WEIGHTING ANALYSIS

We next analyze how our FSW algorithm weights the current task samples at each task using the
Biased MNIST dataset results shown in Fig. 2] The results for the other datasets are similar and
shown in Sec.[B.§] As the acquired sample weights may change with epochs during training, we
show the average weight distribution of sensitive groups over all epochs. Note that the acquired
sample weights are close to 0 or 1 in practice, but they are not strictly binary (0 or 1). Since FSW is
not applied to the first task, where the model is trained with only the current task data, we present
results starting from the second task. Unlike naive methods that use all the current task data with
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Table 3: Ablation study on the MNIST, FMNIST, Biased MNIST, and DRUG datasets with respect to
EER and EO disparity when FSW is used or not.

Methods | MNIST FMNIST Biased MNIST DRUG
‘ Acc. EER Disp. Acc. EER Disp. Acc. EO Disp. Acc. EO Disp.

W/o FSW | 921+004 .040+005 .836+.006 .048+005 .911+.003 .063+to002 .423+013 .162+.034
FSW 924+.003  .032+.004 .825+006 .037+.007 .909+.003 .060+.003 .429+.020 .138+.037

Table 4: Accuracy and fairness results when combining fair post-processing technique (e-fair) with
continual learning methods (iCaRL, CLAD, and FSW) with respect to DP disparity.

Methods | Biased MNIST DRUG BiasBios

| Acc. DP Disp. Acc. DP Disp. Acc. DP Disp.
iCaRL .818+.011 .012+.001 458+ .014 .098+.020 .828+.002 .022+ 000
CLAD 872+011 .013+.001 410+.026 .069+.019 785+.004 .022+ 001
FSW .889+.006 .007 +.002 405+.013 .043+.004 797 +.003 .022+ 000
iCaRL — e-fair .805+.014 .007 +.002 460+.015 .035+.013 .828+.001 .016+.000
CLAD - e-fair .868+.015 .006+.002 A11+.003 .030=+.010 759+ 049 .017+.000
FSW — e-fair .883+.007 .005+.001 .403+.010 .020+.004 .796+.003 .016+.000

equal training weights, FSW usually adjusts different training weights between sensitive groups as
shown in Fig.[2] For the Biased MNIST dataset, FSW assigns higher weights on average to the
underperforming group (Sensitive group 1 in Fig.[2) compared to the overperforming group (Sensitive
group 0 in Fig.[2). We also observe that FSW assigns a weight of zero to a considerable number of
samples, indicating that relatively less data is used for training. This weighting approach provides an
additional advantage in enabling efficient model training while retaining accuracy and fairness.

4.3 ABLATION STUDY

To show the effectiveness of FSW on accuracy and fairness, we perform an ablation study comparing
the performance of using FSW versus using all the current task samples for training with equal
weights. Table [3|shows the results for the four datasets, while the results for DP disparity and the
BiasBios dataset are similar and shown in Sec.[B.9] As a result, applying sample weighting to the
current task data is necessary to improve fairness while maintaining comparable accuracy.

4.4 INTEGRATING FSW WITH A FAIR POST-PROCESSING METHOD

In this section, we emphasize the extensibility of FSW by showing how it can be combined with a
post-processing method to further improve fairness. We integrate FSW and other existing continual
learning methods (iCaRL, CLAD, and OCS) with the state-of-the-art fair post-processing technique in
multi-class tasks, e-fair (Denis et al.}, 2023)), as shown in Table [4] and Table[T1]in Sec. Since
e-fair only supports DP, we only show DP results using the Biased MNIST, DRUG, and BiasBios
datasets. Overall, combining the fair post-processing technique can further improve fairness without
degrading accuracy much. In addition, FSW still shows a better accuracy-fairness tradeoff with the
combination of the fair post-processing technique, compared to existing continual learning methods.

5 CONCLUSION

We proposed FSW, a fairness-aware sample weighting algorithm for fair class-incremental learning.
Unlike conventional class-incremental learning, we showed how training with all the current task
data using equal weights may result in unfair catastrophic forgetting. We theoretically showed that
the average gradient vector of the current task data should not solely be in the opposite direction of
the average gradient vector of a sensitive group to avoid unfair forgetting. We then proposed FSW
as a solution to adjust the average gradient vector of the current task data such that unfairness is
mitigated without harming accuracy much. FSW supports various group fairness measures and is
efficient as it solves the optimization by converting it into a linear program. In our experiments, FSW
outperformed other baselines in terms of fairness while having comparable accuracy across various
datasets with different domains.
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Ethics Statement We anticipate our research will have a positive societal impact by improving
fairness in continual learning. However, improving fairness may result in a decrease in accuracy,
although we try to minimize the tradeoff. In addition, choosing the right fairness measure can be
challenging depending on the application and social context.

Reproducibility Statement To ensure the reproducibility of our work, we provide detailed expla-
nations of all the theoretical and experimental results throughout the appendix and supplementary
material. For the theoretical results, we include complete proofs of all our theorems in the appendix.
For the experimental results, we present a thorough description of the datasets used, as well as
the experimental settings of model architectures and hyperparameters, in the appendix. In addi-
tion, we submit the source code necessary for reproducing our experimental results as a part of the
supplementary material.
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A APPENDIX — THEORY

A.1 THEORETICAL ANALYSIS OF UNFAIRNESS IN CLASS-INCREMENTAL LEARNING

Continuing from Sec.[3.1] we prove the lemma on the updated loss of a group of data after learning
the current task data.

Lemma. Denote G as a sensitive group of data composed of features X and true labels y. Also,
denote féfl as a previous model and fy as the updated model after training on the current task T;.
Let ¢ be any differentiable standard loss function (e.g., cross-entropy loss), and 1 be a learning rate.
Then, the loss of the sensitive group of data after training with a current task sample d; € T} is
approximated as follows:

U(fo,G) = L(fy 1 G) = nVel(fi, Q)T Vet( i, dy),

where { (fo, G) is the approximated average loss between model predictions fo(X) and true labels y,
whereas £( fé_l, G) is the exact average loss, Vgl( fé_l, G) is the average gradient vector for the
samples in the group G, and V of( é_l, d;) is the gradient vector for a sample d;, each with respect
to the previous model féfl.

Proof. We update the model using gradient descent with the current task sample d; € T} and learning
rate 7 as follows:

6= 6" —nVol(fi,dy).

Using the Taylor series approximation,

U(fo, G) = L(F1,G) + Vol(f1.G)T (0 — 0
=L f5 " G) + Val(fy " G T (=0 Val(fo ", dy))
J4

(i1, G) = Vel (f 1 G) T Vel(fi7Y, dy).

If we update the model using all the current task data 7}, the equation is formulated as 1 (fo,G) =
CfG) = nVel(fi, G)TVel(fi=1, T)). Therefore, if the average gradient vectors of the sensi-
tive group and the current task data have opposite directions, i.e., V£ (fé_l7 G)"Vel( fé_l, 7)) <0,
learning the current task data increases the loss of the sensitive group data and finally leads to
catastrophic forgetting. O

We next derive a sufficient condition for unfair forgetting.

Theorem. Let { be the cross-entropy loss and we denote Gi and Go as the overperform-
ing and underperforming groups of data, and d; as a training sample that satisfy the fol-
lowing conditions: ﬁ(féfl,Gl) < é(féfl,Gg) while Vef(fé*l,Gl)TVgé(féfl,di) > 0 and
Vol(fy " Ga) TVal(fy ", di) < 0. Then |{(fo,G1) — U(fo,G2)| > [6(f3~", G1) — L(fy ", Ga)l.

Proof. Using the derived equation in the lemma above £(fp,G) = ((f)1,G) —
nVeé(fé_l, G)TVQE(fé_l, d;), we compute the disparity of losses between the two groups G

and G2 after the model update as follows:
|0(fo, Gr) = Ufo, G2)| = |(€(f~H, Gr) = Vol (fy~ ", G1) TVal(fy di))—
(0(fy~" Ga) = nVol(fy ", G2) 'Vol(fy ", di))]
= |05, Gr) — LSy ", Ga))—
N(Vol(fg " G1) T Vol(fg™",di) = Vol(fy™, G2) "Vol(fy™",di))l.
Since £(f51,G1) < L(fi ', Gy), it leads to £(f5 ', G1) — €(f) ', G2) < 0. Next, the two

assumptions of Vol(f5~ 1, G1)TVel(fit, d;) > 0and Vel(fi1, G2) TVel(fi~t, d;) < 0 make
—n(Val(fi, Gr) TVel(fyt di) — Vel (fi1, Ga) TVl(fi,d;)) < 0. Since the two terms in
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the absolute value equation are both negative,

|g(f97 Gl) - g(fay G2)| = |€( é_la Gl) - é( é_la G2)|+
| = n(Vel(fi 1, G1) T Vel(fit di) — Vol (fi,Ga) TVel(fi71, dy))|
> 0(fy " Gr) = U(fyt, Ga)l.

We finally have |£( fp, G1) — £(fa, Go)| > |€(fy™*,G1) — €(f)*, G2)|, which implies that fairness
deteriorates after training on the current task data. O

A.2 FROM CROSS-ENTROPY LOSS TO GROUP FAIRNESS METRICS

Continuing from Sec. [3.I] we explain how we can approximate the group fairness metrics using
cross-entropy loss. Existing works (Shen et al., 2022} [Roh et al.l 2021} 2023) empirically veri-
fied that using other functions like cross-entropy loss can provide reasonable proxies for common
group fairness metrics such as equalized odds (EO) and demographic parity (DP). In addition,
we theoretically describe how minimizing the cost function for EO using cross-entropy loss (i.e.,
Lgo = W > yev.zez [U(fo, Gy,2) — €(fo, Gy)| where £ s a cross-entropy loss) leads to ensuring
EO. (2022) theoretically and empirically showed that using cross-entropy loss instead of
the 0-1 loss (i.e., 1(y # ¥) where 1(+) is an indicator function, which is equivalent to the probability
of correct prediction) can still capture EO in binary classification. We now prove how applying the
cross-entropy loss for EO can be extended to multi-class classification as follows:

Let m,, . be the size of a sensitive group (i.e., m, , := [{i : y; = y,z; = z}|) and Y be a set of all
classes. Let yg be the one-hot encoding vector of y,. Similarly, ¥, is a predicted label and 93

denotes a probability distribution for each label of the sample 7. Then, the cross-entropy loss for a
sensitive group G, . can be transformed as follows:

1 My, z [Y|

D (Dv7 - 10857))

Z =1 j=1

E(f@a Gy,Z) = -

My, 2

R A

m
Y2 i1

Since y¢ is equivalent to p(y, = y) and we are measuring a loss for the sensitive group (y =y, z = ),
U(fo,Gy,.) = —=2=",log(p(§;)) is an unbiased estimator of —log p(y|y = y,z = z). Likewise,

Ufy,Gy) is an unbiased estimator of — log p(y]y = y) and our cost function becomes equivalent
p(ly=y) ; pQly=y)  _ snlies vV

to |log Gh=y2=7) | Since Gh=yz=2) — 1 for all y, z implies Y 1L Z|Y, we conclude that

minimizing the cost function for EO can satisfy the equalized odds.

We next perform experiments to evaluate how well the cost function for EO approximates EO
disparity (i.e., W Y yevaez | Pr(y =yly =y,z = z) — Pr(y = y|y = y)|) on the Biased MNIST
dataset as shown in Fig. 3] Although the scales of the two metrics are different, the simultaneous
movement of these two trends suggests that our cost function is effective in promoting equalized odds
satisfaction.
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Figure 3: Comparison of EO disparity and cost function for EO during training on the Biased MNIST
dataset. We train a model for 15 epochs at each task.

A.3 DERIVATION OF A SUFFICIENT CONDITION FOR DEMOGRAPHIC PARITY IN THE
MULTI-CLASS SETTING

Continuing from Sec.[3.2} we derive a sufficient condition for satisfying demographic parity in the
multi-class setting.

Proposition. In the multi-class setting, :fby: Ufo, Gy ) = %6(@, Gy, z,) Wwhere my, , = |{i :
Vi =Y,z =z} and m, , = |{i : z; = z}| fory € Yand 21,20 € Z can serve as a sufficient

condition for demographic parity.

Proof. In the multi-class setting, we can extend the definition of demographic parity as Pr(y = y|z =
z1) = Pr(y = ylz = 22) fory € Y and z1, 29 € Z. The term Pr(y = y|z = z) can be decomposed
as follows: Pr(y = ylz = 2) =Pr(y = y,y = ylz = 2) + >_, _, Pr(y = y,y = yulz = 2).
Without loss of generality, we set z; = 0 and 22 = 1. Then the definition of demographic parity in
the multi-class setting now becomes

Pr(§ =y, y=ylz=0)+ > Pr(§ =y,y = ynlz =0)

YnFY

=Pr(§=y,y=ylz=1)+ > Pr=yy=yalz=1).
YnFY

The term Pr(y = y,y = y|z = 0) can be represented with the 0-1 loss as follows:

Pr(y=y,y=y9,2=0)

Pry=vy=sk=0= Pr(z = 0)
_Pr=yly=92=0)Pr(y=y,2=0)
Pr(z =0)
1 .
~m Z (1 —1(y; # 9:))
*,0 1y =vy,2;=0

Similarly, Pr(y = y,y = yn|z = 0) for y,, # y can be transformed as follows:

. Pry=y,y=yn,z=0
R
_Pr@=yly=yn,2=0)Pr(y = yn,2=0)
Pr(z =0)
1
=— Y Ly #9)

*,0 .
7 I =Yn,2;=0
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By applying the same technique to Pr(y = y,y = y|z = 1) and Pr(y = y,y = yn|z = 1), we have
the 0-1 loss-based definition of demographic parity:

mio S A-1wi# i)+ Y mio S Ly # )

iy =y,2;=0 1Y AY I =Yi,25=0
1 . 1 .
= S A-1wi A9+ Y, - > Uy #9)-
*1 Ly =Y,z; =1 Y FY *51 JiYi=Yi,z;=1

Since the 0-1 loss is not differentiable, it is not suitable to approximate the updated loss using gradients
as in Eq. (1] We thus approximate the 0-1 loss to a standard loss function ¢ (e.g., cross-entropy loss),

mto > U(fo,d; Z — Y Uferdy)

i1y;=y,2;=0 i yﬁéy 0 ;. Y =Yi,2;=0
1
= m E f07 E E E(f97dj)7
1.
iy =y,zi=1 i yﬁéy *1 JiYj=yi,z;=1

where £( fg,d;) is the loss between the model prediction fy(d;) and the true label y;. By replacing

Zle =y,z;=2 (f97 ) My, (f97 )
TS (b0, Gyl DD Ty, Gy0) =

mij(_e(anGy,l))"‘ > my“ ((fo, Gy, 1)

LY FY *,0 iyiy *,1
To satisfy the constraint for all y € Y, the Corresponding terms on the left-hand side and the right-hand
side of the equation should be equal, i.e., -2 cU(fo, Gyo) = my‘i £(f9,Gy,1). In general, we derive
a sufficient condition for demographic panty as T E(fg, Yo ) = :Zy 22 E(fg, v,22)- O

A.4 LP FORMULATION OF OUR FAIRNESS-AWARE OPTIMIZATION PROBLEMS

Continuing from Sec.[3.2] we prove that minimizing the sum of absolute values with linear terms can
be transformed into a linear programming form.

Lemma. The following optimization problem can be reformulated into a linear programming form.
Note that in the following equation, y and 7 refer to arbitrary variables, not to the label or sensitive
attribute, respectively.

min Z lyil + zi
i=1
s.t. yi:aifb;rx, zi:cifd?x
ai,ci,yi,zieR, bi7di€RmX1 VZE{I,,’/L}
x € [0,1]™*1,
Proof. The transformation for minimizing the sum of absolute values was introduced in [Ferguson &
Sargent| (1958); McCarl & Spreen| (2021); |Asghari et al.|(2022). Note that considering the additional

affine term does not affect the flow of the proof. We first substitute y; for yf — 1y, where both y;r
and y,;  are nonnegative. Then, the optimization problem becomes

n
min 3" o~ 1+ 5
i=1
st oyt -y =ai—b/x, zm=c-d/x, y -y =y
vy, €RY, ay,c,vi, 2 €R, b;,d; € R™' Vie {1,...,n}
x € [0,1]™*1,

This problem is still nonlinear. However, the absolute value terms can be simplified when either ;"

or y, equals to zero (i.e., yj' y; = 0), as the consequent absolute value reduces to zero plus the other
term. Then, the absolute value term can be written as the sum of two variables,

i — vl =l +ly | =y +y; if yiy7 =0
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By using the assumption, the formulation becomes

n
m)znZy;" +y; +2z
i=1
sty -y =a;i—-b/x, z=c¢-d/x, yf -y =y, vy y; =0

y;r,y; €R+, ai,ci7yi,zi€R7 bi,diERm’Xl Vi€{17...,n}

x € [0,1]m*
with the underlined condition added. However, this condition can be dropped. Assume there exist yz+
and y; , which do not satisfy y;"y;” = 0. When y;” > y;~ > 0, there exists a better solution (y;" —y;,
0) instead of (yi+ , Y; ), which satisfies all the conditions, but has a smaller objective function value
y — vy, +0+4 2 <yl +y; + 2. Forthe case of y; > y;7 > 0, a solution (0, y;” — y;") works
as the same manner. Thus, the minimization automatically leads to yf y; = 0, and the underlined

nonlinear constraint becomes unnecessary. Consequently, the final formulation becomes the linear
problem as follows:

n
. + —_
m)gnZyi +y, +2
i=1
S.t. yj—y;:ai—b;rx, zi:ci—d;r)g y;r—y;:yi
vy €RT, aj e,y z €R, bidi e R™Y Vie {1,...,n}
x € [0, 1]"”1.
O

By applying this lemma, we next prove the transformation of the defined fairness-aware optimization
problems in Eq. 3| 4] and[5]to the form of linear programming.

Theorem. The fairness-aware optimization problems (Eq.[3| 4| and[5) can be transformed into the
form of linear programming (LP) problems.

Proof. For every update of the model, the corresponding loss of each group can be approximated
linearly in the same way as in Sec. U(fo,G) = L(fi 1, G) —nVol(fi 1, G)TVel(fi 1, T).
With a technique of sample weighting for the current task data, Vé( féfl, T;) can be changed as
ﬁ dodiem wiVel(, é_lv d;) where w! represents a training weight for the current task sample d;.

Thus, £( fg, G) can be rewritten as follows:

~ _ B 1 ; B
. 6) = 1057, 6) =¥t 6) (o 3 wivattsl o)
‘n| d;, €T}
= WG = Vel G [ e Vol ] | wi
=aqg — bgw,
where ag = K(fé_l,G) and bg = \Tnzl [ V@K(féf%di) ]Tveﬁ(fé_l,G) are a
constant and a vector with constants, respectively, and w := w} is a variable where w; € [0,1].
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Case 1. If target fairness measure is EER (Lyqir = LEER),

L + Mace = 1o m S0 Gy - (fe,GY>|+A|Y| > UG

yeY yeYe
‘Y| Z Gy a(,\_, — (bG bG‘{) W| + )\| ol Z bgyw)
yeY ¢ yeY,

Case 2. If target fairness measure is EO (Lyq;r = LEo),

LEO + )\Lacc = L Z |Z(f97GyaZ) - g(f@, )| + )\|Y HZ| Z E fe’ Yz )

‘YHZ| yeY,z€7Z yeY,,2€Z
1
= <=— Y l(ag,.—aq,) —(bg,.—bc,) W+
‘YHZ| yeY,z€Z
1 T
AW Z (aGy,z — bGy‘ZW).
y€EY,,z€EZ

Case 3. If target fairness measure is DP (Ltq;r = Lpp),

1 - -
Lpp + ALace = 757777 Z |£l(f07Gy,Z)_£/(f07 )|+/\\YHZ| Z Ef‘g’ Y,z

i yeY,zeZ yeY,,zez
1 T
= ¥ " l(ag,. —ag,) — (bg, . — b ) wl+
yeY,2€7Z
1
D ST
|Yc||Z| yeY ZGZ(aGyYZ Gy~zw)’
where o, = {206, .. 0g, = T ft2ac,., B, , = FE2b6, . b, = X Tk,
= ' ' 2€Z ’

Since ag and b are composed of constant values, each equation above can be reformulated to a
linear programming form by applying the above lemma. O

B APPENDIX — EXPERIMENTS

B.1 T-SNE RESULTS FOR REAL DATASETS

Continuing from Sec. [T} we provide t-SNE results for real datasets to show that data overlapping
between different classes also occurs in real scenarios, similar to the synthetic dataset results depicted
in Fig. [Ta] Using t-SNE, we project the high-dimensional data of the MNIST, FMNIST, Biased
MNIST, and DRUG datasets into a lower-dimensional 2D space with z; and z2, as shown in Fig. E}
Since BiasBios is a text dataset that requires pre-trained embeddings to represent the data, we do not
include the t-SNE results for it. In the MNIST dataset, the images with labels of 3 (red), 5 (brown),
and 8 (yellow) exhibit similar characteristics and overlap, but belong to different classes. As another
example, in the FMNIST dataset, the images of the classes ‘Sandal’ (brown), ‘Sneaker’ (gray), and
‘Ankel boot’ (sky-blue) also have similar characteristics and overlap.

B.2 APPROXIMATION ERROR OF TAYLOR SERIES

Continuing from Sec. 3.1} we provide empirical approximation errors between true losses and
approximated losses derived from first-order Taylor series on the MNIST and Biased MNIST datasets
as shown in Fig.[5] For each task, we train the model for 5 epochs and 15 epochs on the MNIST
and Biased MNIST datasets, respectively. The approximation error is large when a new task begins
because new samples with unseen classes are introduced. However, the error gradually decreases as
the number of epochs increases while training a model for the task.
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Figure 4: t-SNE results for the MNIST, FMNIST, Biased MNIST, and DRUG datasets.
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Figure 5: Absolute errors between true losses and approximated losses derived from first-order Taylor
series while training a model.
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B.3 COMPUTATIONAL COMPLEXITY AND RUNTIME RESULTS OF FSW
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Figure 6: Runtime results of solv- Figure 7: Overall runtime results of our framework for all tasks in
ing a single LP problem in FSW three experimental settings: MNIST-EER, Biased MNIST-EO,
using CPLEX for the MNIST. and Biased MNIST-DP.

Continuing from Sec. [3.3] we provide computational complexity and overall runtime results of FSW
using the MNIST and Biased MNIST datasets as shown in Fig.[6and Fig.[7] Our empirical results
show that for about ten thousand current-task samples, the time to solve an LP problem is a few
seconds for the MNIST dataset as shown in Fig.[6] By applying the log-log regression model to the
results in Fig. [6] the computational complexity of solving LP at each epoch is O(|T}|*%42) where
|T;| denotes the number of current task samples. We note that this complexity can be quadratic in
the worst case. If the task size becomes too large, we believe that clustering similar samples and
assigning weights to the clusters, rather than samples, could be a solution to reduce the computational
overhead. In Fig.[/| we compute the overall runtime of FSW divided into three components: Gradient
Computation, CPLEX Computation, and Model Training.

B.4 DATASET DESCRIPTIONS

Continuing from Sec. @} we provide more details of the two datasets using the class as the sen-
sitive attribute and the three datasets with separate sensitive attributes. We also consider using
standard benchmark datasets in the fairness field, but they are unsuitable for class-incremental learn-
ing experiments because either there are only two classes (e.g., COMPAS (Angwin et al.| [2016]),
AdultCensus (Kohavi, |1996), and Jigsaw (cjadams| [2019)), or it is difficult to compute fairness (e.g.,
for CelebA (Liu et al., [2015)), each person is a class).

* MNIST (LeCun et al., [1998): The MNIST dataset is a standard benchmark for evaluating the
performance of machine learning models, especially in image classification tasks. The dataset
is a collection of grayscale images of handwritten digits ranging from O to 9, each measuring
28 pixels in width and 28 pixels in height. The dataset consists of 60,000 training images and
10,000 test images. We configure a class-incremental learning setup, where a total of 10 classes are
evenly distributed across 5 tasks, with 2 classes per task. We assume the class itself is the sensitive
attribute.

* Fashion-MNIST (FMNIST) (Xiao et al., [2017): The Fashion-MNIST dataset is a specialized
variant of the original MNIST dataset, designed for the classification of various clothing items
into 10 distinct classes. The classes include “T-shirt/top’, ‘Trouser’, ‘Pullover’, ‘Dress’, ‘Coat’,
‘Sandal’, ‘Shirt’, ‘Sneaker’, ‘Bag’, and ‘Ankle boot’. The dataset consists of grayscale images with
dimensions of 28 pixels by 28 pixels including 60,000 training images and 10,000 test images.
We configure a class-incremental learning setup, where a total of 10 classes are evenly distributed
across 5 tasks, with 2 classes per task. We assume the class itself is the sensitive attribute.

* Biased MNIST (Bahng et al., [2020): The Biased MNIST dataset is a modified version of the
MNIST dataset that introduces bias by incorporating background colors highly correlated with the
digits. We select 10 distinct background colors and assign one to each digit from 0 to 9. For the
training images, each digit is assigned the selected background color with a probability of 0.95, or
one of the other colors at random with a probability of 0.05. For the test images, the background
color of each digit is assigned from the selected color or other random colors with equal probability
of 0.5. The dataset consists of 60,000 training images and 10,000 test images. We configure a
class-incremental learning setup, where a total of 10 classes are evenly distributed across 5 tasks,
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with 2 classes per task. We set the background color as the sensitive attribute and consider two
sensitive groups: the origin color and other random colors for each digit.

* Drug Consumption (DRUG) (Fehrman et al.,[2017): The Drug Consumption dataset contains
information about the usage of various drugs by individuals and correlates it with different de-
mographic and personality traits. The dataset includes records for 1,885 respondents, each with
12 attributes including NEO-FFI-R, BIS-11, ImpSS, level of education, age, gender, country of
residence, and ethnicity. We split the dataset into the ratio of 70/30 for training and testing. All
input attributes are originally categorical, but we quantify them as real values for training. Par-
ticipants were questioned about their use of 18 drugs, and our task is to predict cannabis usage.
The label variable contains six classes: ‘Never Used’, ‘Used over a Decade Ago’, ‘Used in Last
Decade’, ‘Used in Last Year’, ‘Used in Last Month’, and ‘Used in Last Day’. We configure a
class-incremental learning setup, where a total of 6 classes are distributed across 3 tasks, with 2
classes per task. We set gender as the sensitive attribute and consider two sensitive groups: male
and female.

* BiasBios (De-Arteaga et al.l 2019): The BiasBios dataset is a benchmark designed to explore
and evaluate bias in natural language processing models, particularly in the context of profession
classification from bios. The dataset consists of short textual biographies collected from online
sources, labeled with one of the 28 profession classes, such as ‘professor’, ‘nurse’, or ‘software
engineer’. The dataset includes gender annotations, which makes it suitable for studying biases
related to gender. The dataset contains approximately 350k biographies where 253k are for training
and 97k for testing. We configure a class-incremental learning setup using the 25 most-frequent
professions, where a total of 25 classes are distributed across 5 tasks, with 5 classes per task. As
the number of samples for each class varies significantly, we arrange the classes in descending
order based on their size (Chowdhury & Chaturvedi, 2023). We set gender as the sensitive attribute
and consider two sensitive groups: male and female.

B.5 MORE DETAILS ON EXPERIMENTAL SETTINGS

Continuing from Sec.[d] we provide more details on experimental settings. We use a batch size of 64
for all the experiments. We set the initial learning rate and the total epochs for each dataset. For the
MNIST, FMNIST, and DRUG datasets, we train both our model and baselines with initial learning
rates of [0.001, 0.01, 0.1], for 5, 5, and 25 epochs, respectively. For Biased MNIST, we use learning
rates of [0.001, 0.01, 0.1] for 15 epochs. For the BiasBios dataset, we use learning rates of [0.00002,
0.0001, 0.001] for 10 epochs and set the maximum token length to 128. For hyperparameters, we
perform cross-validation with a grid search for o € {0.0005, 0.001,0.002,0.01}, A € {0.1,0.5,1},
and 7 € {1,2,5,10}. To solve the fairness-aware optimization problems and find optimal sample
weights, we use CPLEX, a high-performance optimization solver developed by IBM that specializes
in solving linear programming (LP) problems.

B.6 TRADEOFF RESULTS BETWEEN ACCURACY AND FAIRNESS

Continuing from Sec. we evaluate the tradeoff between accuracy and fairness of FSW with other
baselines as shown in Fig. [§}-Fig. [IT]on the following pages. FSW in the figures represents the result
for different values of A, a hyperparameter that balances fairness and accuracy. Since other baselines
do not have a balancing parameter, we select Pareto-optimal points from all search spaces, where
a Pareto-optimal point is defined as a point for which there does not exist another point with both
higher accuracy and lower fairness disparity. The figures show FSW positioned in the lower right
corner of the graph, indicating better accuracy-fairness tradeoff results compared to other baseline
methods.

B.7 MORE RESULTS ON ACCURACY AND FAIRNESS

Continuing from Sec. .1 we compare FSW with other baselines with respect to EER, EO, and
DP disparity as shown in Tables [3 [6] and [7] respectively, on page 27. In addition, we present the
sequential performance results for each task as shown in Fig. [I2}-Fig.[T9] starting on page 28. Due to
the excessive time required to run OCS on BiasBios, we are not able to measure the results.
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Figure 8: Tradeoff results between accuracy and fairness (EER) on the MNIST and FMNIST datasets.
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Figure 9: Tradeoff results between accuracy and fairness (EO and DP) on the Biased MNIST dataset
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Figure 10: Tradeoff results between accuracy and fairness (EO and DP) on the DRUG dataset.
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Figure 11: Tradeoff results between accuracy and fairness (EO and DP) on the BiasBios dataset
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Table 5: Accuracy and fairness results on the MNIST and FMNIST datasets with respect to EER
disparity, where the class is the sensitive attribute. We compare FSW with four types of baselines:
naive (Joint Training and Fine Tuning), state-of-the-art (iCaRL, WA, and CLAD), sample selection
(GSS and OCS), and fairness-aware (FalRL) methods. We mark the best and second best results with
bold and underline, respectively.

Methods \ MNIST FMNIST
| Acc. EER Disp. Acc. EER Disp.

Joint Training .970+.004 .014+ 006 .895+.010 .035+.004
Fine Tuning 4534000 .323+.000 .450+.000 .324+ 000
iCaRL 934+ .004 .037+.003 .862+.002 .053+.003
WA 911+.007 .052+.006 .809+.005 .088+.003
CLAD .835+.015 .099+ 015 T75+.018 115+.019
GSS .886+.007 .080+.009 .730+.013 1504011
OCS 901 +.003 .061+.004 785+.012 .092+ 007
FalRL | 4584008 .306+.004 455+ 005 .316+.001
FSW | 924+ 003 .032-+.004 .825+.006 .037-+.007

Table 6: Accuracy and fairness results on the Biased MNIST, DRUG, and BiasBios datasets with
respect to EO disparity, where background color is the sensitive attribute for Biased MNIST, and
gender for DRUG and BiasBios, respectively. Due to the excessive time required to run OCS on

BiasBios, we are not able to measure the results and mark them as ‘—’. The other settings are same as
in Table E}

Methods \ Biased MNIST DRUG BiasBios

| Acc. EO Disp. Acc. EO Disp. Acc. EO Disp.
Joint Training 945+ 002 .053+.002 A41+.015 .179+.052 .823+.003 .075+.001
Fine Tuning 448+ 001 .010+.003 357 +.009 1254034 425+ 006 .029+ 002
iCaRL .818+.011 347 +.025 458+.014 .216+.056 .828+.002 .083+.003
WA 447 + 001 .018+.002 .358+.009 1124038 732+.008 .069+.002
CLAD 872+ 011 .195+.020 410+.026 1144043 785+.004 .075+.001
GSS .819+.009 313+.021 433+011 177 +.045 174+ 007 .086+.005
OCS .833+.012 .303+.024 429+ 007 .169+.026 - -
FalRL ‘ 759+ 008 .408+.018 .318+.006 .015+.009 .332+.009 .039+.003
FSW \ .909+.003 .060+.004 429+ 020 138+.037 792+ 005 .073+.003

Table 7: Accuracy and fairness results on the Biased MNIST, DRUG, and BiasBios datasets with
respect to DP disparity. The other settings are the same as in Table @

Methods | Biased MNIST DRUG BiasBios

| Acc. DP Disp. Acc. DP Disp. Acc. DP Disp.
Joint Training 945+ 002 .005+.001 A41+015 .091+.020 .823+.003 .021+.000
Fine Tuning 448+ 001 .016+.008 .357+.009 .102+.013 4254006 .028+.001
iCaRL .818+.011 .012+.001 458+.014 .098+.020 .828+.002 .022+.000
WA 447 + 001 .016+.004 .358+.009 .076+.019 7324008 .022+.001
CLAD 872+.011 .013+.001 410=+.026 .069+.019 7854004 .022+.000
GSS .819+.009 .038+.005 4334011 .083+.018 7744 007 .022+.001
OCS .816+.012 .030+.003 429+ 007 .079+.020 — —
FalRL \ 759+ 008 .033+.001 .318+.006 .015+.007 .3324.009 .026+.002
FSW ‘ .889+.006 .007 +.002 405+.013 .043+ 004 797 +.003 1022000
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Figure 12: Sequential accuracy and fairness (EER) results on the MNIST dataset.
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Figure 13: Sequential accuracy and fairness (EER) results on the FMNIST dataset.
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Figure 14: Sequential accuracy and fairness (EO) results on the Biased MNIST dataset.
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Figure 15: Sequential accuracy and fairness (DP) results on the Biased MNIST dataset.
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Figure 16: Sequential accuracy and fairness (EO) results on the DRUG dataset.
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Figure 17: Sequential accuracy and fairness (DP) results on the DRUG dataset.
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Figure 19: Sequential accuracy and fairness (DP) results on the BiasBios dataset.
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B.8 MORE RESULTS ON SAMPLE WEIGHTING ANALYSIS

Continuing from Sec.[#.2] we show more results from the sample weighting analysis for all sequential
tasks of each dataset, as shown in the figures below (Fig. 20}-Fig.27). We compute the number of
samples for weights in sensitive groups including classes. For each task, we show the average weight
distribution over all epochs, as sample weights may change during each epoch of training. Since
FSW is not applied to the first task, where the model is trained with only the current task data, we
present the results starting from the second task.
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Figure 20: Distribution of sample weights for EER in sequential tasks of the MNIST dataset.
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Figure 21: Distribution of sample weights for EER in sequential tasks of the FMNIST dataset.
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Figure 22: Distribution of sample weights for EO in sequential tasks of the Biased MNIST dataset.

3
£10000 I Sens. 0 10000 I Sens. 0 10000 I Sens. 0 10000 I Sens. 0
B I Sens. 1 [ Sens. 1 [ Sens. 1 I Sens. 1
<
(=]
_ag 5000 5000 5000 5000
£
z
I = = | = | =
0OAO 0.5 1.0 OOAO 0.5 1.0 00,0 0.5 1.0 0OAO 0.5 1.0
Weight Weight Weight Weight
(a) Task 2. (b) Task 3. (c) Task 4. (d) Task 5.

Figure 23: Distribution of sample weights for DP in sequential tasks of the Biased MNIST dataset.

32



Under review as a conference paper at ICLR 2025

800 800
I Sens. 0 I Sens. 0
%600‘ [ Sens. 1 6001 [ Sens. 1
5
5 400 400
o)
e
g
Z 200 200
0L : : : oL : : :
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Weight Weight
(a) Task 2. (b) Task 3.

Figure 24: Distribution of sample weights for EO in sequential tasks of the DRUG dataset.
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Figure 25: Distribution of sample weights for DP in sequential tasks of the DRUG dataset.
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Figure 26: Distribution of sample weights for EO in sequential tasks of the BiasBios dataset.
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Figure 27: Distribution of sample weights for DP in sequential tasks of the BiasBios dataset.
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B.9 MORE RESULTS ON ABLATION STUDY

Continuing from Sec. [4.3] we present additional results of the ablation study to demonstrate the
contribution of our proposed fairness-aware sample weighting (FSW) to the overall accuracy and
fairness performance. The results are shown in Tables[8] [0] and

Table 8: Accuracy and fairness results on the MNIST and FMNIST datasets with respect to EER
disparity when FSW is used or not.

Methods \ MNIST FMNIST

| Acc. EER Disp. Acc. EER Disp.
W/o FSW 921 +.004 .040+.005 .836+.006 .048+.005
FSW 924+ .003 .032+.004 .825+.006 {037 +.007

Table 9: Accuracy and fairness results on the Biased MNIST, DRUG, and BiasBios datasets with
respect to EO disparity when FSW is used or not.

Methods | Biased MNIST DRUG BiasBios

| Acc. EO Disp. Acc. EO Disp. Acc. EO Disp.
W/o FSW 911 +.003 .063+.002 423+ 013 162+.034 .790+.003 .076+.001
FSW 909+ 003 .060-t.004 429+.020 138+.037 .792+.005 .073+.003

Table 10: Accuracy and fairness results on the Biased MNIST, DRUG, and BiasBios datasets with
respect to DP disparity when FSW is used or not.

Methods | Biased MNIST DRUG BiasBios

| Acc. DP Disp. Acc. DP Disp. Acc. DP Disp.
W/o FSW 911+.003 .009+.001 423+.013 .080+.015 .790+.003 .022+.000
FSW .889+ 006 007 +.002 405+.013 .043+.004 797 +.003 .022+.000

B.10 MORE RESULTS ON INTEGRATING FSW WITH A FAIR POST-PROCESSING METHOD

Continuing from Sec. [#.4] we provide additional results on integrating continual learning methods
with fair post-processing, including OCS and OCS — e-fair performances as shown in Table [T}

Table 11: Accuracy and fairness results when combining fair post-processing (e-fair) with continual
learning methods (iCaRL, CLAD, OCS, and FSW) with respect to DP disparity. Due to the excessive
time required to run OCS on BiasBios, we are not able to measure the results and mark them as ‘—’.

Methods \ Biased MNIST DRUG BiasBios

\ Acc. DP Disp. Acc. DP Disp. Acc. DP Disp.
iCaRL .818+.011 .012+.001 A458+.014 .098+.020 .828+.002 .022+.000
CLAD 872+ 011 .013+.001 410+.026 .069+.019 785+.004 .022+ 001
OCS .816+.012 .030+.003 429+ 007 .079+.020 - -
FSW .889+.006 .007 +.002 405+.013 .043+.004 797 +.003 .022+ 000
iCaRL — e-fair .805+.014 .007 +.002 460+.015 .035+.013 .828+.001 .016+.000
CLAD - e-fair .868+.015 .006-+.002 A11+.023 .030=+.010 759+ 049 .017+.000
OCS — e-fair .825+.016 .005+.001 A31+.021 .033+.007 - -
FSW - e-fair .883+.007 .005+.001 .403+.010 .020+.004 796+ .003 016000
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B.11 MORE RESULTS OF FSW WHEN VARYING THE BUFFER SIZE

We have additional experimental results of FSW on the MNIST and Biased MNIST datasets when
varying the buffer size to 16, 32, 64, and 128 per sensitive group as shown in Fig.[28] As the buffer
size increases, both accuracy and fairness performances improve. In addition, we compute the number
of current task data assigned with non-zero weights (i.e., not close to zero) as shown in Fig.[29] and
there is no clear relationship between buffer size and weights.
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Figure 28: Accuracy and fairness results of FSW when varying the buffer size on the MNIST and
Biased MNIST datasets.
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Figure 29: Number of current task data assigned with non-zero weights (i.e., not close to zero) when
varying the buffer size on the MNIST and Biased MNIST datasets.

C APPENDIX — MORE RELATED WORK

Continuing from Sec. 2] we discuss more related work.

Class-incremental learning is a challenging type of continual learning where a model continuously
learns new tasks, each composed of new disjoint classes, and the goal is to minimize catastrophic

forgetting 2023). Data replay techniques (Lopez-Paz & Ranzatol
2017} Rebulffi et al., 2017; |Chaudhry et al.,[2019b) store a small portion of previous data in a buffer to
utilize for training and is widely used with other techniques [2023a)) including knowledge
distillation (Rebuffi et al., 2017; [Buzzega et al.,[2020), model rectification (Wu et al.}[2019; [Zhao et al.}
[2020), and dynamic networks (Yan et al., 2021; Wang et al.l 2022; [Zhou et al., 2023b). Simple buffer
sample selection methods such as random or herding-based approaches (Rebuffi et al.| 2017) are also
commonly used as well. There are also more advanced gradient-based sample selection techniques
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like GSS (Aljundi et al.,[2019) and OCS 2022) that manage buffer data to have samples

with diverse and representative gradient vectors. All these works do not consider fairness and simply
assume that the entire incoming data is used for model training, which may result in unfair forgetting
as we show in our experiments.

Model fairness research mitigates bias by ensuring that a model’s performance is equitable across
different sensitive groups, thereby preventing discrimination based on race, gender, age, or other
sensitive attributes (Mehrabi et al.,[2022). Existing model fairness techniques can be categorized
as pre-processing (Kamiran & Calders| 2011} [Feldman et al., 2015}, [Calmon et all 2017} [Jiang &
Nachum, [2020), in-processing (Agarwal et al., [Zhang et al., 2018} |Cotter et al.,[2019;|Roh et al.}
2020), and post-processing (Hardt et al., [2016; [Pleiss et al.,[2017; (Chzhen et al., 2019). In addition,
there are other techniques that assign adaptive weights for samples to improve fairness
2022} [Tung et al.} [2023)). However, most of these techniques assume that the training data is given all
at once, which may not be realistic. There are techniques for fairness-aware active learning
et all 2022} [Pang et al.| 2024} [Tae et al.}[2024)), in which the training data evolves with the acquisition
of samples. However, these techniques store all labeled data and use them for training, which is
impractical in continual learning settings.

D APPENDIX — FUTURE WORK

D.1 GENERALIZATION TO MULTIPLE SENSITIVE ATTRIBUTES

FSW can be extended to tasks involving multiple sensitive attributes by defining a sensitive group as
a combination of sensitive attributes. For instance, recall the loss for EO in a single sensitive attribute

is W D yeY zez |0(fo,Gy.2) — £(fa, Gy)|. This definition can be extended to the case of multiple

sensitive attributes as m D yeV o€z zaety L(f0y Gy 21 ) — £(fo, Gy)|. The new definition
for multiple sensitive attributes allows the overall optimization problem to optimize both sensitive
attributes simultaneously. The design above can also help prevent ‘fairness gerrymandering’
2018)), a situation where fairness is superficially achieved across multiple groups, but specific
individuals or subgroups within those groups are systematically disadvantaged. This is achieved
by minimizing all combinations of subgroups, thereby disrupting the potential for unfair prediction
based on certain attribute combinations. However, having multiple loss functions may increase the
complexity of optimization, and a more advanced loss function may need to be designed for multiple
sensitive attributes. We leave the extension of this work to multiple sensitive attributes in future work.
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