
One Shot Inverse Reinforcement Learning for Stochastic Linear Bandits

Etash Guha1,2 Jim James1 Krishna Acharya3 Vidya Muthukumar3,4 Ashwin Pananjady3,4

1School of Computer Science, Georgia Tech, USA
2SambaNova Systems, Palo Alto, USA

3School of Industrial and Systems Engineering, Georgia Tech, USA
4School of Electrical and Computer Engineering, Georgia Tech, USA

Abstract

The paradigm of inverse reinforcement learning
(IRL) is used to specify the reward function of
an agent purely from its actions and is critical for
value alignment and AI safety. While IRL is suc-
cessful in practice, theoretical guarantees remain
nascent. Motivated by the need for IRL in large ac-
tion spaces with limited data, we consider as a first
step the problem of learning from a single sequence
of actions (i.e., a demonstration) of a stochastic
linear bandit algorithm. When the demonstrator
employs the Phased Elimination algorithm, we
develop a simple inverse learning procedure that
estimates the linear reward function consistently
in the time horizon with just a single demonstra-
tion. In particular, we show that our inverse learner
approximates the true reward parameter within
a error of O(T−ω−1

2ω) (where T is the length of
the demonstrator’s trajectory and ω is a constant
that depends on the geometry of the action set).
We complement this result with an information-
theoretic lower bound for any inverse learning pro-
cedure. We corroborate our theoretical results with
simulations on synthetic data and a demonstration
constructed from the MovieLens dataset.

1 INTRODUCTION

Using data-driven learning algorithms to design agents that
interact with their environment has achieved great success
in various fields ranging from robotics and video game
playing to language models. As we deploy these learn-
ing algorithms and build machine-learning systems, it is
important to ensure that they align with the goals of the
human designer [Amodei et al., 2016], i.e., to understand
how the human’s reward is specified. However, alignment
with designers’ goals using hand-specified rewards is diffi-

cult and often mispecified [Anderson, 2001, MacGlashan
and Littman, 2015]. Inverse Reinforcement Learning(IRL)
[Abbeel and Ng, 2004, Ho and Ermon, 2016, Gershman,
2016, Fu et al., 2017, Jacq et al., 2019, Geng et al., 2020]
is a well-established paradigm that circumvents the need
for explicit reward specification and instead infers a reward
function from demonstrations. In IRL, an inverse learner
only observes the actions of a learned agent and then esti-
mates the environment’s reward function. The traditional
IRL paradigm assumes that a demonstration consists of a
roll-out of the optimal policy [Ng et al., 2000, Abbeel and
Ng, 2004] or randomized variants [Ziebart et al., 2008, Ra-
machandran and Amir, 2007]. This paradigm has several
limitations, including an often poor sample complexity—in
particular, it requires multiple demonstrations. More cru-
cially, even under simple scenarios (tabular RL/bandits),
relying purely on demonstrations of an optimal policy can
lead to a fundamental identifability issue; that is, more than
one reward function explaining the demonstrator’s actions.
Such identifiability issues have been known since the early
literature on IRL [Ng et al., 2000, Abbeel and Ng, 2004]
and persist even with infinitely many demonstrations.

The inverse bandit paradigm, introduced by Guo et al.
[2021], resolves both reward identifiability and sample com-
plexity issues, albeit in the much simpler setting of stochas-
tic multi-armed bandits (MAB). They show that it is possible
to accurately estimate the reward structure by observing a
single online demonstration of a low-regret bandit algorithm.
In particular, they observe the demonstrator’s behavior (i.e.,
the sequence of arms that it picks) en route to optimality and
critically utilize the temporal information in online bandit
learning to circumvent identifiability issues and the require-
ment of multiple demonstrations.

The question that motivates this paper is whether learning
from a single demonstration in a similar manner is possible
for more complex decision-making scenarios. In particular,
we are interested in estimating the reward structure in the
stochastic linear bandit setting by observing a single demon-
stration from a low-regret algorithm. This setting in itself is

Accepted for the 40th Conference on Uncertainty in Artificial Intelligence (UAI 2024).

mailto:<jj@example.edu>?Subject=Your UAI 2024 paper

much more challenging — the ideas from Guo et al. [2021]
critically utilize the independence of reward distributions
across arms in the MAB setting in multiple steps of the
algorithm design and analysis and do not generalize to even
the linear bandit case, which has highly structured rewards
across actions.

In this paper, we show that it is indeed possible to estimate
the linear reward parameter consistently in the time hori-
zon from a single demonstration of the phased elimination1

algorithm [Lattimore and Szepesvári, 2020]. To do so, we
construct a simple inverse learning algorithm that uses an
entirely different idea from the one in Guo et al. [2021]. Our
algorithm selectively picks a small set of actions from the
last epoch of the phased elimination demonstrator and forms
a least squares estimate of the reward parameter. The actions
are carefully selected to guarantee consistent estimation in
the time horizon. Concretely, given an assumption on the
density and “smoothness" of the action set (see Assump-
tion 4.1), we show that our inverse learner with a single
demonstration of length T can estimate the reward function

within an error of T−
(

ω−1
2ω

)
, where ω ∈ [1,∞) is a constant

dependent on the smoothness of the action set. We also pro-
vide examples of action sets for which these assumptions
are reasonable. In addition to the theory, we demonstrate
the accuracy of our inverse learner on synthetic as well as
semi-synthetic data.

Contributions Our main contributions are listed in more
detail below. Recall that the mean reward of an arm a ∈ Rd

in the d-dimensional stochastic linear bandit setting is given
by ⟨a, θ∗⟩.

• We develop an inverse estimator of the reward param-
eter θ∗ for a stochastic linear bandit instance from a
single demonstration of the phased elimination algo-
rithm. Our estimator consists of a least-squares esti-
mate using: a) d carefully selected arms from the last
phase of elimination as covariates, and b) estimates
of the rewards of these arms as responses. In Theo-
rem 4.1, we prove an upper bound in the estimation
error on the order of O(T−ω−1

2ω) where T is the time
horizon of the forward algorithm and ω ∈ [1,∞) is
a “smoothness" constant depending on the action set
(see Assumption 4.1).

• In Theorem 5.1, we prove an information-theoretic

lower bound of Ω
(√

d
T

)
on the optimal inverse esti-

mator estimation error. When combined with our upper
bound, this shows that as the action set gets “smoother"
around the optimal arm, i.e. ω →∞, our inverse esti-
mator becomes information-theoretically optimal in its
dependence on horizon T .

1Note that this is a natural generalization of successive-arm-
elimination [Even-Dar et al., 2006] to linear bandits.

• We empirically evaluate our inverse learning algorithm
on synthetic and semi-synthetic data, performing sim-
ulations on commonly used action sets such as the
ℓ1, ℓ2, and ℓ5 ball. We then consider an application in-
volving linear bandit algorithms for a recommender
system on the MovieLens data set [Zhu and Kveton,
2022]. In particular, we model the problem of predict-
ing the user’s “preference vector" as an inverse linear
stochastic bandit problem. We demonstrate that our
inverse algorithm can efficiently predict the reward pa-
rameter of a user by observing the movies chosen by
the recommender system. This could have downstream
relevance in predicting the user’s preference for movies
not seen by the recommender system.

Outline of paper We first provide a brief discussion of
the most closely related work in Section 2, and then provide
basic background for the stochastic linear bandit problem
and phased elimination in Section 3. Section 4 discusses the
methodology and proof outline of our main results, Section 5
states the information-theoretic lower bound, and we present
our experiments in Section 6. We conclude with a discussion
and future work in Section 7.

2 RELATED WORK

We organize our related work along two verticals: low-regret
algorithms for stochastic linear bandits—which we call for-
ward algorithms in our setting—and inverse algorithms for
reinforcement learning.

2.1 STOCHASTIC LINEAR BANDITS

The setting of stochastic linear bandits was first analyzed by
Abe and Long [1999]; since then, several algorithms have
been proposed that achieve a regret bound of O(d

√
T) for

infinite action sets, and Õ(√d logKT) for action sets of
size K, e.g. [Dani et al., 2008, Chu et al., 2011, Abbasi-
Yadkori et al., 2011, Valko et al., 2014]. In both cases, these
upper bounds are matched by information-theoretic lower
bounds [Lattimore and Szepesvári, 2020]. In this paper, we
assume that the demonstrator is the Phased Elimination al-
gorithm in Lattimore and Szepesvári [2020], Valko et al.
[2014], Esfandiari et al. [2019], which also achieves the
optimal O(√d logKT) regret bound for stochastic linear
bandits with a finite action set. This algorithm is related to
the successive-arm-elimination (SAE) algorithm [Even-Dar
et al., 2006], which was shown to be compatible with inverse
learning in the MAB setting [Guo et al., 2021]. However, the
phased-elimination algorithm has key differences, including
the non-uniform sampling scheme among active arms in
each epoch and a doubling in epoch length in each incre-
ment. The doubling of epochs, which is not part of SAE
for MAB, turns out to be particularly challenging to deal

2

with in inverse estimation for linear bandits. At the same
time, the doubling trick is essential for the algorithm itself
to attain sublinear regret in the stochastic linear bandit.

2.2 INVERSE REINFORCEMENT LEARNING

The original works on IRL [Ng et al., 2000, Abbeel and Ng,
2004] noted an identifiability issue in the reward function
from an optimal demonstration that cannot be resolved ex-
cept in special cases involving additional structure on the re-
ward or additional side information [Gershman, 2016, Amin
et al., 2017, Fu et al., 2017, Geng et al., 2020]. Assuming
randomized variants of the optimal policy (e.g. max-entropy
IRL [Ziebart et al., 2008], Bayesian IRL [Ramachandran
and Amir, 2007]) can partially alleviate this identifiability
issue, but only in special cases. The identifiability issue re-
mains open for the inverse problem in RL, but was resolved
in Guo et al. [2021] for stochastic MAB by considering
a single exploring demonstrator. Aside from this inverse
bandit paradigm, the works of Gao et al. [2018] and Jacq
et al. [2019] introduced a related paradigm of “learning from
learners", but used optimization instead of bandit learning
for the demonstration and still require several demonstra-
tions. More recently, Hüyük et al. [2022] considered one-
shot inverse learning from a single demonstration of a cer-
tain type of Bayesian contextual bandit algorithm. Their
algorithms are based on approximate Bayesian inference
and are empirically successful, but do not come with a guar-
antee of consistency. Finally, we note that there are distinct
objectives for learning from demonstrations that can be far
easier than IRL; for example, imitation learning [Ho and
Ermon, 2016] or apprenticeship learning [Abbeel and Ng,
2004, Shani et al., 2022]. These tasks usually do not suffer
from the same identifiability issues as IRL.

3 PROBLEM FORMULATION

We now discuss the basic setup for the inverse linear bandit
problem. In Section 3.1, we discuss preliminaries for the
stochastic linear bandit problem, and in Section 3.2, we
describe the forward algorithm that we assume the demon-
strator will use, i.e. the phased-elimination algorithm [Lat-
timore and Szepesvári, 2020, Valko et al., 2014]. We then
formalize the inverse linear bandit problem and our desired
estimation error guarantee in Section 3.3.

3.1 PRELIMINARIES ON STOCHASTIC BANDITS

Our environment is defined as a structured, parameterized
bandit instanceM = (θ∗,A), where θ∗ parameterizes the
reward function of the environment and A is a finite (but
potentially large) set of actions the forward algorithm may
take while interacting with the environment. A forward
algorithm sequentially interacts with this environment over

T rounds. At round t, the algorithm chooses an action from
the action set2, at ∈ A and receives a reward given by

xt := Gθ∗(at) + ηt,

where Gθ∗(a) is the mean reward function parameterized
by θ∗ and ηt denotes noise, which we assume to be zero-
mean and 1-sub-Gaussian. The forward algorithm repeats
this procedure for T steps. The main property that we desire
from the forward algorithm is to minimize pseudo-regret,
defined as

RT =

T∑
t=1

max
a∈A

Gθ∗(a)−Gθ∗(at).

As is standard in the bandit literature [Lattimore and
Szepesvári, 2020], we desire in particular that RT = õ(T),
i.e. sublinear regret in the total number of rounds T . We
consider the special case of the stochastic linear bandit for
this work. Here,A ⊂ Rd and θ∗ ∈ Rd, and the mean reward
function is defined as Gθ∗(a) = ⟨a, θ∗⟩.

3.2 THE FORWARD ALGORITHM: PHASED
ELIMINATION

Inspired by the relative simplicity of the inverse error analy-
sis of the successive-arm-elimination algorithm [Even-Dar
et al., 2006] for stochastic multi-armed bandits presented
in Guo et al. [2021], we will assume that the forward algo-
rithm uses its natural counterpart for the linear bandit prob-
lem, which is commonly called phased elimination [Latti-
more and Szepesvári, 2020, Valko et al., 2014]. While not as
popular in practice as LinUCB [Abbasi-Yadkori et al., 2011]
and linear Thompson sampling [Agrawal and Goyal, 2013],
the phased elimination satisfies a similar (optimal) sublinear
regret guarantee, given by RT = Õ(

√
dT log |A|). It has

found particular use in bandit instances on smooth functions
on a graph [Valko et al., 2014].

To keep the paper self-contained, we recap the salient prop-
erties of the phased elimination algorithm, which we also
formally define in Algorithm 1. At a high level, the algo-
rithm operates in phases that increase in length and elimi-
nates a subset of arms at the end of each phase. Consider
a phase ℓ ≥ 1, and denote the set of active arms at the
beginning of phase ℓ by Aℓ. The algorithm first solves a
convex optimization problem to pick a G-optimal design
{π(a)}a∈Aℓ

; see [Lattimore and Szepesvári, 2020].

Definition 3.1. A G-optimal design for an action set A
at phase ℓ ≥ 1 is a function πℓ : A → R+ that max-
imizes f(π) = log(det(V (π))) such that

∑
a∈A π(a) =

1, where V (π) =
∑

a∈A nℓ(a)aa
T and nℓ(a) =

2Note that the algorithm has access to the prior history
{a1, x1, a2, x2, . . . , at−1, xt−1} and can use this history as in-
put to decide an action at at round t.

3

Algorithm 1: Phased Elimination
Input :δ (probability parameters), T (total number of rounds),

{ν1, . . . , νL} (error parameters)
Result: a1, . . . , aT

1 ℓ← 0
2 A1 ← A
3 while Number of rounds ≤ T do
4 εℓ ← 2−ℓ

5 πℓ ←
G-Optimal design of Aℓ as a function of δ and νℓ

6 Nℓ ← 0
7 Play each action a ∈ Aℓ each nℓ(a) =⌈

2dπℓ(a)
ν2
ℓ

log
(

|A|ℓ(ℓ+1)
δ

)⌉
times

8 Vℓ ←
∑

a∈Aℓ
nℓ(a)aa

T

9 θℓ ← V −1
ℓ

∑tℓ+Tℓ

t=tℓ
atxt

10 Aℓ+1 ← {a ∈ Aℓ s.t. max
b∈Aℓ

(⟨θl, b− a⟩) ≤ 2εl}
11 ℓ← ℓ+ 1

12 end

⌈
2dπℓ(a)

ν2
ℓ

log
(

|A|ℓ(ℓ+1)
δ

)⌉
. Note that νℓ and δ > 0 are input

parameters to the G-optimal design algorithm.

After solving for πℓ, the algorithm pulls a ∈ A exactly⌈
2dπℓ(a)

ν2
ℓ

log
(

|A|ℓ(ℓ+1)
δ

)⌉
times, where δ denotes the al-

lowed probability of failure and νℓ is a error parameter. At
the end of phase ℓ, the algorithm uses the observed rewards
in phase ℓ alone to construct a least-squares estimate of the
reward parameter, denoted by θℓ. It then eliminates all arms
that are suboptimal below a confidence width given by the
structure of the linear model (see Lemma A.1). As long as
νℓ ≤ ϵℓ := 2−ℓ, this algorithm is known to achieve the

optimal regret bound RT = O
(√

dT log
(

|A| log(T))
δ

))
for finite action sets [Lattimore and Szepesvári, 2020].

3.3 THE INVERSE LINEAR BANDIT PROBLEM

We now define the inverse linear bandit problem. The in-
verse learner is assumed to have access to the sequence
of actions (a1, . . . , aT) and the action sets at each phase
(A1, . . . ,AL) from a single demonstration of the phased
elimination algorithm defined in Section 3.2. Importantly,
the learner cannot access the corresponding sequence of
rewards (x1, . . . , xT). As in Guo et al. [2021], we also as-
sume access3 to the best reward µ∗ = max

a∈A
⟨a, θ∗⟩ as well

as the optimal arm a∗ = argmax
a∈A

⟨a, θ∗⟩. Our goal is to

construct an estimate θ̂ with small relative error to the true
3As in Guo et al. [2021], one can relax these assumption if we

restrict ourselves to estimating rewards up to additive shift of µ∗,
and use a near-optimal, most frequently pulled arm instead of a∗.

reward parameter θ∗, defined as
∥θ̂−θ∗∥

2

∥θ∗∥2
. We also make the

following assumptions on the forward algorithm.

Assumption 3.1. [Assumptions on forward algorithm]

1. The total number of phases L executed by our forward
algorithm is upper bounded by L̄ ∈ N.

2. The error parameter at each phase νℓ = ιϵℓ is chosen
such that 0 < ι < 1.

4 METHODOLOGY AND MAIN RESULT

In this section, we describe the methodology for our inverse
learning approach. We first define some notation specific to
this section. We will define the two-dimensional subspace
spanned by two vectors u and v as span(u, v). For a set of
vectors C = {c1, c2, . . . , cn}, we define its condition num-
ber as cond(C) = cond

([[
c1 c2 . . . cn

]⊤])
, where

the vectors constitute the rows of the matrix.

The goal of the inverse learner is to learn the environment’s
true reward parameter θ∗ ∈ Rd. As mentioned in the in-
troduction, a core challenge in the linear bandit setting is
the shared structure across arms — pulling an arm a will
change the forward algorithm’s estimates of all arms a′ ̸= a,
rendering an out-of-the-box approach from Guo et al. [2021]
infeasible. At the same time, this shared structure could help
estimate θ∗ if one could reliably estimate the rewards of
a large and “well-behaved" subset of actions. To be more
concrete, suppose that we had an oracle where for any arm
a in some well-conditioned set Ae ⊂ A, we knew its exact
mean reward Gθ∗(a). In this case, the optimal estimator
of θ∗ would minimize the least-squared error between the
rewards and the arms, i.e.

θ̂ = argmin
∑
a∈Ae

(
Gθ∗(a)− ⟨a, θ̂⟩

)2
. (1)

With this intuition, our inverse learner (Algorithm 2) pro-
ceeds in three steps: a) constructing a specific action subset
Ae (Steps 4-6 of Algorithm 2), b) estimating the reward
Gθ∗(a) for each a ∈ Ae (Step 8 of Algorithm 2), and
c) computing the least squares estimate of θ∗ using the re-
ward estimates from step (b) (Step 8 of Algorithm 2). Note
that the demonstrator chooses δ and ι, which are inputs to
the algorithm. Equation (1) suggests that, with near-perfect
access to mean rewards, one might want to select the subset
Ae to be as large as possible. However, this is misleading
reasoning for several reasons: first, different arms are pulled
an unequal number of times due to elimination, meaning
that the mean rewards of certain arms can be estimated
more reliably than others; second, selecting arms that are
too close to each other (i.e., arms a, a′ for which ∥a− a′∥2
is too small) would result in the estimation error blowing up
due to poor conditioning of the action set Ae.

4

The crux of our methodology lies in carefully designing the
action subset Ae to adequately control the estimation error
that arises due to the finite sample regime as well as the
condition number of the design matrix in Equation (1). We
now describe each of step in Algorithm 2 in more detail.

4.1 CONSTRUCTION OF ACTION SUBSET Ae

Algorithm 2: Inverse Estimator (also see equation 2)
Data: Set of active arms at each epoch(A1, . . . ,AL)

Result: Estimated reward parameter θ̂
1 Ae = {}
2 β := (3(1− ι)ϵL)

1
ω

3 for i ∈ [d] do
4 if ∃a ∈ A s.t. τ(a, i) ≥ β,dist(a, i) ≤ γ, a ∈

AL \ AL−1 then
5 Ae ← Ae ∪ {a}
6 end
7 end

8 θ̂ = argmin
∑

a∈Ae

(
µ∗ − 2(1 + ι)ϵL − ⟨a, θ̂⟩

)2
9 return θ̂

In this section we describe the first part of the algorithm
(Steps 4-6 in Algorithm 2), which constructs the action
subset Ae. We select arms only from the last eliminated set,
i.e. Ae ⊂ (AL \ AL−1), to ensure that the mean reward of
each arm in Ad can be estimated as accurately as possible.
We also aim to select arms with as large as possible pairwise
angles between each other in order to appropriately control
the condition number of the design matrix in Equation (1).
We will pick d arms in d evenly spaced planes to ensure the
latter property. In particular, we will select the i-th arm to
be in the subspace spanned by the optimal arm a∗ and the
i-th vertex of a d− 1-regular simplex.

Formally, consider any d − 1-regular simplex Si in Rd

formed by the unit vectors {s1, . . . , sd} such that si ̸= αa∗

for any i ∈ [d], α ∈ R. To form the i-th arm in Ae, we will
iterate through each arm a in the action set A and calculate
two relevant metrics. The first is the distance between an
arm a and its projection onto the subspace span(a∗, si). For-
mally, let proj(a, i) denote the vector obtained by projecting
an arm a ∈ A to the two dimensional subspace span(a∗, si),
i.e. proj(a, i) := argmin

a′∈span(a∗,si)

∥a− a′∥2. Then, define the

distance between an arm a and the plane span(a∗, si), as

dist(a, i) := ∥ proj(a, i)− a∥2. (2a)

The second metric we will calculate is the angle formed
between the projection proj(a, i) and the optimal arm a∗,
which we will denote as

τ(a, i) := cos−1

(⟨proj(a, i), a∗⟩
∥ proj(a, i)∥2∥a∗∥2

)
. (2b)

Our goal is to find a subset of d arms Ae = {a1, . . . , ad}
such that for the i-th arm ai, a) dist(ai, i) is small, b) τ(ai, i)
is large (ensuring good conditioning of the action set), and c)
ai ∈ AL\AL−1, i.e. ai was eliminated in phase L (ensuring
a reliable estimate of the mean reward of ai).

It is worth noting that this specific subset of arms, Ae, may
not exist for an arbitrary action set A if the action set is not
sufficiently dense or is very “sharp" around the optimal arm.
Below, we state our assumptions on the action set to rule
out these possibilities.

Assumption 4.1. We assume that there exists a value L
such that for all i ∈ [d], for all ℓ ∈ [L], and some ω > 1,
there exists an arm ai with the properties:

1. τ(ai, i) ≥ β where β := (3(1− ι)ϵL)
1
ω

2. dist(ai, i) ≤ γ ≤ ϵL̄
∥θ∗∥2d

.

3. µ∗ − 4(1− ι)ϵL ≤ ⟨θ∗, a∗ − ai⟩ ≤ µ∗ − 2(1− ι)ϵL.

As articulated above, Part 1 of the assumption ensures that
the angle between proj(ai, i) and the optimal arm a∗ is
sufficiently large; Part 2 ensures that ai is close to its projec-
tion onto the plane4 given by span(a∗, i); and Part 3 ensures
that the arm ai is sufficiently suboptimal to be eliminated in
phase L with high probability, but also sufficiently high in
reward to stay active until phase L with high probability:

Lemma 4.1. Any arm a close to the optimal arm satisfying

2(1− ι)ϵℓ < ⟨a∗ − a, θ∗⟩ ≤ 4(1− ι)ϵℓ (3)

will be in Aℓ \ Aℓ−1 with probability at least 1 − |A|Lδ.
Therefore, with probability at least 1 − |A|Lδ, the mean
reward of any arm a ∈ Aℓ \ Aℓ−1 is bounded as

µ∗ − 4(1− ι)ϵℓ ≤ ⟨a, θ∗⟩ ≤ µ∗.

This statement is proved in Appendix A.

Note that one can find arms satisfying Part 2 of Assump-
tion 4.1 as long as the action set is sufficiently “dense" (in
the sense of satisfying a γ-covering of some continuous set5

in Rd), and it is easy to find arms satisfying Parts 1 and
3 as long as the action set is sufficiently “smooth" around
a∗, meaning that arms with a reward bounded away from
the optimal reward and with a sufficiently large angular dis-
tance from a∗ can be found. We comment further on natural
action sets satisfying all of these assumptions in Section 4.4.

As long as Ae can be selected in this way, its condition
number is upper bounded according to the following lemma.

4Note that this implicitly requires the action set to span Rd.
5This is a natural setting since if the action set is continuous,

then it is common to run the forward algorithm on a γ-covering.

5

a∗

Si

O
proj(a, i)

a
span(a∗, si)⊥

dist(a, i)

τ

Figure 1: A visualization of the formation of an arm in Ae.
Here, we project an arm a onto the subspace span(a∗, si)
such that τ(a, i), the angle between the projection and a∗,
is large and dist(a, i) is small.

Lemma 4.2 (Condition Number of Ae). Let χ2 and χ1

be defined as χ2 = max
a∈A
∥a∥2, χ1 = min

a∈A
∥a∥2. Suppose

that Assumption 4.1 holds, and we can select the action
subsetAe according to Steps 4-6 of Algorithm 2. Then, with
probability at least 1− |A|Lδ, the condition number of the
matrix whose rows are elements of Ae satisfies

cond(Ae) ≤ χ2 + γ
√
d

χ1

[
(2d)−

1
2 β
]
− γ
√
d

.

This lemma is proved in Appendix B.

4.2 ESTIMATING THE REWARDS OF ACTIONS
IN Ae

We next estimate the mean reward for each of the arms from
Ae, i.e. Gθ∗(a) := ⟨a, θ∗⟩ for all a ∈ Ae, and provide upper
bounds on the estimation error of each of these rewards.
Since each arm belongs to AL \ AL−1, it will have a mean
reward less than the optimal reward µ∗ and greater than
µ∗ − 4(1 + ι)ϵℓ from Lemma 4.1. Consequently, the simple
estimate r̂ := µ∗ − 2(1 + ι)ϵℓ satisfies the following upper
bound on the estimation error.

Lemma 4.3. Let r denote the vector of true re-
wards

{
Rθ∗(ai)

}d
i=1

and r̂ denote a vector of our esti-
mated rewards given by {µ∗ − 2(1 + ι)ϵℓ}di=1. Then, we
have∥r−r̂∥2

∥r∥2
≤ 4ϵL

µ∗−8ϵL
= O

(
2−L

)
with probability at least

1− |A|Lδ.

This lemma is proved in Appendix B.

4.3 MAIN RESULT: ESTIMATION ERROR BOUND

The final step (Step 8 of Algorithm 2) constructs θ̂ as the
least-squares estimate (Equation (1) using the action set
Ae := {a1, . . . , ad} as covariates and estimated rewards

{r̂}di=1 as responses. We now present our main result, which
is the error guarantee of the estimator from Algorithm 2.

Theorem 4.1. Let χ2 = max
a∈A
∥a∥2, χ1 = min

a∈A
∥a∥2 and

define J = log
(

|A|L(L+1)
δ

)
as shorthand. Then, we have∥∥∥θ̂ − θ∗

∥∥∥
2

∥θ∗∥2
= O

(
χ2d

2ω−1
2ω J

ω−1
ω

χ1T
ω−1
2ω

)

with probability at least 1− |A|Lδ. Note that ω > 1 is the
constant from Assumption 4.1.

Theorem 4.1 is proved in Appendix B. Since we have as-
sumed ω > 1 in Assumption 4.1, Theorem 4.1 implies
consistent estimation of θ∗ as T → ∞. Moreover, if the
smoothness parameter ω → ∞, the dependence on d be-
comes linear, and the dependence on T becomes T−1/2;
the latter is optimal in its dependence on T as shown in
our forthcoming information-theoretic lower bound (Theo-
rem 5.1).

4.4 DISCUSSION ON VIABILITY OF
ASSUMPTIONS

A natural question is whether the assumptions made on the
action set are reasonable and whether the value of ω can be
characterized for arbitrary action sets. The lemma below is
a proof-of-concept that for each ω ∈ [1,∞) there exist a
valid action set that satisfies Assumption 4.1. A quantitative
version of this result is stated and proved in Appendix D.

Lemma 4.4. Given any value ω ∈ [1,∞), there exists a
linear bandit instance (i.e., a set of arms and a linear reward
function) that satisfies Assumption 4.1.

Qualitatively, an example set that defines such a bandit
instance exists even in two dimensions. One can construct
it with the optimal arm is at point (1, 0) and there exist
two adjacent arms that are equiangular with the optimal
arm while having sufficient magnitude to have a certain
reward that is specified in the construction. We provide a
sample visualization in Figure 4 of the appendix. In higher
dimension, a natural tensorization of such an instance will
satisfy the assumption.

5 INFORMATION-THEORETIC LOWER
BOUND

We now provide an information-theoretic lower bound on
the accuracy achievable by any inverse estimator via the
classical Le Cam binary testing approach [LeCam, 1973].
Essentially, this approach creates two different bandit in-
stancesM1 = (θ∗1 ,A1) andM2 = (θ∗2 ,A2) and has the

6

forward algorithm work with one of these bandit instances.
Then, we show that the inverse algorithm will be unable to
distinguish which of the bandit instances the forward algo-
rithm interacted with given a single demonstration of any
forward algorithm that incurs regret at least Õ(

√
dT) and

sufficiently explores each direction. Since the fundamental
limit on regret for stochastic linear bandits for finite action
sets is known to be Õ(

√
dT) [Lattimore and Szepesvári,

2020], this implies a fundamental limit on inverse estima-
tion. Theorem 5.1 is proved in Appendix C.

Theorem 5.1. For a bandit instanceM characterized by
reward parameter θ∗1 and action set A, there exists a bandit
instanceM′ with parameter θ∗2 and the same action set A
such that any inverse estimator incurs error

max{∥θ̂ − θ∗2∥2, ∥θ̂ − θ∗1∥2} = Ω̃

(√
d

T

)
.

6 EXPERIMENTS

To validate our results empirically, we implement our in-
verse estimator on both simulated and semi-synthetic envi-
ronments, measuring the error in the estimate of θ∗. To run
Phased Elimination and our estimator on these action sets
most naturally, we run the algorithm for a fixed number of
phases rather than a fixed number of rounds; see Appendix E
for a formal description.

6.1 SIMULATIONS

To construct our action sets, we sample 4000 vectors from
the surface of the unit ℓ1, ℓ2, and ℓ5 balls and use this fi-
nite set as A. This is done by independently sampling each
entry from a generalized Gaussian distribution (having den-
sity proportional to exp(−|x|β)) with a β = 1, 2, and 5
respectively, and then normalizing the resulting vector by
its respective ℓp norm [Barthe et al., 2005]. The noise in
the observed reward is Gaussian with mean 0 and variance
0.02.

Using the implementation in Algorithm 3, we run 100 trials
of a bandit instance with maximum number of phases L ∈
{3, 4, 5, 6} and dimensions d ∈ {3, . . . , 8}. Afterward, we
run the inverse estimator on each instance and measure the
metric of relative error of θ̂, defined as ∥θ̂−θ∗∥2

∥θ∗∥2
. We record

this error for the last round of the final phase.

On the one hand, from Theorem 4.1 we expect relative
error to decay with the total number of rounds T . From
the log-log plots in Figure 2, we observe that this trend
holds for each action set by examining the trend of each
best-fit line. The lines in a Figure 2(a), Figure 2(b), and Fig-
ure 2(c) each contain slopes in the range [−0.487,−0.413],
indicating a polynomial rate of decay in T . On the other
hand, Theorem 4.1 also predicts that relative error should

increase in d. In Figure 3, we plot the relative error of our
inverse estimator on each unit ball for each dimension from
3 to 8, verifying that higher dimensional action sets indeed
incur higher relative error. Furthermore, from the results
in Table 1, we observe that at dimensions of 6 or higher,
the inverse algorithm performs comparably to the forward
algorithm’s estimate θ̂ from the final round, occasionally
incurring less relative error.

6.2 SEMI-SYNTHETIC EXPERIMENTS

To validate the performance of our estimator with more re-
alistic data, we simulate the task of recommending movies
to users on the MovieLens 25M dataset Lam and Herlocker
[2006], Harper and Konstan [2015], as well as recommend-
ing music to users based on the digital music reviews sub-
set of the Amazon Reviews dataset Hou et al. [2024]. The
MovieLens 25M dataset consists of 25 million ratings across
160,000 users and 60,000 movies, while the Amazon Re-
views digital music dataset contains 101,000 users, 70,000
songs, and 130,000 ratings. We follow a similar set up as
by Zhu and Kveton [2022]. To create an action set and θ∗,
we randomly sample u = 6, 000 users, m = 4, 000 items,
and their corresponding ratings from each dataset. We then
perform a matrix factorization on R ∈ Ru×m, the matrix
of ratings for each user and item, using Alternating Least
Squares. This yields matrices U and M where UM⊤ = R,
U ∈ Ru×d, and M ∈ Rm×d. Therefore, each row in M is
a d dimensional embedding corresponding to a item, while
each row in U corresponds to the reward parameter for a
given user. We then simulate a user’s choices and ratings
by randomly sampling a reward parameter θ∗ = Ui, and
running Algorithm 3 with M as the set of arms for 6 phases.
Afterward, we estimate the user’s reward parameter via Al-
gorithm 2. We repeat this for ten randomly selected users
and average the relative error of θ̂ to generate of the entries
in Table 2 for a fixed dimension d. We also repeat the entire
experiment for four different values of d. Our numerical
results are summarized in Table 2. As before, both inverse
and forward estimation error increase with the dimension of
the action set.

7 DISCUSSION

We have presented an inverse reinforcement learning algo-
rithm for the setting of linear stochastic bandits and guar-
antees its convergence behavior as a function of the length
of the demonstrator’s trajectory. We empirically verified
the efficacy of our algorithm in both simulation and semi-
synthetic settings. Moreover, we showed a lower bound on
the best achievable error by any inverse learner. An interest-
ing future direction would be to extend a similar framework
to nonlinear reward functions and general bandit settings.

A fundamental limitation of our work, even in the linear

7

215 217 219

Time

0.250

0.500

1.000

2.000

R
el

at
iv

e
E

rr
or

:
‖θ
∗ −
θ̂‖

‖θ
∗ ‖

d=6

d=7

d=8

(a) ℓ1 Ball. Slopes of
−0.487,−0.491,−0.453 for orange,
blue, and green best-fit lines.

213 215 217

Time

0.125

0.250

0.500

1.000

R
el

at
iv

e
E

rr
or

:
‖θ
∗ −
θ̂‖

‖θ
∗ ‖

d=6

d=7

d=8

(b) ℓ2 Ball. Slopes of
−0.490,−0.435,−0.433 for orange,
blue, and green best-fit lines.

214 216

Time

0.250

0.500

1.000

R
el

at
iv

e
E

rr
or

:
‖θ
∗ −
θ̂‖

‖θ
∗ ‖

d=6

d=7

d=8

(c) ℓ5 Ball. Slopes of
−0.455,−0.427,−0.413 for orange,
blue and green best-fit lines.

Figure 2: The inverse estimator’s performance (averaged over 100 trials) over the ℓ1, ℓ2, and ℓ5 balls across dimensions
d = 6, 7, 8. The shaded region represents the standard deviation corresponding to each phase. Each graph is a log-log scale
with orange, blue, and green dotted lines denoting a log-log linear fit for each dimension.

ℓ1 BALL ℓ2 BALL ℓ5 BALL

d INVERSE FORWARD INVERSE FORWARD INVERSE FORWARD

3 0.247 0.053 0.011 0.002 0.054 0.083
4 0.352 0.097 0.071 0.002 0.172 0.124
5 0.464 0.230 0.108 0.004 0.247 0.178
6 0.499 0.401 0.138 0.122 0.338 0.249
7 0.551 0.586 0.247 0.391 0.324 0.451
8 0.587 1.392 0.281 1.136 0.379 0.722

Table 1: The relative error of the inverse and forward algorithms’ estimators for various action sets and dimensions.

4 6 8
Dimension

0.0

0.2

0.4

0.6

R
el

at
iv

e
E

rr
or

:
‖θ
∗ −
θ̂‖

‖θ
∗ ‖

`5

`1

`2

Figure 3: Inverse estimation error as a function of dimension
d on each action set. Shaded region represents the standard
deviation.

MOVIELENS AMAZON REVIEWS

d INVERSE FORWARD INVERSE FORWARD

2 0.2859 0.0037 0.1250 0.0018
4 0.3666 0.0356 0.3646 0.0081
6 0.3641 0.1401 0.4291 0.3660
8 0.5030 0.4632 0.3955 0.5949

Table 2: Relative error of the inverse estimator on Movie-
Lens 25M and the digital music reviews from Amazon Re-
views.

bandit setting, is that we limit our demonstrator to being
the canonical Phased Elimination algorithm. Moreover, we
place assumptions on the density and geometry of the action
set for our analysis—weakening these assumptions pose
important future directions.

References

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Im-
proved algorithms for linear stochastic bandits. Advances
in neural information processing systems, 24, 2011.

8

Pieter Abbeel and Andrew Y Ng. Apprenticeship learn-
ing via inverse reinforcement learning. In Proceedings
of the twenty-first international conference on Machine
learning, page 1, 2004.

Naoki Abe and Philip M. Long. Associative reinforcement
learning using linear probabilistic concepts. In Proceed-
ings of the Sixteenth International Conference on Ma-
chine Learning, ICML ’99, page 3–11, San Francisco,
CA, USA, 1999. Morgan Kaufmann Publishers Inc. ISBN
1558606122.

Shipra Agrawal and Navin Goyal. Thompson sampling for
contextual bandits with linear payoffs. In International
conference on machine learning, pages 127–135. PMLR,
2013.

Kareem Amin, Nan Jiang, and Satinder Singh. Repeated in-
verse reinforcement learning. CoRR, abs/1705.05427,
2017. URL http://arxiv.org/abs/1705.
05427.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F. Chris-
tiano, John Schulman, and Dan Mané. Concrete prob-
lems in AI safety. CoRR, abs/1606.06565, 2016. URL
http://arxiv.org/abs/1606.06565.

Christopher Madden Anderson. Behavioral models of strate-
gies in multi-armed bandit problems. California Institute
of Technology, 2001.

Debangshu Banerjee, Avishek Ghosh, Sayak Ray Chowd-
hury, and Aditya Gopalan. Exploration in linear ban-
dits with rich action sets and its implications for in-
ference, 2022. URL https://arxiv.org/abs/
2207.11597.

Franck Barthe, Olivier Guédon, Shahar Mendelson, and
Assaf Naor. A probabilistic approach to the geometry of
the ℓ pn-ball. 2005.

Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Con-
textual bandits with linear payoff functions. In Geoffrey
Gordon, David Dunson, and Miroslav Dudík, editors,
Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, volume 15 of
Proceedings of Machine Learning Research, pages 208–
214, Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR.
URL https://proceedings.mlr.press/v15/
chu11a.html.

Varsha Dani, 7 9, Thomas Hayes, and Sham M. Kakade.
Stochastic linear optimization under bandit feedback.
21st Annual Conference on Learning Theory - COLT
2008, Helsinki, Finland, pages 355–366, 2008. URL
http://colt2008.cs.helsinki.fi/.

Hossein Esfandiari, Amin Karbasi, Abbas Mehrabian, and
Vahab S. Mirrokni. Batched multi-armed bandits with

optimal regret. CoRR, abs/1910.04959, 2019. URL
http://arxiv.org/abs/1910.04959.

Eyal Even-Dar, Shie Mannor, Yishay Mansour, and Sridhar
Mahadevan. Action elimination and stopping conditions
for the multi-armed bandit and reinforcement learning
problems. Journal of machine learning research, 7(6),
2006.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust
rewards with adversarial inverse reinforcement learning.
CoRR, abs/1710.11248, 2017. URL http://arxiv.
org/abs/1710.11248.

Yang Gao, Huazhe Xu, Ji Lin, Fisher Yu, Sergey Levine, and
Trevor Darrell. Reinforcement learning from imperfect
demonstrations. CoRR, abs/1802.05313, 2018. URL
http://arxiv.org/abs/1802.05313.

Sinong Geng, Houssam Nassif, Carlos Manzanares, Max
Reppen, and Ronnie Sircar. Deep PQR: Solving in-
verse reinforcement learning using anchor actions. In
Hal Daumé III and Aarti Singh, editors, Proceedings of
the 37th International Conference on Machine Learn-
ing, volume 119 of Proceedings of Machine Learn-
ing Research, pages 3431–3441. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/
v119/geng20a.html.

Samuel J Gershman. Empirical priors for reinforcement
learning models. Journal of Mathematical Psychology,
71:1–6, 2016.

Wenshuo Guo, Kumar Krishna Agrawal, Aditya Grover,
Vidya Muthukumar, and Ashwin Pananjady. Learning
from an exploring demonstrator: Optimal reward estima-
tion for bandits. arXiv preprint arXiv:2106.14866, 2021.

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2023. URL https://www.gurobi.com.

F. Maxwell Harper and Joseph A. Konstan. The movie-
lens datasets: History and context. ACM Trans. In-
teract. Intell. Syst., 5(4), dec 2015. ISSN 2160-6455.
doi: 10.1145/2827872. URL https://doi.org/10.
1145/2827872.

Jonathan Ho and Stefano Ermon. Generative adversarial
imitation learning. Advances in neural information pro-
cessing systems, 29, 2016.

Yupeng Hou, Jiacheng Li, Zhankui He, An Yan, Xiusi
Chen, and Julian McAuley. Bridging language and
items for retrieval and recommendation. arXiv preprint
arXiv:2403.03952, 2024.

Alihan Hüyük, Daniel Jarrett, and Mihaela van der Schaar.
Inverse contextual bandits: Learning how behavior
evolves over time. In International Conference on Ma-
chine Learning, pages 9506–9524. PMLR, 2022.

9

http://arxiv.org/abs/1705.05427
http://arxiv.org/abs/1705.05427
http://arxiv.org/abs/1606.06565
https://arxiv.org/abs/2207.11597
https://arxiv.org/abs/2207.11597
https://proceedings.mlr.press/v15/chu11a.html
https://proceedings.mlr.press/v15/chu11a.html
http://colt2008.cs.helsinki.fi/
http://arxiv.org/abs/1910.04959
http://arxiv.org/abs/1710.11248
http://arxiv.org/abs/1710.11248
http://arxiv.org/abs/1802.05313
https://proceedings.mlr.press/v119/geng20a.html
https://proceedings.mlr.press/v119/geng20a.html
https://www.gurobi.com
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872

Alexis Jacq, Matthieu Geist, Ana Paiva, and Olivier Pietquin.
Learning from a learner. In Kamalika Chaudhuri
and Ruslan Salakhutdinov, editors, Proceedings of the
36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Re-
search, pages 2990–2999. PMLR, 09–15 Jun 2019.
URL https://proceedings.mlr.press/v97/
jacq19a.html.

Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On
the complexity of best arm identification in multi-armed
bandit models. 2014. doi: 10.48550/ARXIV.1407.4443.
URL https://arxiv.org/abs/1407.4443.

R Krasnodębski. Dihedral angle of the regular a-simplex.
Commentationes Mathematicae, 15(1), 1971.

Shyong Lam and Jon Herlocker. Movielens data sets. De-
partment of Computer Science and Engineering at the
University of Minnesota, 2006.

Tor Lattimore and Csaba Szepesvári. Bandit Algorithms.
Cambridge University Press, 2020. doi: 10.1017/
9781108571401.

Lucien LeCam. Convergence of estimates under dimension-
ality restrictions. The Annals of Statistics, pages 38–53,
1973.

James MacGlashan and Michael L Littman. Between imita-
tion and intention learning. In Twenty-fourth international
joint conference on artificial intelligence, 2015.

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse
reinforcement learning. In Icml, volume 1, page 2, 2000.

Deepak Ramachandran and Eyal Amir. Bayesian inverse
reinforcement learning. In IJCAI, volume 7, pages 2586–
2591, 2007.

Lior Shani, Tom Zahavy, and Shie Mannor. Online appren-
ticeship learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pages 8240–8248,
2022.

Michal Valko, Remi Munos, Branislav Kveton, and Tomáš
Kocák. Spectral bandits for smooth graph functions. In
Eric P. Xing and Tony Jebara, editors, Proceedings of
the 31st International Conference on Machine Learning,
volume 32 of Proceedings of Machine Learning Research,
pages 46–54, Bejing, China, 22–24 Jun 2014. PMLR.
URL https://proceedings.mlr.press/v32/
valko14.html.

Rong Zhu and Branislav Kveton. Robust contextual linear
bandits. arXiv preprint arXiv:2210.14483, 2022.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell,
Anind K Dey, et al. Maximum entropy inverse rein-
forcement learning. In Aaai, volume 8, pages 1433–1438.
Chicago, IL, USA, 2008.

10

https://proceedings.mlr.press/v97/jacq19a.html
https://proceedings.mlr.press/v97/jacq19a.html
https://arxiv.org/abs/1407.4443
https://proceedings.mlr.press/v32/valko14.html
https://proceedings.mlr.press/v32/valko14.html

Symbol Meaning

d Dimension of environment
T Time horizon
L Number of phases
θ∗ True Reward Function Parameter
θ Demonstrator’s Reward Function Parameter
θ̂ Inverse Estimator’s Estimated Reward Parameter
γ Closeness parameter of action set
at Action taken by demonstrator at time t
xt Reward seen by demonstrator at time t
ηt Noise in reward function seen at time t
µ∗ Reward of optimal arm
a∗ Optimal action with the highest reward
χ1 = mina∈A ∥a∥2 Smallest-norm action in action set
χ2 = maxa∈A ∥a∥2 Largest-norm action in action set
Aℓ Set of remaining arms at phase ℓ
Aℓ \ Aℓ−1 Set of eliminated arms before phase ℓ
ϵℓ 2−ℓ used as criteria for elimination
νℓ Error parameter for G-Optimal Design
δ Probability Parameter for G-Optimal Design

Table 3: Table of notation used in main paper and proofs

We now collect the proofs of our main results, for which Table 3 summarizes relevant mathematical notation.

A PHASED ELIMINATION PROOFS

First, we collect properties of the forward algorithm (the phased elimination algorithm) that will be useful for analyzing
our inverse estimator. The following lemma, essentially Lemma 6.1 in Esfandiari et al. [2019], shows that the error in the
forward algorithm’s estimate of the mean reward of any (active) arm decreases as more epochs are executed.

Lemma A.1 (Demonstrator’s Estimation Error [Esfandiari et al., 2019]). Suppose that Algorithm 1 is run, and denote by
θℓ the forward algorithm’s estimate of the reward parameter θ∗. Denote the “good event"

Egood := {|⟨a, θℓ − θ∗⟩| ≤ νℓ for all a ∈ Aℓ, ℓ ∈ [L]}. (4)

Then, the good event Egood occurs with probability at least 1− |A|Lδ.

Proof. Fix an epoch ℓ ∈ [L], an active arm a ∈ Aℓ, and recall that the failure probability parameter δ was given as input
to Algorithm 1. Then, Lemma 6.1 of Esfandiari et al. [2019] tells us that

|⟨a, θℓ − θ∗⟩| ≤ νℓ

with probability at least 1− δ. Taking a union bound over all active arms a ∈ Aℓ and all ℓ ∈ [L], and noting that |Aℓ| ≤ |A|
completes the proof of the lemma.

Henceforth, we work on the good event Egood and state and prove a series of simple lemmas. The first such lemma shows
that the optimal arm a∗ is not eliminated in any of the phases ℓ ∈ [L].

Corollary A.1. The optimal arm a∗ remains active throughout, i.e. a∗ ∈ Aℓ for all ℓ ∈ [L], under the good event Egood.

Proof. From Lemma A.1, for any suboptimal arm a, we have

⟨a, θℓ⟩ − ⟨a∗, θℓ⟩ ≤ (⟨a, θ∗⟩+ νℓ)− (⟨a∗, θ∗⟩ − νℓ) ≤ 2ιϵℓ ≤ 2ϵℓ.

on the good event Egood. Thus, the elimination criterion is not satisfied by arm a∗ in any epoch ℓ ∈ [L]. This completes the
proof of the lemma.

11

The next lemma shows a related property, i.e. that sufficiently suboptimal arms will be eliminated (and that more suboptimal
arms will be eliminated in earlier epochs).

Lemma 4.1. Any arm a close to the optimal arm satisfying

2(1− ι)ϵℓ < ⟨a∗ − a, θ∗⟩ ≤ 4(1− ι)ϵℓ (3)

will be in Aℓ \ Aℓ−1 with probability at least 1− |A|Lδ. Therefore, with probability at least 1− |A|Lδ, the mean reward of
any arm a ∈ Aℓ \ Aℓ−1 is bounded as

µ∗ − 4(1− ι)ϵℓ ≤ ⟨a, θ∗⟩ ≤ µ∗.

Proof. Let bℓ−1 be the arm that maximizes the reward in epoch ℓ− 1, i.e. bℓ−1 = argmax
b∈Aℓ−1

⟨b, θℓ−1⟩. From Lemma A.1, we

have any arm a satisfying Equation (3) satisfies

⟨bℓ−1 − a, θℓ−1⟩ ≤ ⟨bℓ−1 − a, θ∗⟩+ 2νℓ−1 (5)
≤ ⟨a∗ − a, θ∗⟩+ 2νℓ−1

≤ 4(1− ι)ϵℓ + 2ιϵℓ−1

≤ 2(1− ι)ϵℓ−1 + 2ιϵℓ−1 (6)
= 2ϵℓ−1

where Equation (5) follows from the good event in Lemma A.1 and Equation (6) follows because 2ϵl = ϵl−1. This implies
that arm a will not be eliminated in phase ℓ− 1. On the other hand, for epoch ℓ, we have

⟨bℓ − a, θℓ⟩ = ⟨bℓ, θℓ⟩ − ⟨a, θℓ⟩
≥ ⟨a∗, θℓ⟩ − ⟨a, θℓ⟩
≥ ⟨a∗ − a, θ∗⟩ − 2νℓ (7)
= ⟨a∗ − a, θ∗⟩ − 2ιϵℓ

≥ 2(1− ι)ϵℓ − 2ιϵℓ

= 2ϵℓ

where Equation (7) also follows from the good event in Lemma A.1. Therefore, arm a will be eliminated in phase ℓ. This
proves the first statement of the lemma. The second statement of the lemma, i.e. µ∗ − 4(1− ι)ϵℓ ≤ ⟨a, θ∗⟩ ≤ µ∗, follows by
rearranging the original inequalities and noting that µ∗ := ⟨a∗, θ∗⟩.

The following is a useful corollary to Lemma 4.1 for arms that are “close" in Euclidean distance to arms satisfying the
condition in Lemma 4.1.

Corollary A.2. Consider an arm a that is γ-close to some arm b in Euclidean distance, i.e. ∥b− a∥2 ≤ γ, such that arm b
satisfies

µ∗ − 4(1− ι)ϵℓ + γ∥θ∗∥22 ≤ ⟨a∗ − b, θ∗⟩ ≤ µ∗ − 2(1− ι)ϵℓ − γ∥θ∗∥22. (8)

Then, under the good event Egood, arm a will be eliminated before phase L, i.e. a ∈ AL \ AL−1.

Proof. We have that |⟨b− a, θ∗⟩| ≤ γ∥θ∗∥2 since ∥a− b∥2 ≤ γ. Therefore,

⟨a∗ − a, θ∗⟩ ≤ ⟨a∗ − b, θ∗⟩+ γ∥θ∗∥2
≤ µ∗ − 4(1− ι)ϵℓ

Moreover, we have

⟨a∗ − a, θ∗⟩ ≥ ⟨a∗ − b, θ∗⟩ − γ∥θ∗∥2
≥ µ∗ − 2(1− ι)ϵℓ

Thus, directly applying Lemma 4.1 shows that arm a will be eliminated.

12

This completes our set of lemmas that work on the good event Egood. Finally, we provide a lemma that characterizes the total
number of phases L, which is technically a random variable, in terms of a deterministic upper bound that is logarithmic in T .

Lemma A.2. The total number of rounds of Algorithm 1 and the total number of phases L exhibit the relationship

log(T) ≤ log(2ι−2dJ) + 2 log(2L) + log (2) .

Here, J is notational shorthand, defined as J :=
(

|A|L(L+1)
δ

)
.

Proof. Let Nℓ be the number of arms played in phase ℓ. From Lattimore and Szepesvári [2020], we have

Nℓ −
d(d+ 1)

2
≤ 2d

ν2ℓ
log

(|A|l(l + 1)

δ

)
(9)

≤ 2ι−2d · 22l
(|A|l(l + 1)

δ

)

Recall the notational shorthand J :=
(

|A|L(L+1)
δ

)
. We have

log

(
L−1∑
ℓ

Nℓ

)
≤ log

(
L−1∑
ℓ

2ι−2d · 22l · (J) + d(d+ 1)

2

)

= log

(
2ι−2d (J)

L−1∑
ℓ

22l +

L−1∑
ℓ

d(d+ 1)

2

)

= log

(
2ι−2d (J)

L−1∑
ℓ

22l

)
+ log

(∑L−1
ℓ

d(d+1)
2

2ι−2d (J)
∑L−1

ℓ 22l

)

≤ log

(
2ι−2d (J)

L−1∑
ℓ

22l

)
+ log (2)

≤ log(2ι−2dJ) + 2 log(2L) + log (2)

This completes the proof of the lemma.

B INVERSE ESTIMATOR PROPERTIES

The proof of Theorem 4.1 relies on several intermediate lemmas. We first state and prove these lemmas, and then provid the
proof of Theorem 4.1.

B.1 LEMMAS FOR INVERSE ESTIMATOR ANALYSIS

First, we state and prove a simple lemma that upper bounds our normalized inverse estimation error as a function of the
condition number of the matrix whose rows constitute the set of selected arms Ae and the normalized estimation error of the
rewards of the arms in Ae.

Lemma B.1. Suppose r and r̂ are vectors of the true rewards and estimated rewards for Ae. If the arms in Ae are linearly
independent, the solution to θ̂ = argmin

∑
ai∈Ae(r̂i − ⟨θ, ai⟩)2) where r̂i is the estimate reward of ai satisfies the bound

the error in estimation of θ via ∥∥∥θ̂ − θ∗
∥∥∥
2

∥θ∥2
≤ cond(Ae)

∥r̂ − r∥2
∥r∥2

.

13

Proof. We consider the design matrix A whose d rows are given by the arms in Ae. More formally, we define

A =


a1

a2

...
ad


where a1, . . . , ad ∈ Ae. Therefore, the solution to the least squares problem is given by θ̂ = argmin

∑
ai∈Ae(r̂i−⟨θ, ai⟩)2)

is solved by

θ̂ = (ATA)−1AT r̂ = A−1r̂, (10)

where the last equality follows because A is a square matrix and the arms are linearly independent (Lemma 4.2). Therefore,
we have

∥θ̂ − θ∗∥2 = ∥A−1(r − r̂)∥2
≤ ∥A−1∥2∥r − r̂∥2

Moreover, we have
∥r∥2 = ∥Aθ∗∥2 ≤ ∥A∥2∥θ∗∥2.

Combining the inequalities above completes the proof of the lemma.

Next, we restate and prove our main technical lemma, which characterizes the condition number of the design matrix A
whose rows consist of the arms in Ae.

Lemma 4.2 (Condition Number of Ae). Let χ2 and χ1 be defined as χ2 = max
a∈A
∥a∥2, χ1 = min

a∈A
∥a∥2. Suppose that As-

sumption 4.1 holds, and we can select the action subset Ae according to Steps 4-6 of Algorithm 2. Then, with probability at
least 1− |A|Lδ, the condition number of the matrix whose rows are elements of Ae satisfies

cond(Ae) ≤ χ2 + γ
√
d

χ1

[
(2d)−

1
2 β
]
− γ
√
d

.

Proof. We will break down the proof of the bound of the condition number into two parts. First, we decompose A into the
following convenient form:

A = DÃ+N.

Above, D is a diagonal matrix such that Di,i = ∥ai∥2, and Ã is a matrix such that ith row of A, which we denote as
shorthand by vi, is vi =

proj(ai,i)
∥ proj(ai,i)∥2

. (Recall that proj(ai, i) was defined in Section 4.1 and is the projection of the arm
ai onto the plane spanned by the optimal arm a∗ and the i-th element of the regular simplex si.) Finally, N constitutes an
“error" matrix term whose i-th row is equal to ai − proj(ai, i). We expect N to be “small" in the sense of operator-norm
under Assumption 4.1; we will show this formally shortly.

Since cond(Ae) = σmax(A)
σmin(A) , it suffices to lower bound σmin(A) and upper bound σmax(A) in order to upper bound the

condition number. First, we provide a lower bound on the minimum singular valueσmin(Aℓ). By Weyl’s theorem, we have

σmin(A) = σmin(DÃ+N)

≥ σmin(DÃ)− σmax(N) (11)

Then, we can upper bound σmax(N) as below:

σmax(N) =
√
∥N⊤N∥2 (12)

=
√

max
x s.t. ∥x∥2=1

x⊤N⊤Nx

≤
√

dγ2

= γ
√
d

14

Above, Equation (12) comes from noticing that the rows of N have ℓ2 norm at most γ — this is because ∥ai−proj(ai, i)∥2 =:
dist(ai, i) ≤ γ, where the last inequality uses part 2 of Assumption 4.1. Thus, we have σmin(A) ≥ σmin(DÃ)− γ

√
d. A

symmetric argument for the maximum singular value gives us σmax(A) ≤ σmax(DÃ) + γ
√
d.

Next, we characterize the minimum and maximum singular values of the product matrix DÃ. Starting with the minimum sin-
gular value, note that σmin(DÃ) ≥ σmin(D)σmin(Ã). Since D is a diagonal matrix, we have σmin(D) = mini∈[d] Di,i ≥
mina∈A ∥a∥2 =: χ1. Therefore, we have

σmin(A) ≥ χ1σmin(Ã)− γ
√
d.

Similarly, for the maximum singular value we have σmax(D) = maxi∈[d] Di,i ≤ maxa∈A ∥a∥2 =: χ2. This gives us

σmax(A) ≤ χ2σmax(Ã) + γ
√
d

.

We now only need to analyze the minimum and maximum singular values of Ã; this forms the technical crux of our
proof. Recall that the rows of Ã are equal to vi := proj(ai,i)

∥ proj(ai,i)∥2
. Further, define the normalized matrix B = 1√

d
Ã for

convenience. We will characterize the eigenvalues of the matrix B⊤B, noting that σj(Ã) =
√
d · λj(B⊤B). Note that

(B⊤B)i,j =
1
d ⟨vi, vj⟩, and so

(B⊤B)i,i =
1

d

for all i ∈ [d]. We now characterize the off-diagonal terms. Note that ⟨vi, vj⟩ = 1− ∥vi−vj∥2
2

2 , so it suffices to characterize
the terms ∥vi − vj∥22.

We wish to first find the angle between our α vectors. We remind the reader that our α vectors form a d− 1-dimensional
simplex centered at the unit vector u = a∗

∥a∗∥2
. We will first find the radius of this simplex, i.e., ∥u− vi∥2. The vectors u, vi,

and the origin form an isosceles triangle where u and vi are unit-norm by definition. Therefore, by the Law of Sines

∥u− vi∥2 =
sin(τ(ai, i))

sin
(

π−τ(ai,i)
2

)
= 2 sin

(
τ(ai, i)

2

)
Therefore, we have that the radius of the simplex is 2 sin

(
τ(ai,i)

2

)
, which we will call ρ for now. From Krasnodębski [1971],

the angles formed between u− vi and u− vj is arccos
(
− 1

d−1

)
. Therefore, we have the distance between vj and vi satisfies

∥vj − vi∥22 = ∥u− vi∥22 + ∥u− vj∥22 − 2∥u− vi∥2∥u− vj∥2 cos
(
arccos

(
− 1

d− 1

))
= 2ρ2

(
1− cos

(
arccos

(
− 1

d− 1

)))
= 2ρ2

d

d− 1

Therefore, we have

⟨vi, vj⟩ = 1− ρ2d

d− 1
=: cos(β).

We have shown that we can decompose the matrix B⊤B as B⊤B = 1−cos(β)
d · I+ cos(β)

d · 11⊤. This matrix has maximum
eigenvalue equal to 1−cos(β)

d + cos(β) and minimum eigenvalue equal to 1−cos(β)
d . Thus, we can upper bound the maximum

eigenvalue as

λmax(B
⊤B) =

d− 1

d
cos(β) +

1

d

≤ d− 1

d
+

1

d
= 1.

15

Next, we can write the minimum eigenvalue as

λmin(B
⊤B) =

1

d
− 1

d
cos(β) ≥ ρ2

d− 1
. (13)

Further, we can lower bound ρ2 on the interval τ(ai, i) ∈ [−π
2 ,

π
2] via its Taylor expansion as

ρ2 ≥ τ(ai, i)2

2
. (14)

Combining Equation (13) with Equation (14) gives us the following lower bound on the minimum eigenvalue:

λmin(B
⊤B) ≥ τ(ai, i)2

2d
≥ β2

2d
. (15)

Thus, we have characterized the minimum and maximum eigenvalues of B⊤B. Putting all of the steps together, we have

cond(A) =
σmax(A)

σmin(A)
≤ χ1σmax(Ã) + γ

√
d

χ2σmin(Ã)− γ
√
d

=
χ1σmax(B) + γd

χ2σmin(B)− γd

=
χ1

√
λmax(B⊤B) + γd

χ2

√
λmin(B⊤B)− γd

≤ χ1 + γd

χ2

[
(2d)−

1
2 β
]
− γd

.

This completes the proof of the lemma.

Next, we restate and prove a lemma that bounds the normalized estimation error of the rewards of the selected arms in Ae.

Lemma 4.3. Let r denote the vector of true rewards
{
Rθ∗(ai)

}d
i=1

and r̂ denote a vector of our estimated rewards given by

{µ∗ − 2(1 + ι)ϵℓ}di=1. Then, we have∥r−r̂∥2

∥r∥2
≤ 4ϵL

µ∗−8ϵL
= O

(
2−L

)
with probability at least 1− |A|Lδ.

Proof. Consider an arm ai ∈ Ae (where i ∈ [d]), and denote ri := Rθ∗(ai) as shorthand. Via Lemma 4.1, we have

µ∗ − 4(1 + ι)ϵL ≤ ri ≤ µ∗. (16)

Denote the corresponding estimator of the mean reward of this arm by r̂i := µ∗ − 2(1 + ι)ϵL. Clearly, we have |ri − r̂i| ≤
2(1 + ι)ϵL. Thus, we have

∥r̂ − r∥2 ≤ 2(1 + ι)ϵL
√
d.

Next, we lower bound the denominator ∥r∥2. Equation (16) tells us that |ri| ≥ µ∗ − 4(1 + ι)ϵL for every i ∈ [d]. This gives
us the lower bound ∥r∥2 ≥

√
d(µ∗ − 4(1 + ι)ϵL). Putting the pieces together yields

∥r − r̂∥2
∥r∥2

≤ 2(1 + ι)ϵL
µ∗ − 4(1 + ι)ϵL

.

Since ι ≤ 1 from Assumption 4.1, we have

2(1 + ι)ϵL
µ∗ − 4(1 + ι)ϵL

≤ 4ϵL
µ∗ − 8ϵL

= O
(
2−L

)
.

This completes the proof of the lemma.

16

B.2 PROOF OF THEOREM 4.1

We are now ready to prove Theorem 4.1. First, Lemma B.1 tells us that∥∥∥θ̂ − θ∗
∥∥∥
2

∥θ∗∥2
≤ cond(Ae)

∥r̂ − r∥2
∥r∥2

.

From Lemma 4.2, we get

cond(Ae) ≤ χ1 + γd

χ2

[
(2d)−

1
2 β
]
− γd

.

Moreover, from Lemma 4.3, we have
∥r − r̂∥2
∥r∥2

≤ 4ϵL
µ∗ − 8ϵL

.

Plugging in Assumption 4.1 (which stipulates that β = (3(1− ι)ϵL)
1
ω) and the above bounds gives us∥∥∥θ̂ − θ∗

∥∥∥
2

∥θ∥2
≤ χ1 + γd

χ2

[
(2d)−

1
2 [3(1− ι)ϵL]

1
ω

]
− γd

· 4ϵL
µ∗ − 8ϵL

≤ χ1 + γd

2
L(ω−1)

ω · χ2

[
(2d)−

1
2 [3(1− ι)]

1
ω

]
− 2Lγd

· 4

µ∗ − 8ϵL
.

It remains to express the above upper bound in terms of the deterministic quantity T of interest (rather than the total number
of phases L, which is random). For this, Lemma A.2 tells us that

log(T) ≤ log(2ι−2dJ) + 2 log(2L) + log (2) .

Using this, we have [
T

4ι−2dJ

] 1
2

≤ 2L

=⇒ 2
L(1−ω)

ω ≤
[

T

4ι−2dJ

] 1−ω
2ω

.

Plugging this into the upper bound then gives us∥∥∥θ̂ − θ∗
∥∥∥
2

∥θ∥2
≤ χ1 + γd[

T
4ι−2dJ

]ω−1
2ω χ2

[
(2d)−

1
2 [3]

1
ω

]
− 2Lγd

· 4

µ∗ − 8ϵL
.

(17)

Given γ ≤ ϵL̄
∥θ∗∥2d

≤ 2−L

∥θ∗∥2d
from Assumption 4.1 and 4

µ∗−8ϵL
= O(1) , and noting that the term

[
T

4ι−2dJ

] 1−ω
2ω is increasing

in T , we get ∥∥∥θ̂ − θ∗
∥∥∥
2

∥θ∥2
= O

(
χ1d

2ω−1
2ω J

ω−1
2ω

χ2T
ω−1
ω

)
.

This completes the proof of the theorem.

C PROOF OF LOWER BOUND (THEOREM 5.1)

In this section, we provide the proof of Theorem 5.1, which leverages the classical Le-Cam binary testing approach [LeCam,
1973] between a null instance and a random alternative instance. We will actually show the lower bound on estimation error
assuming access to both the sequence of actions and observed rewards by the forward algorithm, as additionally observing
rewards only makes the estimation problem easier.

Formally, we establish two bandit instances:

17

1. The first instanceM is one in which the linear reward parameter is the true parameter of interest θ∗.

2. The second random instanceM′(v) is one in which the linear reward parameter is given by θ′(v) = θ∗ − ϵv, where
ϵ > 0 is a parameter that will be chosen appropriately at a later point, and v ∼ Unif(Sd−1), i.e. v is chosen uniformly
at random from the d-dimensional unit sphere. Eventually, we will take an expectation over the binary testing error.

Before proceeding with the proof, we set up some more relevant notation. Let ET denote the observed sequence of action-
reward pairs (a1, r1), . . . , (aT , rT) (which is random), and FT denote the associated sigma-algebra of possible events.
Further, for any arm a let V(a) and V ′

v(a) denote the associated reward distributions under bandit instancesM andM′(v)
respectively. For convenience, we will assume that the noise in the rewards is drawn from an isotropic Gaussian distribution,
meaning that V(a) = N (⟨θ∗, a⟩, I) and V ′

v(a) = N (⟨θ′(v), a⟩, I). Finally, we denote E0[·],E′
v[·] as the expectations over

all randomness in the observation ET induced by the bandit instanceM,M′ respectively, and E[·] will denote any additional
expectations, typically to be taken over the randomness in the parameter v only. Further, let P0[·],P′

v[·] denote the probability
distributions over the observation ET under bandit instancesM,M′(v) respectively. Finally, we use DKL(·, ·) to denote the
Kullback-Liebler divergence between two probability distributions.

Note that θ̂ can only be a functional of the observation ET . Therefore, for any fixed v ∈ Sd−1, the LeCam method gives us

max
{
E
[
∥θ̂ − θ∗∥2

]
,E′
[
∥θ̂ − θ′(v)∥2

]}
≥ 1

2
∥ϵv∥2 (1− ∥P0 − P′

v∥TV)

=
ϵ

2
(1− ∥P0 − P′

v∥TV) ,

where the last equality follows because v ∈ Sd−1. Taking a further expectation over v ∼ Unif(Sd−1) and using linearity of
expectation yields

E
[
max

{
E
[
∥θ̂ − θ∗∥2

]
,E′
[
∥θ̂ − θ′(v)∥2

]}]
≥ E

[ϵ
2
(1− ∥P0 − P′

v∥TV)
]

=
ϵ

2
(1− E [∥P0 − P′

v∥TV]) . (18)

Therefore, it suffices to upper bound the term E [∥P0 − P′
v∥TV]. First, we consider the total variation distance ∥P0−P′

v∥TV

for a fixed v. By the definition of total variation distance, we have ∥P0 − P′
v∥TV := supET∈FT

|P0(ET)− P′
v(ET)|. Then,

an adaptation of Lemma 19 of Kaufmann et al. [2014] gives us

sup
ET∈FT

|P0(ET)− P′
v(ET)| ≤

T∑
t=1

E0 [DKL(V(at),V ′
v(at))] . (19)

Next, note that for any fixed a, we have that V(a) = N (⟨θ∗, a⟩, I) and V ′
v(a) = N (⟨θ′(v), a⟩, I). Therefore, we have

DKL(V(a),V ′
v(a)) =

ϵ2

2 (⟨a, v⟩)2. Plugging this into Equation (19) gives us

∥P0 − P′
v∥TV ≤

T∑
t=1

E0

[
ϵ2

2
(⟨at, v⟩)2

]

=
ϵ2

2
· v⊤E0

[
T∑

t=1

ata
⊤
t

]
v.

Henceforth, we denote MT := E0

[∑T
t=1 ata

⊤
t

]
as the expected Gram matrix composed of the actions a1, . . . , aT . Note

that MT is a deterministic quantity. We leverage the following key fact that was proved by Banerjee et al. [2022], restated
below: for some universal positive constant C > 0 that does not depend on T or d, we have

λmax(MT) ≤ CT

λi(MT) ≤
CT

d
for all i > 1. (20)

We will leverage this fact to complete the proof of our main result. Let {ui}di=1 denote the unit-normalized eigenvectors of
MT , and let v =

∑d
i=1 αiui (note that while {αi}di=1 are random variables, the eigenvectors {ui}di=1 are deterministic).

18

Then, taking an expectation on our point-wise bound on the total variation distance over v ∼ Unif(Sd−1) yields

E [∥P0 − P′
v∥TV] ≤

ϵ2

2
· E
[
v⊤MT v

]
=

ϵ2

2d
· trace(MT),

where the last equality follows because v is uniformly distributed on the sphere, and therefore E[vv⊤] = 1
dI. We then plug

in Equation (20), which gives us trace(MT) :=
∑d

i=1 λi(MT) ≤ 2CT . Ultimately, we get

E [∥P0 − P′
v∥TV] ≤

ϵ2CT

2d
. (21)

Substituting this in Equation (18) ultimately gives us

E
[
max

{
E
[
∥θ̂ − θ∗∥2

]
,E′
[
∥θ̂ − θ′(v)∥2

]}]
≥ ϵ

2

(
1− ϵ2CT

2d

)
.

Finally, we select ϵ =
√

d
2C′T for some sufficiently large constant C ′ > C. This yields the lower bound

E
[
max

{
E
[
∥θ̂ − θ∗∥2

]
,E′
[
∥θ̂ − θ′(v)∥2

]}]
≥
√

d

8C ′T

(
1− C

C ′

)
= Ω

(√
d

T

)
.

This is the desired statement and completes the proof of the theorem.

D PROOF OF LEMMA 4.4

Recall that Assumption 4.1 is parametrized by scalars (ω, γ) (and through ω, the scalar β). We construct a family of action
set/θ∗ pairs in two dimensions and claim that each pair in the family satisfies Assumption 4.1. We denote the coordinate
system using (x, y) ∈ R2. Our instance is parametrized by an angle parameter κ.

Constructing the action set:

• Choose θ∗ forming angle κ with the vector (1, 0). Set G = cos (κ) ∥θ∗∥2 − 3(1− ι)ϵL for convenience.

• Construct action set A by including the convex hull6 of the following points: (−1, 0), (1, 0), (0, 1), (0,−1) as well as
the points

(
G cos(β)

cos(κ+β)∥θ∗∥2
, G sin(β)
cos(κ+β)∥θ∗∥2

)
and

(
G cos(−β)

cos(κ−β)∥θ∗∥2
, G sin(−β)
cos(κ−β)∥θ∗∥2

)
.

See Figure 4 for an illustration of the set. Before we characterize this set, we will define a helper function

Definition D.1. The function atan2(y, x) is defined as

atan2(y, x) =



arctan
(
y
x

)
if x > 0

arctan
(
y
x

)
+ π if y ≥ 0 and x < 0

arctan
(
y
x

)
− π if y < 0 and x < 0

+π
2 if y > 0 and x = 0

−π
2 if y < 0 and x = 0

undefined if y = 0 and x = 0

The two crucial and readily verifiable properties about this set that will be used in the sequel are that

1. All arms (x, y) ∈ A \ {(1, 0)} satisfy

cos(κ+ atan2(y, x))∥θ∗∥2
√
x2 + y2 < cos(κ)∥θ∗∥2.

2. A contains the points P1 =
(

G cos(β)
cos(κ+β)∥θ∗∥2

, G sin(β)
cos(k+β)∥θ∗∥2

)
and P3 =

(
G cos(−β)

cos(κ−β)∥θ∗∥2
, G sin(−β)
cos(k−β)∥θ∗∥2

)
.

19

x

y

Point 1

Point 2
Point 3

Example Convex Polytope

Arms with optimal reward

a∗

θ∗
κ

Figure 4: Example Configuration of action set detailed by the proof for Lemma 4.4. The green points are the three points
referenced by the proof, the orange line is the line of vectors with the same optimal reward as the optimal Point 2, and the
blue lines are example continuations of drawing the convex hull of the action set that satisfy Assumption 3.1. These are
done when κ = .2, L = 5, and β = .1.

Lemma D.1. Provided

κ ∈
[
max

(
− cos−1

(
3(1− ι)ϵL
∥θ∗∥2

)
, cos−1 (0) + β − π

)
,

min

(
cos−1

(
3(1− ι)ϵL
∥θ∗∥2

)
, cos−1 (0)− β

)]
,

the pair (θ∗,A) constructed above (or any rotation thereof) satisfies Assumption 4.1.

Proof. We now verify several claims, which when taken together will prove the lemma.

Claim 1: The optimal arm is a∗ = P2 = (1, 0): Recall that β = (3(1− ι)ϵL)
1
ω , and that every point (x, y) in the action

set satisfies cos(κ+ atan2(y, x))∥θ∗∥2
√

x2 + y2 < cos(κ)∥θ∗∥2. Any arm (x, y) ∈ A forms an angle of κ+ atan2(y, x)

with the reward vector θ∗. They also have magnitude of
√
x2 + y2. Therefore, their reward is

cos(κ+ atan2(y, x))∥θ∗∥2
√

x2 + y2.

The reward of the optimal arm by definition is also

cos(κ)∥θ∗∥2.

Therefore, by the first constraint, we have that any arm in the action set has reward less than the optimal arm.

Claim 2: Point P3 forms an angle of β with a∗ = (1, 0), thereby satisfying the first item of Assumption 4.1: We can
explicitly character the angle P3 forms with a∗ by the following

6Any discretization of the boundary of this set also suffices.

20

arccos

 G cos(−β)
cos(k−β)n√(

G sin(−β)
cos(k−β)n

)2
+
(

G cos(−β)
cos(k−β)n

)2
 = arccos

 G cos(−β)
cos(k−β)∥θ∗∥2

G

√(
sin(−β)

cos(k−β)∥θ∗∥2

)2
+
(

cos(−β)
cos(k−β)∥θ∗∥2

)2


= arccos

 G cos(−β)
cos(k−β)∥θ∗∥2

G
cos(k−β)∥θ∗∥2

√
(sin (−β))2 + (cos (−β))2


= arccos

 cos (−β)√
(sin (−β))2 + (cos (−β))2


= β

Therefore, P3 forms an angle of β with a∗. Similar logic holds for proving Point 1 forms an angle of β with a∗ = (1, 0).

Claim 3: The second item of Assumption 4.1 is satisfied: We will now also prove that the second constraint from
Assumption 4.1 holds in this setting. We will evaluate the reward of Point 1. Point 1 forms an angle of β with the optimal
arm a∗ and, thus, forms an angle of β + κ with θ∗. Moreover, the ℓ2 norm of Point 1 is∣∣∣∣ (cos (κ) ∥θ∗∥2 − 3(1− ι)ϵL)

cos (κ+ β) ∥θ∗∥2

∣∣∣∣ .
Given the restriction on κ, we have that (cos(κ)∥θ∗∥2−3(1−ι)ϵL)

cos(κ+β)∥θ∗∥2
is strictly positive. Since

− arccos

(
3(1− ι)ϵL
∥θ∗∥2

)
≤ κ ≤ arccos

(
3(1− ι)ϵL
∥θ∗∥2

)
,

the numerator is positive. Moreover, since arccos (0)− β − π ≤ arccos (0)− β the denominator is positive. Therefore, its
reward is

(cos (κ) ∥θ∗∥2 − 3(1− ι)ϵL)

cos (κ+ β) ∥θ∗∥2
∥θ∗∥2 cos(β + κ) = cos (κ) ∥θ∗∥2 − 3(1− ι)ϵL

= µ∗ − 3(1− ι)ϵL

We now do this similarly for Point 3. Point 3 forms an angle of −β with the optimal arm a∗ and, thus, forms an angle of
κ− β with θ∗. Moreover, the ℓ2 norm of Point 1 is∣∣∣∣ (cos (κ) ∥θ∗∥2 − 3(1− ι)ϵL)

cos (κ− β) ∥θ∗∥2

∣∣∣∣ .
Given the restrictions on κ, the value (cos(κ)∥θ∗∥2−3(1−ι)ϵL)

cos(κ−β) is strictly positive. Since

− arccos

(
3(1− ι)ϵL
∥θ∗∥2

)
≤ κ ≤ arccos

(
3(1− ι)ϵL
∥θ∗∥2

)
,

the numerator is positive. Moreover, since arccos (0) + β − π ≤ arccos (0) + β, the denominator is positive. Therefore, its
reward is Therefore, its reward is

(cos (κ) ∥θ∗∥2 − 3(1− ι)ϵL)

cos (κ− β) ∥θ∗∥2
∥θ∗∥2 cos(κ− β) = cos (κ) ∥θ∗∥2 − 3(1− ι)ϵL

= µ∗ − 3(1− ι)ϵL
Claim 4: The action set is sufficiently dense as in dist(ai, i) ≤ γ ≤ ϵL̄

∥θ∗∥2d
.

dist(ai, i) = ∥ proj(ai, i)− ai∥2
= ∥ai − ai∥2
= 0

≤ γ (22)

21

E IMPLEMENTATION DETAILS FOR PHASED ELIMINATION USED IN EXPERIMENTS

Algorithm 3: Phased Elimination
Input :δ (probability parameters), L (number of phases),

{ν1, . . . , νL} (error parameters)
Result: a1, . . . , aT

1 ℓ← 0
2 A1 ← A
3 tℓ ← 0
4 while ℓ < L do
5 εℓ ← 2−ℓ

6 πℓ ← G-Optimal design of Aℓ with δ and νℓ
7 Nℓ ← 0
8 for a ∈ Aℓ do
9 Nℓ(a)←

⌈
2dπℓ(a)

ν2
ℓ

log
(

kℓ(ℓ+1)
δ

)⌉
10 Play action a for Nℓ(a) rounds
11 Nℓ ← Nℓ +Nℓ(a)

12 end
13 Vℓ ←

∑
a∈Aℓ

πℓ(a)aa
⊤

14 θℓ ← V −1
l

∑tℓ+Nℓ

t=tℓ
atxt

15 Aℓ+1 ← {a ∈ Aℓ s.t. max
b∈Aℓ

(⟨θℓ, b− a⟩) ≤ 2εl}
16 tℓ ← tℓ + Tℓ

17 ℓ← ℓ+ 1

18 end

Algorithm 3 formally describes the implementation of Phased Elimination used in our experiments. The behavior of this
implementation only differs from Algorithm 1 in the choice of stopping criteria; here, we stop after a maximum number
of phases, while Algorithm 1 fixes T and allows L to vary. Line 6 is computed via a convex program with Gurobi solver
[Gurobi Optimization, LLC, 2023].

22

	Introduction
	Related work
	Stochastic Linear Bandits
	Inverse Reinforcement Learning

	Problem Formulation
	Preliminaries on stochastic bandits
	The forward algorithm: phased elimination
	The inverse linear bandit problem

	Methodology and main result
	Construction of action subset Ae
	Estimating the rewards of actions in Ae
	Main result: estimation error bound
	Discussion on Viability of Assumptions

	Information-Theoretic Lower Bound
	Experiments
	Simulations
	Semi-synthetic Experiments

	Discussion
	Phased Elimination Proofs
	Inverse Estimator Properties
	Lemmas for inverse estimator analysis
	Proof of Theorem 4.1

	Proof of Lower Bound (Theorem 5.1)
	Proof of Lemma 4.4
	Implementation details for Phased Elimination used in experiments

