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Abstract

Neural text generation models are typically001
trained by maximizing log-likelihood with the002
sequence cross entropy (CE) loss, which en-003
courages an exact token-by-token match be-004
tween a target sequence with a generated se-005
quence. Such training objective is sub-optimal006
when the target sequence is not perfect, e.g.,007
when the target sequence is corrupted with008
noises, or when only weak sequence supervi-009
sion is available. To address the challenge, we010
propose a novel Edit-Invariant Sequence Loss011
(EISL), which computes the matching loss of a012
target n-gram with all n-grams in the generated013
sequence. EISL is designed to be robust to var-014
ious noises and edits in the target sequences.015
Moreover, the EISL computation is essentially016
an approximate convolution operation with tar-017
get n-grams as kernels, which is easy to im-018
plement and efficient to compute with exist-019
ing libraries. To demonstrate the effective-020
ness of EISL, we conduct experiments on a021
wide range of tasks, including machine transla-022
tion with noisy target sequences, unsupervised023
text style transfer with only weak training sig-024
nals, and non-autoregressive generation with025
non-predefined generation order. Experimental026
results show our method significantly outper-027
forms the common CE loss and other strong028
baselines on all the tasks. EISL has a sim-029
ple API that can be used as a drop-in replace-030
ment of the CE loss: https://anonymous.031
4open.science/r/EISLLoss.032

1 Introduction033

Neural text generation models have ubiquitous ap-034

plications in natural language processing, includ-035

ing machine translation (Bahdanau et al., 2015,036

Sutskever et al., 2014, Wu et al., 2016, Vaswani037

et al., 2017), summarizations (Nallapati et al., 2016,038

See et al., 2017), dialogue systems (Li et al., 2016),039

etc. They are typically trained by maximizing the040

log-likelihood of the output sequence conditioning041

on the inputs with the cross entropy (CE) loss. The042

a cat is on the red blanket

on the red blanket there is a cat

Paraphrase:

a cat is on the red blanket

Noisy Target:

a cat is is on the red blanket

Image:

Figure 1: Invariance exists in both image and text, e.g.,
image is invariant to translation (top), and text is robust
to many forms of edits (bottom).

CE loss can be easily factorized into individual 043

loss terms and can be optimized efficiently with 044

stochastic gradient descent. Due to its computa- 045

tional efficiency and ease to implement, the train- 046

ing paradigm has played an important role in build- 047

ing successful large text generation models (Lewis 048

et al., 2019, Radford et al., 2019). However, the 049

CE loss minimizes the negative log-likelihood of 050

only the reference output sequence, while all other 051

sequences are equally penalized through normaliza- 052

tion. This is over-restrictive since for a given refer- 053

ence target sentence, many possible paraphrases are 054

semantically close, hence should not completely 055

be treated as negative samples. For example, as 056

shown in Figure 1, a cat is on the red 057

blanket should be treated equally with on the 058

red blanket there is a cat. A model 059

trained with CE loss fails short on modeling such 060

type of invariance for text. 061

The problem is even more exaggerated when 062

the supervision from target sequence is not perfect 063

(Pinnis, 2018). On one hand, there could be noises 064

in the reference sequence which makes itself not 065

a valid sentence. As in the last example shown in 066

Figure 1, there is a repetition error in the target 067

sequence, which is common in human generated 068

text. With the CE loss, the model is forced to copy 069

all tokens including the error, and assign a high 070

loss for the grammatically correct sequence. The 071

exact tokens matching renders the CE loss sensi- 072
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Figure 2: Sensitivity of CE and EISL loss w.r.t different types of text edits as the amount of edits increases (x-axis).
We use a fixed machine translation model, synthesize different types of edits on target text, and measure the CE and
EISL losses, respectively. The edit types include shuffle (changing the word order), repetition (words being selected
are repeated), and word blank (words being replaced with a blank token). CE loss tends to increase drastically once
a small amount of edits is applied. In contrast, EISL loss increases much more slowly, showing its robustness.

tive to noises in the target, as shown in Figure 2.073

On the other hand, there are many problems with074

only weak supervision for target sequences. For075

example, in tasks of unsupervised text style transfer076

aiming to rewrite a sentence from one style to an-077

other, the original sentence offers weak supervision078

for the content (rather than the style). Yet using a079

CE loss here is problematic since it encourages the080

model to copy every original token.081

Prior works have tried to address this problem082

using reinforcement learning (RL) (O’Neill and083

Bollegala, 2019, Wieting et al., 2019). For exam-084

ple, policy gradient was used to optimize sequence085

rewards such as BLEU metric (Ranzato et al., 2016,086

Liu et al., 2017). Such algorithms assign high re-087

wards to sentences that are close to the target sen-088

tence. Though it is a valid objective to optimize,089

policy optimization faces significant challenges in090

practice. The high variance of gradient estimate091

makes the training extremely difficult, and almost092

all previous attempts rely on fine-tuning from mod-093

els trained with CE loss, often with unclear im-094

provement (Wu et al., 2018).095

In this paper, we propose an alternative loss to096

overcome the above weakness of CE loss, but re-097

serve all nice properties such as being end-to-end098

differentiable, easy to implement, and efficient to099

compute, which hence can be used as a drop-in re-100

placement or combined with CE. The loss is based101

on the observation that a viable candidate sequence102

shares many sub-sequences with the target. Our103

loss, called edit-invariant sequence loss (EISL),104

models the matching of each reference n-gram105

across all n-grams in a candidate sequence. The106

design is motivated by the translation invariance107

properties of ConvNets on images (see Figure 3),108

and captures the edit invariance properties of text109

n-grams in calculating the loss. Figure 2 shows the110

invariance property of EISLin comparison with111

CE. Appealingly, we show the conventional CE112

loss is a special case of EISL—when n equals113

to the sequence length, EISL calculates the exact114

sequence matching loss and reduces to CE. More-115

over, the computations of EISL is essentially a 116

convolution operation of candidate sequence using 117

target n-grams as kernels, which is very easy to 118

implement with existing deep learning libraries. 119

To demonstrate the effectiveness of EISL loss, 120

we conduct experiments on three representative 121

tasks: machine translation with noisy training tar- 122

get, unsupervised text style transfer (only weak ref- 123

erences are available), and non-autoregressive gen- 124

eration with flexible generation order. Experiments 125

demonstrate EISL loss can be easily incorporated 126

with a series of sequence models and outperforms 127

CE and other popular baselines across the board. 128

2 Related Work 129

Deep neural sequence models such as recurrent 130

neural networks (Sutskever et al., 2014, Mikolov 131

et al., 2010) and transformers (Vaswani et al., 2017) 132

have achieved great progress in many text genera- 133

tion tasks like machine translation (Bahdanau et al., 134

2015, Vaswani et al., 2017). These models are 135

typically trained with the maximum-likelihood ob- 136

jective, which can lead to sub-optimal performance 137

due to CE’s exact sequence matching assumption. 138

There are lots of works trying to overcome this 139

weakness. For examples, some works (Ranzato 140

et al., 2016, Rennie et al., 2017, Liu et al., 2017, 141

Shen et al., 2016, Smith and Eisner, 2006) proposed 142

to use policy gradient or minimum risk training to 143

optimize the expected BLEU metric. Due to the 144

high variance and unstableness in training, a variety 145

of training tricks are used in practice. Zhukov and 146

Kretov (2017), Casas et al. (2018) made the initial 147

attempts to develop differentiable BLEU objectives, 148

making soft approximations to the count of n-gram 149

matching in the original BLEU formulation. And 150

Shao et al. (2018, 2021, 2020) aim to minimize the 151

n-gram difference between the model outputs and 152

targets on NAT task. Wieting et al. (2019) intro- 153

duced a new reward function based on semantic 154

similarity for the translation system. 155

Another line of research that is relevant to our 156

work is learning with noisy labels in classification. 157
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Desired output: a cat is on the red blanket

Noisy target: a cat is is on the red blanket

a cat is is on the red blanket

a cat is is on the red blanket

a cat is is on the red blanket

a cat is is on the red blanket

Image:

Figure 3: Inspired by the ConvNet convolution which applies a convolution kernel to different positions in an image
and aggregate (left), we devise similar n-gram matching and convolution, which is robust to sequence edits (noises,
shuffle, repetition, etc) (right).
There are lots of researchers attempting to propose158

techniques to improve classifier’s performance in159

face of noises in labels (Zhang and Sabuncu, 2018,160

Xu et al., 2019, Wang et al., 2019b). For text gen-161

eration, Nicolai and Silfverberg (2020) proposed162

student forcing to substitute teacher forcing, which163

can avoid the influence of noise in target sequence164

during decoding. (Kang and Hashimoto, 2020) pro-165

posed loss truncation, which adaptively removed166

high loss examples, considered as invalid data, to167

improve text generation. To the best of our knowl-168

edge, our work is the first to investigate sequence169

training with noisy targets in a principled manner.170

3 Edit-Invariant Sequence Loss171

In this section, we first review the conventional172

cross-entropy (CE) loss for sequence learning, and173

point out its weakness, especially when the target174

sequence is edited. We then introduce the EISL175

loss which gives a model the flexibility to learn176

from sub-sequences in a target sequence.177

We first establish notations for the sequence gen-178

eration setting. Let (x,y∗) be a paired data sample179

where x is the input and y∗ = (y∗1, ..., y
∗
T ∗) is the180

reference target sequence. Define y = (y1, ..., yT )181

as a candidate sentence. Our goal is to build a182

model pθ(y|x) that scores a candidate sequence183

y with parameter θ. In the sequel, we omit the184

condition x and the subscript θ for simplicity.185

3.1 The Difficulty of Cross Entropy Loss186

The standard approach to learn the sequence model187

is to minimize the negative log-likelihood (NLL)188

of the target sequence, i.e., minimizing the CE189

loss LCE(θ) = − log p(y∗). The CE loss assumes190

exact matching of a candidate sequence y with the191

target sequence y∗. In other words, it maximizes192

the probability of only the target sequence y∗ while193

penalizing all other possible sequence outputs that194

might be close but different with y∗.195

The assumption can be problematic in many196

practical scenarios: (1) For a given target sentence,197

there could be many ways of paraphrasing the sen-198

tence such as word reordering, synonyms replace-199

ment, active to passive rewriting, etc. Many of the200

paraphrases are viable candidate sequences, and/or 201

share many sub-sequences with the reference sen- 202

tence, and thus should not be treated completely as 203

negative samples. Similar to the translation invari- 204

ance which is shown to be effective in image mod- 205

eling, a sequence loss that is robust to the shift and 206

edits of sub-sequences in the reference sequence 207

is preferred in order to model the rich variations 208

of sequences; (2) The edit-invariance property is 209

particularly desirable when the reference target se- 210

quence is corrupted with noise or is only weak 211

sequence supervision. For instance, in Figure 3, 212

the word is is repeated twice, which is one of the 213

common errors in typing. Using CE loss in the 214

noisy target setting forces the model to learn the 215

data errors as well. In contrast, a sequence loss 216

robust or invariant to the shift of sub-sequences 217

assigns a high probability to the correct sentence 218

even though it does not match the noisy target ex- 219

actly. The loss thus offers flexibility for the model 220

to select right information for learning. 221

3.2 EISL: Edit-Invariant Sequence Loss 222

Motivated by the above discussion, in this section, 223

we draw inspirations from the convolution opera- 224

tion that enables translation invariance in image 225

modeling (Figure 3, left), and propose an edit- 226

invariant sequence loss (EISL) as illustrated in Fig- 227

ure 3 (right). Intuitively, for instance, given a 4- 228

gram on the red blanket, because there is 229

no extra knowledge to determine the position of the 230

4-gram in the noisy target sequence, we compute 231

the losses across all positions in the noisy target 232

sequence and aggregate. This is essentially a con- 233

volution over the target noisy sequence with the 234

given n-gram as a convolution kernel. 235

We now derive the EISL loss in more details. 236

Let ya:b = (ya, ..., yb−1) denote a sub-sequence of 237

y that starts from index a and ends at index b− 1, 238

which is of length b− a. Thus y∗
i:i+n denotes the i- 239

th n-gram in the reference y∗. Denote C(y∗
i:i+n,y) 240

as the number of times this n-gram occurs in y: 241

C(y∗
i:i+n,y) =

T−n+1∑
i′=1

1(yi′:i′+n = y∗
i:i+n), (1) 242

where 1(·) is the indicator function that takes value 243
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1 if the n-grams match, and 0 otherwise. Intu-244

itively, for a text generation model, we would like245

to maximize the occurrence of an n-gram from the246

reference in the target sequence. For a given prob-247

abilistic model pθ(y) (we omit the parameter θ248

wherever the meaning is clear), the expected value249

of C(y∗
i:i+n,y) can be computed as follow:250

Ey∼p(y)[C(y∗
i:i+n,y)]

=

T−n+1∑
i′=1

Ep(yi′:i′+n) [1(yi′:i′+n = y∗
i:i+n)]

=

T−n+1∑
i′=1

p(yi′:i′+n = y∗
i:i+n).

251

Thus, for each i-th n-gram in the reference, a252

straightforward way to define the learning objective253

is to minimize the negative log value of its expected254

occurrence, i.e., − logEy∼p(y)[C(y∗
i:i+n,y)].255

The above loss requires computation of the256

marginal probability p(yi′:i′+n = y∗
i:i+n) of an n-257

gram, which is intractable in practice. We therefore258

derive an upper bound of the loss and use it as the259

surrogate to minimize in training. We denote the260

upper bound surrogate as our EISL loss. Specifi-261

cally, since for a given i′, p(yi′:i′+n = y∗
i:i+n) =262 ∑

y p(y<i′)p(yi′:i′+n = y∗
i:i+n|y<i′), then:263

− logEy∼p(y)[C(y∗
i:i+n,y)]

= − log

T−n+1∑
i′=1

p(yi′:i′+n = y∗
i:i+n),

≤
−Ey∼p(y)

∑T−n+1
i′=1 log p(yi′:i′+n = y∗

i:i+n|y<i′)

T − n+ 1

:= LEISL
n,i (θ).

(2)264

The detailed derivation is attached in Appendix A.1.265

Notice that the EISL loss involves only the condi-266

tional distribution p(yi′:i′+n = y∗
i:i+n|y<i′) which267

is convenient to compute—we first sample tokens268

from the model up to the i′ position, then compute269

NLL of the reference n-gram y∗
i:i+n occurring at270

position i′ under the model distribution. The full n-271

gram EISL loss is then defined by averaging across272

all n-gram positions in the reference:273

LEISL
n (θ) =

1

T ∗ − n+ 1

T∗−n+1∑
i=1

LEISL
n,i (θ). (3)274

In practice, inspired by the standard BLEU metric275

(more in section 3.3), we could also straightfor-276

wardly combine different n-gram losses depending277

on tasks:278

LEISL(θ) =
∑

n
wn · LEISL

n (θ), (4)279

where wn is the weight of the n-gram loss. The rule 280

of thumb is that a n-gram EISL loss with lower n is 281

more robust to noises, as shown in our experiments. 282

Following BLEU, we found that simply using equal 283

weights for different n-grams up to n = 4 often 284

produces good performance. 285

As discussed shortly, it is appealing that the n- 286

gram EISL loss is indeed a direct generalization 287

of the CE loss on the n-gram level: we sum the 288

CE loss of an n-gram over all candidate sequence 289

positions by conditioning on samples from the 290

model. Besides, the derivation of the upper bound 291

makes no assumption on the probability function 292

p(y), hence holds for both autogressive and non- 293

autoregressive sequence models as demonstrated 294

in our experiments. 295

Position Selection Minimizing the gram match- 296

ing loss over all positions can make the model 297

assign equal probabilities at all positions, which 298

causes the training to collapse. We further adapt 299

the loss to enable the model to automatically learn 300

the positions of reference n-grams. For notation 301

simplicity, let gni,i′ denote the conditional proba- 302

bility p(yi′:i′+n = y∗
i:i+n|y<i′) involved above 303

(Eq.2). We can vectorize the probability to get 304

gn
i = [gni,1, ..., g

n
i,T−n+1]

T , spanning all potential 305

positions in the candidate sequence. We then 306

normalize the probability vector gn
i by Gumbel 307

softmax (Jang et al., 2017), denoted as qni = 308

Gumbel_softmax(gn
i ), which we use as the 309

weight for every n-gram positions. We multiply 310

the weight with the original log probability to get 311

the new adjusted loss: 312

LEISL
n,i (θ) ≈ −qn

i · log gn
i . (5) 313

The loss can roughly be viewed as the “entropy” 314

of the unnormalized probabilities gn
i , which has 315

minimal value if the mass of the probability is 316

assigned to one location only. Intuitively, if an 317

gni,i′ is large, then it is likely i′ is the correct posi- 318

tion for the reference n-gram, hence the weight 319

for this position should also be large. This is 320

like the greedy exploitation in reinforcement learn- 321

ing (Mnih et al., 2015). On the other hand, to 322

overcome over-exploitation, the Gumbel softmax 323

introduces randomness in the weight assignment, 324

which helps balance the exploitation-exploration 325

trade-off in position selection for the model. 326

Efficient Approximate Computation: EISL 327

as Convolution We show the EISL loss can be 328

computed efficiently using the common convolu- 329
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Figure 4: As convolution is a common operation for translation invariance in image, we adopt a convolution to
achieve the translation invariance in text. The input is the distribution from the model output in log domain, kernel
represents the convolution kernel and ∗ is the convolution operation. In this 3-gram example, there are 5 kernels,
which correspond to the 5 rows on the right.

tion operator, with very little additional cost com-330

pared with the CE loss. The computation involves331

moderate approximation if the generation model332

is an autoregressive model, and is exact in the333

case of a non-autoregressive model (e.g., as in334

section 4.3). We first discuss the easy case when335

the model is a non-autoregressive model, where336

we have gni,i′ = p(yi′:i′+n = y∗
i:i+n|y<i′) =337 ∏n

j=1 p(yi′+j−1 = y∗i+j−1). Denote V as the vo-338

cabulary size. Let P = [p1,p2, ...pT ] be the prob-339

ability output by the model across positions, where340

pi′ ∈ RV is the probability output after softmax341

at i′-th position, and each pi′ is independent with342

each other. On this basis, we compute the key343

quantity log gn
i in Eq. 5 as the direct output of the344

convolution operator. As shown in Figure 4, we345

can get log gn
i by applying convolution on logP ,346

with yi:i+n as the kernels:347
log gn

i = Conv(logP ,Onehot(y∗
i:i+n)), (6)348

where Onehot(·) maps each token to its corre-349

sponding one-hot representation and Conv(·, ·) is350

the convolution operation with the first argument as351

input and the second as the kernel. We transform P352

into log domain to turn the probability multiplica-353

tion into log probability summations, where Conv354

can be directly applied. As shown in Figure 4,355

logP is of shape V × T and Onehot(y∗
i:i+n) is356

of shape V ×n, so Conv(logP ,Onehot(y∗
i:i+n))357

is an one-dimensional convolution on the sequence358

axis. Formally, the i′-th convolutional output is:359

log gni,i′ =

n∑
j=1

logpi′+j−1 · Onehot(y∗
i+j−1)

=

n∑
j=1

log p(yi′+j−1 = y∗
i+j−1|y<i′+j−1)

360

After obtaining gn
i by convolution, the EISL361

loss in Eq. 5 can be easily calculated. We now362

discuss the case of autoregressive model, where363

by definition we have gni,i′ =
∏n

j=1 p(yi′+j−1 =364

y∗i+j−1|y<i′ ,y
∗
i:i+j−1). The dependence on both365

y<i′ and y∗
i:i+j−1 in each conditional makes exact366

estimation of log gn
i very complicated and costly.367

We thus introduce the approximation where we 368

approximate gni,i′ as g̃ni,i′ =
∏n

j=1 p(yi′+j−1 = 369

y∗i+j−1|y<i′+j−1). That is, instead of conditioning 370

on y∗
i:i+j−1, we use the model-generated tokens 371

yi′:i′+j−1 as the condition. This simple approxi- 372

mation enables us to define the probability output 373

P as in the non-autoregressive case, by just per- 374

forming a forward pass of the model (i.e., sampling 375

a token y′
i for each position i′ and feeding it to 376

the next step to get pi′+1). We can then apply the 377

same convolution operator to approximately obtain 378

log gn
i as in Eq. 6. Besides the great gain of com- 379

putational efficiency, we note that the approxima- 380

tion is also effective, especially due to the position 381

selection discussed above. Specifically, for each 382

reference n-gram y∗
i:i+n, the position selection in 383

effect (softly) picks those large-value gni,i′ (while 384

dropping other low-value ones) to evaluate the loss. 385

A large gni,i′ value indicates the candidate yi′:i′+n is 386

highly likely to match the reference y∗
i:i+n, mean- 387

ing that using yi′:i′+n in replacement of y∗
i:i+n is a 388

reasonable approximation for evaluating the above 389

conditionals. We provide empirical analysis of the 390

approximation in Appendix A.8, where we show 391

the efficient approximate EISL loss values are very 392

close to the exact EISL values. 393

3.3 Connections with Common Techniques 394

CE is a special case of EISL A nice property of 395

EISL is that it subsumes the standard CE loss as 396

a special case. To see this, set n = T ∗ (the target 397

sequence length), and we have: 398

LEISL
T∗ = LEISL

T∗,1 = − log gT∗
1 = − log p(y = y∗) = LCE. 399

The connection shows the generality of EISL. As a 400

generalization of CE, it enables learning at arbitrary 401

n-gram granularity. 402

Connections between BLEU and EISL Both 403

our method and the popular BLEU (Papineni et al., 404

2002) metric use n-grams as the basis in formula- 405

tion. Here we articulate the connections and differ- 406
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Figure 5: Results of Translation with Noisy Target on German-to-English(de-en) from Multi30k. BLEU scores are
computed against clean test data. The x-axis of all figures denotes the level of noise we injected to target sequences
in training. (a) Shuffle: selected tokens are shuffled; (b) Repetition: selected tokens are repeated; (c) Blank: selected
tokens are substituted with a special blank token; (d) Synthetical noise: the combination of all three noises (x = x0

stands for the combination of 5x0% of all kinds of noises); (e) Ablation study of n-grams for EISL on synthetical
noise. BLEURT results are shown in Appendix A.3.

ence between the two. Let us first take a review of407

the BLEU metric. Specifically, BLEU is defined as408

a weighted geometric mean of n-gram precisions:409

BLEU = BP · exp

(
N∑

n=1

wn log precn

)

precn =

∑
s∈gramn(y) min(C(s,y), C(s,y∗))∑

s∈gramn(y) C(s,y)
,

410

where BP is a brevity penalty depending on the411

lengths of y and y∗; N is the maximum n-gram412

order (typically N = 4); {wn} are the weights413

which usually take 1/N ; precn is the n-gram pre-414

cision, gramn(y) is the set of unique n-gram sub-415

sequences of y; and C(s,y) is the number of times416

a gram s occurs in y as defined in Eq. 1. The417

conventional formulation above enumerates over418

unique n-grams in y. In contrast, we enumerate419

over token indexes in calculating the n-gram match-420

ing loss. BLEU considers the n-gram precisions421

and has a penalty term while EISL simply maxi-422

mizes the log probability of n-gram matchings.423

The non-differentiability of BLEU makes it hard424

to optimize directly, hence most prior attempts re-425

sort to reinforcement learning algorithms and use426

BLEU as the reward (Ranzato et al., 2016, Liu427

et al., 2017). There are also some works trying to428

introduce differentiable BLEU metric using approx-429

imation like (Zhukov and Kretov, 2017). However,430

such losses are often too complicated and are yet431

to be demonstrated to perform well in practice.432

4 Experiments433

In this section, we present the experimental results434

on three text generation settings: learning from435

noisy text, learning from weak sequence supervi-436

sion, and non-autoregressive generation models437

that require flexibility in generation orders to test 438

EISL’s effectiveness. More details of the experi- 439

mental setting are provided in Appendix A.2. 440

4.1 Learning from Noisy Text 441

To test the robustness to noise, we evaluate on the 442

task of machine translation with noisy training tar- 443

get, in which we train the models with noisy se- 444

quence targets and evaluate with clean test data. 445

Setup We test EISL loss on both Multi30k and 446

WMT18 raw corpus. We use German-to-English 447

(de-en) dataset from Multi30k (Elliott et al., 2016), 448

which contains 29k training instances. As inspired 449

by Shen et al. (2019), to simulate various noises 450

in the real data, we introduce four types of noises: 451

shuffle, repetition, blank, and the synthetical noise, 452

i.e., the combination of the aforementioned three 453

types of noise. The noises are only added to the 454

training target sequences. To verify the validity 455

of EISL on real noisy data, we also use German- 456

to-English (de-en) dataset from WMT18 raw cor- 457

pus, which is a very noisy de-en corpus crawled 458

from the web. We randomly select different num- 459

ber of training samples to test the influence of the 460

data scale. We use a Transformer-based pretrained 461

model BART-base (Lewis et al., 2019) and adopt 462

greedy decoding in training and beam search (beam 463

size = 5) in evaluation. We compare EISL loss 464

with CE loss, Policy Gradient (PG), and Loss Trun- 465

cation (LT). We also conduct ablation experiments 466

to explore the effect of different n-grams in EISL 467

loss. We use both BLEU (Papineni et al., 2002) 468

and BLEURT, an advanced model-based metric 469

(Sellam et al., 2020), as the automatic metrics for 470

evaluation. Due to space limit, we report BLEU re- 471

sults in the main paper, and defer BLEURT results 472
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Figure 6: Results of German-to-English(de-en) Transla-
tion on WMT18 raw corpus. BLEU scores are computed
against clean parallel test data. On x-axis, 0k denotes
the performance of the pretrained model. BLEURT re-
sults are similar as shown in Appendix A.3.

in the appendix, where we can see BLEURT leads473

to the same conclusion as BLEU.474

Results The results on noisy Multi30k are pre-475

sented in Figure 5. The proposed EISL loss pro-476

vides significantly better performance than CE loss477

and PG on all the noise types, especially on the478

high-level noise end. For synthetical noise as479

shown in Figure 5(d), it’s interesting to see that480

CE and PG completely fail when the noise level is481

beyond 6, but model trained with EISL has high482

BLEU score, demonstrating EISL can select use-483

ful information to learn despite high noise. This484

validates that the proposed EISL is much less sen-485

sitive to the noise than the traditional CE loss and486

policy gradient training method. The results of dif-487

ferent n-gram are shown in Figure 5(e). As the488

noise increases, the importance of lower grams,489

e.g., 1-gram, is more obvious. The results on real490

noisy data, WMT18 raw data, are shown in Fig-491

ure 6. EISL loss achieves better performance than492

CE loss and PG, and the difference is getting larger493

when the training data scale increases. This again494

demonstrates EISL could learn more valid informa-495

tion in rather noisy data, while CE loss which only496

considers whole-sentence matching could struggle497

on noisy data. In Appendix A.3, we provide more498

results (e.g., comparison with loss truncation (Kang499

and Hashimoto, 2020)) and case studies.500

4.2 Learning from Weak Supervisions: Style501

Transfer502

We experiment on two types of style transforma-503

tions: sentiment and political slant, to verify EISL504

can learn from weak sequence supervisions.505

Setup We use the Yelp review dataset and politi-506

cal dataset. Yelp contains almost 250k negative sen-507

tences and 380K positive sentences, of which the508

ratio of training, valid and test is 7 : 1 : 2. Li et al.509

(2018) annotated 1000 sentences as ground truth510

for better evaluation. The political dataset is com-511

prised of top-level comments on Facebook posts512

from all 412 members of the United States Senate513

Model Acc BLEU BLEU PPL POS
(%) (Human) Distance

Hu et al. (2017) 86.7 58.4 - 177.7 -
Shen et al. (2017) 73.9 20.7 7.8 72.0 -

He et al. (2020) 87.9 48.4 18.7 31.7 -
Dai et al. (2019) 87.7 54.9 20.3 73.0 -

Tian et al. (2018) 88.8 65.71 22.56 42.07 0.352
with EISL 88.8 68.51 23.17 41.56 0.275

Tian et al. (2018)(%) with EISL(%) equal(%)

22.0 30.7 47.3

Table 1: Top: automatic evaluations on the Yelp review
datas et. The BLEU (human) is calculated using the
1000 human annotated sentences as ground truth from
Li et al. (2018). The first four results are from the
original papers. Bottom: human evaluation statistics
of base model vs. with EISL. The results denotes the
percentages of inputs for which the model has better
transferred sentences than other model.

and House who have public Facebook pages (Voigt 514

et al., 2018). The data set contains 270K demo- 515

cratic sentences and 270K republican sentences. 516

And there exists no ground truth for evaluation. The 517

data preprocessing follows Tian et al. (2018). The 518

structured content preserving model (Tian et al., 519

2018) is adopted as the base model. Following 520

previous work, we compute automatic evaluation 521

metrics: accuracy, BLEU score, perplexity (PPL) 522

and POS distance. We also perform human evalua- 523

tions on Yelp data to further test the transfer quality. 524

525

Results As sentiment results are shown in Ta- 526

ble 1, the BLEU gets improved from 65.71 to 68.51 527

with EISL loss. On the premise of the correctness 528

of sentiment transfer, EISL loss plays a critical 529

role to guarantee lexical preservation. In the mean- 530

while, all of BLEU(human), PPL, and POS dis- 531

tance get improved. It is not surprising that EISL 532

loss helps generate sentences more fluently and 533

select the more appropriate words conditions on 534

the content information. As the human evaluation 535

results are shown in Table 1, the model with EISL 536

loss performs better, in accord with the automatic 537

metrics. After analyzing the generated samples, we 538

found EISL loss could drive the model to adopt the 539

words which fit the scene better and could under- 540

stand more semantics but not just replace some key- 541

words. See some examples in the Appendix A.4.1. 542

We report the results of political data in Ap- 543

pendix A.4.2. Our method outperforms all models 544

on BLEU, PPL, and POS distance with comparable 545

accuracy. For a more fair comparison with the base 546

model, our EISL loss improves the base model on 547

all four metrics, including the accuracy. 548

The results demonstrate the effectiveness of 549

EISL for weak supervision task, improving both 550
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Decoding method Model WMT14 en-de KD WMT14 en-de

CE EISL CE EISL

Autoregressive Transformer base (Vaswani et al., 2017) 27.48

Non-Autoregressive

Vanilla-NAT (Gu et al., 2018) 17.9 22.2 9.12 15.46
NAT-CRF (Sun et al., 2019) 21.88 22.43 - -
iNAT (Lee et al., 2018) 16.67 22.59 - -
LevT (Gu et al., 2019) 17.84 23.61 9.91 18.47
CMLM (Ghazvininejad et al., 2019) 17.12 23.05 - -

Table 2: The test-set BLEU of EISL loss and CE loss applied to non-autoregressive models. “KD” refers to
the standard “knowledge distillation” setting in NAT (Gu et al., 2017). iNAT, LevT and CMLM are iterative
non-autoregressive models, that could run in multiple decoding iterations. However, the first decoding iteration of
these models is fully non-autoregressive, which is what we use as our baselines.

Fully Non-Autoregressive model WMT14 en-de KD

CMLM with CE (Ghazvininejad et al., 2019) 17.12
Auxiliary Regularization (Wang et al., 2019a) 20.65
Bag-of-ngrams Loss (Shao et al., 2020) 20.90
Hint-based Training (Li et al., 2019) 21.11
CMLM with AXE (Ghazvininejad et al., 2020) 23.53
CMLM with EISL (Ours) 24.17

Table 3: The test-set BLEU of CMLM trained with our EISL, compared to other recent fully non-autoregressive
methods. The baseline results are from (Ghazvininejad et al., 2020), where CMLM-with-AXE generates 5 candidates
and ranks with loss. Our method follows the same generation configuration as CMLM-with-AXE.

transfer accuracy fluency and content preservation.551

4.3 Learning Non-Autoregressive Generation552

Non-autoregressive neural machine translation553

(NAT, (Gu et al., 2018)) is proposed to predict554

tokens simultaneously in a single decoding step,555

which aims at reducing the inference latency. The556

non-autoregressive nature makes it extremely hard557

for models to keep the order of words in the sen-558

tences, hence CE often struggles with NAT prob-559

lems. In experiments, we show EISL is superior560

to CE in NAT which requires modeling flexible561

generation order of the text.562

Setup We use English-to-German dataset from563

WMT14 (Luong et al., 2015), which contains 4.5M564

training instances. We apply our proposed EISL565

loss on both fully NAT models (Gu et al., 2018, Sun566

et al., 2019) and iterative NAT models (Lee et al.,567

2018, Gu et al., 2019, Ghazvininejad et al., 2019),568

showing its general applicability and superiority,569

and we also compare with a wide range of recent570

methods (Shao et al., 2020, Wang et al., 2019a,571

Li et al., 2019, Ghazvininejad et al., 2020). We572

evaluate with both BLEU and BLEURT metrics.573

Results We first summarize the comparison of574

BLEU between EISL loss and CE loss in Table 2575

(comparison of BLEURT is in Appendix A.5.2).576

The proposed EISL improves the model perfor-577

mance on both the KD and original datasets.578

More specifically, for fully NAT models (Vanilla-579

NAT and NAT-CRF), EISL gives strong improve-580

ment. For iterative NAT models (iNAT, LevT, and581

CMLM), EISL also significantly outperforms the582

baselines when the iteration step is restricted to a 583

small level as suggested by Kasai et al. (2020). (We 584

show in Appendix A.5.1 that, with increasing itera- 585

tion steps, the difference fades away. However, as 586

studied in Kasai et al. (2020), iterative NAT models 587

with many iteration steps do not hold the intrinsic 588

advantage of speed since Transformer baselines 589

with a shallow decoder can achieve comparable 590

speedup and only at the sacrifice of minor perfor- 591

mance drop.) Table 3 provides more comparison of 592

with recent strong baselines. Specifically, we apply 593

our EISL on the CMLM base model (Ghazvinine- 594

jad et al., 2019) which shows strong superiority. We 595

provide qualitative analysis in Appendix A.5.3. 596

5 Conclusions 597

We have developed an Edit-Invariant Sequence 598

Loss (EISL) for end-to-end training of neural text 599

generation models. The proposed method is insen- 600

sitive to the shift of n-grams in target sequences, 601

hence suitable for training with noisy data and weak 602

supervisions, where CE loss fails easily. We show 603

CE loss is a special case of EISL and build the 604

connection of EISL with BLEU metric and con- 605

volution operation, which both have the invariant 606

property. Experiments on translation with noisy 607

target, text style transfer, and non-autoregressive 608

neural machine translation demonstrate the superi- 609

ority of our method. The more general applications 610

and superiority of EISL on other diverse text gener- 611

ation problem remain to be explored further, which 612

we are excited to study in the future. 613
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A Appendix948

A.1 Additional Derivation949

For a given i′,950

p(yi′:i′+n = y∗
i:i+n)951

=
∑
y

p(y<i′)p(yi′:i′+n = y∗
i:i+n|y<i′),952

then we derive the detail of Eq. 2 in Eq. 7, where953

the first inequality holds since T − n+ 1 ≥ 0; and954

the second inequality holds by Jensen’s inequality.955

A.2 Detailed Experimental Setup956

A.2.1 Learning from Noisy Text957

We use a Transformer-based pretrained model958

BART-base (Lewis et al., 2019), containing 6 layers959

in the encoder and decoder. We train the model us-960

ing the Adam optimizer with learning rate 3×10−5961

with polynomial decay and the maximum number962

of tokens is 6000 in one step. The models are963

trained on one Tesla V100 DGXS with 32GB mem-964

ory. We start with CE training using teacher forcing965

for fast initialization. We then switch to combined966

1- and 2-gram EISL with weight 0.8 : 0.2, which967

we select using the validation set. We adopt greedy968

decoding in training and beam search (beam size969

= 5) in evaluation. We use fairseq1 (Ott et al.,970

2019) to conduct the experiments. We compare971

EISL loss with CE loss and Policy Gradient (PG),972

where PG is used to finetune the best CE model.973

Teacher forcing is employed in CE training.974

A.2.2 Learning from Weak Supervisions:975

Style Transfer976

We use the Adam optimizer with learning rate977

5 × 10−4, the batch size is 128 and the model978

is trained on one Tesla V100 DGXS 32GB. We979

compare the results between the base model and980

the model with EISL. Specifically, on top of the981

base model, we add the EISL loss (a combination982

of 2, 3 and 4-gram with the same weights 1/3) to983

reduce the discrepancy between the transferred sen-984

tence generated by language model and the original985

sentence. We assign EISL loss with weight 0.5.986

Following previous work, we compute automatic987

evaluation metrics: accuracy, BLEU score, perplex-988

ity (PPL) and POS distance. For accuracy, we adopt989

a CNN-based classifier, trained on the same train-990

ing data, to evaluate whether the generated sentence991

possesses the target style. Then we measure BLEU992

1Fairseq(-py) is MIT-licensed.

score and BLEU(human) score of transferred sen- 993

tences against the original sentences and ground 994

truth, respectively. PPL metric is evaluated by GPT- 995

2 (Radford et al., 2019) base model after finetuning 996

on the corresponding dataset, with the goal to as- 997

sess the fluency of the generated sentence. POS 998

distance is used to measure the model’s semantics 999

preserving ability (Tian et al., 2018). 1000

We also perform human evaluations on Yelp data 1001

to further test the transfer quality. We first ran- 1002

domly select 100 sentences from the test set, use 1003

these sentences as input and generate sentences 1004

from the base model (Tian et al., 2018) and our 1005

model. Then for each original sentence, we present 1006

the outputs of the base model and ours in random 1007

order. The three annotators are asked to evalu- 1008

ate which sentence is preferred as the transferred 1009

sentence of the original sentence, in terms of con- 1010

tent preservation and sentiment transfer. They can 1011

choose either output or select the same quality. We 1012

measure the percentage of times each model out- 1013

performs the other. 1014

A.2.3 Learning Non-Autoregressive 1015

Generation 1016

We use the Adam optimizer with learning rate 1017

5 × 10−4 with inverse square root scheduler. We 1018

apply sequence-level knowledge distillation to the 1019

dataset, which can reduce the complexity of the 1020

dataset, making it easier for the model to learn and 1021

improving the performance. The models are first 1022

trained by CE loss for fast initialization, then fo- 1023

cus on 2-gram, 3-gram, and 4-gram with the same 1024

weights. Fairseq (Ott et al., 2019) is adopted to 1025

conduct the experiments. We average the last 5 1026

checkpoints as the final model. 1027
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lEISL
n,i (θ) = − log

T−n+1∑
i′=1

p(yi′:i′+n = y∗
i:i+n), (7)

= − log
1

T − n+ 1

T−n+1∑
i′=1

∑
y

p(y<i′)p(yi′:i′+n = y∗
i:i+n|y<i′)− log(T − n+ 1),

≤ − log
1

T − n+ 1

T−n+1∑
i′=1

∑
y

p(y<i′)p(yi′:i′+n = y∗
i:i+n|y<i′),

≤ − 1

T − n+ 1

T−n+1∑
i′=1

∑
y

p(y<i′) log p(yi′:i′+n = y∗
i:i+n|y<i′),

= − 1

T − n+ 1
Ey∼p(y)

T−n+1∑
i′=1

log p(yi′:i′+n = y∗
i:i+n|y<i′),

= LEISL
n,i (θ),

A.3 Additional Results of Learning from1028

Noisy Text1029

A.3.1 Results of BLEURT Metric1030

In this section, we evaluate the results of CE, PG1031

and EISL on BLEURT (Sellam et al., 2020) metric.1032

We use the recommended BLEURT-20 checkpoint.1033

It gives a score for every sentence pair, and we1034

averaged the scores to get the final score. The1035

results are shown in Figure 7. Both BLEU metric1036

and BLEURT metric show the superiority of our1037

proposed EISL loss.1038

A.3.2 Comparison with Loss Truncation1039

The Loss Truncation (LT (Kang and Hashimoto,1040

2020)), method adaptively removes high log loss1041

examples as a way to optimize for distinguishabil-1042

ity. In this section, We’d like to show the com-1043

parisons with Loss Truncation. We evaluated two1044

variants of LT: (1) LT_Pre which first trains the1045

model with CE loss and then adds LT for further1046

training, and (2) LT which directly trains the model1047

with CE loss and LT together. Hyperparameters1048

were selected on the validation set. For simplic-1049

ity, we remove the PG curves (Figure 5), and the1050

comparison results with LT are shown in Figure 8.1051

We can see Loss Truncation can sometimes1052

slightly improve over CE, especially when the data1053

is clean or with low/moderate noise. However, by1054

simply ignoring high-loss data, LT is not good at1055

handling data with high noise (which often leads1056

to high loss). In comparison, our proposed EISL1057

achieves a substantial improvement in the presence1058

of high noise.1059

A.3.3 Reasons of Better Performance with 1060

Lower-gram EISL 1061

In this section, we discuss the reason of why the 1062

performance of using lower grams is better than 1063

higher-gram EISL in Figure 5(e). 1064

Lower-gram EISL is less sensitive to noise. For 1065

example, 1-gram EISL focuses mostly on match- 1066

ing individual tokens without caring much about 1067

the order of tokens; while a high-gram EISL (e.g., 1068

consider the extreme case of T ∗-gram where T ∗ is 1069

the target length) reduces to CE (as discussed in 1070

Sec 3.3) and is highly sensitive to noise. Thus, in 1071

the presence of high data noise, lower-gram EISL 1072

would be more robust and perform better. 1073

Besides, on low-noise data (e.g., noise-level = 1074

0 or 1), lower-gram EISL performs comparably 1075

with higher-gram EISL, both close to the CE per- 1076

formance. This is because we pretrained the model 1077

with CE (as mentioned in the experimental setup), 1078

and finetuning with EISL (either with lower- or 1079

higher-grams) would not change the performance 1080

a lot given the low-noise data. 1081

A.3.4 Cases Study 1082

As shown in Table 8, 9, 10, 11 and 12, we randomly 1083

sample some examples from generated sentences 1084

of the models trained with different types of noise 1085

on Multi30k dataset. For the sake of convenience, 1086

we use abbreviations in the tables, i.e., SC, RR, 1087

BR and NL are short for Shuffle Count, Repetition 1088

Ratio, Blank Ratio and Noise Level (for Synthetical 1089

Noise), respectively. 1090
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Figure 7: Results of Translation with Noisy Target on German-to-English(de-en) from Multi30k. BLEURT scores
are computed against clean test data.
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Figure 8: Comparison results with Loss Truncation(LT) of Translation with Noisy Target on German-to-English(de-
en) from Multi30k. BLEU scores are computed against clean test data.

Shuffle Noise When there exist a few shuffle1091

noises, e.g., SC = 3, CE loss may lead word redu-1092

plicated (Example 1 and Example 2) and slightly1093

wrong word order (Example 4 and Example 5), and1094

there are some information mistranslated (beautiful1095

in Example 4) or extra irrelevant information added1096

(black in Example 5). As shuffle count increases,1097

the aforementioned problems are increasingly se-1098

vere, resulting the generated sentences meaning-1099

less. Especially, there are some words untranslated1100

in PG examples (eingezäunten in Example 1, ir-1101

gendwo in Example 2, haben in Example 5, ). But1102

EISL loss could keep the content consistency and1103

grammatical correctness as far as possible.1104

Repetition Noise The main problem of the mod-1105

els trained by CE and PG with repetition noises1106

is that the models can’t filter the repetition noise 1107

out in training samples, and try to learn the wrong 1108

distribution, leading to generate reduplicated words 1109

frequently (Example 1-5). Specifically, the exam- 1110

ples of CE and PG in RR = 50% are very repre- 1111

sentative. However, it’s amazing that EISL can 1112

almost avoid such a problem even the repetition ra- 1113

tio achieves 50%. Meanwhile, the main semantics 1114

is preserved and the grammar is correct. 1115

Blank Noise When adding blank noise, some to- 1116

kens in targets will be substituted as unk so the 1117

targets will lose some information. We could mea- 1118

sure from two aspects: one is the term frequency 1119

of meaningless token unk in generated sentences, 1120

and the other is the meaningful contents preserved 1121

by the models. Obviously, EISL loss handles better 1122
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Source my “ hot ” sub was cold and the meat was watery .
Base Model my “ hot ” sub was excellent and the meat was excellent .
with EISL my “ hot ” sub was delicious and the meat was delicious .

Source the man did not stop her .
Base Model the man did definitely right her .
with EISL the man did definitely stop her .

Table 4: Examples of the generated sentences.

Model Accuracy(%) BLEU PPL POS distance

Prabhumoye et al. (2018) 86.5 7.38 - 7.298
Hu et al. (2017) 90.7 47.50 - 3.524

Tian et al. (2018) 88.0 59.63 28.46 2.348
with EISL 89.2 60.26 27.85 2.191

Table 5: The results on the political dataset. The first two results are reported by (Tian et al., 2018).

than CE loss on both aspects. Especially, when BR1123

= 20%, unlike models with CE, models with PG1124

and EISL barely generate the unk token, and could1125

translate the core content (Example 1-5). As BR in-1126

creases, EISL could preserve more key information1127

and produce less unk than CE and PG. Moreover,1128

PG performs rather poor when BR is high (like BR1129

= 45%), and it almost loses all information (Exam-1130

ple 1-5) and generates some confusing words (teil1131

in Example 1, afroamerikanischer and irgendwo in1132

Example 3, beachaufsichtgebäude in Example 4,1133

and holzstück in Example 5).1134

Synthetical Noise We then evaluate the results1135

of models trained by synthetical noise. Such a1136

situation combines aforementioned three types of1137

noises. One most highlighted advantage of EISL1138

is that the generated sentences are almost gram-1139

matically correct and include main content as far1140

as possible. However, CE can only stiffly joint1141

some words, and can’t guarantee the grammatical1142

correctness (word order, word repetition and so1143

on). PG performs worst, involving all the problems1144

in CE cases and the meaningless word generation1145

problem (Example 1-5).1146

A.4 Additional Results of Text Style Transfer 1147

A.4.1 Examples on Yelp dataset 1148

Some examples of generated sentences are given 1149

in Table 4. The model with EISL can select more 1150

appropriate adjective and improve the quality of the 1151

sentences. In the first example, the model should 1152

transfer the negative adjectives cold and watery to 1153

some positive adjectives that describe food. Ob- 1154

viously, the delicious is more appropriate than ex- 1155

cellent. In the second example, the base model 1156

reverses both not and stop, leading to wrong sen- 1157

timent and inconsistent content. While the model 1158

with EISL could avoid such a situation and generate 1159

more suitable sentence. 1160

A.4.2 Results on Political dataset 1161

Since the instances from democratic data and re- 1162

publican data are quite different, names of politi- 1163

cians have high correlation with the political slant. 1164

Therefore the BLEU score and POS distance have 1165

a big gap with the sentiment results. The results 1166

are shown in Table 5. 1167
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Figure 9: Results of iterative NAT on different decoding iterations.

A.5 Additional Results of Non-Autoregressive1168

Generation1169

A.5.1 Results of Iterative NAT Models1170

As shown in Figure 9, with the increasing of itera-1171

tion steps, the difference fades away.1172

A.5.2 Results of BLEURT Metric1173

To show the superiority of our method, We1174

also evaluate on recent text generation metric,1175

BLEURT (Sellam et al., 2020). BLEURT is an1176

evaluation metric for Natural Language Generation.1177

It takes a pair of sentences as input, a reference1178

and a candidate, and it returns a score that indicates1179

to what extent the candidate is fluent and conveys1180

the mearning of the reference. We use the recom-1181

mended BLEURT-20 checkpoint. It gives a score1182

for every sentence pair, and we averaged the scores1183

to get the final score. The results are shown in1184

Table 6.1185

A.5.3 Qualitative Analysis on NAT1186

Experiments1187

Given the non-autoregressive nature (i.e., all to-1188

kens are generated simultaneously), the one-to-one1189

matching of CE loss can lead to severe mismatch-1190

ing. We consider the example: the predicted sen-1191

tence is a cat is on the red blanket1192

and the target sentence is a cat is sitting1193

on the red blanket. The "on the red blan-1194

ket" part of the prediction will be corrected to1195

match the target positions, and this may lead to1196

overcorrection (e.g., "on the red red blanket .").1197

Repetition is often a sign of overcorrection. How-1198

ever, with EISL, this situation will not happen be-1199

cause the phrase will be matched to appropriate1200

target tokens. Let’s have a look at a real example1201

in Figure 10.1202

Take the non-autoregressive model1203

CMLM (Ghazvininejad et al., 2019) for ex-1204

ample, we evaluate the translation of CMLM1205

models trained by CE and EISL. As shown1206

Source Anja Schlichter managed the tournament
Target Anja Schlichter leitet das Turnier
CE Anja Schlichter leitdas Turnier Turnier
EISL Anja Schlichter leitete das Turnier geleitet

Figure 10: Examples of the generated sentences.

in Figure 11, our proposed EISL can reduce 1207

repetition to a large extent.

0.036 

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

P
e
r
c
e
n
t
a
g
e
 
o
f
 
R
e
p
e
a
t
e
d
 

T
o
k
e
n
s
 
(
%
)

Number of Iteration

CE

EISL

Ground Truth

Figure 11: The percentage of repeated tokens under
different iteration steps.

1208

16



Model WMT14 en-de KD WMT14 en-de

CE EISL CE EISL

Vanilla-NAT (Gu et al., 2018) 0.346 0.416 0.194 0.277
NAT-CRF (Sun et al., 2019) 0.441 0.464 - -
iNAT (Lee et al., 2018) 0.332 0.437 - -
LevT (Gu et al., 2019) 0.355 0.458 0.214 0.333
CMLM (Ghazvininejad et al., 2019) 0.345 0.450 - -

Table 6: The results (test set BLEURT) of EISL loss and CE loss applied to non-autoregressive models.

A.6 Efficiency Analysis1209

Complexity analysis Given T ∗ tokens, the time1210

complexity of CE loss is O(T ∗), while the com-1211

plexity of n-gram EISL loss is O(n(T ∗ − n +1212

1)2) ≈ O(T ∗2), assuming small n is used in prac-1213

tice (e.g., n ∈ {1, 2, 3, 4}). However, in practice,1214

the computation cost of the loss (either CE or EISL)1215

is negligible compared to the cost of model forward1216

and backward during training. Thus, the extra cost1217

introduced by EISL loss is rather minor.1218

Empirical comparison of time cost To quan-1219

tify the computational cost of different methods,1220

we adopt CE and EISL on top of the same model1221

and setting, and evaluate the consumed time for 11222

training epoch. For comparison on both small and1223

large dataset, we evaluate on Multi30k (29k train-1224

ing data, 1k test data) and 1M scale WMT-18 raw1225

corpus (1M training data, 3k test data). The mod-1226

els are tested on one Tesla V100 DGXS with 321227

GB memory, the batch size is 128, max number of1228

tokens is 6000 and update frequency is 4. For each1229

method, we test 6 times and average the results as1230

final time. The results are shown in Figure 12.1231

Empirical total time cost of EISL training As1232

discussed in the experiments in the paper, we first1233

pretrain the model with the CE loss until conver-1234

gence, and then finetune with the EISL loss. Here1235

we report the total time cost of each stage, based1236

on the WMT-18 translation setting as described in1237

Section 4.1. The results are shown in Table 7. As1238

the data size increases, the convergence time of1239

both pretraining and finetuning grows. The time1240

cost of the finetuning stage is less than half of that1241

of the pretraining stage.1242

A.7 Hyperparameters 1243

Regarding which n-grams to use and their weights 1244

wn in the EISL loss, we found in our experiments 1245

that the default values largely following the stan- 1246

dard BLEU metric (i.e., maximum n = 4 with 1247

equal weights) work well. Specifically, we use 1248

n ∈ {2, 3, 4} and equal weights wn = 1/3 as our 1249

default values. Most of our experiments adopt the 1250

default values which achieve consistent substantial 1251

improvement over CE and other rich baselines as 1252

shown in our experiments. (except for the synthetic 1253

experiment where we show the effect of different n- 1254

grams including those selected using the validation 1255

set). 1256

Besides, in our experiments, we first pretrain the 1257

model with the CE loss (i.e., EISL with n = T ∗ 1258

and teaching forcing, see Section 3.3) and then 1259

finetune with the EISL loss. We simply do the CE 1260

pretraining until convergence before switching to 1261

the EISL finetuning. Therefore, there is no need of 1262

tuning for the training iterations of pretraining. 1263
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Figure 12: Results of training and inference time. EISL-n represents n-gram EISL loss and EISL-12 represents the
combination of 1-gram and 2-gram EISL loss.

Data Size PreTraining Time (CE) Finetuning Time (EISL)

1M 1h 40min 57s 49min 33s
2M 5h 56min 57s 1h 35min 10s
4M 8h 55min 18s 3h 57min 44s

Table 7: Convergence time of pretraining and finetuning stages.

A.8 Analysis of Efficient Implementation1264

In order to validate the efficiency and accuracy1265

of our approximation (for autoregressive models)1266

discussed in Section 3.2, we conduct the analysis1267

experiments, showing that the approximate (and1268

efficient) EISL loss values are very close to exact1269

(but expensive) EISL value. We use the same set-1270

ting as section 4.1, and finetune the model with1271

our efficient approximate EISL loss on Multi30k.1272

Throughout the course of training, we record the1273

loss values of both the exact implementation and1274

our approximate implementation. As shown in Fig-1275

ure 13(a) and (b), the tendency of two losses is very1276

close to each other. We also plot the absolute dif-1277

ference of the two losses as shown in Figure 13(c).1278

We can see the difference decreases as training pro-1279

ceeds. The observations validate the effectiveness1280

of our approximate implementation.1281

We note that training the model with the exact1282

loss is costly, which necessitates our approxima-1283

tion. Specifically, for n-gram loss, we need to run1284

the forward pass of the decoder (T − n)2 times,1285

and keep the whole computation graph for back- 1286

propagation, which will consume much more time 1287

and memory. Even for only loss evaluation (with- 1288

out the backward pass), we found the runtime of 1289

the exact loss is about 15 times longer than that of 1290

the efficient approximate implementation based on 1291

convolution operator. 1292
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b) Efficient Approximate Implementation

   

   

   

   

                  
c) Absolute Difference

    

    

    

    

                  
a) Exact Implementation

Figure 13: The change of loss values during training. The x-axis represents the training step. a) gives the loss
curve of exact implementation; b) gives the loss curve of efficient approximate implementation as we discussed in
section 3.2; and c) gives the absolute difference between the two implementations.

Source (de) ein junger mann nimmt an einem lauf teil und derjenige , der dies aufzeichnet ,
lächelt .

Target (en) a young man participates in a career while the subject who records it smiles .

SC = 3
CE young man is running on a a and the other man is smiling .
PG young man is running on a track and the other man is smiling .
EISL young man is running in a dirt course and the other is smiling .

SC = 6
CE young man is running a a race and the other is smiling .
PG young man taking a race and the other smiling . a
EISL young man is running a race and the other guy is smiling .

SC = 9
CE young man . a a the is running up and up hill smiling taking
PG young man takes on a slope and thejenige , the the smiles . a
EISL young man is on a hillside smiling and the others , who is smiling .

RR = 15%
CE young man is running on a track and the other is smiling .
PG young man is running on a track and the other is smiling .
EISL young man is running in a race and the runner is smiling .

RR = 30%
CE young man man is is running on a track track and the the other is is smiling

smiling .

PG young man man is is running on a track track and the other man man who is
is is smiling .

EISL young man is running in a race and the other is smiling at him . .

RR = 50%
CE a young young man man is is smiling smiling at at a a window window while

another smiles smiles at him him . .

PG a young man man is is napping napping on on a a grassy grassy field field and
and some people people are are smiling smiling . .

EISL young man running in a race and the other is smiling at the action . .

BR = 20%
CE young man unk unk a run and the unk is smiling .
PG young man is running in a race and the one who is looking at him is smiling .
EISL young man is running in a race with the runner who is up .

BR = 35%
CE young man unk unk a unk , and the unk is smiling unk
PG young man unk unk track unk others unk .
EISL young man unk is un in a race and the other un is un at the finish .

BR = 45%
CE young unk is unk on a unk unk and the unk smiles unk
PG young man unk a unk teil unk unk .
EISL young unk un is un in a race , the other is smiling back .

NL = 5
CE young man is running a race and the one who is running is smiling .
PG young man is running a race and the one scoring is smiling .
EISL young man is running a race and one of the runners is up to him .

NL = 15
CE young man is unk unk a unk and the other man is smiling .
PG young man is on a unk smiling at thejenige . .
EISL young man is in a race , the other smiling .

NL = 20
CE a young man is unk unk a unk and unk is smiling at him .
PG young smiles on in ail and thejenige smile on . . .
EISL young man unk unk a ladder and unk , who is unk smiling .

Table 8: Example 1.
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Source (de) 15 große hunde spielen auf einem eingezäunten grundstück neben einem haus .

Target (en) 15 large dogs playing in a fenced yard beside a house .

SC = 3
CE large dogs play on a a dirt path next to a house .
PG 15 large dogs play on an earthen platform next to a house .
EISL large dogs are playing on a dirt path next to a house .

SC = 6
CE large dogs play on a a play area next to abandoned house .
PG 15 large dogs playing on a eingezäunten group stage next to a house .
EISL group of dogs play on a abandoned path next to a house .

SC = 9
CE large dogs play a . on a field next to abandoned house
PG dogs play on a snowy grundstück next to a house .15 large
EISL . 15 large dogs play on an abandoned hillside next to a house .

RR = 15%
CE large dogs are playing on a fenced in area next to a house .
PG large dogs are playing on a fenced in area next to a house .
EISL large dogs are playing on a fenced track next to a house .

RR = 30%
CE large dogs dogs play on on a a dirt track near a house house .
PG large dogs dogs play on a fenced-in area area next to a house .
EISL large dogs play on a fenced walkway next to a house . .

RR = 50%
CE small dogs dogs play on on a a grassy grassy field field next next to to a house

house . .

PG 15 large dogs dogs are are playing playing on on a a grassy grassy field field
next next to to a house house . .

EISL 15 large dogs playing on a fenced terrain next to a house . .

BR = 20%
CE large dogs play in a fenced yard next to a house .
PG large dogs are playing on an overcast walk next to a house .
EISL large dogs are playing in a fenced area near to a house .

BR = 35%
CE unk dogs play unk a unk unk by a house .
PG large dogs unk a unk path unk unk house .
EISL large dogs unk play in a fenced area next to a house .

BR = 45%
CE unk dogs unk on a unk unk next to unk house .
PG large dogs unk a unk unk .
EISL large unk un are un in a fenced-out game next to a house .

NL = 5
CE large dogs are playing on a fenced in area next to a house .
PG large dogs are playing on a fenced in area next to a house .
EISL large dogs are playing on a fenced backwalk next to a house .

NL = 15
CE large dogs are playing on a unk grassy field next to a house .
PG large dogs playing on a unk next to a house . . .
EISL large dogs play on a covered piece of furniture next to a house .

NL = 20
CE large dogs are playing on on a a a grassy grassy field next to a house .
PG large play play in auntenck in a house . . .
EISL large dogs play on a unk unk next to a house . .

Table 9: Example 2.
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Source (de) ein afroamerikanischer mann spielt irgendwo in der stadt gitarre und singt

Target (en) an african american man playing guitar and singing in an urban setting .

SC = 3
CE african american man is playing the guitar and singing in the city .
PG african american man is playing the guitar in the city and singing
EISL african american man is playing the guitar in the city and singing .

SC = 6
CE african-american man is playing guitar in the a and singing city .
PG african american man playing irgendwo in the city guitar singing
EISL african american man is playing the guitar in the city

SC = 9
CE african-american man playing guitar in the a and singing city
PG african americanischer man plays irgendwo in the city guitar singing . a
EISL african american man is playing the guitar in the city and singing

RR = 15%
CE african american american man plays guitar guitar in the city city .
PG african american man is playing guitar in the city and singing .
EISL african american man is playing guitar in the city and singing .

RR = 30%
CE african american man plays guitar guitar in in the city city while singing .
PG african american man man plays guitar guitar in the city city and sings .
EISL an african american man playing guitar in the city and singing . .

RR = 50%
CE african african american american man playing guitar guitar in in the the

city city and singing singing .

PG african american american man man is is playing playing guitar guitar
in in the the city city . .

EISL an african american man playing guitar in the city and singing . .

BR = 20%
CE african american man plays guitar unk sings unk
PG african american man is playing guitar and singing in the city .
EISL african american man is playing the guitar and singing .

BR = 35%
CE african american man unk unk guitar unk singing unk
PG african american man unk guitar unk singing unk
EISL african american unk is un a guitar and singing in the city .

BR = 45%
CE african american unk unk playing unk guitar in unk city unk
PG afroamerikanischer man unk irgendwo unk unk
EISL af unk un playing some sort of guitar in the city and singing .

NL = 5
CE african american man plays guitar and sings somewhere in the city .
PG african american man is playing guitar and singing in the city .
EISL african american man is playing guitar and singing somewhere in the city .

NL = 15
CE african american man is playing the guitar in the city and singing .
PG afroamerikanischer man is irgendwo in the city guitarre .
EISL african american man playing some sort of guitar in the city and singing .

NL = 20
CE african american american man is playing the guitar in the the city unk
PG afroamerikanischer singt in the city guitarre singt .
EISL african american man plays unk unk in the city unk

Table 10: Example 3.
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Source (de) ein strandaufsichtgebäude steht im sand , es ist ein bewölkter tag .

Target (en) a lifeguard building is on the sand on a cloudy day .

SC = 3
CE beach a is standing in the sand on a beautiful day .
PG beachfront building is standing in the sand on a beautiful day .
EISL beach view building is standing in the sand on a cloudy day .

SC = 6
CE beach a is in the sand building on a beautiful day .
PG beach viewgeb building standing in sand on a beautiful day .
EISL beach view building is standing in the sand on a beautiful day .

SC = 9
CE beach a in the sand . a cloudy day stands beach
PG beachaufsichtge building stands in sand , the is a beautiful day . a
EISL . a beachfront building standing in the sand is a beautiful day .

RR = 15%
CE beachfront building is standing in the sand on a cloudy day .
PG beachfront building is standing in sand , it is a cloudy day .
EISL beach building is standing in the sand , it is a cloudy day .

RR = 30%
CE beachfront beachfront building building is is standing standing in the sand

sand on a cloudy day .

PG beachfront beachfront building building is standing in sand sand on a cloudy
day .

EISL beachfront building is standing in the sand , it is a cloudy day . .

RR = 50%
CE a beachfront beachfront building building is is standing standing in in the

sand sand , it looks like it is is a beach resort resort . .

PG a beachfront beachfront building building is is standing standing in in sand
sand . .

EISL a beach view building is in the sand , it is a cloudy day . .

BR = 20%
CE beachfront building is standing in sand on a cloudy day unk
PG beachfront building is standing in sand on a cloudy day .
EISL beach view building is standing in the sand , it is a cloudy day .

BR = 35%
CE beach unk unk standing in sand on a cloudy day unk
PG beach unk building unk unk sand unk a cloudy day .
EISL beach building unk is un in the sand on a cloudy day .

BR = 45%
CE unk unk is standing unk the sand unk it is a beautiful day unk
PG beachaufsichtgebäude unk unk sand unk .
EISL beach unk un is un in the sand , this is a cloudy day .

NL = 5
CE beachfront view building is standing in the sand on a cloudy day .
PG beachfront view building is standing in sand on a cloudy day .
EISL beachfront building is standing in the sand , it is a cloudy day .

NL = 15
CE beach unk unk is standing in the sand unk it is a sunny day .
PG beach unk is in sand on a snowy day . .
EISL beach building is in the sand , it is a cloudy day .

NL = 20
CE beach unk unk is standing in the sand unk it is a sunny sunny day .
PG beachaufsichtgebäude steht in sand , es is a day . .
EISL beach unk stands in sand unk it is a sunny day . .

Table 11: Example 4.
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Source (de) zwei hunde haben beim spielen dasselbe holzstück im maul .

Target (en) two dog is playing with a same chump on their mouth .

SC = 3
CE dogs are two playing with . pieces of wood in their mouths two
PG dogs are playing with pieces of black wood in their mouths .
EISL two dogs are playing with pieces of wood in their mouths .

SC = 6
CE dogs are two . playing with sticks in their mouths two
PG dogs have been playing with pieces of wood in their mouths . two
EISL two dogs are playing with pieces of wood in their mouths .

SC = 9
CE two dogs their . are playing with sticks in muzzled
PG dogs haben beim play pieces in their mouth . two
EISL . two dogs have been playing with sticks in their mouth .

RR = 15%
CE two dogs are are playing with a a piece piece of wood in their mouth .
PG dogs are playing with white wooden blocks in their mouth .
EISL two dogs are playing with some pieces of wood in their mouths .

RR = 30%
CE two dogs dogs are are playing with a a piece piece of of wood in their mouths .
PG dogs dogs are are playing with white wooden blocks blocks in their mouth .
EISL two dogs are playing with pieces of wood in their mouths . .

RR = 50%
CE two dogs dogs are are playing playing with with plastic plastic sticks sticks in

in their their mouth mouth . .

PG two dogs dogs are are playing playing with with plastic holsters holsters in in
their maul maul . .

EISL two dogs have playing with some white wood in their mouths . .

BR = 20%
CE dogs unk unk pieces of wood in their mouths .
PG dogs are playing with wet wood in their mouths .
EISL dogs are playing with wet pieces of wood in their mouths .

BR = 35%
CE unk have unk pieces of unk in their mouths .
PG two dogs unk unk piece of wood unk their mouth .
EISL two dogs unk playing with some piece of wood in their mouth .

BR = 45%
CE dogs are playing with unk unk in unk mouth unk
PG dogs unk unk piece of unk holzstück unk .
EISL dogs unk un are un while play with some wood pieces in their mouth .

NL = 5
CE two dogs are playing with the same piece of wood in their mouths .
PG dogs have pieces of of wood in their mouths .
EISL two dogs are playing with the same piece of wood in their mouths .

NL = 15
CE two dogs are are are playing with unk unk in their mouths .
PG dogs haben on a game unk unk . . .
EISL two dogs have been playing with a piece of wood in their mouth .

NL = 20
CE two dogs are are are playing with unk unk in their mouths .
PG dogs haben in a playenselbeck in their mouth . .
EISL two dogs are playing with unk sticks in their mouths . .

Table 12: Example 5.
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