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Abstract

While large pretrained Transformer models
have proven highly capable at tackling natural
language tasks, handling long sequence inputs
still poses a significant challenge. One such
task is long input summarization, where inputs
are longer than the maximum input context of
most models. Through an extensive set of ex-
periments, we investigate what model architec-
tural changes and pretraining paradigms most
efficiently adapt a pretrained Transformer for
long input summarization. We find that a stag-
gered, block-local Transformer with global en-
coder tokens strikes a good balance of perfor-
mance and efficiency, and that an additional
pretraining phase on long sequences mean-
ingfully improves downstream summarization
performance. Based on our findings, we in-
troduce PEGASUS-X, an extension of the PE-
GASUS model with additional long input pre-
training to handle inputs of up to 16K tokens,
which achieves strong performance on long
input summarization tasks comparable with
much larger models.

1 Introduction

Large pretrained Transformer models have proven
to be extremely capable at tackling natural lan-
guage tasks (Devlin et al., 2018; Brown et al.,
2020). However, handling long textual sequences
continues to be a significant challenge for these
models. Training models to handle long sequences
is expensive in both computation and memory, and
moreover requires training and evaluating on long
sequence data, which is rarer and more costly to
collect. Given the broad success of Transformer
models on short-sequence language tasks, our goal
is to investigate the best way to extend these models
to handle longer input sequences.

In this work, we focus on the task of long in-
put summarization: summarizing long input doc-
uments into shorter text sequences. The inputs
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Figure 1: Performance on SCROLLS (Shaham et al.,
2022) summarization tasks. All models evaluated on
up to 16K input tokens. PEGASUS-X outperforms
other models at comparable model sizes. Scores (as of
08/08/22) shown are the average of the geometric mean
of ROUGE-1/2/L.

of such tasks are often significantly longer than
the maximum input lengths of most standard Trans-
former models, and hence warrant both architecture
modifications as well as new training regimes. For
instance, to avoid the quadratic growth in memory
consumption of attention in Transformers, many
memory-efficient Transformer variants have been
proposed (Tay et al., 2020, 2021). However, the
manner in which these changes are incorporated
into models has been inconsistent and ad-hoc, and
there are few established best practices. For in-
stance, some works directly fine-tune on long-input
summarization tasks (Zaheer et al., 2020; Pang
et al., 2022), while others first perform additional
pretraining (Beltagy et al., 2020). Because of the
high cost of training these models, there has yet to
be a systematic study of how best to adapt models
for long input sequences. Hence, it has been diffi-
cult to establish which model and training changes
are necessary or complementary.

To answer these questions, we conduct an ex-
tensive empirical investigation into the architec-
tural changes, model configurations and pretraining



schemes to identify better approaches to training
Transformer models for long input summarization.
We evaluate a set of efficient Transformer variants,
and propose a simple block-wise local Transformer
architecture with staggered blocks and global to-
kens that strikes a good balance of performance and
memory efficiency. We show that given a fixed to-
ken budget, pretraining on short sequences and then
pre-adapting the model to an efficient Transformer
architecture by training on longer sequences leads
to better performance than only long input pretrain-
ing or no adaptation at all. We also investigate
model design choices such as position encoding
schemes, encoder-decoder layer distributions, and
the impact of discrepancies between pretraining
and fine-tuning architecture hyperparameters.

Based on the findings from our empirical inves-
tigation, we adapt the pretrained PEGASUSLarge
model (Zhang et al., 2020) to tackle long input
summarization on up to 16K input tokens. The re-
sulting model, which we call PEGASUS-X, attains
top scores on long summarization tasks, outper-
forming much larger models like LongT5 (Guo
et al., 2021). Moreover, impact on short input sum-
marization performance is minimal. A smaller ver-
sion which we call PEGASUS-XBase attains simi-
lar scores with much fewer parameters. Beyond
summarization, we believe that many of our find-
ings will be useful to the community for efficiently
adapting Transformer models to handle ever longer
input sequences for other tasks.

In summary, our contributions are:

1. We evaluate a series of proposed efficient
Transformer architectures as well as other
model modifications, and report their efficacy
and computational trade-offs when applied to
long input summarization tasks.

2. Based on our findings, we propose a recipe
for adapting a short-context, pretrained Trans-
former encoder-decoder to longer inputs, and
apply it to PEGASUS to greatly improve its
long-document summarization performance,
with comparable short-input performance.

2 Experimental Setup

Similar to Zhang et al. (2020), we perform the ma-
jority of our experiments with a PEGASUSBase-
sized model, before applying our findings to
PEGASUSLarge-sized model.

2.1 Pretraining

We generally follow the recipe from PEGASUS
(Zhang et al., 2020) for pretraining PEGASUSBase-
sized models. All experiments in our ablation study
performed pretraining with C4 (Raffel et al., 2020)
for 500k steps with 512 input tokens and 256 output
tokens and a masking ratio of 45%, unless other-
wise stated. For long input pretraining we extend
the input length to 4096 tokens, and adjust the
masking ratio from 45% to 5.625%, reducing the
ratio by a factor of 8 to account for the 8x increase
in input sequence length. We also filter for only
documents longer than 10000 characters.

2.2 Fine-tuning

We evaluate models by fine-tuning on the arXiv
(Cohan et al., 2018) and GovReport (Huang et al.,
2021) long input summarization tasks. Where
relevant, we also fine-tune on the shorter-context
XSUM and CNN/DailyMail tasks. For each ex-
periment, we report the best validation set scores
based on the geometric average (RG) of ROUGE-1,
ROUGE-2 and ROUGE-L scores (Lin, 2004) based
on the rouge-score package.1 Fine-tuning hy-
perparameters can be found in Appendix E. Unless
otherwise stated, we directly switch to the efficient
Transformer architectures between pretraining (on
shorter context) and fine-tuning (on longer con-
texts), with no adaptation phase in between.

3 Ablation Experiments

3.1 Encoder architectures

We first investigate whether using an efficient
Transformer encoder allows models to incorpo-
rate longer input sequences while consuming rea-
sonable amounts of device memory. We consider
two encoder architectures that exemplify different
approaches to efficient attention. Big Bird (Za-
heer et al., 2020) uses sparse attention computation,
combining sliding-window and random attention,
and a set of global-attention tokens. Conversely,
Performer (Choromanski et al., 2021) factorizes
attention matrices via orthogonal random features.
Both model also performed well on the LRA tasks
(Tay et al., 2021). For this experiment, we perform
both pretraining and fine-tuning with the same en-
coder architecture to avoid the issue of mismatch
between pretraining and fine-tuning architectures.

1https://github.com/google-research/
google-research/tree/master/rouge

https://github.com/google-research/google-research/tree/master/rouge
https://github.com/google-research/google-research/tree/master/rouge


XSUM CNN/DM arXiv GovReport

Encoder R1 / R2 / RL RG R1 / R2 / RL RG R1 / R2 / RL RG R1 / R2 / RL RG Steps/s Mem

Transformer 40.0 / 16.9 / 32.0 27.9 39.5 / 19.0 / 28.6 27.8 - / - / - - - / - / - - - -
BigBird 39.6 / 16.7 / 31.7 27.6 39.3 / 18.2 / 28.1 27.2 46.8 / 19.6 / 28.0 29.5 60.5 / 28.5 / 30.1 37.3 0.31 1.88
Performer 36.5 / 14.0 / 28.7 24.5 37.4 / 17.4 / 26.9 26.0 39.0 / 13.2 / 23.8 23.1 55.8 / 20.2 / 24.7 30.3 0.96 1.12

Local 38.5 / 15.7 / 30.6 26.4 39.0 / 18.4 / 28.1 27.2 46.5 / 19.7 / 27.9 29.5 60.2 / 28.3 / 30.0 37.1 1.00 1.00
Global-Local 38.7 / 16.2 / 31.2 26.9 39.0 / 18.6 / 28.2 27.3 47.6 / 20.2 / 28.5 30.1 61.4 / 29.3 / 30.6 38.0 0.87 1.08

Table 1: Comparison of different encoder architectures on short (XSUM, CNN/DM) and long (arXiv, GovReport)
summarization tasks. Training steps per second and memory are computed based on arXiv, and normalized to
Local Transformer performance.

Stagger
Local Blocks

Use Global
In Decoder

arXiv GovReport

Encoder R1 / R2 / RL RG R1 / R2 / RL RG

Global-Local ! ! 48.1 / 20.3 / 28.5 30.3 60.5 / 28.8 / 30.5 37.6
Global-Local ! 47.0 / 19.5 / 27.9 29.5 60.9 / 28.9 / 30.2 37.6
Global-Local ! 47.7 / 20.4 / 28.6 30.3 61.3 / 29.4 / 30.8 38.1
Global-Local 46.7 / 19.5 / 27.9 29.4 59.5 / 27.8 / 29.4 36.5
Local ! - 46.8 / 19.7 / 28.0 29.6 59.2 / 27.9 / 30.0 36.7
Local - 46.5 / 19.2 / 27.5 29.1 58.8 / 27.5 / 28.9 36.0

Table 2: Comparison of architectural tweaks to Local and GlobalLocal encoder. Staggering local blocks uses
different blocks boundaries for different layers in block-local attention. Global information is incorporated in the
decoder via an additional cross-attention before cross-attention over the encoded input.

In addition, we also introduce two simple vari-
ants of local attention Transformer encoders. First,
we use a simple block-local Transformer (Local),
where encoder input tokens are divided into non-
overlapping blocks, and tokens can only attend to
other tokens within the block. Second, we extend
the local Transformer by adding a set of global to-
kens with learned embeddings, that can attend to
and be attended from every encoder token (Global-
Local). These components are similar to the slid-
ing window attention and global token attention
of Big Bird, ETC (Ainslie et al., 2020) and Long-
former (Beltagy et al., 2020). However, we opt for
the simpler block-local attention rather than sliding
window attention, and compensate for the lack of
overlapping blocks by staggering the local atten-
tion blocks, which we elaborate on in Section 3.2.
As we show below, the performance is highly com-
petitive despite its simplicity.

Results on short and long summarization tasks
are shown in Table 1, with the relative training
steps per second and memory consumed per device
for fine-tuning on arXiv shown in the right-most
columns. Among the short tasks, the full-attention
Transformer performs best, followed by BigBird.
On the long tasks, Big Bird and Global-Local mod-
els perform best, but Big Bird consumes signifi-
cantly more memory and trains much more slowly
than the other architectures. Conversely, although

Performer has relatively low memory consumption
and trains efficiently, it performs worst among the
architectures tested by a noticeable margin.

On the other hand, Local and Global-Local en-
coders strike a good balance of performance and
efficiency. The simple local attention encoder,
which uses block-local attention, attains perfor-
mance close to that of Big Bird while being much
faster and using much less memory. Global-Local
trades off a small amount of speed and memory for
better performance, outperforming Big Bird.

Takeaways: Local attention is a strong baseline,
and adding global tokens significantly improves
performance. Both models are resource-efficient.

3.2 Local and Global-Local configurations
Given the good performance of both Local and
Global-Local encoder variants, we next consider
further architectural tweaks to these models.

First, we introduce staggering of local attention
blocks. In block-local attention, tokens can only
attend to other tokens within the same block. If the
input tokens are divided up into the same blocks
in every layer, this means that no information is
exchanged across blocks through the entire encoder.
To address this pitfall, we stagger attention blocks
by shifting the block boundaries by half a block
every other layer. We show an example of this in
Figure 2. In practice, we implement this by padding



(a) Block-local attention (b) Block-local attention with staggered blocks

Figure 2: In block-local attention (a), the same block boundaries are used across all layers, preventing information
from being shared across blocks. Staggering the block boundaries (b) be shifting the boundaries every other layer
allows for cross-block interactions with minimal additional computational cost or complexity.

the hidden representations on either side by half a
block and masking accordingly.

Secondly, in the Global-Local model, the de-
coder only attends to the encoded token representa-
tions, and not the global token representations. We
consider a variant where we supply the global to-
ken representations to the decoder and introduce a
second cross-attention layer that attends only to the
global tokens. Our goal is to allow the decoder to
incorporate global information before performing
cross-attention over the encoded sequence.

Results are shown in Table 2. We find that
staggering local blocks noticably improves perfor-
mance in both Local and Global-Local models. Per-
formance improves even with Global-Local mod-
els, which already allow for cross-block interac-
tions via global tokens, indicating that both model
improvements are complementary. Conversely, in-
corporating global token information in the decoder
did not lead to much performance improvement,
particularly once staggered local blocks were used.

Takeaways: Staggering local attention blocks
significantly improves performance, and is com-
plementary to global tokens.

3.3 Global-Local: Block Size and Number of
Global Tokens

Next, we vary the block size and number of global
tokens for the Global-Local encoder, with results
shown in Table 3.2 Broadly, we find that increas-
ing either block size or global tokens leads to im-
proved performance, with a corresponding increase
in memory consumption and computation time.
However, the effect size from going to larger block
sizes is not large, and saturates with larger block
sizes or number of global tokens. As such, in-
creasing either of these hyperparameters is ideal if

2Experiments with very small block sizes or number global
tokens ran into memory issues, because TPUs pad small di-
mensions of arrays to certain minimum lengths, leading to
larger than expected memory consumption.

resources allow, but is not a high priority compared
to other model improvements. For the remainder
of the ablation experiments, we use a block size of
64 and 32 global tokens for consistency.

Takeaways: Larger block sizes and/or number
of global tokens leads to improved performance,
although the effect saturates.

3.4 Other Architecture Modifications

We further investigate a of series architectural mod-
ifications to the encoder-decoder model, including
the position encoding scheme (Table 8), scaling the
encoder and decoder layers (Table 10) and using
cross-attention in only a fraction of the decoder lay-
ers (Table 12). We find that the sinusoidal position
encoding provide a good balance of performance
and efficiency, and that a balanced encoder-decoder
with full cross-attention generally performs the
best. More details are provided in Appendix B.

3.5 Pretraining vs Fine-tuning Architectures

Previous works using efficient Transformer en-
coders have generally taken the parameters of a
full-attention Transformer pretrained on a shorter
sequences and adapted them to efficient architec-
tures, either directly during fine-tuning (Zaheer
et al., 2020) or with an intermediate stage of ad-
ditional pretraining (Beltagy et al., 2020). In this
section, we investigate if such an approach is opti-
mal, or if models benefit from being pretrained with
efficient encoders from the beginning. Note that
we still perform pretraining on a short sequences
(512 tokens), even with an efficient encoder.

We consider both pretraining with a Transformer
and pretraining with the efficient architecture for
both Local and Global-Local models. We also
vary the block size, as the main difference be-
tween a Transformer and Local Transformer is
the block size (aside from staggering, a Local
model with block size 512 is equivalent to a dense



arXiv GovReport

Block Size Global Tokens R1 / R2 / RL RG R1 / R2 / RL RG Steps/s Mem

16 32 47.1 / 20.0 / 28.3 29.9 59.7 / 27.8 / 29.2 36.5 0.92 1.15
64 46.8 / 19.7 / 28.0 29.6 60.8 / 28.6 / 30.0 37.4 0.75 1.54

128 47.7 / 20.0 / 28.2 30.0 60.7 / 28.8 / 30.2 37.5 0.58 1.70

64 32 47.7 / 20.3 / 28.5 30.2 61.0 / 29.3 / 30.8 38.0 0.47 1.07
64 47.4 / 20.2 / 28.5 30.1 60.9 / 29.1 / 30.7 37.9 0.94 1.10

128 47.8 / 20.4 / 28.6 30.3 60.9 / 29.0 / 30.3 37.7 0.85 1.26

128 32 46.9 / 19.7 / 28.0 29.6 60.9 / 28.7 / 30.1 37.5 1.00 1.00
64 47.4 / 20.2 / 28.4 30.1 60.9 / 28.9 / 30.8 37.8 0.96 1.05

128 47.1 / 20.0 / 28.3 29.9 61.0 / 28.9 / 30.6 37.8 0.90 1.15

256 32 47.3 / 20.2 / 28.3 30.0 61.6 / 29.4 / 30.7 38.2 0.92 1.11
64 47.2 / 20.2 / 28.4 30.0 59.2 / 28.6 / 30.5 37.2 0.88 1.16

128 48.1 / 20.5 / 28.6 30.4 61.7 / 29.3 / 30.8 38.2 0.83 1.26

Table 3: Varying the block size and number of global tokens in Global-Local encoders. Training steps per second
and memory are computed based on arXiv, and normalized to the run with Block Size=128 and Global Tokens=32.

Transformer), and hence the difference in block
size also corresponds to the extent to which the
model needs to adapt between architectures. When
adapting from a pretrained Transformer encoder to
a Global-Local architecture, because the Global-
Local model relies on newly introduced global to-
ken embeddings, we initialize them by randomly
sampling tokens from the vocabulary embeddings.

Results are shown in Table 11. For Local mod-
els, pretraining with local attention using small
block sizes tends to hurt performance, but at mod-
erate block sizes (e.g. 64) there is little differ-
ence between the two approaches. In contrast, for
Global-Local pretraining with the efficient archi-
tecture tends to perform better. We hypothesize
that this difference arises because of the learned
global embedding tokens, which are randomly ini-
tialized when adapting from a pretrained Trans-
former and hence may benefit from pretraining and
being jointly trained with the local attention.

Takeaways: For moderate block sizes, either pre-
training or adapting to a Local encoder performs
about equally well, but pretraining with a Global-
Local encoder performs slightly better.

3.6 Pretraining Schemes

Up to this point, we have only considered pretrain-
ing with short sequences. We might expect that
pretraining with longer sequences ought to improve
performance on downstream long input summariza-
tion. However, pretraining only on long sequences
is computationally expensive and requires a large
collection of long input documents, which are rel-
atively rarer. Long documents may also contain

different information from short documents, hence
limiting training to only long inputs mae reduce
the diversity of training data. Different long con-
text Transformers have taken different approaches
to pretraining on long inputs. For instance, Long-
former (Beltagy et al., 2020) performed several
additional stages of increasingly longer-sequence
pretraining to adapt the initial RoBERTa to long
sequence inputs. On the other hand, LongT5 (Guo
et al., 2021) is pretrained exclusively with long in-
put sequences. Others (Zaheer et al., 2020; Ivgi
et al., 2022) perform no long input pretraining at all.
In this section, we investigate how the balance of
short and long pretraining impact downstream per-
formance, and try to find the best trade-off between
pretraining cost and downstream performance.

We consider two setups for pretraining: short-
input pretraining, with 512 input tokens and 256
output tokens, and long-input pretraining, with
4096 input tokens and 256 output tokens. We de-
scribe the corresponding differences in data pre-
processing in Section 2.1. We fix the number of
input tokens seen during training, and vary config-
urations subject to this constraint. This constraint
roughly proxies for the amount of compute con-
sumed and corresponds to the number of input to-
kens seen during pretraining.3

We set our total input token budget at 131 billion
tokens, which corresponds to 1 million steps with
512 input tokens, compared to the 500k steps in the
above experiments. This larger budget ensures that
when we only do long-input pretraining, the model

3If we instead fixed the number of training steps, long-
input pretraining would consume far more compute for the
same number of steps.



XSUM CNN/DM arXiv GovReport

Pretraining Scheme Encoder R1 / R2 / RL RG R1 / R2 / RL RG R1 / R2 / RL RG R1 / R2 / RL RG

Short (50%) Local 38.4 / 15.8 / 30.6 26.5 39.2 / 18.1 / 27.9 27.1 46.8 / 19.7 / 28.0 29.6 60.1 / 28.3 / 29.8 37.0
Global-Local 39.4 / 16.5 / 31.5 27.4 39.1 / 18.6 / 28.3 27.4 47.7 / 20.4 / 28.6 30.3 61.9 / 29.6 / 30.8 38.4

Short (100%) Local 39.2 / 16.3 / 31.3 27.1 39.2 / 18.6 / 28.3 27.4 46.9 / 19.7 / 28.0 29.6 60.1 / 28.3 / 29.8 37.0
Global-Local 39.9 / 17.0 / 31.9 27.9 39.8 / 18.6 / 28.3 27.6 48.1 / 20.5 / 28.7 30.5 61.9 / 29.6 / 30.8 38.4

Short (75%) → Long (25%) Local 38.8 / 15.9 / 30.7 26.7 39.1 / 18.2 / 28.0 27.1 47.5 / 20.1 / 28.2 30.0 60.6 / 28.9 / 30.6 37.7
Global-Local 39.6 / 16.8 / 31.7 27.6 39.8 / 18.8 / 28.5 27.7 48.4 / 20.7 / 28.8 30.7 61.8 / 29.8 / 31.1 38.5

Short (50%) → Long (50%) Local 38.4 / 15.7 / 30.5 26.4 39.4 / 18.1 / 27.9 27.1 47.7 / 20.2 / 28.3 30.1 60.9 / 29.1 / 30.7 37.9
Global-Local 39.3 / 16.4 / 31.4 27.3 39.4 / 18.3 / 28.1 27.3 48.4 / 20.9 / 29.1 30.9 61.7 / 30.0 / 31.2 38.7

Long (100%) Local 36.0 / 14.0 / 28.6 24.3 38.4 / 17.7 / 27.4 26.5 46.7 / 19.5 / 27.7 29.3 59.8 / 28.0 / 29.5 36.7
Global-Local 36.4 / 14.3 / 28.9 24.7 38.5 / 17.8 / 27.5 26.6 47.3 / 19.9 / 28.1 29.8 61.1 / 29.1 / 30.7 37.9

Table 4: Comparison of different pretraining formats, given a input token budget of 131B tokens, which corre-
sponds to 1M steps with 512 input tokens. Short pretraining uses 512 input tokens, whereas long pretraining uses
4096 input tokens.

is still pretrained for a reasonable number of steps.
We consider four pretraining configurations:

• Short-input for 100% of tokens (1M steps)

• Short-input for 75% of tokens (98.3B, 750k
steps), then long-input for 25% of tokens
(32.8B, 31.25k steps)

• Short-input for 50% of tokens (62.5B, 500k
steps), then long-input for 50% of tokens
(62.5B, 62.5k steps)

• Long-input for 100% of tokens (125k steps)

We compare the performance of the different
pretraining scehemes in Table 4. We also include
short-input pretraining for 500k steps for compar-
ison. First, comparing short-input pretraining for
500k and 1M steps, we find that more pretraining
still improves performance, indicating that our base
models may still be undertrained at 500k steps. Sec-
ond, long-input pretraining performs consistently
worse than the other variants, which we attribute
having fewer training steps, again highlighting the
issue of potential undertraining. For the middle
three configurations, on the long tasks, all three
non-long-only variants atttain similar scores, with
more long-input pretraining having slightly better
performance, particularly on the ROUGE-2 and
ROUGE-L scores. While the small absolute differ-
ences in scores make it hard to draw strong conclu-
sions, we lean towards the conclusion that adding a
short phase of long input pretraining can improve
performance on long input summarization tasks.

Takeaways: Given a fixed compute budget, allo-
cating some training steps to long-input training
can improve performance, although the optimal al-
location is difficult to determine. Exclusively long
pretraining results in worse performance.

4 PEGASUS-X

Based on our findings, we settle on the follow-
ing recipe for adapting PEGASUS models (Zhang
et al., 2020) to long sequence summarization.

• We use a Global-Local architecture with block
staggering, a large number of global tokens,
and large block sizes during pretraining.

• We perform additional long input pretraining
on 4096 token inputs for 300k steps.

• We extend input sequences up to 16384 input
tokens in fine-tuning, depending on the task.

We experiment with two model sizes:
PEGASUS-X (PEGASUS eXtended) based
on PEGASUSLarge, and PEGASUS-XBase based on
a newly trained PEGASUSBase model which we
call PEGASUSBase+.4

We initialize the weights of PEGASUS-X and
PEGASUS-XBase with the pretrained weights of
PEGASUSLarge and PEGASUSBase+ respectively.
Only two new sets of parameters are introduced:
global token embeddings, and a new LayerNorm
for the global input representations in each Trans-
former layer. This is ∼1M more parameters for
PEGASUS-XBase and 2M more for PEGASUS-X.
We initialize the global token embeddings by ran-
domly sampling tokens from the input embeddings,
and we initialize the LayerNorm weights with the
regular input LayerNorm weights.

The task- and model-specific hyperparameters
for fine-tuning can be found in Appendix 15. For
this section, we report ROUGE-Lsum5 rather than
ROUGE-L for consistency with the metrics re-
ported in other papers and leaderboards.

4See Appendix C.
5https://github.com/google-research/

https://github.com/google-research/google-research/blob/master/rouge/README.md#two-flavors-of-rouge-l


PEGASUS-XBase PEGASUS-X

# Parameters 272M 568M
# Global Tokens 128 128
Block Size 512 512
Batch Size 512 1024
Additional
Pretraining 300K steps 300K steps

Table 5: Hyperparameters of PEGASUS-X Models

4.1 Results on Summarization Tasks

Long summarization tasks In Table 6, we com-
pare the performance of PEGASUS models to those
of PEGASUS-X on three long-input summarization
tasks: arXiv, Big Patent and PubMed. In all three
tasks, we see significant improvements in perfor-
mance of PEGASUS-XBase over PEGASUSBase+,
and PEGASUS-X over PEGASUSLarge. To iso-
late the impact of additional long input pretraining
compared to only switching the architecture dur-
ing fine-tuning, we also include evaluation on the
PEGASUS models using the Global-Local archi-
tecture with no further pretraining, which we list in
the table as PEGASUSBase+ + Global-Local.

We also compare to reported results of Big
Bird-PEGASUS6 (Zaheer et al., 2020), LED (Belt-
agy et al., 2020), Top-Down Transformer (Pang
et al., 2022) with both Average-Pool (AvgP) and
Adaptive-Pool (AdaP) variants, BART-LS (Xiong
et al., 2022a), LongT5-Large and XL, and SLED
(Ivgi et al., 2022). LED, Top-Down and SLED
are initialized with BARTLarge weights with no
additional pretraining on long input sequences.
BART-LS is concurrent work that also incorpo-
rates staggered block-local attention and addition
long-sequence pretraining, in addition to pooling
layers and different pretraining data.

PEGASUS-X outperforms Big Bird-PEGASUS
on all tasks, and Top-Down-AvgP on both com-
pared tasks. Although Top-Down-AdaP outper-
forms PEGASUS-X, it uses a much more complex
fine-tuning setup, using an importance tagger on
reference summaries to construct token pooling
weights, whereas PEGASUS-X only uses standard
fine-tuning. Even so, PEGASUS-X still outper-
forms Top-Down-AdaP on PubMed. PEGASUS-X
outperforms BART-LS on PubMed and slightly
underperforms on arXiv; as mentioned above,

google-research/blob/master/rouge/README.
md#two-flavors-of-rouge-l

6Big Bird-PEGASUS only has a context of 3072 tokens,
likely due to the larger memory consumption of Big Bird.

PEGASUS-X and BART-LS share many similari-
ties, and we see the strong performance of BART-
LS as confirmation of the efficacy of parts of our
recipe for longer sequence models. PEGASUS-
X also outperforms LongT5 on both arXiv and
PubMed, despite both compared LongT5 models
having more parameters. However, we find that
LongT5 performs much better on BigPatent, which
is a largely extractive summarization task. We hy-
pothesize that a larger hidden size may improve
extraction over very long sequences.

Short summarization tasks We show in Ta-
ble 14 the performance of PEGASUS and
PEGASUS-X models on shorter summarization
tasks, where there is a slight regression in perfor-
mance of both PEGASUS-X models compared to
their PEGASUS equivalents. We hypothesize that
long input pretraining might negatively impact the
performance on shorter input tasks because of the
data filtering for long documents, resulting in a
potentially less diverse training data distribution.

4.2 SCROLLS Summarization Tasks

We report the performance of the PEGASUS-
X models on the summarization tasks in the re-
cently introduced SCROLLS benchmark in Table 7.
This includes GovReport (Huang et al., 2021), the
ForeverDreaming subset of SummScreen (Chen
et al., 2022), and QMSum (Zhong et al., 2021).

PEGASUS-X outperforms all other models
on GovReport, setting the state of the art on
the dataset.7 It also performs comparably to
both LongT5Large and Top-Down-AvgP on Summ-
Screen/FD, although it underperforms LongT5
models and BART-LS on QMSum. Moreover,
PEGASUS-XBase also performs competitively, out-
performing both LongT5 models on GovReport,
and only a small margin behind PEGASUS-X on
all three tasks. PEGASUS-XBase also outperforms
BARTLarge-SLED, a larger model with a similar
16K input length.

5 Pertinent Related Work

Many works such as Zaheer et al. (2020), Beltagy
et al. (2020), Ivgi et al. (2022) have investigated
extending short input models to longer sequences
using efficient attention mechanisms. In closely
comparable work, Guo et al. (2021) pretrained a
T5 model on long sequences from scratch, incor-

7As of 08/08/2022
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arXiv Big Patent PubMed

Model #Params R1 / R2 / RLs RG R1 / R2 / RLs RG R1 / R2 / RLs RG

PEGASUSBase 271M 34.8 / 10.2 / 22.5* 20.0* 43.5 / 20.4 / 31.8* 30.5* 40.0 / 15.2 / 25.2* 24.8*
PEGASUSBase+ 271M 42.2 / 15.8 / 37.3 29.2 51.2 / 32.6 / 41.0 40.9 44.1 / 18.3 / 40.1 31.9
PEGASUSBase+ + Global-Local 272M 47.6 / 20.2 / 42.4 34.4 58.1 / 39.5 / 47.2 47.7 47.3 / 21.4 / 43.0 35.2
PEGASUS-XBase 272M 49.4 / 21.6 / 44.0 36.1 61.3 / 42.6 / 50.1 50.8 49.6 / 23.6 / 45.2 37.5

PEGASUSLarge 567M 44.7 / 17.2 / 25.7* 27.0* 53.4 / 32.9 / 42.1* 42.0* 45.1 / 19.6 / 27.4* 28.9*
PEGASUS-X 568M 50.0 / 21.8 / 44.6 36.5 64.8 / 47.5 / 54.3 55.1 51.0 / 24.7 / 46.6 38.9

BART-LS 460M 50.2 / 22.1 / 45.4 36.9 –.- / –.- / –.- –.- 50.3 / 24.3 / 46.3 38.4
Longformer Encoder-Decoder 464M 46.6 / 19.6 / 41.8 33.7 –.- / –.- / –.- –.- –.- / –.- / –.- –.-
Top-Down (AvgP) 464M 48.7 / 20.7 / 43.9 35.4 –.- / –.- / –.- –.- 48.3 / 21.4 / 44.2 35.7
Top-Down (AdaP) 464M 51.0 / 21.9 / 45.6 37.1 –.- / –.- / –.- –.- 51.1 / 23.3 / 46.5 38.1
Big Bird-Pegasus 567M 46.6 / 19.0 / 41.8 33.3 60.6 / 42.5 / 50.1 50.5 46.3 / 20.7 / 42.3 34.4
LongT5Large 770M 48.3 / 21.6 / 44.1 35.8 70.4 / 56.8 / 62.7 63.1 50.0 / 24.7 / 46.5 38.6
LongT5XL 3B 48.4 / 21.9 / 44.3 36.1 76.9 / 66.1 / 70.8 71.1 50.2 / 24.8 / 46.7 38.7

Table 6: Comparison on long summarization tasks (Test sets). Results for other models are taken from their
respective papers. *: PEGASUS (Zhang et al., 2020) only reports ROUGE-L and not ROUGE-LSum.

GovReport SummScreen/FD QMSum

Model #Params R1 / R2 / RL RG R1 / R2 / RL RG R1 / R2 / RL RG

PEGASUS-XBase 272M 59.3 / 29.3 / 30.9 37.7 35.0 / 8.9 / 20.4 18.5 32.9 / 9.8 / 21.4 19.0
PEGASUS-X 568M 60.3 / 30.0 / 31.5 38.5 35.7 / 9.1 / 20.6 18.8 33.2 / 9.6 / 21.6 19.0

BARTLarge-SLED 406M 58.0 / 26.9 / 27.6 35.1 33.8 / 8.0 / 18.5 17.1 32.1 / 10.2 / 21.0 19.0
BART-LS 460M 59.4 / 29.8 / 30.8 37.9 37.7 / 10.2 / 21.5 20.2 35.1 / 12.0 / 23.3 21.4
Top-Down-AvgP 464M –.- / –.- / –.- –.- 35.8 / 8.9 /30.6* 21.4* –.- / –.- / –.- –.-
Top-Down-AdaP 464M –.- / –.- / –.- –.- 36.8 / 9.2 /31.1* 21.9* –.- / –.- / –.- –.-
LongT5Large 770M 54.2 / 27.8 / 29.8 35.5 35.6 / 9.2 / 21.2 19.1 35.1 / 12.0 / 23.3 21.4
LongT5XL 3B 54.7 / 28.2 / 30.2 36.0 35.8 / 9.6 / 21.1 19.4 34.9 / 11.8 / 23.5 21.3
UL2 20B 53.6 / 26.1 / 28.8 34.3 32.9 / 7.8 / 19.4 17.1 31.1 / 8.5 / 20.4 17.5

Table 7: Comparison on SCROLLS benchmark (Summarization tasks, Test sets). Results for SLED, BART-LS,
LongT5 and UL2 models are taken from the SCROLLS benchmark leaderboard. *: Top-Down (Pang et al., 2022)
reports much higher scores for ROUGE-L on SummScreen/FD than any other model, and may have been computed
with a variant of ROUGE-L that involves splitting on sentences rather than newlines.

porating sliding window attention and global rep-
resentations. However, pretraining only on long
sequences significantly increases the pretraining
time, and as we show in Section 3.6, pretraining
first on short inputs and then subsequently on long
inputs is much more cost efficient.

In concurrent work released shortly before this
submission deadline, Xiong et al. (2022a) also in-
vestigated extending short input Transformer mod-
els for long input tasks. While they focus on BART
rather than PEGASUS, they similarly find that
global tokens, staggered block-local attention, and
extended pretraining greatly improve performance,
lending further support to our findings. Their fi-
nal model also incorporates pooling layers and is
trained on different data.

A broader treatment of related work can be found
in Appendix A.

6 Conclusion

In this work, we investigate a range of proposed
improvements to Transformer models to effectively
and economically handle long inputs in summariza-
tion tasks. Through extensive ablation experiments,
we find a simple but effective recipe for extend-
ing short-input models to tackle long-input sum-
marization. Based on our findings, we introduce
PEGASUS-X, an extended version of PEGASUS
with a modified architecture and additional long-
sequence pretraining. We show that PEGASUS-X
sets the state of the art on two long input summa-
rization tasks (GovReport and PubMed) and per-
forms competitively on many others, even despite
being much smaller than some compared models.
Our findings can be extended to models in other do-
mains beyond summarization, both for pretraining
long input models from scratch as well as extending
already pretrained short sequence models.



Limitations

Challenges of Evaluating Long-Document
Summarization Models

One limitation of our work is that evaluation
of long-document summarization models is chal-
lenging, and while we evaluate on the widely
used benchmarks for long-document summariza-
tion models, we highlight here the difficulties of
measuring the capabilities of such models. In addi-
tion to the widely accepted issues with automatic
evaluation of model-generated summaries with met-
rics such as ROUGE, long-document summariza-
tion brings about new challenges. In particular,
there are relatively fewer long-document summa-
rization tasks available to evaluate models on, and
many of them (e.g. arXiv, Pub Med, SummScreen)
are constructed by repurposing existing data and
proxies for summaries (e.g. abstracts) rather than
explicitly written summaries. As such, the avail-
able datasets for summarization reflect the data that
is easy to repurpose into summarization rather than
practical downstream summarization settings; in
other words, the available evaluation datasets may
not match the distribution of data or settings where
such models are realistically used.

On scoring generations, human evaluation
should ideally be conducted to measure the qual-
ity of model-generated summaries. However, the
much longer input texts also means that human
evaluation of summaries becomes much more ex-
pensive and onerous, as raters would need to read
the whole input before judging the quality of the
summary.

More discussion on the challenges of evaluat-
ing long-document summarization models can be
found in Wang et al. (2022).

Findings May Not Generalize to Other Tasks

We have confined our study to summarization tasks,
as it matches our goal of investigating the ability
for models to process large input contexts, with
less focus on generating long outputs. We acknowl-
edge that our ablation studies and experiments are
focused solely on summarization tasks, and that
our findings may not directly apply or extend to
other long-input language tasks.
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A Full Related Work

Long Document Summarization Several new
long input summarization datasets and benchmarks
have been recently introduced, providing better
measures of long input summarization capabil-
ity as well as prompting new interest in this re-
search direction. The BookSum dataset (Kryś-
ciński et al., 2021) consists of paragraph, chapter,
and full summaries of books on Project Gutenberg
based on web-scraped educational website. (Chen
et al., 2022) consists of television show transcripts
and episode summaries based on web-scraped fan-
written summaries. The SCROLLS benchmark
(Shaham et al., 2022) and the MuLD benchmark
(Hudson and Al Moubayed, 2022) consist of multi-
ple natural language tasks with long inputs, includ-
ing long input summarization. The SQuALITY
dataset (Wang et al., 2022) consists of question-
focused summaries of Project Gutenberg stories,
where annotators write summaries based on dif-
ferent questions that cover different aspects of the
same story.

Efficient Transformers Many efficient Trans-
former variants have been introduced in recent
years (Tay et al., 2020), and we discuss here the
works more relevant to this manuscript. (Beltagy
et al., 2020) use global tokens as well as a sliding
window local attention, implemented using custom
CUDA kernels. The ETC model (Ainslie et al.,
2020) uses both global tokens and block-wise slid-
ing window local attention, although the global
attention is incorporated based on the first few to-
kens of a sequence, rather than separately learned
global tokens. Zaheer et al. (2020) extend ETC
by adding random attention blocks, but we found
that this significantly increases code complexity
and computational cost. Guo et al. (2021) sim-
ilarly extend ETC’s block-wise sliding window
attention, but computes transient “global token”
representations by pooling over blocks of tokens.
Pang et al. (2022) propose to augment the Long-
former encoder-decoder with additional pooling
layers to improve long-sequence summarization
performance. Ivgi et al. (2022) propose an alter-
native approach to sparse attention via encoding
overlapping chunks and fusing information across
chunks int he decoder. We highlight that while the
final Global-Local model architecture that we set-
tle on shares similarity with several other proposed
efficient Transformer architectures, our key con-

tribution lies in our extensive ablation study that
identifies architectural tweaks that improve and,
just as importantly, do not improve downstream
performance.

Among the listed model architectures for long
input summarization, LongT5 (Guo et al., 2021) is
the most similar to PEGASUS-X, sharing a similar
encoder-decoder architecture, a similar training ob-
jective in generating masked sentences, and a mix
of local attention and global information sharing
for the encoder. We briefly highlight the key dif-
ferences between the two models. Firstly, LongT5
trains from scratch on long sequences, whereas
we initialize our model weights with PEGASUS
weights (which is trained on short sequences) be-
fore doing additional pretraining on long input se-
quences. This significantly reduces the overall pre-
training cost, as short sequence pretraining and
be performed much more economically. LongT5
also uses the T5 relative position biases whereas
PEGASUS-X uses sinusoidal position embeddings–
as shown in Section B.1, T5 relative position biases
perform slightly better but are significantly slower.
The efficient encoder architecture between the two
models is also different: LongT5 uses a transient
global representations based on pooling chunks of
tokens, whereas PEGASUS-X uses learned global
token embeddings. LongT5 also uses a sliding win-
dow local attention based on ETC (Ainslie et al.,
2020), whereas we use a simpler block-local at-
tention with staggered blocks. Lastly, the largest
LongT5 model is 3B parameters, more than 5× the
size of PEGASUS-X.

More broadly, Tay et al. (2021) compare a vari-
ety of efficient Transformer architectures on a set of
tasks designed to probe long-sequence processing
capability, evaluating the different models on both
performance as well as computation requirements.
Tay et al. (2022) further evaluate the scaling proper-
ties of novel Transformer architectures, finding that
deviating from full attention tends to hurt down-
stream performance. Xiong et al. (2022b) showed
that simple local attention variants can be highly
competitive with more complex sparse attention
schemes, consistent with our findings.

B Details of Architecture Modification
Experiments

B.1 Position Encoding Schemes

New position encoding schemes encoding schemes
such as RoPE (Su et al., 2021) and ALiBi (Press
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Position Encoding R1 / R2 / RL RG R1 / R2 / RL RG R1 / R2 / RL RG R1 / R2 / RL RG Step/s

None 34.3 / 12.5 / 26.8 22.6 25.6 / 7.8 / 17.7 15.2 36.1 / 9.8 / 22.0 19.8 38.3 / 13.2 / 18.7 21.1 0.96
Sinusoidal 39.8 / 16.9 / 31.8 27.8 40.0 / 18.6 / 28.4 27.6 44.5 / 17.6 / 26.7 27.6 40.0 / 18.8 / 22.3 25.6 0.96
T5 40.1 / 17.1 / 32.0 28.0 39.8 / 18.8 / 28.6 27.8 44.9 / 17.9 / 26.8 27.8 40.2 / 19.5 / 22.9 26.2 0.53
RoPE 39.8 / 16.9 / 31.8 27.8 39.2 / 18.7 / 28.5 27.5 43.5 / 17.2 / 26.5 27.1 40.0 / 19.1 / 22.6 25.8 0.85
Absolute 39.1 / 16.4 / 31.3 27.2 39.7 / 18.7 / 28.5 27.7 44.3 / 17.5 / 26.5 27.4 38.6 / 17.5 / 21.1 24.2 1.00

Table 8: Comparison of position encodings schemes for a Transformer encoder-decoder. Training steps per sec-
ond are computed based on arXiv summarization. Absolute position embeddings are replicated to longer input
sequences, following Beltagy et al. (2020). Training steps per second is computed based on arXiv, and normalized
to the run with absolute position embeddings.

arXiv GovReport

Position Encoding R1 / R2 / RL RG R1 / R2 / RL RG

Factor=10000 48.1 / 20.4 / 28.6 30.4 60.9 / 29.3 / 30.8 38.0
Factor=50000 48.1 / 20.4 / 28.6 30.4 61.4 / 29.5 / 30.9 38.3

Table 9: Comparison of different scaling constants in sinusoidal position encodings.

et al., 2022) have garnered recent attention, show-
ing improved performance on downstream evalua-
tions. As input sequence lengths have gotten much
longer, and in particular longer than the dimensions
of hidden representations, previous choices of posi-
tion encoding may no longer be optimal. Moreover,
relative position encodings such as RoPE, T5 and
ALiBi may be better suited for adapting models
to different input lengths between pretraining and
fine-tuning. Hence, this is a good opportunity to
revisit the choice of positioning encoding schemes
in encoder models.

Because of the more complex interaction be-
tween local attention blocks and relative position
encoding implementations, we conduct a prelimi-
nary investigation with a full-attention Transformer.
We pretrain with an input length of 512, and fine-
tune with an input length of 2048 for the long
sequence tasks – this experiment also tests the
propensity for position encodings to be adapted
to longer sequences downstream. In addition to
the sinusoidal position encoding used in PEGA-
SUS and Vaswani et al. (2017), we also consider
the bucket-based relative position encoding scheme
of T5, RoPE, absolute position embeddings, and
no position encoding as a baseline. For absolute
position embeddings, we follow the recipe of Belt-
agy et al. (2020) and duplicate the learned position
embeddings to handle longer sequences before fine-
tuning. The chosen position encoding scheme is
applied to all parts of the model, including both the
encoder and the decoder. We do not experiment
with ALiBi, as we found no natural way to adapt

ALiBi to cross-attention.
Our results are shown in Table 8. We find that al-

though T5 performs the best, it is also almost twice
as slow as the other position encoding schemes,
which is consistent with the findings of Press et al.
(2022). Sinusoidal position encodings and RoPE
perform only slightly worse than T5 with much bet-
ter efficiency, making them more desirable choices.
Given the much simpler implementation of sinu-
soidal position encodings, we opt to stick with them
for the remainder of the experiments.

Takeaways: Sinusoidal position encodings still
remain a good choice for long input Transformers.

B.2 Scaling Encoder and Decoder Layers
Scaling laws (Kaplan et al., 2020; Ghorbani et al.,
2021; Zhang et al., 2022) that describe the em-
pirical relationship between model sizes and per-
formance have proven surprisingly consistent and
gotten significant attention in recent years. We
present in this section a small set of scaling experi-
ments, exploring the distribution of layers between
encoder and decoder.

Our results are shown in Table 10. In the top half,
we fix the total number of layers to 24, and con-
sider both encoder-heavy and decoder-heavy distri-
butions, for both Local and Global-Local models.
We observe that impact of distribution of encoder
and decoder layers on performance is relatively
small. For Local models, we see a slight boost from
decoder-heavy models. For Global-Local models,
we observe that a balanced encoder-decoder outper-
forms encoder- and decoder-heavy models, both of
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Architecture Enc Dec R1 / R2 / RL RG R1 / R2 / RL RG R1 / R2 / RL RG R1 / R2 / RL RG

Local 18 6 37.4 / 15.0 / 29.7 25.5 39.0 / 18.2 / 27.9 27.0 46.0 / 19.4 / 27.6 29.1 58.9 / 27.4 / 29.1 36.1
12 12 37.5 / 14.9 / 29.7 25.5 38.5 / 18.0 / 27.6 26.7 45.4 / 18.9 / 27.3 28.6 59.2 / 27.6 / 29.3 36.3

6 18 37.7 / 15.1 / 29.9 25.7 38.5 / 18.1 / 27.7 26.9 46.3 / 19.3 / 27.6 29.1 59.4 / 27.8 / 29.5 36.5

Global-Local 18 6 38.6 / 15.9 / 30.9 26.7 39.2 / 18.5 / 28.2 27.3 47.3 / 20.1 / 28.3 30.0 60.2 / 28.7 / 30.6 37.5
12 12 38.6 / 15.9 / 30.7 26.6 40.0 / 18.6 / 28.3 27.6 47.5 / 20.1 / 28.3 30.0 61.1 / 29.3 / 30.7 38.1

6 18 37.7 / 15.1 / 29.9 25.7 38.5 / 18.1 / 27.7 26.9 46.4 / 19.5 / 27.9 29.3 60.3 / 28.6 / 30.0 37.2

Global-Local 18 12 38.5 / 15.7 / 30.6 26.4 38.7 / 18.4 / 28.1 27.1 47.3 / 20.0 / 28.3 29.9 60.2 / 29.2 / 31.0 37.9
12 18 38.6 / 15.8 / 30.5 26.5 38.6 / 18.3 / 28.0 27.0 47.5 / 20.3 / 28.5 30.2 60.9 / 29.0 / 30.4 37.7

Table 10: Varying the distribution of encoder/decoder layers)

which perform about comparably.
We also consider cases where we further increase

the size of either the encoder or decoder to 18 lay-
ers, shown in the second half of Table 10. We
observe no improvement in performance over the
12/12-layer encoder-decoder, and suspect that other
hyperparameters (e.g. hidden size) might be the
bottleneck rather than the number of layers.

We highlight here that because of the asymmetry
of the input and output lengths, there are different
computational trade-offs to different balances of
encoder and decoder layers. Encoder-heavy mod-
els require more memory because of the long input
sequences, whereas decoder-heavy models are rel-
ative slower at inference because of the autoregres-
sive nature of decoding. Given the relatively small
difference in the margin of performance, memory
or computational constraints may outweigh the per-
formance differences in practical scenarios.

Takeaways: A balanced encoder-decoder per-
forms best, but the difference in performance may
be outweighed by other resource considerations.

B.3 Partial Cross Attention

Given the use of an efficient attention architec-
ture, which has memory consumption scale lin-
early rather than quadratically in input sequence
length, another major memory bottleneck is the
encoder-decoder cross-attention. Because each de-
coder layer attends separately to the long encoder
representations, and the attention is dense, this is a
large contiguous chunk of memory that we could
seek to reduce.

Perceiver AR (Hawthorne et al., 2022) demon-
strated strong performance by using only a single
cross-attention at the bottom layer of an autoregres-
sive language model. Based on these results, we in-
vestigate the impact of only having cross-attention
on a subset of decoder layers. In Table 12, we show

the results of pretraining and fine-tuning Global-
Local models with cross-attention only on specific
layers on a variety of configurations. We find that
reducing the number of cross-attention layers leads
to a drop in performance, but the impact on per-
formance is smaller than expected. For instance,
with only cross-attention on the first and sixth layer,
the Global-Local model still outperforms a Local
model. The reduction of cross-attention layers also
leads to a corresponding improvement in training
step and reduction in memory consumption.

Given the small drop in performance from using
fewer decoder layers with cross-attention, we con-
sider the viability of dropping cross-attention layers
after pretraining. In other words, we take a Global-
Local model pretrained with full cross-attention,
drop the cross-attention for a subset of layers, and
fine-tune directly. Our results are shown in Ta-
ble 13. We find that dropping the cross-attention
after pretraining again only leads to a small (ad-
ditional) dip in performance. This indicates that
dropping cross-attention may be a viable strategy
for further reducing memory requirements for an
existing pretrained model with a small performance
trade-off, and pretraining a separate model from
scratch is not necessary.

Takeaways: Dropping cross-attention for a frac-
tion of decoder layers can reduce memory con-
sumption at the cost of slight performance regres-
sion. Cross-attention can be dropped after pretrain-
ing, with an associated performance trade-off.

B.4 Comparison on short summarization
tasks

C PEGASUSBase+

In a similar finding as Hoffmann et al. (2022), we
found that PEGASUSBase benefits from training
on significantly more tokens. As such, we trained
a PEGASUSBase for a much larger number of to-



arXiv GovReport

Pretraining → Fine-tuning Block Size R1 / R2 / RL RG R1 / R2 / RL RG

Transformer → Local 16 46.4 / 19.6 / 27.9 29.4 59.6 / 28.2 / 29.9 36.9
64 46.5 / 19.5 / 27.8 29.3 59.5 / 28.0 / 29.6 36.7
256 46.8 / 19.7 / 28.0 29.6 59.8 / 28.0 / 29.8 36.8

Local → Local 16 45.9 / 19.1 / 27.5 28.9 59.0 / 27.5 / 29.3 36.2
64 46.5 / 19.5 / 27.8 29.3 59.7 / 28.1 / 29.8 36.8
256 47.1 / 19.9 / 28.1 29.8 59.7 / 28.5 / 30.3 37.2

Transformer → Global-Local 16 46.0 / 19.2 / 27.5 29.0 60.3 / 28.2 / 29.8 37.0
64 47.0 / 20.0 / 28.2 29.8 60.8 / 28.7 / 30.1 37.4
256 47.6 / 20.3 / 28.4 30.2 60.8 / 28.7 / 30.0 37.4

Global-Local → Global-Local 16 47.1 / 20.0 / 28.3 29.9 59.7 / 27.8 / 29.2 36.5
64 47.7 / 20.3 / 28.5 30.2 61.0 / 29.3 / 30.8 38.0
256 47.3 / 20.2 / 28.3 30.0 61.6 / 29.4 / 30.7 38.2

Table 11: Comparison of adapting models architectures between pretraining and fine-tuning.

XSUM CNN/DM arXiv GovReport

Cross-Attention R1 / R2 / RL RG R1 / R2 / RL RG R1 / R2 / RL RG R1 / R2 / RL RG Step/s Mem

Full 38.8 / 16.0 / 31.0 26.8 39.5 / 18.6 / 28.4 27.5 47.7 / 20.4 / 28.6 30.3 61.3 / 29.4 / 30.8 38.1 1.00 1.00
Cross[0,2,4,6,8,10] 38.3 / 15.6 / 30.5 26.3 39.8 / 18.8 / 28.5 27.7 48.1 / 20.4 / 28.6 30.4 61.0 / 29.0 / 30.7 37.9 1.10 0.90
Cross[0,3,6,9,11] 38.0 / 15.3 / 30.2 26.0 38.8 / 18.4 / 28.1 27.2 46.9 / 19.9 / 28.2 29.7 60.1 / 28.6 / 30.2 37.3 1.15 0.88
Cross[0,4,8,11] 37.8 / 15.3 / 30.1 25.9 38.5 / 18.1 / 27.9 26.9 47.6 / 20.2 / 28.4 30.1 60.9 / 28.9 / 30.3 37.6 1.15 0.86
Cross[0,6,11] 37.4 / 14.8 / 29.7 25.4 38.8 / 18.1 / 27.9 27.0 46.9 / 19.7 / 28.1 29.6 60.3 / 28.5 / 30.2 37.3 1.18 0.87
Cross[0,6] 37.5 / 14.9 / 29.7 25.5 38.3 / 18.0 / 27.8 26.8 47.1 / 19.8 / 28.1 29.7 60.4 / 28.1 / 29.7 36.9 1.21 0.85

Table 12: Comparison of models with cross-attention only in a subset of the 12 decoder layers. Training steps per
second and memory are computed based on arXiv, and normalized to the Cross[0,6] run.

kens (the same as PEGASUSLarge), which achieves
much better performance than the previously re-
leased PEGASUSBase model.

D Encoder Architecture
Hyperparameters

For experiments in Section 3.1, BigBird, Local and
Global-Local all use a block size of 64. BigBird
and Global-Local also use 32 global tokens. Per-
former uses 256 random features.

E Fine-tuning Hyperparameters

For arXiv, we fine-tune with an input length of up
to 16384 tokens and 256 output tokens, while for
GovReport we use an input length of 10240 in-
put tokens and 1024 output tokens given the longer
summaries for the task. For XSUM and CNN/Daily
Mail, with use an input length of 512, and output
lengths of 64 and 128 respectively, following PE-
GASUS hyperparameters. The full set of hyper-
parameters for fine-tuning models are shown in
Table 15.

F Engineering Details

The original PEGASUS model was trained using a
codebase based on TensorFlow. The experiments
in this paper were run using a new codebase written

with JAX (Bradbury et al., 2018) and Flax (Heek
et al., 2020). PEGASUS-XBaseand PEGASUS-
Xwere trained by converting the weights from the
TensorFlow checkpoint to a Flax checkpoint for-
mat, and then continuing with long input training.
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Cross-Attention Model R1 / R2 / RL RG R1 / R2 / RL RG

Pretrained Full 47.7 / 20.4 / 28.6 30.3 61.3 / 29.4 / 30.8 38.1
Cross[0,2,4,6,8,10] 48.1 / 20.4 / 28.6 30.4 61.0 / 29.0 / 30.7 37.9
Cross[0,6] 47.1 / 19.8 / 28.1 29.7 60.4 / 28.1 / 29.7 36.9

Converted Cross[0,2,4,6,8,10] 46.4 / 19.7 / 28.1 29.5 60.2 / 28.8 / 30.3 37.4
Cross[0,6] 46.2 / 19.7 / 28.1 29.5 60.2 / 28.1 / 29.8 36.9

Table 13: Comparison of models pretrained with cross-attention for a subset of layers, and adapting a pretrained
model by dropping cross-attention layers only during fine-tuning

CNN/DailyMail XSum

Model R1 / R2 / RLs RG R1 / R2 / RLs RG

PEGASUSBase 41.8 / 18.8 / 38.9 31.3 39.8 / 16.6 / 31.7 27.6
PEGASUSBase+ 42.5 / 20.1 / 39.6 32.4 43.8 / 21.2 / 36.0 32.2
PEGASUS-XBase 42.5 / 20.1 / 39.6 32.4 42.9 / 20.1 / 35.0 31.2

PEGASUSLarge 44.2 / 21.5 / 41.1 33.9 47.2 / 24.6 / 39.2 35.7
PEGASUS-X 43.4 / 21.2 / 40.6 33.5 45.8 / 22.8 / 37.6 34.0

Table 14: Comparison on short summarization tasks (Test sets)

Dataset Batch
Size

Learning
Rate

Num
Steps

Max Input
Tokens

Max Output
Tokens

Beam
Size

Beam
Alpha

PEGASUS-XBase

XSum 64 8e-4 97.5K 1024 128 4 0.8
CNN/DailyMail 64 8e-4 410K 1024 128 4 0.8
arXiv 64 8e-4 92.5K 16384 256 1 1
Big Patent 64 8e-4 272.5K 16384 256 1 1
PubMed 64 8e-4 85K 8096 256 1 1
GovReport 64 8e-4 40K 12288 1024 2 1
SummScreen 64 8e-4 90K 16384 256 1 1
QMSum 64 8e-4 7.5K 16384 256 1 1

PEGASUS-X

XSum 64 8e-4 5k 1024 128 4 0.8
CNN/DailyMail 64 8e-4 7.5k 1024 128 4 0.8
arXiv 64 8e-4 85k 16384 256 1 1
Big Patent 64 8e-4 390k 12192 256 1 1
PubMed 64 8e-4 47.5k 12192 256 1 1
GovReport 64 8e-4 75K 12288 1024 1 1
SummScreen 64 8e-4 40K 12192 256 1 1
QMSum 64 8e-4 35K 12192 256 1 1

Table 15: Hyperparameters for fine-tuning models


