
Under review as a conference paper at ICLR 2024

STABILIZING POLICY GRADIENTS FOR STOCHASTIC
DIFFERENTIAL EQUATIONS BY ENFORCING CONSIS-
TENCY WITH PERTURBATION PROCESS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks parameterized stochastic differential equations (SDEs) re-
ceived increasing attention from the machine learning community due to their high
expressiveness and solid theoretical foundations, with a wide range of applica-
tions in generative models. However, maximizing likelihood of training data, the
objective of generative models, does not always meet our requirements in many
real-world problems. Fortunately, introducing reinforcement learning (e.g., policy
gradient) here to maximize a reward, using SDE-based policy, may bridge this gap.
Nevertheless, when applying policy gradients to SDEs, since the policy gradient is
estimated on a finite set of trajectories, it can be ill-defined, and the policy behav-
ior in data-scarce regions may be uncontrolled. This challenge compromises the
stability of policy gradients and negatively impact sample complexity. To address
these issues, we propose constraining the SDE to be consistent with its associated
perturbation process. Since the perturbation process covers the entire space and
is easy to sample, we can mitigate the aforementioned problems. Our framework
offers a general approach for training SDEs using policy gradients, allowing for a
versatile selection of policy gradients to effectively and efficiently train SDEs. We
evaluate our algorithm on the task of structure-based drug design and optimize the
binding affinity of generated ligand molecules. Our method achieves the best Vina
score (−9.07) on the CrossDocked2020 dataset.

1 INTRODUCTION

Deep neural networks parameterized stochastic differential equations (SDEs) have garnered significant
interest within the machine learning community, owing to their robust theoretical underpinnings and
exceptional expressiveness. In recent years, SDEs have taken center stage in generative modeling
(Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021b), with a myriad of applications ranging from
image generation to molecular generation, and beyond (see Yang et al. (2022) for a comprehensive
survey). SDE generates samples by simulating the following process from time 1 to 0:

dxt = πθ(xt, t)dt+ g(t)dω̄ (1)

where x0 is the generated sample, x1 is typically drawn fromN (0, I), πθ is the model, ω̄ is the reverse
Wiener process, and g(t) is a scalar function of time and known as diffusion coefficient. Generative
modeling aims to approximate the data distribution and, therefore, trains SDEs to maximize the
likelihood. However, in many real-world applications, the objective is to maximize a reward. For
example, in structure-based drug design (Anderson, 2003), our objective is usually to generate
molecules with some desired properties, such as high binding affinity (Du et al., 2016). In these cases,
it is natural to train SDEs with reinforcement learning (RL) (Sutton & Barto, 2018; Black et al., 2023;
Fan et al., 2023).

RL focuses on learning a policy that maximizes rewards through interactions with a given environment.
The foremost class of policy optimization algorithms in RL is the policy gradient method (Sutton &
Barto, 2018), which refines the policy network by following the gradient of expected rewards with
respect to the policy network parameters. Policy gradient algorithms have demonstrated efficiency
and effectiveness in a wide range of applications, such as control systems, robotics, natural language
processing, and game playing, among others.

1

Under review as a conference paper at ICLR 2024

The SDE in Eq. 1 can be interpreted as a Markov Decision Process (MDP) (Black et al., 2023).
Therefore, we can directly apply policy gradient to train SDEs. However, in practice, policy gradients
are typically estimated using a limited set of sampled trajectories, which can lead to two practical
issues (please see Sec. 3 for detailed discussion.): (1) Insufficient data in the vicinity of a trajectory
can result in an inaccurate estimation of the policy gradient. This ill-defined policy gradient may cause
instability during the training process; and (2) When the simulation of the SDE in Eq. 1 encounters
data-scarce regions, the policy in these regions may not be well-trained, leading to uncontrolled
behavior and less efficient interactions with the environment. These challenges have hindered the
application of policy gradients to SDEs.

Contribution: To address the aforementioned challenge, we present a novel framework for training
SDEs using policy gradient methods. The main idea behind our method is to enforce the SDE in Eq. 1
to be consistent with its associated perturbation process (See Defn 1 for the definition.). Given that
the perturbation process covers a wide space and is easy to sample, we can resolve the aforementioned
challenge, and further estimate the policy gradient in a more stable and efficient way. This consistency
can be easily maintained using techniques derived from diffusion models. Moreover, we introduce
an innovative actor-critic policy gradient algorithm tailored for consistent SDEs. We empirically
validate our algorithm on structure-based drug design (SBDD), and optimizes the binding affinity,
one primary objective in SBDD, of generated molecules. Our algorithm achieves state-of-the-art
Vina scores (−9.07) on the CrossDocked2020 dataset (Francoeur et al., 2020).

2 PRELINIMINARY

We discuss preliminary information in this section including reinforcement learning, SDE-based
generative models, and the approach to modeling SDEs as a Markov Decision Process.

2.1 REINFORCEMENT LEARNING AND POLICY GRADIENTS

Reinforcement learning uses the Markov Decision Process (MDP) to model the decision-making
process. An MDP is a tuple (S,A, T , R, P̃) where S is the state space, A is the action space,
T : S × A → ∆(S) is a transition kernel where ∆(S) denote the set of distributions over S,
R : S ×A→ R is a reward function and P̃ is the initial state distribution. Without loss of generality,
we assume the MDP terminates after N steps.

The RL agent takes actions sampled from a policy π, which is a mapping from S × [N] to
the distribution over A, where [N] := 1, . . . , N . The reward of π is defined as R(π) =∑N

i=1

∑
s Pi(s|π)Ea∼π(s,i)R(s, a) where Pi(s|π) is the probability of arriving in s at time step

i with policy π. RL aims to learn a policy πθ, parameterized by θ, to maximize the reward.

Policy gradient is the leading class of algorithms to train policy networks. Intuitively, policy gradient
optimizes the policy network by following the gradient of the expected reward regarding the policy
parameters. The policy gradient is typically estimated on a finite collection of paths (i.e., trajectories)
which are the past history of interactions between the policy and the environment. There are a lot of
ways to estimate the policy gradient, including REINFORCE (Sutton et al., 1999), PPO (Schulman
et al., 2017), DDPG (Lillicrap et al., 2015) and so on. The choice of policy gradients is independent
of our method.

Generally speaking, there are two steps to estimate the policy gradient: (1) collecting a dataset of
paths D = {Pathj}nj=1, Pathj = {(sji , a

j
i , r

j
i := R(sji , a

j
i)), i = 1, ..., N} denotes the j-th path.

(2) estimating policy gradient on D. Usually, D should be sampled from the latest policy or be
the collection of all past histories. For convenience, let Di denote the data at time step i in D.
As we will discuss in Sec. 3, this way of constructing D turned out to be less sample efficient for
high-dimensional SDE policy.

As for gradient estimation, we consider two popular algorithms: REINFORCE, which allows us to
get unbiased estimation from samples, and DDPG, which directly calculates policy gradient through
back-propagation from critic. Many popular algorithms are developed upon REINFORCE and DDPG.
REINFORCE and DDPG calculate policy gradients as follows:

2

Under review as a conference paper at ICLR 2024

• REINFORCE: REINFORCE updates model parameters as:

θ ← θ + ηEj∼U([n])Ei∼U([N])

(
∇θ log πθ(a

j
i |s

j
i , i)

N∑
i′=i

rji′

)
, (2)

where U(·) denote the uniform distribution. In practice, a critic network Qϕ(s
j
i , a

j
i , i) can

be used to approximate
∑N

i′=i r
j
i′ .

• Deep deterministic policy gradient (DDPG): DDPG trains the actor πθ as

θ ← θ + ηEj∼U([n])Ei∼U([N])∇θQϕ(s
j
i , a, i), a ∼ πθ(·|sji , i) (3)

where the gradient from a to θ is typically calculated by the reparameterization trick
(Schulman et al., 2015).

Let yji =
∑N

i′=i r
j
i′ , we train Qϕ by minimizing the loss:

L(ϕ) =
n∑

j=1

N∑
i=1

(yji −Qϕ(s
j
i , a

j
i , i))

2 (4)

The critic may also be trained by Bellman difference loss (Bellman, 1966).

2.2 GENERATIVE MODELING VIA STOCHASTIC DIFFERENTIAL EQUATIONS

Generative modeling aims to approximate an unknown distribution p0 given samples. Neural networks
parameterized by SDEs turned out to be a super powerful tool for generative modeling. The leading
generative SDEs are known as diffusion models. The core idea behind diffusion models is that
we can construct a forward process by injecting noise into samples from p0 and directly learn the
corresponding backward generative SDE by maximum likelihood methods like score matching. More
specifically, for any distribution p0, we can construct the forward process:

dx = f(x, t)dt+ g(t)dω, (5)

which induces the marginal distribution pt(x) at time t. According to (Anderson, 1982), there is a
corresponding backward process.

dx = (f(x, t)− g2(t)∇x log pt(x))dt+ g(t)dω̄. (6)

Eq. 5 and Eq. 6 share the same marginal distribution and logx pt(x) is known as the score function.
And we can learn ϵθ(xt, t) to approximate∇x log pt(xt) by minimizing the score-matching loss:

Lscore(θ) = Et∼U(0,1)Ex0
Ext∼qt0(xt|x0)∥ϵθ(xt, t)−∇xt

log pt0(xt|x0)∥2, (7)

where qt denotes the marginal distribution of estimated backward SDE induced by the model ϵθ
in Eq. 1 at time t ∈ [0, 1]. And ptt′(xt|xt′) (resp. qtt′(xt|xt′)) denotes the conditional distribution
of xt given xt′ in forward (resp. estimated backward) SDE. In this case, πθ(xt, t) := f(xt, t) −
g2(t)ϵθ(xt, t).

Once ϵθ is fixed, generating samples can be done by using solvers (Song et al., 2021a; Lu et al., 2022).
The idea of learning backward process from a given forward process is further to ODEs using flow
matching (Lipman et al., 2023). And the forward process will play a central role in our method.

2.3 SDE AS MARKOV DECISION PROCESS

We can consider the SDE as an MDP with infinitely small time steps which is extended from Black
et al. (2023). More specifically, in the limit N → ∞, the discrete-time MDP from time 0 to N
becomes a continuous MDP from time 1 to 0 1. We map the SDE in Eq. 1 to a continuous MDP as:

1We let the time flow from 1 to 0 to make the notation consistent with that in diffusion models.

3

Under review as a conference paper at ICLR 2024

st
∆
= xt, πθ(st, t)

∆
= f(x, t)− g2(t)ϵθ(xt, t), ρ0

∆
= N (0, I),

st−dt
∆
= πθ(xt, t)dt+ g(t)dω̄, R(st, at, t)

∆
=

{
0, if t > 0,

R(s0), if t = 0,
(8)

Therefore, we may directly apply existing policy gradients to SDEs. However, as we will analyze in
the next section, the naive application of policy gradients will result in an unstable training process
and unsatisfactory sample complexity.

3 CHALLENGE OF APPLYING POLICY GRADIENT TO TRAIN SDES

101 102 103 104

Number of sampled trajectories

100

101

Ap
pr

ox
im

at
io

n
Er

ro
r o

f p
ol

icy
 g

ra
di

en
t

DDPG, dim=2
DiffAC, dim=2
DDPG, dim=8
DiffAC, dim=8
DDPG, dim=32
DiffAC, dim=32

Figure 1: Comparison on the prediction error of
policy gradients with respect to the number of tra-
jectories under different settings of dimensional-
ity. We evaluate Ext

∥∇xt
Qϕ(xt, πθ(xt, t), t) −

∇xt
Qϕ∗(xt, πθ(xt, t), t)∥ where ϕ∗ is trained on

a large number of trajectories and ϕ is trained on
a small number of trajectories. We can see the
prediction error on policy gradient of our method
is much lower than that of DDPG. Please refer to
appendix for more details of this experiment.

In this section, we take a close look at the practi-
cal issues of directly applying policy gradient to
train SDEs. These issues are caused by the fact
that we estimate the policy gradient on a finite
set of trajectories D, which result in ill-defined
and instable policy gradients. These challenges
motivate us to regularize the SDE around a per-
turbation forward process and exploit the pertur-
bation nature of the forward process to stabilize
the training process. For the sake of simplicity,
we focus on DDPG in this section,and the anal-
ysis for the REINFORCE algorithm is similar.

3.1 ILL-DEFINED POLICY GRADIENT

According to chain rule, the
policy gradient in Eq. 3 is
∇πθ(xt,t)Qϕ(xt, πθ(xt, t), t)∇θπθ(xt, t).
Recall that Qϕ is trained by minimizing loss
in Eq. 4. Since we do not have any direct
training signal on∇πθ(xt,t)Qϕ(xt, πθ(xt, t), t),
the gradient should be inferred from
data around πθ(xt, t). Therefore, when
there is insufficient data in the vicinity of
(xt, πθ(xt, t), t), it is difficult to reliably esti-
mate the gradient∇πθ(xt,t)Qϕ(xt, πθ(xt, t), t).
Hence, to obtain an accurate estimation for
∇πθ(xt,t)Qϕ(xt, πθ(xt, t), t), it is essential to
gather more samples around the data. As the
dimensionality increases, the demand for data becomes greater, leading to unsatisfactory sample
complexity.

To see this, we present a toy example to describe the relationship between the estimation error
on policy gradient and the number of sampled trajectories. We compare the conventional DDPG
against our method described in the next section. We can see that given the same number of sampled
trajectories, our method provides a better policy gradient estimation.

3.2 UNCONTROLLED BEHAVIOR FOR LOW DATA DENSITY REGION

If (xt, t) is distant from the data distribution, the behavior of πθ(xt, t) may be uncontrolled, as the
loss in Eq. 3 does not define the behavior of πθ(xt, t) in regions with low data density. Training πθ

solely on the limited collected paths inevitably encounter sparse data areas, and the SDE encounters
these data-scarce regions. In such cases, the policy selects actions indiscriminately, consequently
diminishing the effectiveness of obtaining feedback signals from the environment.

4

Under review as a conference paper at ICLR 2024

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
X Axis

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Y
Ax

is

reward

1.0

0.8

0.6

0.4

0.2

va
lu

e

Figure 2: The reward of πθ(x1, 1) in different re-
gion. The policy receives high reward in bright
colored region. We can see that the policy only
works well on region close to training set.

To give a better illustration, let’s consider a one-
step MDP in R2, in which the agent observes
one state s, outputs an action a and the MDP
terminates. We suppose the reward is−∥s+a∥2.
It is easy to see that the optimal policy should al-
ways output −s. Consider the case that we only
train πθ(s, 1) with s such that each dimension
is randomly sampled from interval (1, 2), and
remains the policy for other regions untrained.
We present the result in Fig. 2. We can see that
the policy only works well on the data-intensive
area and poorly behaves in data-scarce areas.
While this example seems to be contrived, when
the policy is an SDE, it is inevitable that the sim-
ulation runs into data-scarce regions. Therefore,
the policy might have uncontrolled behavior and
further hurt the sample complexity.

4 METHOD

To resolve the above challenge, we introduce a novel actor-critic policy gradient algorithm which is
specifically designed for SDEs. The key is to constrain the SDE to be consistent with its associated
forward perturbation process. Recall that the process of estimating the policy gradient consists of two
stages: (1) generating a dataset D ∼ πθ, and (2) estimating the policy gradient based on D. We will
discuss these two parts respectively.

4.1 GENERATING SAMPLES

Algorithm 1 DiffAC-v1
Input: Initialized actor ϵθ and critic Vϕ, re-

ward function R(·), D0 = ∅
Output: θ, ϕ

1: for each iteration do
2: Sample D0 ← {xj

0}nj=1 from Eq. 1.
3: Train ϵθ by minimizing the score

matching loss.
4: Train Vϕ according to Eq. 10.
5: for each iteration do
6: Calculate policy gradient PG(θ)

according to Eq. 11 or Eq. 12.
7: θ ← θ + ηPG(θ).
8: end for
9: end for

As presented in Sec. 3, the challenges stem from the
fact that the policy gradient is estimated using a finite
set D ∼ πθ of sampled paths. Accurate estimation of
the policy gradient occurs only when D is relatively
large, leading to unsatisfactory sample complexity.
Our key observation is that by ensuring the SDE aligns
with its associated perturbation process, the policy
gradient estimation can be made more robust.

Definition 1 (Consistent SDE). An SDE is the asso-
ciated forward perturbation process for the backward
SDE in Eq. 1 if and only if q0 = p0. Furthermore, if
qt = pt for all t ∈ [0, 1], then the forward SDE and
backward SDE are called consistent.

It is noteworthy that a backward SDE is consistent
with its associated forward SDE if and only if the score
loss in Eq. 7 is minimized at ϵθ. More importantly,
when the backward SDE is consistent, we have a more
robust and efficient way to sample from qt and further
estimate the policy gradient more accurately.

Lemma 1. If the SDE defined by ϵθ is consistent, let xt ∼ pt0(xt|x0) where x0 ∼ q0(x0). Then, we
have xt ∼ qt(xt).

Proof. The proof is straightforward. If the SDE is consistent, we have∫
x0

q0(x0)pt0(xt|x0)dx0 =

∫
x0

p0(x0)pt0(xt|x0)dx0 =

∫
x0

p(xt, x0)dx0 = pt(xt) = qt(xt).

5

Under review as a conference paper at ICLR 2024

Generating D̃t for policy gradient estimation by perturbing D0: Considering the initial dataset
D0 = {xj

0 ∼ q0(x0)}j=1,...,n, it is feasible to directly produce an arbitrarily large set D̃t =

{xj
t}j=1,...,N , where xj

t ∼ pt0(xt|x0) for a given x0 ∈ D0 . Lem. 1 demonstrates that xj
t ∼ qt(xt),

thereby implying that it is possible to estimate the policy gradient on samples perturbed from D0.

Intuitively, the construction of D̃t mitigates the practical issues in Sec. 3 as follows: Firstly, it is
evident that the perturbation process encompasses the entire space, resulting in a well-defined policy
gradient. Although the samples from D̃t are not entirely independent, Fig. 1 indicates that policy
gradients estimated on D̃t exhibit accuracy when n is comparatively small. Secondly, for consistency
SDEs, the distribution of training data is guaranteed to have the same distribution. Therefore, the
probability for a consistent SDE to run into data-scarce region is relatively small.

4.2 ESTIMATION OF POLICY GRADIENT

Given the process of generating samples mentioned above, it is easy to extend the policy gradient in
Eq. 2 and 3. We consider the actor-critic framework, where a critic is trained to predict the cumulative
reward and the actor is trained based on the reward signal provided by the critic. We observe that with
SDE policy, it is more convenient to train the critic Vϕ(xt, t) to predict the reward given xt rather than
Qϕ(xt, at, t). Hence, we will focus on the training of Vϕ instead. The combination of the actor and
critic training procedures, as well as the score-matching loss and the construction of D̃t in Sec. 4.1,
results in our first actor-critic algorithm presented in Alg. 1. Since the forward perturbation process
draws inspiration from diffusion models, we name our algorithm Diffusion Actor-Critic (DiffAC).

Critic Training: For any consistent SDE ϵθ, Vϕ∗(xt, t) = Ex0∼q0t(x0|xt)R(x0) if and only if

ϕ∗ = argmin
ϕ

EtEx0∼q0(x0)Ext∼pt0(xt|x0)(Vϕ(xt, t)−R(x0))
2. (9)

The derivation of Eq. 9 is straightforward. Therefore, to train the critic, we just need to perturb D0 to
get D̃t and minimize the loss in Eq. 9, leading to:

(Critic loss):
1

n

n∑
j=1

(Vϕ(x
j
t , t)−R(xj

0))
2, (10)

where xj
t ∼ pt0(·|xj

0), x
j
0 ∈ D0, and R(xj

0) is the reward of xj
0.

Actor Training: We now proceed to extend the REINFORCE and DDPG algorithms to SDEs.
Consider the sample x̄j

t , which is generated by simulating Eq. 1 for an infinitesimal time step starting
from xj

t , and can be represented as x̄j
t ∼ πθ(x

j
t , t)dt+ σtdω̄. Furthermore, let Pθ(x̄t|xt) denote the

density of this sample. We have:

Theorem 1. For SDE policy, we can estimate the policy gradient as:

(SDE-REINFORCE) : PG(θ)← 1

n

n∑
j=1

∇θ logPθ(x̄
j
t |x

j
t)Vϕ(x̄

j
t , t− dt), (11)

(SDE-DDPG) : PG(θ)← 1

n

n∑
j=1

∇θVϕ(x̄
j
t , t− dt), x̄j

t ∼ Pθ(x̄
j
t |x

j
t), (12)

where xj
t ∼ pt0(x

j
t |x

j
0) and xj

0 is sampled from D0.

In practice, the infinitesimal time step can be replaced by discrete time steps in solvers. We
suppose that an SDE solver generates simulates Eq. 1 from a iterative procedure: xτ+1 =
ατ (xτ − βτπθ(xτ , tτ)) + ζτzτ where zτ ∼ N (0, I), τ = 1, . . . , T , tτ+1 < tτ with t1 = 1, tT = 0,
x1 ∼ N (0, I), ατ , βτ , ζτ are specified by solvers. Many popular solvers for diffusion models fall
into this formulation, e.g., DDIM (Song et al., 2021a), DDPM (Ho et al., 2020). For discretization of
time for SDE policy, we can similarly replace x̄j

t or t− dt in Eq. 12 and 11 with xτ or tτ respectively.

6

Under review as a conference paper at ICLR 2024

4.3 A PRACTICAL IMPLEMENTATION

In Alg. 1, we first run score-matching to make sure ϵθ is consistent, and then apply policy gradient to
optimize the reward. However, during the training step, the model may rapidly forget the knowledge
learned during score-matching , which leads to frustrating inconsistency. Therefore, we introduce an
additional policy which is trained to maximize reward under the regularization of score-matching
policy to alleviate this inconsistency. The regularization is:

KL(ϵθ′ , ϵθ, D) =
1

|D|
∑
xt∈D

KL(πθ′(xt, t), πθ(xt, t)). (13)

And we update our policy ϵθ′ as

θ′ ← θ′ + η1PG(θ′)− η2∇θ′KL(ϵθ′ , ϵθ, D), (14)

where ϵθ is trained on D0 via score matching. Eq. 14 leads to Alg. 2. Moreover, we show that the
objective in Alg. 2 also leads to the optimal policy.
Lemma 2. Let x∗

0 denote the optimal point, that is, for any x′
0, R(x′

0) ≥ R(x∗
0). Let ϵ∗θ denote the

consistent SDE with q0 = δ(x∗
0). Then, ϵ∗θ is the minimizer of loss in Eq. 14.

Proof. The proof is straight-forward as ϵ∗θ is the minimizer for both terms in Eq. 14.

5 RELATED WORK

Algorithm 2 DiffAC-v2
Input: Initialized ϵθ, ϵθ′ and critic Vϕ, reward

function R(·), D0 = ∅
Output: θ′

1: for each iteration do
2: Sample {xj

0}nj=1 by simulating dxt =
πθ′(xt, t)dt+ σtdω̄.

3: Sample D0 ← {xj
0}nj=1 from Eq. 1.

4: Train Vϕ according to Eq. 10.
5: Train ϵθ by score-matching in Eq. 7.
6: for each iteration do
7: Update θ′ according to Eq. 14.
8: end for
9: end for

Diffusion Models and forward / backward
SDEs Diffusion models (Song & Ermon,
2019; Song et al., 2021b; Ho et al., 2020; Yang
et al., 2022) have emerged as powerful tools in
the field of generative models. Their primary
objective is to maximize the likelihood of data
distribution. To achieve this, Song et al. (2021b);
Ho et al. (2020) construct forward stochastic dif-
ferential equations (SDEs) by injecting noise
and utilize their corresponding backward SDEs
for generating samples. These backward SDEs
can be efficiently trained using denoising score-
matching (Vincent, 2011). SDEs exhibit a re-
markable capability for modeling complex dis-
tributions and generating intricate images and
structures. This potential of SDEs inspires us
to explore their use as the foundation for policy
networks.

RL with Diffusion Models Recently progress in RL has identified diffusion models as a powerful
tool in policy modeling, due to its generative capability and standardized training process. In offline
RL where we need to learn a policy from a given dataset, researchers typically exploit diffusion
models to deal with heterogeneous datasets, generating in-distribution strategies or modeling complex
strategy distribution (Janner et al., 2022; Wang et al., 2023; Ajay et al., 2023; Hansen-Estruch et al.,
2023; Lu et al., 2023). In online RL, where we need to interact with an environment, Chen et al.
(2023) uses diffusion models to model multi-modal distribution for exploration. Black et al. (2023);
Fan et al. (2023) proposed to finetune a pretrained diffusion model with REINFORCE, but they didn’t
address the stability issue.

Structure-based Drug Design Structure-based drug design (SBDD) (Anderson, 2003) aims to
generate ligand molecules given a protein binding site (i.e., protein pocket), which is a key tool
in drug discovery. The ligand molecules are usually expected to have desired properties, such as
high binding affinity to the target protein. Luo et al. (2021); Liu et al. (2022); Peng et al. (2022)

7

Under review as a conference paper at ICLR 2024

proposed to generate atoms (and bonds) of 3D ligands based on 3D protein pockets in an auto-
regressive way. More recently, Guan et al. (2023); Lin et al. (2022); Schneuing et al. (2022) employed
SE(3)-equivariant diffusion models for SBDD. To design molecules with desired properties (i.e.,
inverse design), Bao et al. (2023) proposed equivariant energy-guided stochastic differential equations
(EEGSDE). We test our method on SBDD and achieve superior performance than EEGSDE and its
stronger variants.

6 EXPERIMENTS

0 5 10 15 20 25 30
Iterations

9.0

8.5

8.0

7.5

7.0

6.5

6.0

5.5

5.0

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

Online EEGSDE-0.001
Online EEGSDE-0.01
Online EEGSDE-0.1

DiffAC
TargetDiff

Figure 3: Optimization curves which show how
average Vina Score of generated ligand molecules
changes with the number of iterations.

We demonstrate the effectiveness of our meth-
ods on structure-based drug design (SBDD) (An-
derson, 2003). Here we apply our methods to
promote the binding affinity of ligand molecules
generated by diffusion models.

6.1 EXPERIMENTAL SETUP

Dataset Following the previous work Luo
et al. (2021); Peng et al. (2022); Guan et al.
(2023), we use the CrossDocked2020 dataset
(Francoeur et al., 2020) for both training and
optimization. We follow the same dataset pre-
processing and splitting procedure as Luo et al.
(2021). 100, 000 pocket-ligand pairs are used
for training, and 100 pockets are used for testing.
The goal is to generate ligands that bind to the
pockets in the test set with high binding affinity.

Evaluated Methods We implement and evaluate some baselines and DiffAC: (1) AR (Luo et al.,
2021). (2) Pocket2Mol (Peng et al., 2022). (3) TargetDiff (Guan et al., 2023). (4) EEGSDE (Bao
et al., 2023). We implement the equivariant energy guidance on TargetDiff. The energy function is
the same as the pre-trained critic that we have mentioned above. {0.001, 0.01, 0.1, 1} are used as
coefficients of energy guidance during sampling. (5) Online EEGSDE. To better leverage interactions
with the environment, we online train the energy function as we do for DiffAC. Here we also follow
the setting about the number of optimization iterations and the number of generated samples and
updates of the critic in each iteration. Similarly, {0.001, 0.01, 0.1, 1} are also used was guidance
coefficients. (5) We implement DiffAC based on TargetDiff. The hyperparameters in our method
are the same for all target pockets. Refer to Appendix B for more implementation details. We do
not report the results of DDPO (Black et al., 2023) and DPOK (Fan et al., 2023) as they do not have
satisfactory performances in our evaluation.

Evaluation Designing molecules with desired properties (i.e., molecular inverse design) is a
fundamental and valuable task. Here we choose binding affinity as our target due to its importance
in structure-based drug design. We employ AutoDock Vina (Eberhardt et al., 2021) to estimate the
binding affinity of pairs of the protein pockets and the generated ligands, following the same setup
as Luo et al. (2021); Guan et al. (2023). Optimizing Vina Score is a challenging task because not
only the molecules themselves but also their chemical and spatial interaction with the 3D protein
pockets need to be considered. We generate 100 ligand molecules across 100 pockets in the test set
using TargetDiff and EEGSDE. For online EEGSDE and DiffAC, we first finish the online fine-tuning
process on each pocket separately and use the best and the last checkpoint to generated 100 ligand
molecules, respectively. For all methods, we collect all generated molecules across 100 test proteins
and report the mean and median of Vina Score.

6.2 MAIN RESULTS

We evaluate all baselines and our method under the setting introduced in Sec. 6.1. As Tab. 1 shows,
our method performs better than all other baselines. EEGSDE with proper energy guidance coefficient
can indeed improve the property of generated molecules. And the online variants of EEGSDE can

8

Under review as a conference paper at ICLR 2024

Table 1: Summary of Vina Score of ligand molecules generated by all baselines and our method.
Note that a smaller score is better. All online algorithms are tested using the best checkpoint (denoted
as Best Run) and the last checkpoint (denoted as Last Run), respectively. The improvements (resp.
deteriorations) compared with TargetDiff are higlighed in green (resp. red).The standard deviation is
highlighted in blue.

Method
Best Run Last Run

Avg. Med. Avg. Meg.

Reference -6.36 -6.46 - -
AR -5.75 ±1.39 -5.64 - -
Pocket2Mol -5.14 ±1.60 -4.70 - -
TargetDiff -5.45 ±2.46 -6.30 - -
EEGSDE-0.001 -5.66 ±2.78 (-0.20) -6.51 (-0.21) - -
EEGSDE-0.01 -6.40 ±2.61 (-0.95) -7.05 (-0.75) - -
EEGSDE-0.1 -6.53 ±3.08 (-1.08) -7.35 (-1.05) - -
EEGSDE-1 -3.30 ±1.59 (+2.15) -4.67 (+1.63) - -
Online EEGSDE-0.001 -7.17 ±1.86 (-1.72) -7.16 (-0.86) -6.50 ±2.47(-1.05) -6.61 (-0.31)
Online EEGSDE-0.01 -8.22 ±1.89 (-2.77) -8.06 (-1.76) -7.56 ±2.46 (-2.11) -7.51 (-1.21)
Online EEGSDE-0.1 -8.58 ±1.70 (-3.13) -8.52 (-2.22) -7.78 ±2.33 (-2.33) -7.78 (-1.48)
Online EEGSDE-1 -7.13 ±1.08 (-1.68) -7.28 (-0.98) -2.13 ±2.10 (+3.32) -4.29 (+2.01)
DiffAC -9.07 ±1.99 (-3.62) -9.04 (-2.74) -8.50 ±2.11 (-3.05) -8.38 (-2.08)

Figure 4: Examples of generated ligands. Carbon atoms in ligand molecules by TargetDiff (Guan et al.,
2023) and DiffAC are visualized in green and cyan, respectively. Here we select some cases where
TargetDiff easily generates unrealistic ligand molecules that clash with protein surfaces physically
which usually leads to extremely bad Vina scores. DiffAC can sample realistic ligand molecules with
high quality in these hard cases.

further improve the performance, which shows the benefits of online training the critic. Our method
can even outperform online EEGSDE with the best energy guidance coefient by a large margin
and achieve the best Avg. Vina Score over all methods for structure-based drug design, which
demonstrates the effectiveness of DiffAC. We visualize examples of ligand molecules generated by
TargetDiff and DiffAC on some hard cases in Fig. 4. As Fig. 3 shows, DiffAC converges faster than
all other online optimization algorithms, which demonstrates the superiority of our method in terms
of sample complexity and training efficiency. We also provide the optimization curves of each protein
pocket in Appendix C. The experiments has revealed the great potential of our method in important
real-world applications, such as drug discovery.

7 CONCLUSIONS

This paper proposes DiffAC, a stabilized policy gradient method for SDEs, and demonstrate its
superiority on structure-based drug design. This is a general framework with great potential. In terms
of future work, it would be interesting to apply this method to many valuable applications where user

9

Under review as a conference paper at ICLR 2024

preferences or design requirements can be specified, such as text-to-image generation, protein design,
chip design, etc.

REFERENCES

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenenbaum, Tommi S. Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision making? In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=sP1fo2K9DFG.

Amy C Anderson. The process of structure-based drug design. Chemistry & biology, 10(9):787–797,
2003.

Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

Fan Bao, Min Zhao, Zhongkai Hao, Peiyao Li, Chongxuan Li, and Jun Zhu. Equivariant energy-
guided SDE for inverse molecular design. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=r0otLtOwYW.

Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion models
with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning via
high-fidelity generative behavior modeling. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=42zs3qa2kpy.

Xing Du, Yi Li, Yuan-Ling Xia, Shi-Meng Ai, Jing Liang, Peng Sang, Xing-Lai Ji, and Shu-Qun Liu.
Insights into protein–ligand interactions: mechanisms, models, and methods. International journal
of molecular sciences, 17(2):144, 2016.

Jerome Eberhardt, Diogo Santos-Martins, Andreas F Tillack, and Stefano Forli. Autodock vina 1.2. 0:
New docking methods, expanded force field, and python bindings. Journal of chemical information
and modeling, 61(8):3891–3898, 2021.

Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
fine-tuning text-to-image diffusion models. arXiv preprint arXiv:2305.16381, 2023.

Paul G Francoeur, Tomohide Masuda, Jocelyn Sunseri, Andrew Jia, Richard B Iovanisci, Ian Snyder,
and David R Koes. Three-dimensional convolutional neural networks and a cross-docked data set
for structure-based drug design. Journal of chemical information and modeling, 60(9):4200–4215,
2020.

Jiaqi Guan, Wesley Wei Qian, Xingang Peng, Yufeng Su, Jian Peng, and Jianzhu Ma. 3d equivariant
diffusion for target-aware molecule generation and affinity prediction. In International Conference
on Learning Representations, 2023.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, 2022.

10

https://openreview.net/forum?id=sP1fo2K9DFG
https://openreview.net/forum?id=sP1fo2K9DFG
https://openreview.net/forum?id=r0otLtOwYW
https://openreview.net/forum?id=42zs3qa2kpy
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

Under review as a conference paper at ICLR 2024

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International Conference on
Machine Learning, pp. 12888–12900. PMLR, 2022.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Haitao Lin, Yufei Huang, Meng Liu, Xuanjing Li, Shuiwang Ji, and Stan Z Li. Diffbp: Generative
diffusion of 3d molecules for target protein binding. arXiv preprint arXiv:2211.11214, 2022.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=PqvMRDCJT9t.

Meng Liu, Youzhi Luo, Kanji Uchino, Koji Maruhashi, and Shuiwang Ji. Generating 3d molecules
for target protein binding. In International Conference on Machine Learning, 2022.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022.

Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive energy
prediction for exact energy-guided diffusion sampling in offline reinforcement learning. arXiv
preprint arXiv:2304.12824, 2023.

Shitong Luo, Jiaqi Guan, Jianzhu Ma, and Jian Peng. A 3d generative model for structure-based drug
design. Advances in Neural Information Processing Systems, 34:6229–6239, 2021.

Noel M O’Boyle, Michael Banck, Craig A James, Chris Morley, Tim Vandermeersch, and Geoffrey R
Hutchison. Open babel: An open chemical toolbox. Journal of cheminformatics, 3(1):1–14, 2011.

Xingang Peng, Shitong Luo, Jiaqi Guan, Qi Xie, Jian Peng, and Jianzhu Ma. Pocket2mol: Efficient
molecular sampling based on 3d protein pockets. In International Conference on Machine Learning,
pp. 17644–17655. PMLR, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI
2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pp. 234–241. Springer, 2015.

Arne Schneuing, Yuanqi Du, Charles Harris, Arian Jamasb, Ilia Igashov, Weitao Du, Tom Blundell,
Pietro Lió, Carla Gomes, Max Welling, et al. Structure-based drug design with equivariant diffusion
models. arXiv preprint arXiv:2210.13695, 2022.

Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,
Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of
clip-filtered 400 million image-text pairs. arXiv preprint arXiv:2111.02114, 2021.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text models. Advances in Neural
Information Processing Systems, 35:25278–25294, 2022.

11

https://openreview.net/forum?id=PqvMRDCJT9t

Under review as a conference paper at ICLR 2024

John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient estimation using
stochastic computation graphs. Advances in neural information processing systems, 28, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021a. URL https://openreview.net/
forum?id=St1giarCHLP.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021b. URL https://openreview.net/forum?
id=PxTIG12RRHS.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. Advances in neural information processing
systems, 12, 1999.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computa-
tion, 23(7):1661–1674, 2011.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=AHvFDPi-FA.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong.
Imagereward: Learning and evaluating human preferences for text-to-image generation. arXiv
preprint arXiv:2304.05977, 2023.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Yingxia Shao,
Wentao Zhang, Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of
methods and applications. arXiv preprint arXiv:2209.00796, 2022.

12

https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=AHvFDPi-FA

Under review as a conference paper at ICLR 2024

A TOY EXAMPLE IN SEC 3.1

We compare the error on ∇πθ(xt,t)Qϕ(xt, πθ(xt, t), t). Let ϕ′ denote the critic trained
by Eq. 4 on n trajectories and ϕ′′ denote the trained by Eq. 9 on D0 with
|D0| = n. We evaluate |∇πθ(xt,t)Qϕ′(xt, πθ(xt, t), t) − ∇πθ(xt,t)Qϕ′∗(xt, πθ(xt, t), t)| and
|∇πθ(xt,t)Qϕ′′(xt, πθ(xt, t), t)−∇πθ(xt,t)Qϕ′′∗(xt, πθ(xt, t), t)| where ϕ′∗ and ϕ′′∗ are trained on
105 trajectories.

The architecture of the critic network is 3 layered-MLP with hidden dimemsion 256. We train each
network for 105 iteration with batchsize 256. And A For reward function, we use Rastrigin function
which is a toy function, with many local minimas, designed for testing zero order optimization
algorithm.

B IMPLEMENTATION DETAILS

In this section, we will describe the implementation of experiments in detail.

Guan et al. (2023) employed an SE(3)-equivariant diffusion model, named TargetDiff, for structure-
based drug design. Given a protein binding site, TargetDiff generates the atom coordinates in 3D
Euclidean space and atom types by iteratively denoising from a prior distribution. After the reverse
(generative) process of the diffusion model, the chemical bonds of the generated ligand molecules are
defined as post-processing by OpenBabel (O’Boyle et al., 2011) according to the distances and types
of atom pairs. We use TargetDiff as the actor and strictly follows the setting in Guan et al. (2023),
such as noise schedules, model architecture, training objectives, etc.

We first pretrain TargetDiff on the training set. After that, we use the pretrained TargetDiff to first
sample 100 ligand molecules for each pocket in the test set and evaluate their binding affinity by
oracle. We pretrain the critic, which predicts the binding affinity based on the perturbed samples, on
the 10, 000 generated pocket-ligand pair data. The model architecture of the critic is almost the same
with TargetDiff. The only difference is that the critic has an aggregation layer at last to output a scalar
based on global features. We finetune the pretrained TargetDiff (Guan et al., 2023) for 30 iterations
for each pocket in the test set, respectively. In each iteration, we sample 34 ligand molecules induced
by the diffusion model (i.e., the actor), evaluate the binding affinity by oracle, and then online update
the diffusion model (i.e., the actor) and train the policy and critic following Alg. 2. We keep all
sampled molecules in D0 which falls into the class of off-policy policy gradient.

We use Adam (Kingma & Ba, 2014) with init learning rate=0.001, betas=(0.95,
0.999), batch size=8 and clip gradient norm=8.0 to pretrain TargetDiff (i.e., the
actor) and the critic. We use Adam with init learning rate=0.0003 for online updating the
actor and critic. As for regularization in Eq. 14, we set η2 = 0.05 for atom types and η2 = 0.00025
for atom positions.

C OPTIMIZATION CURVES OF 100 PROTEIN POCKETS

We plot the optimization curves of DiffAC for the pocket protein in the test separately in Fig. 5, 6, and
7. Given a pocket protein, at each iteration, the average Vina Score of the sampled ligand molecules
in this iteration is plotted as a point in the figure. The curves show how the binding affinity change
with the number of optimization iterations. Generally, in most cases, DiffAC performs better than the
baselines.

13

Under review as a conference paper at ICLR 2024

0 5 10 15 20 25 30

10

9

8

7

6

5

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

2Z3H

0 5 10 15 20 25 30
9.0

8.5

8.0

7.5

7.0

6.5
4AAW

0 5 10 15 20 25 30

8.5

8.0

7.5

7.0

6.5

4YHJ

0 5 10 15 20 25 30

7.5

7.0

6.5

6.0

5.5

5.0

14GS

0 5 10 15 20 25 30

12.0

11.5

11.0

10.5

10.0

2V3R

0 5 10 15 20 25 30

6

5

4

3

2

1

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

4RN0

0 5 10 15 20 25 30
10.0

9.5

9.0

8.5

8.0

1FMC

0 5 10 15 20 25 30
10.5

10.0

9.5

9.0

8.5

8.0

3DAF

0 5 10 15 20 25 30

8.0

7.5

7.0

6.5

1A2G

0 5 10 15 20 25 30
9.0

8.5

8.0

7.5

7.0

6.5

6.0

5W2G

0 5 10 15 20 25 30
10.0

9.5

9.0

8.5

8.0

7.5

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

3DZH

0 5 10 15 20 25 30

10

9

8

7

6

3G51

0 5 10 15 20 25 30
11.0

10.5

10.0

9.5

9.0

8.5

8.0

7.5

7.0

1COY

0 5 10 15 20 25 30
9.0

8.5

8.0

7.5

7.0

2JJG

0 5 10 15 20 25 30
4.5

4.0

3.5

3.0

2.5

2.0

1.5

2RHY

0 5 10 15 20 25 30

7.5

7.0

6.5

6.0

5.5

5.0

4.5

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

2PQW

0 5 10 15 20 25 30

10

8

6

4

2

4G3D

0 5 10 15 20 25 30
8.25

8.00

7.75

7.50

7.25

7.00

6.75

6.50

5BUR

0 5 10 15 20 25 30

6.4

6.2

6.0

5.8

5.6

5.4

3GS6

0 5 10 15 20 25 30

11

10

9

8

1R1H

0 5 10 15 20 25 30

6.5

6.0

5.5

5.0

4.5

4.0

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

1DXO

0 5 10 15 20 25 30

8.5

8.0

7.5

7.0

6.5

1GG5

0 5 10 15 20 25 30

12

11

10

9

8

7

6

5Q0K

0 5 10 15 20 25 30

8.5

8.0

7.5

7.0

6.5

6.0

5.5

5.0

5B08

0 5 10 15 20 25 30
10.5

10.0

9.5

9.0

8.5

2AZY

0 5 10 15 20 25 30
6.6

6.4

6.2

6.0

5.8

5.6

5.4

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

5I0B

0 5 10 15 20 25 30

12.0

11.5

11.0

10.5

10.0

9.5

9.0

8.5
1PHK

0 5 10 15 20 25 30
11.5

11.0

10.5

10.0

9.5

9.0

8.5

8.0

4KEU

0 5 10 15 20 25 30

6

5

4

3

2

4Q8B

0 5 10 15 20 25 30
7.00

6.75

6.50

6.25

6.00

5.75

5.50

5.25

5.00
1DJY

0 5 10 15 20 25 30
6.8

6.6

6.4

6.2

6.0

5.8

5.6

5.4

5.2

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

5L1V

0 5 10 15 20 25 30

12.0

11.5

11.0

10.5

10.0

9.5

9.0

8.5
4ZFA

0 5 10 15 20 25 30
9.5

9.0

8.5

8.0

7.5

2RMA

0 5 10 15 20 25 30

6.2

6.0

5.8

5.6

5.4

5.2

3B6H

0 5 10 15 20 25 30

5.6

5.4

5.2

5.0

4.8

4.6

4.4
2ZEN

0 5 10 15 20 25 30
Iterations

9.0

8.5

8.0

7.5

7.0

6.5

6.0

5.5

5.0

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

4P6P

0 5 10 15 20 25 30
Iterations

10.00

9.75

9.50

9.25

9.00

8.75

8.50

8.25
3U5Y

0 5 10 15 20 25 30
Iterations

10.0

9.5

9.0

8.5

8.0

4F1M

Online EEGSDE-0.001 Online EEGSDE-0.01 Online EEGSDE-0.1 DiffAC TargetDiff

0 5 10 15 20 25 30
Iterations

3.6

3.4

3.2

3.0

2.8

2.6

2.4

4TQR

0 5 10 15 20 25 30
Iterations

12.5

12.0

11.5

11.0

10.5

4LFU

Figure 5: Optimization curves of the 1st to 40th protein pockets in the test set.

14

Under review as a conference paper at ICLR 2024

0 5 10 15 20 25 30
8.5

8.0

7.5

7.0

6.5

6.0
Av

g.
 V

in
a

S
co

re
 (k

/m
ol

)
3JYH

0 5 10 15 20 25 30
11.50

11.25

11.00

10.75

10.50

10.25

10.00

9.75

4IWQ

0 5 10 15 20 25 30

15

14

13

12

11

10

9

8

1L3L

0 5 10 15 20 25 30
6.0

5.5

5.0

4.5

4.0

3.5

5NGZ

0 5 10 15 20 25 30
9.50

9.25

9.00

8.75

8.50

8.25

8.00

1E8H

0 5 10 15 20 25 30
7.75

7.50

7.25

7.00

6.75

6.50

6.25

6.00

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

2E24

0 5 10 15 20 25 30
8

7

6

5

4

3

2

1

2HCJ

0 5 10 15 20 25 30

8.00

7.75

7.50

7.25

7.00

6.75

6.50

6.25
3KC1

0 5 10 15 20 25 30

8

7

6

5

4

1D7J

0 5 10 15 20 25 30

13

12

11

10

9

4JA8

0 5 10 15 20 25 30

5.2

5.0

4.8

4.6

4.4

4.2

4.0

3.8

3.6

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

4U5S

0 5 10 15 20 25 30

9.0

8.5

8.0

7.5

7.0

4IIY

0 5 10 15 20 25 30

8.75

8.50

8.25

8.00

7.75

7.50

7.25

7.00

3V4T

0 5 10 15 20 25 30
8.5

8.0

7.5

7.0

6.5

6.0

3TYM

0 5 10 15 20 25 30

7.4

7.2

7.0

6.8

6.6

6.4

6.2

4D7O

0 5 10 15 20 25 30

4.8

4.6

4.4

4.2

4.0

3.8

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

3EJ8

0 5 10 15 20 25 30
5.0

4.8

4.6

4.4

4.2

4.0

3.8

1RS9

0 5 10 15 20 25 30

6.8

6.6

6.4

6.2

6.0

5.8

5.6

4KCQ

0 5 10 15 20 25 30

0

5

10

15

20

25

30

35

3PDH

0 5 10 15 20 25 30

11

10

9

8

7

1UMD

0 5 10 15 20 25 30
12

11

10

9

8

7

6

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

4PXZ

0 5 10 15 20 25 30

0

10

20

30

40

50

2GNS

0 5 10 15 20 25 30

9.0

8.5

8.0

7.5

7.0

6.5

6.0
1AI4

0 5 10 15 20 25 30

5

4

3

2

1
5MMA

0 5 10 15 20 25 30

6.6

6.4

6.2

6.0

5.8

5.6

5.4

5.2
2CY0

0 5 10 15 20 25 30

6.0

5.5

5.0

4.5

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

3W83

0 5 10 15 20 25 30
6.5

6.0

5.5

5.0

4.5

2E6D

0 5 10 15 20 25 30

7.2

7.0

6.8

6.6

6.4

6.2

6.0

5.8

4RV4

0 5 10 15 20 25 30

10.5

10.0

9.5

9.0

8.5

8.0
5D7N

0 5 10 15 20 25 30

6.5

6.0

5.5

5.0

4.5

5MGL

0 5 10 15 20 25 30
12

10

8

6

4

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

1H36

0 5 10 15 20 25 30
3.8

3.6

3.4

3.2

3.0

2.8

2.6

2.4
4GVD

0 5 10 15 20 25 30

15.0

14.5

14.0

13.5

13.0

12.5

4TOS

0 5 10 15 20 25 30

11.5

11.0

10.5

10.0

9.5

9.0
5AEH

0 5 10 15 20 25 30

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

4H3C

0 5 10 15 20 25 30
Iterations

13

12

11

10

9

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

4RLU

0 5 10 15 20 25 30
Iterations

11.0

10.5

10.0

9.5

9.0

4XLI

0 5 10 15 20 25 30
Iterations

6.2

6.0

5.8

5.6

5.4

5.2

5.0

4.8

3L3N

Online EEGSDE-0.001 Online EEGSDE-0.01 Online EEGSDE-0.1 DiffAC TargetDiff

0 5 10 15 20 25 30
Iterations

5.00

4.75

4.50

4.25

4.00

3.75

3.50

5TJN

0 5 10 15 20 25 30
Iterations

11.0

10.5

10.0

9.5

9.0

5LIU

Figure 6: Optimization curves of the 41st to 80th protein pockets in the test set.

15

Under review as a conference paper at ICLR 2024

0 5 10 15 20 25 30

12.5

12.0

11.5

11.0

10.5

10.0

9.5

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

3O96

0 5 10 15 20 25 30
11.0

10.5

10.0

9.5

9.0

8.5

8.0

7.5

7.0
4QLK

0 5 10 15 20 25 30

10.5

10.0

9.5

9.0

8.5

8.0

3HY9

0 5 10 15 20 25 30

9.5

9.0

8.5

8.0

7.5

4BEL

0 5 10 15 20 25 30

9.0

8.5

8.0

7.5

7.0

3NFB

0 5 10 15 20 25 30

10.5

10.0

9.5

9.0

8.5

8.0

7.5

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

4M7T

0 5 10 15 20 25 30
9.25

9.00

8.75

8.50

8.25

8.00

7.75

7.50

7.25
3U9F

0 5 10 15 20 25 30

7.75

7.50

7.25

7.00

6.75

6.50

6.25

6.00

5.75
4AUA

0 5 10 15 20 25 30

8.75

8.50

8.25

8.00

7.75

7.50

7.25

2F2C

0 5 10 15 20 25 30

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

3CHC

0 5 10 15 20 25 30
4.4

4.2

4.0

3.8

3.6

3.4

3.2

3.0

2.8

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

1K9T

0 5 10 15 20 25 30

8.5

8.0

7.5

7.0

6.5

6.0

1H0I

0 5 10 15 20 25 30

10.0

9.5

9.0

8.5

8.0

4Z2G

0 5 10 15 20 25 30

6.2

6.0

5.8

5.6

5.4

5.2

3AF2

0 5 10 15 20 25 30

4.6

4.4

4.2

4.0

3.8

3.6

3.4

3.2
1JN2

0 5 10 15 20 25 30
Iterations

9.5

9.0

8.5

8.0

7.5

7.0

Av
g.

 V
in

a
S

co
re

 (k
/m

ol
)

3LI4

0 5 10 15 20 25 30
Iterations

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

3PNM

0 5 10 15 20 25 30
Iterations

8.6

8.4

8.2

8.0

7.8

7.6

7.4

7.2

7.0

1AFS

Online EEGSDE-0.001 Online EEGSDE-0.01 Online EEGSDE-0.1 DiffAC TargetDiff

0 5 10 15 20 25 30
Iterations

10.50

10.25

10.00

9.75

9.50

9.25

9.00

4AZF

0 5 10 15 20 25 30
Iterations

8.5

8.0

7.5

7.0

6.5

6.0

5.5

2PC8

Figure 7: Optimization curves of the 81st to 100th protein pockets in the test set.

16

Under review as a conference paper at ICLR 2024

D EXPERIMENTS ON TEXT-TO-IMAGE GENERATION

To demonstrate the generalizability of our method beyond the SBDD task, we also apply our method
to text-to-image generation. In this experiment, we use DiffAC to fine-tune text-to-image generative
models to better align with human preferences.

D.1 EXPERIMENTAL SETUP

We use Stable Diffusion v1.5 (Rombach et al., 2022) as the baseline, which has been pre-trained on
large image-text datasets (Schuhmann et al., 2021; 2022). For compute-efficient fine-tuning, we use
Low-Rank Adaption (LoRA) (Hu et al., 2022), which freezes the parameters of the pre-trained model
and introduces low-rank trainable weights. We apply LoRA to the UNet (Ronneberger et al., 2015)
module and only update the added weights. For the reward model, we use ImageReward (Xu et al.,
2023) which is trained on a large dataset comprised of human assessments of images. Compared to
other scoring functions such as CLIP (Radford et al., 2021) or BLIP (Li et al., 2022), ImageReward
has a better correlation with human judgments, making it the preferred choice for fine-tuning our
baseline diffusion model. In practice, we use DiffAC (the REINFORCE version, i.e., Eq. 11) to
fine-tune Stable Diffusion.

We also compare our method with DPOK (Fan et al., 2023). DPOK is a strong baseline that updates
the pre-trained text-to-image diffusion models using policy gradient with KL regularization to
maximize the reward. Notably, the difference between DPOK and our method is that DPOK estimates
policy gradient with real trajectories sampled by backward process while our method estimates
policy gradient with efficient forward process. And this difference is the key factor for stabler policy
gradient.

We adopt a straightforward setup that uses one text prompt “A green colored rabbit” during fine-tuning
and compares ImageReward scores of all methods. For both DPOK and our method, we perform 5
gradient steps per sampling step. The sampling batch size is 10 and the training batch size is 32.

D.2 EXPERIMENTAL RESULTS

We plot the optimization curves of all methods as shown in Fig. 8. As the results indicates, our
method can efficiently improve ImageReward scores and outperform baselines by a large margin.

We provide image examples as shown in Fig. 9. Stable Diffusion tends to generate images with
obvious mistakes like generating a rabbit with a green background given the prompt “A green colored
rabbit”, while our method generates much more satisfying images that are well aligned with the given
text prompt. The experiments on text-to-image generation along with structure-based drug design
demonstrate the generalizability of our method and reveal its great potential on many real-world
applications.

17

Under review as a conference paper at ICLR 2024

0 100 200 300 400
Optimizatiom steps

0.0

0.5

1.0

1.5

2.0
Im

ag
eR

ew
ar

d
sc

or
e

Stable Diffusion DPOK DiffAC

Figure 8: Optimization curves of ImageReward scores.

Stable
Diffusion

DiffAC

Figure 9: Example images generated by Stable Diffusion (Rombach et al., 2022) (top row) and our
method (bottom row) givne text prompt “A green colored rabbit”.

18

	Introduction
	Preliniminary
	Reinforcement learning and policy gradients
	Generative modeling via Stochastic differential equations
	SDE as Markov Decision Process

	Challenge of applying Policy Gradient to train SDEs
	Ill-defined Policy Gradient
	Uncontrolled behavior for low data density region

	Method
	Generating samples
	Estimation of policy gradient
	A practical implementation

	Related Work
	Experiments
	Experimental Setup
	Main Results

	Conclusions
	Toy example in Sec 3.1
	Implementation Details
	Optimization curves of 100 protein pockets
	Experiments on text-to-image generation
	Experimental Setup
	Experimental Results

