
Synthetic Programming Elicitation
for Text-to-Code in Very Low-Resource
Programming and Formal Languages

Federico Mora1 Justin Wong1 Haley Lepe2 Sahil Bhatia1 Karim Elmaaroufi1

George Varghese3 Joseph E. González1 Elizabeth Polgreen4 Sanjit A. Seshia1
1UC Berkeley 2Stanford University 3UCLA 4University of Edinburgh

{fmora, justin.wong, sahilbhatia, k.e, jegonzal, sseshia}@berkeley.edu
halepe@stanford.edu, varghese@cs.ucla.edu, elizabeth.polgreen@ed.ac.uk

Abstract

Recent advances in large language models (LLMs) for code applications have
demonstrated remarkable zero-shot fluency and instruction following on challeng-
ing code related tasks ranging from test case generation to self-repair. Unsur-
prisingly, however, models struggle to compose syntactically valid programs in
programming languages unrepresented in pre-training, referred to as very low-
resource Programming Languages (VLPLs). VLPLs appear in crucial settings,
including domain-specific languages for internal tools, tool-chains for legacy lan-
guages, and formal verification frameworks. Inspired by a technique called natural
programming elicitation, we propose designing an intermediate language that
LLMs “naturally” know how to use and which can be automatically compiled to
a target VLPL. When LLMs generate code that lies outside of this intermediate
language, we use compiler techniques to repair the code into programs in the inter-
mediate language. Overall, we introduce synthetic programming elicitation and
compilation (SPEAC), an approach that enables LLMs to generate syntactically
valid code even for VLPLs. We empirically evaluate the performance of SPEAC
in a case study for the UCLID5 formal verification language and find that, com-
pared to existing retrieval and fine-tuning baselines, SPEAC produces syntactically
correct programs more frequently and without sacrificing semantic correctness.

1 Introduction

Large language models (LLMs) have demonstrated an exceptional ability to generate code from natu-
ral language prompts for popular programming languages, like Python and Java [13]. Unfortunately,
these same language models struggle to generate code for low-resource programming languages, like
many domain-specific languages (e.g., CUDA [40]). These challenges are even more pronounced
for very low-resource programming languages (VLPLs) (e.g., formal verification languages like
UCLID5 [34, 37]). Existing work has attempted to remedy this issue through prompting, constrained
decoding, and fine-tuning strategies. Unfortunately, these approaches fail to capture the intricacies of
real VLPLs and so success remains limited. To see why, consider the following three exemplars.

First, Wang at el. [42] include context-free grammars in text-to-code prompts to guide LLMs toward
syntactically correct answers. This approach works well for simple languages but cannot capture
most non-trivial programming languages, which are context-sensitive. Second, Agrawal et al. [1]
use static analysis techniques to reject tokens that lead to syntactically incorrect output programs.
This technique can go beyond context-free languages but assumes a linear programming process.
Unfortunately, it is well known that the root cause of a programming error need not surface as it is

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



written [32], necessitating backtracking and a nonlinear programming process. Third, Cassano et
al. [10] translate training data from high resource languages to low resource languages and then use
this new data to fine-tune models. This approach is restricted to languages where the LLM is able to
translate to the language reliably but unable to generate code from natural language. Further, this
approach makes the overly restrictive assumption that the target low-resource language is general
purpose: e.g., we cannot translate arbitrary Java programs to CUDA.

In this paper, we propose a text-to-code approach that is fundamentally different (and complementary)
to prompting, decoding, and fine-tuning strategies. The first key idea behind our approach comes
from natural programming elicitation, a kind of study that helps programming language designers
understand how programmers “naturally” approach problems from a given programming domain [29,
11]. Programming language designers use the results of these studies to create languages that are
aligned with the expectations of users, leading to less programming friction and more effective
developers. We borrow this idea for the setting where LLMs are the “users” of programming
languages. Akin to uncovering what human users find “natural” for a given domain, we uncover what
LLMs find “natural.” Specifically, our first insight is to embrace LLM’s tendencies and design an
intermediate language that aligns with these LLM expectations.

The second key idea in our approach is that program analyses and repair that are overly aggressive
for human users may be suitable for LLM “users.” For example, in UCLID5, all variables have
to be declared and statically typed: an assignment like x = 0; would require a corresponding
declaration like var x: integer;. But, if an LLM generates code that had an assignment without
a declaration, instead of crashing, one could automatically “repair” the program and output the result.

We use these two ideas to define a new text-to-code approach called synthetic programming elicitation
and compilation (SPEAC, pronounced “speak”). Specifically, for a target VLPL T , we use synthetic
programming elicitation to select an intermediate language P (the “parent” language) and define a
subset of the language C (the “child” language). The language P should be one that LLMs are good
at generating (e.g. Python); the language C should be easy to compile to the target VLPL T . Our
approach takes P , C, and a compiler from C to T , and produces a text-to-code pipeline for the VLPL
T . This pipeline uses deductive techniques to automatically repair programs generated by LLMs that
are in P but not in C. When these deductive techniques are unable to fully repair a program, we
insert a “hole” and ask an LLM to finish the repair, repeating as necessary.

We demonstrate the effectiveness of this idea by implementing a prototype, called Eudoxus, that
targets UCLID5 [34, 37], a language used for formal modeling and verification of state transition
systems. UCLID5 has code examples numbering in the hundreds rather than thousands or millions.
Furthermore, UCLID5 programs rely heavily on the notion of a transition system, which is not
frequently found in other programming languages. As such, state-of-the-art LLMs are unable to
generate any useful UCLID5 code out-of-the-box (see §5.1). In our case study, we use Python as the
parent language P and a subset of Python as the child language C, and improve the performance of
LLM code generation for UCLID5.

Overall, we make the following contributions: 1) We present SPEAC, a novel method for generating
syntactically correct code from LLMs in very low resource programming languages; 2) We implement
this method for the UCLID5 verification language; and 3) We demonstrate substantial improvement
with SPEAC in syntactic correctness, producing parsable code in UCLID5 84.8% of the time
compared to 9.1% by gpt-3.5-turbo fine-tuning and 12.1% by gpt-4-turbo in-context learning.

2 Related Work

LLMs for Code Generation. Modern language models perform exceptionally well on natural
language to code generation tasks. For example, proprietary models like GPT-4 [31], the Gemini [41]
and Claude 3 Families 1, and open-source models such as Code-Llama [35] and Deepseek-Coder [20]
have achieved impressive success on benchmarks such as HumanEval [13], Mostly Basic Python
Problems (MBPP) [3], and LiveCodeBench [22]. However, LLMs perform better on popular program-
ming languages that are well represented in training sets (e.g., Python) than less popular programming
languages (e.g., Bash) [20, 26, 33]. This effect is even more pronounced for very low resource
programming languages, like UCLID5, as shown in §6.

1https://www.anthropic.com/news/claude-3-family

2

https://www.anthropic.com/news/claude-3-family


Model a state machine describing a
traffic light at a pedestrian crosswalk.
This is a time triggered machine that
assumes it will react once per second. It
starts in the red state and counts 60
seconds with the help of the variable
count. It then transitions to green, where
it will remain until the pure input
pedestrian is present. That input is
generated by some other subsystem that
detects when a pedestrian is present, and
should be modelled as nondeterministic.
When pedestrian is present, the machine
transitions to yellow if it has been green
for at least 60 seconds. Otherwise, it
transitions to pending, where it stays for
the remainder of the 60 second interval.
This ensures that once the light goes
green, it stays green for at least 60
seconds. At the end of 60 seconds, it will
transition to yellow ...

(a)

1module TrafficLight {
2var sigG, sigR, sigY: boolean;
3var count, state: integer;
4var pedestrian: boolean;
5init {
6sigG = false; sigY = false; sigR = true;
7state = 0; count = 0; pedestrian = false; }
8procedure step()
9modifies sigG; modifies sigY; modifies sigR;
10modifies count; modifies state; {
11if (state == 0) {
12sigG = false; sigY = false; sigR = true;
13count = 0;
14if (count < 60) { count = (count + 1); }
15else { state = 1;}}
16else { if (state == 1) {
17sigR = false; sigY = false; sigG = true;
18if (pedestrian) {
19if (count >= 60) { state = 2; }
20else { state = 3; }}}
21...

(b)

Figure 1: Partial task description from Lee and Seshia [23] (a) and partial output of Eudoxus in
UCLID5 (b). We interpret sigG, sigR, sigY to represent green, red, and yellow light signals,
respectively. The procedure step captures the transition relation of the state machine. state appears
to be a bookkeeping variable that is used to track the cases in the task, and count represents a timer.

Training Free Approaches for Low-Resource Programming Languages. In constrained decoding,
syntactically incorrect code is avoided by rejecting impossible prefixes, without producing the full
code [18, 1, 36, 27]. In the context of autoregressive LLMs that naturally produce code left to right,
it remains an open problem how to best include the inductive bias of a grammar. Bhatia et al. [8] use
LLMs to rewrite existing code into domain-specific languages and prove that the translation is correct.
Misu et al. [28] use retrieval-augmented generation to write Dafny code, another low-resource
language for verification [25]. Unlike these works, we focus on very low resourced languages
(VLPLs), which have far fewer training examples in the public domain. Our approach is most similar
to techniques that allow LLMs to hallucinate but iteratively repair errors [38, 14, 30]. For example,
Elmaaroufi et al. [16] use a mixture of prompting and compiler feedback to generate and iteratively
repair Scenic code—a probabilistic VLPL that looks like Python [17].

Training LLMs for Low-Resource Programming Languages. Recent work has considered aug-
menting LLMs with support for low-resource programming languages [10, 12, 20]. Chen et al. [12]
show that, on smaller 125M parameter encoder-only models, fine-tuning on adjacent languages
improves the monolingual performance coding tasks. Synthetic fine-tuning datasets curated and
cleaned by LLMs have shown promise for programming tasks. For example, Cassano et al.[10]
targets low-resource programming languages (e.g., Julia), using an LLM to translate code examples
from high-resource languages to the low-resource language. This process is promising for cases
where the language model already has a baseline knowledge necessary to translate to the low-resource
language and the target language is general purpose, which is not always the case for VLPLs.

3 Overview and Running Example

Given a natural language description of a programming task and a target programming language
T , the text-to-code problem is to generate a program t ∈ T that satisfies the task specification.
Fig. 1 shows a real input-output pair generated by an instance of our approach targeting the UCLID5
programming language. Specifically, Fig. 1a shows a task extracted from Lee and Seshia [23], and
Fig. 1b shows the output corresponding to that task using a prototype implementation of our approach.
Fig. 1b passes all compiler checks but has a subtle semantic mistake on line 4.

3



Figure 2: The SPEAC workflow. Users input q, a task in natural language, and C, a description of the
intermediate language. The LLM takes these inputs and generates p, a program in P . We use formal
techniques to repair p and produce p′, a program in C that possibly contains holes. If p′ does not
contain holes, SPEAC applies f , a compiler from C to the target language, T , and returns the result.
Otherwise, SPEAC generates a new prompt, q′, and repeats by asking the LLM to fill in the holes.

Fig. 2 shows the workflow that generates models based on task descriptions as shown in Fig. 1b.
The workflow is parameterized by an LLM, L (e.g., gpt-3.5-turbo-0125); a target language, T (e.g.,
UCLID5); a parent language, P (e.g., Python); a child language, C ⊂ P (e.g., a subset of Python);
and a compiler, f , from C to T (e.g., a syntax-directed translation from the subset of Python to
UCLID5). Given an input task, we create a prompt q that asks the LLM L to generate code, p ∈ C,
which satisfies the task description, q. The second step of the workflow is to repair p. If there is
nothing wrong with p, or p can be fixed using formal techniques described in §5.3 and §5.4, then
repairing will generate a new, complete program p′ and return f(p′) (i.e., a program in the target
language, like Fig. 1b). Frequently, however, repairing will generate a partial program containing
“holes” (denoted “??”). For example, Fig. 5b shows the first p generated for the task in Fig. 1a and
Fig. 5a shows the corresponding partial program p′ that was automatically generated using our formal
techniques. Programs with holes cannot be compiled to the target language, so the third step of the
workflow is ask the LLM to complete the partial program p′, generating a new p. We use the template
in Fig. 4b to generate the LLM prompt. Fig. 6a shows the output generated by gpt-3.5-turbo-0125
when asked to repair the partial program in Fig. 5a. This program is still incorrect, but, it is now close
enough that we can automatically repair it to a complete program without holes. Fig. 6b shows the
relevant portion of that complete program. This final, complete program is directly translated to the
output in Fig. 1b. §5 elaborates on each of the workflow components.

To understand the subtle mistake in Fig. 1b one needs some understanding of UCLID5 [34, 37].
UCLID5 is a verification language used to model hardware and software systems as “state machine”
like transition systems and to automatically check if the transition system does indeed satisfy a formal
logic specification. UCLID5 transition systems primarily consist of a state space given by a set
of variable declarations (e.g., lines 2-4 in Fig. 1b), an initialization block that represents a set of
acceptable start states (e.g., lines 5-7 in Fig. 1b), and a transition relation block that defines how
the transition system moves from one state to the next state (e.g., code starting at line 8 in Fig. 1b).
The var keyword is used to declare variables that are internal to the transition system in question
while the input keyword is used to declare read-only variables that are outside the control of the
transition system in question. Fig. 1b passes all compiler checks but has a subtle semantic mistake
on line 4: var pedestrian: boolean; should be input pedestrian: boolean; because
the presence of a pedestrian should not be controlled by the traffic light transition system. When
manually assessing correctness in §6, this subtle mistake would prevent us from marking this example
as fully correct.

4 Background

In this section we provide the necessary technical background to understand the formal techniques
that are used in our approach and are described in §5.3 and §5.4.

4.1 Algebraic Data Types and Abstract Syntax Trees

Algebraic data types (ADTs) are a representation of finite trees that are common in functional
programming languages. We provide an informal definition of ADTs and point the interested reader
to Barrett et al. [6] for a more formal treatment.

An ADT consists of a set of constructors (node names), selectors (directed edge names), and testers
(predicates). Each constructor has a fixed set of selectors associated with it (possible edges out).

4



from FormalVerificationLibrary import Module # GTCODE 1: imports a class from the hypothetical library
m = Module("myModule") # GTCODE 2: creates an instance of an imported class
print(m) # GTCODE 3: uses a dunder method (in this case __str__) of an imported class

Figure 3: Hypothetical LLM output with grounded theory codes as comments. Codes are determined
and assigned manually.

Each selector has an associated type (each edge can only point to a fixed set of node names). Every
constructor is associated with exactly one unique tester: that tester returns true on a given tree iff the
root of the tree is labeled with the corresponding constructor. Every instance of an ADT (a particular
finite tree built from those node and edge names) must be acyclic.

Abstract syntax trees (ASTs) are instances of ADTs—i.e., ASTs are concrete finite trees—that
represent programs. Every programming language has a corresponding ADT that represents a
superset of all possible programs in that programming language. Some instances of a languages’s
ADT will not correspond to valid programs, e.g., if they do not additionally type check.

4.2 Satisfiability Modulo Theories and Weighted Maximum Satisfiability

Satisfiability Modulo Theories (SMT) [7] is a class of problems generalizing Boolean satisfiability
(SAT) to first-order logics with additional background logical theories. We give an informal presen-
tation of satisfiability modulo theories (SMT) that focuses on only the theory of ADTs and covers
weighted maximum satisfiability (MAX-SMT). Further details may be found in a book chapter [7].

Let Γ be a set of ADTs and let V be a set of typed variables (pairs of names and types). For simplicity
we assume that variable types are exactly elements of Γ. In reality, variables can also have function
types (e.g., V .

= {(z, Bool), (f, Bool 7→ Bool)} would be fine). An atomic formula is an equation
or the application of a single tester over V (e.g., z = True and is_And(z) are both atomic formulas).
A theory literal is an atomic formula or its negation. A clause is a set of theory literals. A conjunctive
normal form (CNF) formula, or formula for short, is a set of clauses. For example, if Γ .

= {Bool} and
V

.
= {(z, Bool)}, then {{z = True}, {is_And(z)}} is a formula. An interpretation is a mapping

from variables to elements of their corresponding type. For example, I(x) .
= True if x = z and

I(x)
.
= False otherwise, is an interpretation. Interpretations are extended to atomic formulas in the

natural way When an atomic formula ϕ evaluates to true under an interpretation I , we say that I
satisfies ϕ and write I |= ϕ. We extend the notion of satisfiability to literals, clauses, and formulas
in the natural way and reuse the same notation. The satisfiability modulo theories problem is to
determine if, for a given formula ϕ, there exists an interpretation I such that I |= ϕ. When such an I
exists we say that ϕ is satisfiable (sat). When no such I exists, we say that ϕ is unsatisfiable (unsat).
For example, {{z = True}, {is_And(z)}} is unsat.

The maximum satisfiability problem is, for a given (CNF) formula ϕ, to determine the largest
subset of ϕ that is sat (solvers aim to satisfy as many clauses as possible). The weighted maximum
satisfiability problem (MAX-SMT) is a variation with two differences. First, some clauses can be
“hard”—meaning they must be satisfied. Second, every “soft” clause (any clause that is not “hard”)
has an associated weight. The problem is then to determine subset of ϕ that maximizes the sum of
weights while being sat and containing all “hard” clauses.

5 Approach

In this section we describe the SPEAC approach. We begin with how to select P and C (§5.1). We
then describe the promoting we use to interface with LLMs (§5.2) and two formal techniques at the
heart of our automated repair (§5.3 and §5.4).

5.1 Synthetic Programming Elicitation

In this section, we present synthetic programming elicitation as a kind of programming study—where
LLMs are the subject—that follows three steps. The results of these studies are used to select P
and C. We call this process synthetic programming elicitation since it is inspired heavily by natural

5



programming elicitation [29]. To make this section more concrete, for each step of the study, we
describe the specific steps we followed for targeting UCLID5.

First Step: Setup. First prepare LLM subjects, select a target language, and collect or construct
a set of programming tasks. In our case, our target language is UCLID5, our LLM subjects are
gpt-4-turbo-2024-04-09 and gpt-3.5-turbo-0125, and our programming tasks are a set of regression
tests written by UCLID5 developers with corresponding natural language descriptions that were
written by hand (see §6 for more details on all the benchmarks).

The second part of the study setup is to create multiple kinds of specialized prompts. The first will
ask for the output to be in the target language directly. Subsequent prompts will ask for the output to
use an imaginary API in a popular host language, like Python or Java. For example, for UCLID5, we
generated prompts that look like the following.

1. “Write a UCLID5 model for a system that counts the number of times the temperature exceeds a
threshold [. . .]”

2. “ FormalVerificationLibrary is a Python library for generating verification models [. . .]. Use the
FormalVerificationLibrary to model a system that counts the number of times the temperature
exceeds a threshold [. . .]”

Second Step: Execute. Now we execute every LLM subject on every prompt and collect the outputs.
Each query should be executed independently.

Third Step: Analyze and Design. Finally, we analyze the collected LLM outputs and select P and
C based on the analysis. To do this analysis, we follow a lightweight version of grounded theory [19].
See e.g., Stol et al. [39] for general guidelines on how to use grounded theory in software engineering
research. See e.g., Barke et al. [5] for a specific, detailed case-study. Synthetic programming
elicitation studies are inspired by and borrow many of the methods from those works. Our studies are
categorically different, however, because we are not working with humans. We cannot interact with
our participants in the same way, e.g., we cannot conduct semi-structured interviews. The goal of our
studies is to design an intermediate language that more closely matches the code that LLMs tend to
generate when compared to our desired target language.

The first step of our lightweight grounded theory analysis is to “code” the outputs generated by the
LLMs. In grounded theory parlance, “code” is akin to manually labeling parts of the generated
outputs. For example, Fig. 3 shows a hypothetical LLM output for our running example along with
grounded theory codes as comments. The second step is to group codes into concepts. Concepts are
slightly more abstract than codes. For example, a concept that may emerge from Fig. 3 is the group
of codes 1, 2, and 3. The corresponding concept could be “using a class from the hypothetical library.”
In the third step, we group concepts into categories. For example, we may group concepts related to
the object oriented programming paradigm as one category. Finally, we select a P and C that are
consistent with the final categories we observed across multiple prompts.

In our study, we found that, when asked to write UCLID5 code without any special prompting or
training, no LLM was able to produce code that parses (660 attempts: 10 samples per LLM per
benchmark, 33 benchmarks, two LLMs). Worse still, the code generated by LLMs was inconsistent,
with each LLM giving different outputs that resemble different programming languages at different
times. When asked to write Python code that used a non-existent formal verification API, however,
the LLM outputs were more consistent. Therefore, we selected Python as our parent language, P .

Specifically, the Python code was more consistent because LLM outputs fell into three broad
categories, which we call “from-scratch,” “procedural,” and “object-oriented,” respectively. Programs
in the “from-scratch” category used existing APIs (e.g., the Z3 solver API [15]) to re-implement
what UCLID5 does, e.g., to manually model transition systems. This was the smallest significant
category. Programs in the “procedural” category imported a class from the hypothetical API, created
an instance of it, and then called methods from the class to declare variables, assert specifications and
so on. Programs in the “object-oriented” category imported a class from the hypothetical API and
extended it, including methods that correspond closely to parts of UCLID5 code. For example, these
extended classes often included a method that represented a transition relation—a critical component
of UCLID5 programs and of transition systems generally.

After analyzing the outputs, we concluded that it would be easiest to translate Python programs from
the “object-oriented” category to UCLID5. For example, we observed that methods which represent

6



1 Write [PARENT LANGUAGE] code to complete the
following task.

2 > [TASK GOES HERE]
3 Reply with your code inside one unique code block
4 [DESCRIBE CHILD LANGUAGE]
5 I can definitely do that! Here is the code:
6 ‘‘‘

(a) Template for prompt q in Fig. 2

1Fix the following [PARENT LANGUAGE] code by
replacing every occurrence of ‘??‘ with the correct
code.

2[CODE WITH HOLES GOES HERE]
3Make sure that your code completes the following

task.
4[LINES 2−6 OF (a)]

(b) Template for prompt q′ in Fig. 2

Figure 4: Partial SPEAC prompt templates for first generation (a) and hole filling (b).

transition relations used a limited set of names, and that methods themselves could be compiled to
UCLID5 rather directly. Therefore we defined a subset of Python that matches the “object-oriented”
category and used that as our child language, C. Essentially, C is an abstract class that the LLM must
extend. For example, the abstract class includes an abstract method called “next” that corresponds to
the transition relation. Fig. 6b shows a portion of an example of a Python program in C and Fig. 1b
shows a portion of its corresponding UCLID5 program.

5.2 (Minimal) Prompting

After our synthetic programming elicitation study—once P and C have been selected—we use
minimal prompting to interface with LLMs. For example, for UCLID5, we use the prompt template
in Fig 4a to create initial programs and the prompt template in Fig. 4b to fill in holes. More advanced
prompting techniques are complementary and could help here. However, for this work, we used
minimal prompting so as to independently evaluate our contribution.

5.3 Largest Consistent Subtree

Given a program p in P , but not in C, our aim is to remove as little as possible from p to bring it into
the language C. That is, given the AST for p, we wish to generate the largest subtree of the AST,
possibly containing holes, that is not rejected by the static checks of the language C. For example,
the code in Fig. 5b contains some errors, including mismatches between variable and constant types
(UCLID5 does not automatically cast constants and so the line self . count = 1 is interpreted as
assigning the integer literal 1 to the bitvector variable self . count, which is a type error).

We find the largest consistent subtree in three steps. First, we use an error tolerant parser to build an
AST, A, for the language P . Second, beginning at the root of A, we recursively descend and prune
anything that cannot exist in an AST for the language C, placing holes wherever they are needed.
This is an aggressive program slice, similar to Akhundov et al. [2], who give a new AST A′. A′ may
or may not pass compiler checks, like type checking, or be semantically correct.

The third step finds the minimal number of AST nodes that need to be replaced with holes such that
all static checks of the language C pass, using the approach of Pavlinovic et al. [32]. Specifically, for
every static check of the language, for every node of the AST, we generate a set of soft clauses. Let S
be the the union of all the generated clauses, and let S′ be the largest subset of clauses that is sat (the
output of a MAX-SMT solver). Any clause, c, that appears in S but does not appear in S′ represents
a bug: if we add c to S′, then we will get an unsat set of clauses. So, for every such c, we replace the
AST node that generated c with a hole.

For example, in UCLID5, the two statements var x: bv32; and x = 0; would produce a set of
clauses corresponding to the assertions that (a) x is a bitvector and that (b) x is an integer (since 0 is
an integer). These assertions, together, are unsat, so MAX-SMT would return a set of clauses that
does not include both (a) and (b). One solution would be to remove the bitvector type, producing the
partial, but consistent, two statements var x: ??; and x = 0;.

We can bias the solver to include one or the other by adjusting the weights on the corresponding
clauses. In practice, we assign clauses weights that are proportional to the depth of the corresponding
node in the AST. This ensures that edits are closer to the leafs of the AST but it breaks syntactic
minimality guarantees. In the case where weights are uniform and every node corresponds to exactly
one clause, the MAX-SMT approach will make the minimal edit to the AST.

7



1 class TrafficLight(Module):
2 def types(self):
3 self.state_t = BitVector(2)
4 def locals(self):
5 self.state = BitVector(2)
6 self.count = BitVector(6)
7 self.pedestrian = Boolean()
8 self.sigG = Boolean()
9 self.sigY = Boolean()

10 self.sigR = Boolean()
11 def inputs(self):
12 self.pedestrian = Boolean()
13 def outputs(self):
14 self.sigG = Boolean()
15 self.sigY = Boolean()
16 self.sigR = Boolean()
17 def init(self):
18 self.state = BitVector(2)
19 self.count = BitVector(6)
20 self.pedestrian = Boolean()
21 self.sigG = Boolean()
22 self.sigY = Boolean()
23 self.sigR = Boolean()

24 def next(self):
25 if self.state == 0:
26 self.sigG = False
27 self.sigY = False
28 self.sigR = True
29 self.count = 0
30 if self.count < 60:
31 self.count += 1
32 else:
33 self.state = 1
34 ...
35 elif self.state == 3:
36 self.sigG = False
37 self.sigY = False
38 self.sigR = False
39 if self.count < 60:
40 self.count += 1
41 else:
42 self.state = 0

(a)

1class TrafficLight(Module):
2def locals(self):
3self.state = int
4self.count = int
5self.pedestrian = bool
6def outputs(self):
7self.sigG = bool
8self.sigY = bool
9self.sigR = bool
10def init(self):
11self.state = ??
12self.count = ??
13self.pedestrian = ??
14self.sigG = ??
15self.sigY = ??
16self.sigR = ??
17def next(self):
18if self.state == 0:
19self.sigG = False
20self.sigY = False
21self.sigR = True
22self.count = 0
23...

(b)

Figure 5: Partial response for task in Fig. 1a using gpt-3.5-turbo-0125 (a) and partial first repair (b).
Line 5 in (a) declares state as a local variable of bit-vector type; lines 25, 33, and 42 use state as
an integer. Line 3 in (b) repairs the type of state to be an integer.

5.4 Model-Based Repair

Once we have a satisfiable set of clauses, we can generate a corresponding satisfying model and use
the model to repair the partial program. This is where our work most differs from Pavlinovic et al.
[32]. For example, the partial program var x: ??; from above would correspond to the set of
clauses is_Integer(??). This clause would be satisfied by setting ?? to integer and so we can
repair the partial program to be var x: integer;.

Fig. 6 shows one buggy AST (Fig.6a) and the corresponding fix (Fig. 6b). For example, the variable
count is declared as an integer in the repaired program because it is used as an integer in the buggy
program. For repairs that cannot be automatically resolved by the MAX-SMT model, we use the
LLM to generate code to replace the AST holes, as shown in Fig. 2.

6 Evaluation

In this section, we implement a prototype of SPEAC for UCLID5, called Eudoxus, and use it to
evaluate the performance of SPEAC across three research questions. RQ1: Does Eudoxus perform
better than LLM baselines on syntactic correctness (passing compiler checks)? RQ2: Does Eudoxus
perform better on semantic correctness? RQ3: Does MAX-SMT cost too much computation time?
Eudoxus uses the P and C described in §5 and is implemented in Python.2 We use tree-sitter to parse
and search partial programs, and Z3 [15, 9] to solve MAX-SMT queries. We allow Eudoxus to repeat
the repair loop five times. All MAX-SMT queries are solved locally on a 2.3 GHz Quad-Core Intel
Core i7 with 32 GB of RAM. All LLM calls are made through the OpenAI Python API.

We compare Eudoxus against three LLM baselines: few-shot, self-repair, and fine-tuning. All using
gpt-3.5-turbo-0125 (GPT3t) and gpt-4-turbo-2024-04-09 (GPT4t). Few-shot with and without
Chain-of-Thought. For the few-shot baseline, we provide examples taken from the UCLID5 GitHub
repository to the LLM in context. We tried with one in context example, and then again with three in
context examples. We also combine few-shot prompting with chain-of-thought [44]. Fine-tuning.

2Available at: https://github.com/FedericoAureliano/eudoxus

8

https://github.com/FedericoAureliano/eudoxus


1 class TrafficLight(Module):
2 def locals(self):
3 self.state = 0
4 self.count = 0
5 self.pedestrian = False
6 def outputs(self):
7 self.sigG = False
8 self.sigY = False
9 self.sigR = False

10 def init(self):
11 self.state = 0
12 self.count = 0
13 self.pedestrian = False
14 self.sigG = False
15 self.sigY = False
16 self.sigR = True
17 ...

(a)

1class TrafficLight(Module):
2def locals(self):
3self.count = int
4self.pedestrian = bool
5self.sigG = bool
6self.sigR = bool
7self.sigY = bool
8self.state = int
9
10def init(self):
11self.state = 0
12self.count = 0
13self.pedestrian = False
14self.sigG = False
15self.sigY = False
16self.sigR = True
17...

(b)

Figure 6: Partial response for Fig. 5a using gpt-3.5-turbo-0125 (a) and partial second repair (b). The
outputs method should declare variables and their types but on lines 6-9 of (a) it instead assigns
variables to values (i.e., False instead of bool). The repair in (b) declares these variables with the
appropriate types on lines 5-7.

As with many VLPL, there are very limited number of natural language to UCLID5 examples in
the public domain, and certainly not enough for fine-tuning. We do, however, have access to 317
regression tests from the open-source code base. For the purposes of fine-tuning, we use self-instruct
[43] to first ask the model to summarize the UCLID5 regression tests in natural language and then
provide this as the natural language description during fine-tuning. We fine-tune GPT3t for 284 steps
with learning-rate multiplier 0.16. Self-repair. We gave the LLMs compiler feedback in a self-repair
loop starting from a zero-shot prompt. We use five iterations to be consistent with Eudoxus.

We use three sets of UCLID5 benchmarks. The first set is a curated set of 33 regression tests
with handwritten natural language descriptions. These tests are designed to cover a broad range of
UCLID5 features and were used for the synthetic programming elicitation study in § 5.1. The second
set is a set of 317 regression tests without descriptions taken directly from the UCLID5 GitHub
repository. These tests were used for fine-tuning our baseline model, as described above. This set
is representative of the quantity and quality of data that a user may have available for a VLPL. The
third and final set is a set of 33 exercises and examples taken from three textbooks [4, 24, 21]. These
benchmarks cover formal modeling of concurrent systems, linear-time properties, model checking
and systems with discrete dynamics. We used this final set for the end-to-end evaluation below.

6.1 Results

We run two variations of Eudoxus (one using GPT3t, one using GPT4t) and 11 variations of the
baselines on all 33 textbook benchmarks. We report the fraction of outputs that pass all compiler
checks (“parse,” for short) and semantic correctness over all 11 approaches in Table 1. Semantic
correctness is manually assessed by one author using a combination of manual reasoning and hand-
written specifications for all programs that compile. Correctness is rated on a scale from from 1− 5,
where 1 is entirely wrong, and 4 indicates that the model is correct with only a few minor errors (e.g.,
the example output described in §3 and Fig. 5). Intuitively, any score of ≥ 4 indicates that we believe
the output would be useful to text-to-code users.

RQ1: Syntactic Correctness. Eudoxus outperforms all baselines in terms of compiler checks
(see “Parse Rate” in Table 1), passing all compiler checks on 78% of benchmarks. There are
four benchmarks on which Eudoxus hits the iteration limit and fails to produce a result, and three
benchmarks with small syntax errors due to bugs in our Eudoxus implementation (e.g., failing to
extract code snippets from LLM outputs or printing UCLID5 code incorrectly). In contrast, we find
that GPT3t and GPT4t rarely produce UCLID5 models that even parse. The best results for GPT3t

9



Semantic Score
Parse Rate 1 2 3 4 5

Eudoxus (GPT4t) 24/33 1/24 1/24 3/24 8/24 11/24
Eudoxus (GPT3t) 28/33 3/28 6/28 5/28 5/28 9/28
Fine-tuned GPT3t 2/33 0 2/2 0 0 0
One-shot with COT (GPT4t) 1/33 0 0 0 1/1 0
One-shot with COT (GPT3t) 0 - - - - -
One-shot (GPT4t) 0 - - - - -
One-shot (GPT3t) 0 - - - - -
Three-shot with COT (GPT4t) 3/33 0 0 0 2/3 1/3
Three-shot with COT (GPT3t) 1/33 0 0 0 0 1/1
Three-shot (GPT4t) 4/33 0 0 0 3/4 1/4
Three-shot (GPT3t) 2/33 0 0 1/2 0 1/2
Self-repair (GPT4t) 0 - - - - -
Self-repair (GPT3t) 0 - - - - -

Table 1: Eudoxus compared to baselines. We report the semantic score over all correctly parsed
models. 1 is completely wrong; 5 is fully correct. Eudoxus is limited to five LLM calls per benchmark,
and four benchmarks hit this limit.

come from fine-tuning, but it is only able to produce two programs that parse. The best results for
GPT4t come from three-shot prompting, but it is only able to produce four programs that parse. Given
this data, we answer RQ1 in the affirmative: Eudoxus perform better than standard LLM baselines
on syntactic correctness. Even more interesting, the two versions of Eudoxus generated programs
that passed all compiler checks for 30/33 unique problems; the 11 versions of the baselines together
generated programs that passed all compiler checks for only 6/33 unique problems.

RQ2: Semantic Correctness. Every unique problem that the baselines perform well on—four
unique problems where some baseline scored four or higher—was also solved by Eudoxus. These are
likely the easiest problems in the test set. On the other hand, 33/52 programs (24 unique problems)
that pass compiler checks produced by Eudoxus scored four or higher. This data suggests that our
approach does not negatively impact semantic performance, but it is difficult to draw conclusions
since so few of the programs generated by the baselines pass compiler checks.

RQ3: MAX-SMT Performance. In terms of execution time, Eudoxus with GPT3t took an average
of 0.9 seconds (SD 0.6) in repair steps and 7.2 seconds (SD 4.6) in LLM calls. Eudoxus with GPT4t
took an average of 1.8 seconds (SD 2.0) in repair steps and 35.1 seconds (SD 24.7) in LLM calls. We
conclude that, in terms of execution time, LLM calls are more expensive than our static repairs.

6.2 Threats to Validity
While our results are promising, there are three limitations to our evaluation. First, we only evaluated
SPEAC on one VLPL, UCLID5. It remains to be seen if our results can be replicated across different
VLPLs, especially those in different domains. Second, we only evaluated SPEAC with two LLMs. It
is possible that our work will not generalize across different kinds of LLMs. Third, only one author
evaluated the semantic correctness of programs generated by Eudoxus. While the main takeaway of
our work is that we are able to generate syntactically correct programs where baselines cannot, it is
possible that we have over or under-estimated semantic correctness.

7 Conclusion
We have presented a synthetic program elicitation and compilation method (SPEAC) that supports
natural language to code generation for very low resource programming languages (VLPLs). The
two key ideas behind SPEAC are (1) to design an interface that is “natural” for LLM “users” and (2)
to use deductive techniques, which could be deemed too aggressive for human users, to automatically
repair LLM outputs when possible. We implemented a prototype of SPEAC called Eudoxus that
targets the UCLID5 VLPL and evaluated it on a set of 33 benchmarks from textbooks in the same
domain as UCLID5. Eudoxus performs significantly better than standard LLM baselines on syntactic
correctness without sacrificing semantic correctness.

10



Acknowledgments and Disclosure of Funding

We would like to thank Adwait Godbole, Ameesh Shah, Max Willsey, and the anonymous review-
ers for their insightful feedback. We would like to thank Justin Lubin for pointing us to natural
programming elicitation. Part of this work was done during the Transfer-to-Excellence Summer
Research Program at UC Berkeley in 2023 and part during UC Berkeley’s CS 294-260: Declarative
Program Analysis and Optimization in 2024. This work was supported in part by a Qualcomm
Innovation Fellowship, a Royal Academy of Engineering Research Fellowship, DARPA Contract
FA8750-23-C-0080 (ANSR), C3DTI, an Amazon Research Award, NSF grant 2303564, by Nissan
and Toyota under the iCyPhy center, and by Intel under the Scalable Assurance program.

References
[1] Lakshya Agrawal, Aditya Kanade, Navin Goyal, Shuvendu K Lahiri, and Sriram Raja-

mani. Monitor-guided decoding of code LMs with static analysis of repository context.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=qPUbKxKvXq.

[2] Murad Akhundov, Federico Mora, Nick Feng, Vincent Hui, and Marsha Chechik. Verification
by gambling on program slices. In Automated Technology for Verification and Analysis: 19th
International Symposium, ATVA 2021, Gold Coast, QLD, Australia, October 18–22, 2021,
Proceedings 19, pages 266–282. Springer, 2021.

[3] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732, 2021.

[4] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.

[5] Shraddha Barke, Michael B. James, and Nadia Polikarpova. Grounded copilot: How program-
mers interact with code-generating models. Proc. ACM Program. Lang., 7(OOPSLA1), April
2023. doi: 10.1145/3586030. URL https://doi.org/10.1145/3586030.

[6] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. The smt-lib standard: Version 2.0. In
Proceedings of the 8th international workshop on satisfiability modulo theories (Edinburgh,
UK), volume 13, page 14, 2010.

[7] Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability modulo
theories. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook
of Satisfiability, chapter 33, pages 1267–1329. IOS Press, second edition, 2021.

[8] Sahil Bhatia, Jie Qiu, Niranjan Hasabnis, Sanjit A. Seshia, and Alvin Cheung. Verified code
transpilation with llms, 2024. URL https://arxiv.org/abs/2406.03003.

[9] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. νz-an optimizing smt solver. In Tools
and Algorithms for the Construction and Analysis of Systems: 21st International Conference,
TACAS 2015, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2015, London, UK, April 11-18, 2015, Proceedings 21, pages 194–199.
Springer, 2015.

[10] Federico Cassano, John Gouwar, Francesca Lucchetti, Claire Schlesinger, Carolyn Jane
Anderson, Michael Greenberg, Abhinav Jangda, and Arjun Guha. Knowledge transfer
from high-resource to low-resource programming languages for code llms. arXiv preprint
arXiv:2308.09895, 2023.

[11] Sarah E. Chasins, Elena L. Glassman, and Joshua Sunshine. PL and HCI: better together.
Commun. ACM, 64(8):98–106, jul 2021. ISSN 0001-0782. doi: 10.1145/3469279. URL
https://doi.org/10.1145/3469279.

[12] Fuxiang Chen, Fatemeh H Fard, David Lo, and Timofey Bryksin. On the transferability of
pre-trained language models for low-resource programming languages. In Proceedings of the
30th IEEE/ACM International Conference on Program Comprehension, pages 401–412, 2022.

11

https://openreview.net/forum?id=qPUbKxKvXq
https://doi.org/10.1145/3586030
https://arxiv.org/abs/2406.03003
https://doi.org/10.1145/3469279


[13] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[14] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language
models to self-debug. arXiv preprint arXiv:2304.05128, 2023.

[15] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340. Springer, 2008.

[16] Karim Elmaaroufi, Devan Shanker, Ana Cismaru, Marcell Vazquez-Chanlatte, Alberto L.
Sangiovanni-Vincentelli, Matei Zaharia, and Sanjit A. Seshia. ScenicNL: generating probabilis-
tic scenario programs from natural language. In Conference on Language Models (COLM),
2024.

[17] Daniel J Fremont, Edward Kim, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L
Sangiovanni-Vincentelli, and Sanjit A Seshia. Scenic: A language for scenario specification
and data generation. Machine Learning, 112(10):3805–3849, 2023.

[18] Saibo Geng, Martin Josifoski, Maxime Peyrard, and Robert West. Grammar-constrained
decoding for structured NLP tasks without finetuning. In Houda Bouamor, Juan Pino, and Kalika
Bali, editors, Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pages 10932–10952, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.674. URL https://aclanthology.org/
2023.emnlp-main.674.

[19] Barney Glaser and Anselm Strauss. Discovery of grounded theory: Strategies for qualitative
research. Routledge, 2017.

[20] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Y Wu, YK Li, et al. Deepseek-coder: When the large language model meets
programming–the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

[21] Michael Huth and Mark Dermot Ryan. Logic in computer science - modelling and reasoning
about systems (2. ed.). Cambridge University Press, 2004.

[22] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination
free evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

[23] Edward A. Lee and Sanjit A. Seshia. An introductory textbook on cyber-physical systems. In
WESE, page 1. ACM, 2010.

[24] Edward A. Lee and Sanjit A. Seshia. Introduction to Embedded Systems: A Cyber-Physical
Systems Approach. MIT Press, second edition edition, 2016. URL http://leeseshia.org.

[25] K Rustan M Leino. Dafny: An automatic program verifier for functional correctness. In
International conference on logic for programming artificial intelligence and reasoning, pages
348–370. Springer, 2010.

[26] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii,
Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João
Monteiro, et al. Starcoder: may the source be with you!, 2023. URL https://arxiv.org/
abs/2305.06161.

[27] Daniel Melcer, Nathan Fulton, Sanjay Krishna Gouda, and Haifeng Qian. Constrained decoding
for code language models via efficient left and right quotienting of context-sensitive grammars.
arXiv preprint arXiv:2402.17988, 2024.

[28] Md Rakib Hossain Misu, Cristina V. Lopes, Iris Ma, and James Noble. Towards ai-assisted
synthesis of verified dafny methods. Proc. ACM Softw. Eng., 1(FSE), July 2024. doi: 10.1145/
3643763. URL https://doi.org/10.1145/3643763.

12

https://aclanthology.org/2023.emnlp-main.674
https://aclanthology.org/2023.emnlp-main.674
http://leeseshia.org
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://doi.org/10.1145/3643763


[29] Brad A. Myers, John F. Pane, and Amy J. Ko. Natural programming languages and environments.
Commun. ACM, 47(9):47–52, sep 2004. ISSN 0001-0782. doi: 10.1145/1015864.1015888.
URL https://doi.org/10.1145/1015864.1015888.

[30] Theo X Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-
Lezama. Is self-repair a silver bullet for code generation? In The Twelfth International
Conference on Learning Representations, 2023.

[31] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Flo-
rencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat,
Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao,
Mohammad Bavarian, , et al. Gpt-4 technical report, 2024.

[32] Zvonimir Pavlinovic, Tim King, and Thomas Wies. Finding minimum type error sources.
SIGPLAN Not., 49(10):525–542, oct 2014. ISSN 0362-1340. doi: 10.1145/2714064.2660230.
URL https://doi.org/10.1145/2714064.2660230.

[33] Qiwei Peng, Yekun Chai, and Xuhong Li. Humaneval-xl: A multilingual code generation
benchmark for cross-lingual natural language generalization, 2024. URL https://arxiv.
org/abs/2402.16694.

[34] Elizabeth Polgreen, Kevin Cheang, Pranav Gaddamadugu, Adwait Godbole, Kevin Laeufer,
Shaokai Lin, Yatin A. Manerkar, Federico Mora, and Sanjit A. Seshia. UCLID5: multi-modal
formal modeling, verification, and synthesis. In CAV (1), volume 13371 of Lecture Notes in
Computer Science, pages 538–551. Springer, 2022.

[35] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models
for code. arXiv preprint arXiv:2308.12950, 2023.

[36] Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. Picard: Parsing incrementally for
constrained auto-regressive decoding from language models. arXiv preprint arXiv:2109.05093,
2021.

[37] Sanjit A. Seshia and Pramod Subramanyan. UCLID5: integrating modeling, verification,
synthesis and learning. In MEMOCODE, pages 1–10. IEEE, 2018.

[38] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: Language agents with verbal reinforcement learning. Advances in Neural Information
Processing Systems, 36, 2024.

[39] Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. Grounded theory in software engineering
research: a critical review and guidelines. In Proceedings of the 38th International Conference
on Software Engineering, ICSE ’16, page 120–131, New York, NY, USA, 2016. Association
for Computing Machinery. ISBN 9781450339001. doi: 10.1145/2884781.2884833. URL
https://doi.org/10.1145/2884781.2884833.

[40] Artur Tarassow. The potential of llms for coding with low-resource and domain-specific
programming languages. arXiv preprint arXiv:2307.13018, 2023.

[41] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Millican, David Silver, Melvin Johnson,
Ioannis Antonoglou, Julian Schrittwieser, Amelia Glaese, Jilin Chen, Emily Pitler, et al. Gemini:
A family of highly capable multimodal models, 2024. URL https://arxiv.org/abs/2312.
11805.

[42] Bailin Wang, Zi Wang, Xuezhi Wang, Yuan Cao, Rif A Saurous, and Yoon Kim. Grammar
prompting for domain-specific language generation with large language models. Advances in
Neural Information Processing Systems, 36, 2024.

[43] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi,
and Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated in-
structions. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Proceed-
ings of the 61st Annual Meeting of the Association for Computational Linguistics, pages

13

https://doi.org/10.1145/1015864.1015888
https://doi.org/10.1145/2714064.2660230
https://arxiv.org/abs/2402.16694
https://arxiv.org/abs/2402.16694
https://doi.org/10.1145/2884781.2884833
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805


13484–13508, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.754. URL https://aclanthology.org/2023.acl-long.754.

[44] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, NIPS ’22, Red Hook, NY, USA, 2024. Curran Associates Inc. ISBN 9781713871088.

14

https://aclanthology.org/2023.acl-long.754


A NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] ,
Justification: the claims are concretely supported by results in the evaluation
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: There is a limitation paragraph in the evaluation section
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA] .
Justification: no theoretical results
Guidelines:

15



• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The SPEAC approach is described in sufficient detail to reproduce it. The
UCLID5 language and verification tool is open source and publicly available, along with all
the regression tests for fine-tuning. The textbooks and code are publicly available.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

16



Justification: In supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:[Yes]

Justification: Experiments use openAI LLMs and report the model names and temperature
settings used and training details for the baselines.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: We do not make claims about statistical significance. We show data for a case
study.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Hardware listed in Sec. 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: The paper is about getting code to pass compiler checks.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

18

https://neurips.cc/public/EthicsGuidelines


• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We are not releasing any new models. The data we are using is not new, and is
taken from publicly available textbooks and open source code repositories.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: UCLID5 is open source and licensed under 3-clause BSD, and cited accord-
ingly. Examples taken from textbooks are cited accordingly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All code and documentation is publically available on the GitHub repository.

19

paperswithcode.com/datasets


Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

20


	Introduction
	Related Work
	Overview and Running Example
	Background
	Algebraic Data Types and Abstract Syntax Trees
	Satisfiability Modulo Theories and Weighted Maximum Satisfiability

	Approach
	Synthetic Programming Elicitation
	(Minimal) Prompting
	Largest Consistent Subtree
	Model-Based Repair

	Evaluation
	Results
	Threats to Validity

	Conclusion
	NeurIPS Paper Checklist

