API Reranking for Automatic Code Completion: Leveraging Explicit
Intent and Implicit Cues from Code Context

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have signif-
icantly advanced software development, par-
ticularly in automatic code completion, where
selecting suitable APIs from vast third-party
libraries plays a critical role. However, current
solutions either focus on recommending APIs
based on user queries or code context, with-
out considering both aspects simultaneously.
To bridge this gap, we propose a novel frame-
work APIRANKER to rerank candidate API
documents based on both the explicit devel-
oper intent and implicit cues in the incomplete
code context. To generate training data for this
task, we introduce a self-supervised ranking
framework that automatically constructs data
by assessing the relevance of API documents to
code context with a perplexity-driven approach
via comments. To enhance API relevance de-
tection, we propose a novel reranking model
that predicts relevance scores by capturing a
hidden reasoning state to estimate relevance.
The experimental results show the effective-
ness of our approach, in both recommending
more accurate APIs and enhancing automatic
code completion. The code is available' and
the dataset will be released.

1 Introduction

The introduction of LLMs has led to advance-
ments in automatic code completion (Husein et al.,
2024), with recent models adopting the retrieve-
then-generate paradigm (Nashid et al., 2024). This
approach enables LLMs to dynamically retrieve up-
to-date Application Programming Interface (API)
information from documents, rather than relying
solely on static training data.

A crucial aspect of the code generation process is
selecting suitable API docs from massive amounts
of third-party libraries. The choice of API not only
determines the functionality of the generated code

1https://anonymous.4open.science/r/
APIRanker-C442

I have read a CSV file containing timestamps and events using pandas, and now I
want to ensure the 'datetime' column is correctly formatted, convert it to the
UTC timezone, and sort it from earliest to latest for further analysis.

Is there a solution? [ntant

import pandas as pd

df = pd.read_csv('events.csv')

incompete
code

dff ime'] = pd.to_datetime(dff’ ime'])

The pandas.DataFrame.sort_values() method is used to sort a DataFrame based on the values @
of one or more columns...

Datal .sort_) axis=0, i True, inpl ,
kind="quicksort',na_position="last', ignore_index=False, key=None)...

pandas.DataFrame.
sort_values

pandas.dt.

tz_localize

datetime.
astimezone

pandas.DataFrame.
read_csv

pandas.dt. pandas.DataFrame.
strftime : sort_values

H Top-k APl documents

df['datetime'] = df['datetime'].dt.strftime('%d-%b-%Y %H:%M:%S')
'g' df = df.sort_index(axis=0, level=None, ascending=True, inplace=False),

Numpy.sort

dff’ ime'] = df[" '].dt.tz_L ‘UTC)
df = df.sort_values(by="datetime’, ascending=True, ignore_index=True)

Igl
Figure 1: Example of retrieval-augmented code com-
pletion with different retrieved top-k API documents.

but also affects its efficiency, maintainability, and
overall integration with the existing software sys-
tem (Wang et al., 2024b). Current research predom-
inantly focuses on two approaches: 1) retrieving
API docs based on user queries (query-based API
recommendation) (Wu et al., 2023), which neglects
the code context, and 2) completing user-written
code based on the preceding code context (Peng
et al., 2022), which fails to capture the developer’s
underlying intention behind the API usage. How-
ever, automating code completion with user prefer-
able APIs requires a more comprehensive model
that considers both the explicit intent conveyed by
user queries and the implicit cues embedded in the
code context.

Consider the following practical scenario shown
in Fig. 1: Alice is a developer, she encounters
a problem during her daily work, i.e., “convert
the ‘datatime’ column to UTC timezone and sort
it from earliest to latest for further analysis”.
She uses the LLM to complete her code. How-
ever, without knowing Alice’s intention or the
current code context, a large number of relevant

https://anonymous.4open.science/r/APIRanker-C442
https://anonymous.4open.science/r/APIRanker-C442

but unsuitable APIs may be recommended (e.g.,
datetime.astimezone, numpy.sort, etc.). If the
target APIs are not ranked in the top-k retrieval
results, they will not be used for code comple-
tion, causing the auto-completed code to misalign
with her intended behavior. Now consider Alice
inputs both her intent and the current code con-
text, the target APIs (e.g., df .dt.tz_localize,
pandas.DataFrame.sort_values) can be suc-
cessfully retrieved, the LLM is likely to complete
her code by smoothly integrating with the recom-
mended API docs, effectively solving her problem.

Based on our previous observations, there is a
need for completing code using the correct APIs.
However, recommending appropriate APIs based
on both the developer’s intent and the incomplete
code context is a challenging task: (i) Lack of
code completion dataset annotated with rele-
vant APIs hinders learning-based approaches.
Curating training datasets for API recommenda-
tion requires manually evaluating the relevance
of API documentation to the developer’s require-
ments. This process depends on domain expertise,
additionally, developers rarely express intent in
their code, which makes large-scale data collection
impractical. (ii) The relevance of APIs to the
developer’s requirements is hard to learn and
capture. API documentation varies significantly
in format, writing style, and level of detail across
different third party libraries, making it difficult
to directly link to developers’ requirements. Fur-
thermore, developers’ requirements are expressed
through implicit intent and subtle semantics in the
incomplete code, recommending APIs that align
with both aspects effectively is challenging.

To tackle the above challenges, we propose a
novel framework named APIRANKER, which is
designed to rerank candidate APIs by jointly con-
sidering the developer’s intent and the incomplete
code context. To address the challenge of lacking
training data, we propose a self-supervised rank-
ing framework to automatically construct ranking
data. Specifically, we leverage a perplexity-driven
relevance ranking approach, which uses LLM as an
evaluator to automatically estimate the relevance
of API documents to developer requirements by
measuring the perplexity of completed code. To
bridge the gap between perplexity and true seman-
tic relevance, we employ a perplexity alignment
strategy using code comments as semantic anchors.
To better learn and capture the relevance of API
documentation to the developer’s requirements, we

design a novel reranking model consisting of two
key components. First, a hidden reasoning state
extractor is designed to capture the relevance of the
API documentation to implicit cues within code
context, by extracting reasoning states from LLMs
during inference. Second, a relevance estimator
uses the reasoning states to explicitly predict a rele-
vance score, learning to differentiate the impact of
various API docs on code completion effectiveness.

In summary, our paper makes the following
contributions: (1) Joint consideration of devel-
opers’ intent and code context for API recom-
mendation. Prior research typically focuses on
either the developer’s intent or the code context
in isolation. To the best of our knowledge, our
work first thoroughly investigated API recommen-
dations based on both aspects simultaneously. (2)
A self-supervised ranking framework for rank-
ing data construction. We introduce a novel
self-supervised approach that generates ranking
data in the form of (incomplete code, target code,
API docs, relevance scores) automatically, elim-
inating the need for manual annotation. (3) An
API reranking model for better code comple-
tion. We design a novel reranking model that lever-
ages LLMs’ semantic understanding to rerank APIs
based on the relevance of API documents to a de-
veloper’s requirements. The experimental results
show the effectiveness of our model over a set of
baselines, showing its potential to enhance auto-
matic code completion by reranking candidate API
documents. We hope our study can lay the founda-
tions for this research topic.

2 Related Work

API Recommendations. API recommendation
methods typically rely on two main sources: nat-
ural language queries and contextual code infor-
mation. Some studies focus on query intent, such
as BIKER (Huang et al., 2018) and CLEAR (Wei
et al., 2022), while others emphasize code context,
like GAPI (Ling et al., 2021) and MEGA (Chen
et al., 2023). Deep learning models like Deep-
API (Gu et al., 2016) and CodeBERT (Feng
et al., 2020) enhance recommendations through
embedding-based methods, using pretrained mod-
els to calculate similarities between queries and
API docs. However, limited labeled data hampers
model performance (Ma et al., 2024). In contrast,
our approach leverages LL.Ms and automatically
generated data to reduce reliance on QA data, im-

proving API recommendation performance.

Retrieval-augmented Code Generation.
Retrieval-augmented generation (Gao et al., 2023)
has proven valuable in code generation (Parvez
et al., 2021), especially as code libraries are
frequently updated (Lu et al., 2022). For instance,
CodeGen4Libs (Liu et al.,, 2023) recommends
class-level API docs through a two-stage process
of retrieval and fine-tuning. DocPrompting (Zhou
et al., 2022) enables continuous updates to the
documentation pool, ensuring that the most
current code libraries are used for generation.
ToolCoder (Zhang et al., 2023b) integrates API
search tools and uses automated data annotation to
teach the model how to use tool usage information,
thereby enhancing code generation.

3 Methodology
3.1 Task Definition

Given a query ¢, which contains natural language
(NL) intent and the corresponding incomplete
code snippet c, the objective is to successfully com-
plete code snippet ¢ via recommending correct API
documents D for code completion from a large
corpus of candidates.

3.2 Self-supervised Ranking Framework

The absence of a code completion dataset anno-
tated with relevant APIs makes training models a
challenging task. This is primarily due to the high
cost of manual annotation and the difficulties of
verifying the correctness of generated code based
on the APIs. To address this challenge, we propose
a perplexity-driven relevance ranking approach,
leveraging the perplexity of LLM-generated code
to construct training data. However, perplexity can
be influenced by factors such as code formatting
and syntactic variations, introducing noise that dis-
torts accurate relevance estimation. To mitigate this
issue, we propose a perplexity alignment strat-
egy that enriches the code context with comments,
reducing the perplexity shifts and aligning code
semantics.

Perplexity-driven Relevance Ranking. Evalu-
ating the relevance of API documentation to pre-
ceding code context is a time-consuming process,
requiring complex execution environments (Wei
et al., 2023). These obstacles lead to a scarcity of
training data, further limiting the learning-based
approach’s progress. To address this challenge,

/\r«> code file : target code y

Dependency
Analysis
Github Repository

add comments

2

target code ¥
with comments

—:— o=
dependency | o :

files | incomplete code ¢ |

calculate perplexity

retrieve

API Documen(atlon Retrlever .. % %. .
Corpus

D ranked

Figure 2: Overview of the Self-supervised Ranking
Framework.
we propose a perplexity-driven relevance ranking
method, which assesses the relevance by measuring
the perplexity of LLM-generated code.
Specifically, as illustrated in Fig. 2, we construct
data from GitHub repositoriesz, API documents,
and an LLM as a perplexity evaluator. For a specific
code file that has cross-file dependencies, we ran-
domly select a middle position to split it into incom-
plete code c and the target code ¥, ensuring ample
context for retrieval and completion. We directly
use the incomplete code c as query ¢ and retrieve
the top n API documents D = {d,ds...,d,} as
candidates via the retrieval model. We use depen-
dency analysis tool? to identify direct and indirect
dependency files of the code file, then each depen-
dency file is regarded as a potential API document
for user-defined functions, as it contains both the
detailed implementations and definitions of those
functions. Including these dependency files ensures
that query g is paired with relevant API documents.
For each API document d € D, the perplexity
(PPL) of the target code y is defined as:

PPL(y|d,q) = e~ N vazllogP(yildﬂ,ya)’ (1)

where P represents the probability distribution over
the LLM’s vocabulary, and N is the number of
tokens in the target code y. The relevance score
r between API document d and query ¢ is then
defined by the perplexity of the target code y as:

1

"D = byl q)°
Using the relevance score r, we can compare the
relevance of different API docs for the same query,
since lower perplexity indicates that LLM has less
difficulty in correctly completing the code with the
API docs. A higher value of r indicates a higher
relevance of the document to the query.

(@)

Zhttps://github.com
3https://github.com/IBM/import—tracker,
//maven.apache.org

https:

https://github.com
https://github.com/IBM/import-tracker
https://maven.apache.org
https://maven.apache.org

(a) APIRanker

p—> £

T

Relevance Detector

t

‘ Hidden Reasoning State Extractor ‘

\N\ 1\ O}

\fb\f bb
ESE

incomplete code

Refer to the following documentation
to complete the code.

instruction APl document

(c) Relevance Estimator Tuned

;%E Frozen

input token

last hidden state

reasoning state

xN

learnable vectors
(b) Hidden Reasoning State Extractor

Figure 3: Overview of APIRANKER. (a) is the training process of APIRANKER based on the collection of different
API documents D,. and the same incomplete code c as the query. (b) illustrates the structure of the hidden reasoning
state extractor. (c) illustrates the structure of the relevance estimator.

Perplexity Alignment via Anchor Comments.
The perplexity score used for relevance estimation
is intended to better reflect code semantics, while
minimizing the influence of non-semantic factors,
such as formatting variations (e.g., line breaks,
indentation) and code syntactic variations (e.g.,
bracket placement, variable declaration). These
variations can cause significant shifts in perplexity,
making it unreliable to reflect the true relevance of
the API document and the code context. To address
this issue, we incorporate a strategy of perplexity
alignment via adding anchor comments into the
target code. Anchor comments provide semantic
information that enhances the logic representation
during perplexity calculation, thereby reducing the
sensitivity of perplexity shifts and enhancing the
alignment of perplexity and logic relevance.

Specifically, given an incomplete code ¢ and the
corresponding target code y, LLM is asked to add
comments to each line of code y, as described by
the following equations:

g = LLM(Ca y)) (3)
where ¢ is the generated code with comments. The
prompt of perplexity alignment guided by anchor
comments is then constructed as Fig. 4.

Based on the target code with comments ¢, the
relevance score 7 is calculated by Equation 2, of-
fering a more accurate measure of the relevance
between the API document and the query.

e Instruction: Based on the following two consecutive
parts of the same code, Part A (the first half) and Part B
(the second half), both enclosed within <code> and </code>
tags, you should add comments to each line of code in Part
B as much as you can.

e Part A (the first half): c

e Part B (the second half): y

Figure 4: Prompt of perplexity alignment.
3.3 API Reranking Model Architecture

Inspired by LLMs’ strong abilities (Naveed et al.,
2023) in natural language comprehension, we in-
corporate LLM into our model architecture to cap-
ture user intents. This design allows us to bypass
the need for modeling or learning from natural
language intent. However, LLMs still struggle to
capture implicit cues in code context and differ-
entiate between different API documents for the
same query. To tackle this issue, we propose a
novel reranking model architecture, APIRANKER,
for selecting the most suitable APIs from a set of
candidates. APIRANKER includes a hidden rea-
soning state extractor that leverages the reasoning
state to capture the relevance of the API document
to implicit cues from the code context. Addition-
ally, a relevance estimator is employed to detect the
reasoning state and explicitly predict a relevance
score between the APl document and the query.

Hidden Reasoning State Extractor. A large
number of tokens in natural language generation
are produced solely for fluency, contributing little
to the underlying reasoning process. Inspired by

the previous studies on hidden reasoning state (Hao
et al., 2024; Ouyang et al., 2022), we extract the
representation of the reasoning state from the last
hidden state of the LLLM, allowing us to capture
semantic relevance rather than relying on general
tokens for linguistic coherence.

Specifically, as illustrated in Fig. 3, given a query
q (i.e., the incomplete code c) and an API document
d, we prompt the LLM to perform code completion
based on d and extract the sequence of hidden states
through the decoder layer of LLMs as:

h = DecoderLayer(d, q). 4)

where h = {hy,ha,..., h,,} represents the se-
quence of hidden states, m is the number of hidden
states. During this process, the LLM’s parameters
are kept frozen. To align the dimensions between
the LLM and the state extractor, we introduce a
linear layer as:

h' = Wy x h + b, 5)

where I/ is the hidden states after aligning, W,
and b, denote the trainable parameters in this sec-
tion. Each layer of the state extractor consists of
self-attention, cross-attention, and a feed-forward
network (FFN) followed by layer normalization as:

p/ = SelfAttthiOn(p>p7p)7 (6)
p” = CrossAttention(p’, ', 1), @)
s = LayerNorm(FFN(p") + p"), ®)

where p denotes a set of learnable vectors used to
capture the reasoning states and s represents the
sequence of reasoning states, which serves as input
for the next layer of the state extractor. We initialize
the extractor with transformer weights pre-trained
on code data, whereas the cross-attention layers are
randomly initialized.

Relevance Estimator. To assess relevance from
the reasoning states, we propose a relevance esti-
mator that aggregates semantic information from
the reasoning states and predicts relevance scores.
Specifically, as illustrated in Fig. 3(c), we use a
learnable query vector with multi-head attention,
where reasoning state s serves as both the key and
value of attention. The final relevance score is then
predicted by a neural network, as described by the
following equations:

g = LayerNorm(MHA(g, s, s)), ©)
g" = LayerNorm(g' + FFN(¢')), (10)
P =W, g" + by, (1)

where g is a learnable vector, representing the rele-
vance of states from the last reasoning states s of
state extractor, MHA denotes multi-head attention,
and 7 represents the predicted relevance score.

3.4 Training and Inference

Training Objective. APIRANKER is trained on
a dataset consisting of pairwise comparisons be-
tween different API candidates for the same query.
As illustrated in Fig. 3, we use a cross-entropy loss,
where each training sample is labeled by perform-
ing comparisons between API document pairs. The
difference in rewards represents the log odds of one
document being preferred over the other, with this
preference determined by the relevance function r
(Section 3.2). To speed up comparison training, we
construct pairs from a set of i documents selected
evenly based on the difference in r values, chosen
from the top n candidate documents, and train on
all comparisons for each query as a single batch.
Formally, the training objective of the reranking
model is defined as:

1

75 E(q,9,du,d)~D,
()

log o(7(q, 9, dw) — 7(q, 9, di))];

L=—
(12)

where o denotes the logistic function, #(q, 9, d) is
the scalar output of the reranking model for query
q, target code with comments ¢ and API document
d. dy, is the preferred document out of the pair of
dy and d;, and D, is the training data based on
score of relevance function 7.

Inference. During the inference stage, given a set
of candidate documents D retrieved by the retrieval
model based on query q (i.e., NL intent and incom-
plete code), each document d € D is evaluated by
APIRANKER, which produces a new ordering of
the candidate documents based on the relevance
between document and the query.

4 Experiments

4.1 Experimental Setup

Dataset. To study how API recommendation
benefits the automatic code completion task, we
construct a dataset APIRAC (API Retrieval-
Augmented Completion) for this task. We col-
lect 110,646 API docs from the dataset CodeRAG-
bench (Wang et al., 2024c) as retrieval sources.
Additionally, we gather 4,400 large-scale reposito-
ries from GitHub, based on the dataset presented

in the RLCoder (Wang et al., 2024a), with an equal
number of Python and Java repositories, and split
them into training and validation sets with a 10:1
ratio. For a given code file, we add its associated de-
pendency files to the retrieval sources as API candi-
dates. Finally, we construct (incomplete code, tar-
get code, API docs, relevance scores) training data
using our self-supervised ranking framework. For
the test data, we select DS-1000 (Lai et al., 2023)
as the automatic code completion dataset, which
includes general open-domain coding completion
tasks. We use the human-annotated API documen-
tation for DS-1000, provided by CodeRAG-bench,
as a dataset for API recommendation. There is no
overlap between the ground truth documents from
test dataset and the APIs used in training. Overall
statistics of the dataset are given in Table 1. Further
details can be found in Appendix A.1.

Baselines. We consider the following retrieval
baselines: (1) Unixcoder: A cross-modal pre-
trained model for programming language (Guo
et al., 2022). (2) GIST-large: A model that en-
hances text embedding fine-tuning by selecting neg-
ative samples (Solatorio, 2024). (3) Arctic-Embed
2.0: A multilingual text embedding model for re-
trieval (Yu et al., 2024). (4) NV-Embed-v2: A
embedding model ranked No.1 in the retrieval sub-
category of the Massive Text Embedding leader-
board (as of Aug 30, 2024) (Lee et al., 2024).
Then we consider the following reranking meth-
ods: (1) Unsupervised Passage Re-ranker (UPR):
A pointwise approach based on query genera-
tion (Sachan et al., 2022). (2) Relevance Gen-
eration (RG): A pointwise approach based on rele-
vance generation (Liang et al., 2022). (3) Pairwise
Ranking Prompting- Sorting (PRP-Sorting): A
pairwise method based on the log-likelihood of doc-
ument generation, and it optimizes time complex-
ity through heap sort (Qin et al., 2023). (4) Pair-
wise Ranking Prompting-Sliding (PRP-Sliding):
A variant of PRP based on the sliding window
approach. (5)RepoCoder: A reranking method
through iterative retrieval of code snippets based
on code generation results (Zhang et al., 2023a).
In addition, we adopt two widely adopted API
recommendations approaches in software engineer-
ing, BIKER (Huang et al., 2018) and GAPI (Ling
et al., 2021), which consider either user intent
or the code context, respectively. For automatic
code completion, we consider the following code
LLM: Starcoder2-7B (Lozhkov et al., 2024) and

Avg. Number Avg. Code Lines/Words
Sets . Source . .

query canonical intent incomplete target
train 4,000 - Github - 38.2 414
val 400 - Github - 37.9 40.5

test 513 1.4 Stackflow 84 10.7 5

Table 1: Dataset Statistics.

CodeLlama-Instruct-7B (Roziere et al., 2023),
which are both trained and optimized for code-
related tasks. Further details on the above baselines
can be found in Appendix A.2.

Implementation Details. For API recommenda-
tion, we rerank the top 50 docs retrieved by dif-
ferent retrieval models. In our model, we chose
CodeLlama-Instruct-7B as the LLM and Unixcoder
as the initial weight of the hidden reasoning state
extractor. Further details can be found in Ap-
pendix A.3.

Evaluation Metrics To evaluate the performance
of API recommendation, we report the common
evaluation metrics (Zhang et al., 2017; Wei et al.,
2023): Recall@k, NDCG@k, MRR @k, and MAP,
with k set to 10. We use Recall @k as the primary
metric since retrieval-augmented generation pri-
marily relies on key information that appears in the
context. To evaluate the performance of code com-
pletion based on API recommendation, we adopt
Pass@k and Improve @k metrics to measure the
execution correctness of programs, with & set to 1.
Further details can be found in Appendix A.4.

4.2 Experimental Results

API Recommendation Evaluation. Table 2
shows the experimental results of our approach
and reranking baselines on API recommendation
task. It is obvious that: (1) Regarding the Recall
and overall ranking performance of recommend-
ing correct APIs, our approach APIRANKER out-
performs all other reranking baselines by a large
margin across different retrieval models, demon-
strating substantial improvements in both the cov-
erage and ranking quality of relevant documents.
For example, APIRANKER achieves a Recall rate
of 32.36% on Arctic-Embed 2.0, surpassing the
next best method (i.e., UPR) by a significant mar-
gin of 11.72%. Similarly, in terms of NDCG @10,
APIRANKER outperforms the next best method
(i.e., RG) with a value of 18.39%, surpassing it
by a significant margin of 5.33%, which clearly
indicates its superior reranking capability. (2) Our
approach APIRANKER demonstrates consistent

Retrieval \ Size \ dim \ Reranking Method Recall@10 NDCG@10 MRR@10 MAP
Unixcoder 126M 768 - 2.44 1.35 0.98 1.15
BIKER - - - 11.65 8.57 6.65 6.27
GAPI - - - 7.18 4.67 3.55 2.99

- 15.25 6.88 3.87 4.79

RG 15.69 10.93 9.10 9.42

UPR 16.65 9.56 7.01 7.66

GIST-large 335M 1024 PRP-Sorting 7.00 2.35 0.87 242
PRP-Sliding 12.65 10.15 9.15 10.04

RepoCoder 11.09 4.15 5.91 7.21

APIRANKER 25.50 14.52 10.33 10.83

- 18.86 10.83 7.72 8.71

RG 19.98 13.06 10.30 10.84

UPR 20.64 12.00 8.38 9.22

Arctic-Embed 2.0 568M 1024 PRP-Sorting 8.45 2.80 1.12 3.11
PRP-Sliding 12.51 11.52 11.20 12.73

RepoCoder 17.67 8.18 7.27 7.66

APIRANKER 32.36 18.39 12.48 13.09

- 27.12 13.65 8.76 9.80

RG 22.53 14.37 11.30 12.29

UPR 25.53 14.34 10.27 11.37

NV-Embed-v2 7.9B 4096 PRP-Sorting 14.98 4.76 1.82 4.25
PRP-Sliding 23.59 13.33 9.46 10.93

RepoCoder 28.41 13.72 8.00 9.09

APIRANKER 30.17 15.49 9.53 11.08

Table 2: Evaluation results on the APIRAC dataset. All results in the table are reported in percentage (%). The best
method is in boldface, and the second best method is underlined for each metric.

X Method
Model Complexity ~ Parameters Train Inference principle
RG O(N) 6.7B Pointwise Perplexity
UPR O(N) 6.7B Pointwise Perplexity
PRP-Sorting O(logN*N) 6.7B Pairwise Perplexity
PRP-Sliding O(K*N) 6.7B - Pairwise Perplexity
APIRANKER O(N) 6.7B+160M Pairwise Pointwise Semantics

Table 3: Comparison of the reranking method. N is the
number of documents retrieved for reranking. K is the
number of documents to be returned after reranking.

improvements across all evaluation metrics post-
reranking, irrespective of the underlying retrieval
model. Even in the case of the strong retrieval
baseline (e.g., NV-Embed-v2), where other meth-
ods all show degraded performance compared to
the original retrieval results, APIRANKER still
demonstrates stable improvements, outperforming
retrieval baseline across all metrics, which high-
lights the effectiveness of our method in enhancing
ranking quality and coverage in diverse retrieval
scenarios. Overall, our method shows substan-
tial and stable improvements in reranking dif-
ferent API candidates compared to other mod-
els, validating the effectiveness of our method
for API recommendation. Further details on the
above baselines can be found in Appendix A.S.

Methods Comparison and Analysis. As illus-
trated in Table 3, APIRanker demonstrates sev-
eral key advantages over other reranking methods:

(1) Its linear complexity O(N') ensures scalability,
making it suitable for large-scale applications. (2)
The pairwise training method improves its ability
to learn relevance preference, while the pointwise
inference ensures efficient inference. It achieves
higher accuracy with just 160M additional parame-
ters. (3) By leveraging semantic understanding of
relevance estimator, APIRanker excels in tasks that
require a deep comprehension of API documents in
comparison to models that rely solely on perplexity.
In the Appendix A.6, we provide further discussion
on PPL and log-probability based uncertainty.

Retrieval-augmented Completion Evaluation.
Using a retrieval-augmented generation approach,
we evaluated the performance of different rerank-
ing models in improving code completion perfor-
mance on Arctic-Embed 2.0. The experimental
results showed that: (1) As illustrated in Fig. 5(a),
APIRANKER consistently outperforms the no-
retrieval baseline and leads to stable improvements
in passing across both code LLMs, whereas other
reranking models (i.e., UPR, RG) cause perfor-
mance degradation. This decline can be attributed
to the noise of wrongly recommended APIs, which
disrupts the code LLLM’s ability to generate code
that was previously correct. In contrast, API-
RANKER offers stable and reliable improvements

UPR UPR
036 RG 0161 RG
== APIRanker = APIRanker
034 no-retrieval

Improve@1

0.26 0.06 4

CodeLlama-Instruct-7b StarCoder2-7b CodeLlama-Instruct-7b
Models Models

StarCoder2-7b

Figure 5: Effect of API Recommendations on Code
Completion: Pass@1 and Improve@ 1 Evaluation for
CodeLlama-Instruct-7B and StarCoder2-7B. The top 10
documents were used as context, with the number of
documents incrementing from 1 to 10 in each trial. The
best result from 10 runs was reported.

Model Recall@10
GIST-large Arctic-Embed

APIRANKER 25.50 32.36

w/o Perplexity Alignment 19.90 31.57

w/o Reasoning State Extractor 24.66 2791

w/o Relevance Estimator 0.49 0.88

Table 4: Ablation study.

in retrieval-augmented generation, demonstrating
practical usability in real-world applications. (2)
As illustrated in Fig. 5(b), we analyze the per-
centage of cases where recommended APIs enable
code LLMs to correct outputs that it initially failed
to generate (without recommended APIs). API-
RANKER consistently outperforms other reranking
models, achieving higher improvements in both
code LLMs, highlighting its superior performance
in scenarios where the code LLM’s capabilities fall
short and external API knowledge is needed.

Ablation Study. As illustrated in Table 4, we
conduct an ablation study to assess the contribution
of different techniques by removing key compo-
nents (i.e., Perplexity Alignment via Comments,
Hidden Reasoning State Extractor and Relevance
Estimator) of our approach separately. The experi-
mental results show that: (1) No matter which com-
ponent we drop, it hurts the overall performance
of our model, which signals the importance and
effectiveness of all three components. (2) The re-
call rate shows a significant drop in reranking per-
formance on the candidate documents retrieved by
GIST-large and Arctic-Embed 2.0 when the Hidden
Reasoning State Extractor and Relevance Estimator
are removed separately. Notably, the removal of the
Relevance Estimator causes an enormous decrease,
which makes the model fail to work properly. This

| want to raise a 2-dimensional numpy array, let's call it A, to the power of some
number n, but | have thus far failed to find the function or operator to do that.
I'm aware that | could cast it to the matrix type and use the fact that then (similar
to what would be the behaviour in Matlab), A**n does just what | want, (for array
the same expression means elementwise exponentiation). Casting to matrix and
back seems like a rather ugly workaround though.

Surely there must be a good way to perform that calculation while keeping the
format to array?

import numpy as np
A = np.arange(16).reshape(4, 4)

e query

@ torch.nn.functional. @I
bmm() 41 batch_norm |

dot) | & aadbmmy 5. pemesiode (5

|

[rewieal | eedtempoweran X

Reranking

Figure 6: The example of code completion based on
API recommendation.

result = np.power(A, n) X

result = np.linalg.matrix_power(A, n) v

justifies the importance and necessity of these two
components in our reranking model architecture.

Case Study and Manual Evaluation. As illus-
trated in Fig. 6, we present an example of genera-
tion using Codellama, based on API documents
retrieved (e.g., colored in red) by Arctic-Embed 2.0
and reranked by our model. The retrieved APIs
can’t properly handle matrix exponentiation for
Numpy, causing the completed code fails to pass
test cases. APIRANKER reranks the retrieved APIs
(e.g., colored in blue), successfully moving the cor-
rect API (e.g., colored in yellow) to the top, thus
enhancing the LLM to produce the correct solution.
This highlights that, APIRANKER can benefit au-
tomatic code completion task by providing more
accurate and effective API recommendations. In
addition, we conduct a manual evaluation to ver-
ify the validity of the relevance score predicted by
our framework. Further details can be found in
Appendix A.7.

5 Conclusions.

This research aims to recommend correct APIs to
enhance automatic code completion, by jointly con-
sidering both natural language intent and incom-
plete code. To perform this task, we propose an
approach APIRANKER that utilizes a self-learning
ranking framework to automatically construct train-
ing data. Then we propose a novel reranking model
to predict the relevance score between the API doc-
uments and the query, based on the LLM’s reason-
ing capabilities. The experimental results show the
effectiveness of our approach in both API recom-
mendation and automatic code completion. We
hope our study lays the foundations for this re-
search and provides valuable insights.

6 Limitations.

Several limitations are concerned with our work.
Firstly, due to the limited availability of code com-
pletion test sets that support code evaluation in
other languages, and the difficulty in constructing
queries that simultaneously include both intent and
incomplete code, our test is based on Python, one
of the most popular programming languages used
by developers. However, during the training of our
method, we used data from two programming lan-
guages Java and Python, and we believe that our
approach can easily adapt to other programming
languages. Secondly, our approach does not explic-
itly create intent but rather leverages the language
comprehension ability of LLMs to reduce the need
for learning natural language intent. Exploring how
to automatically generate high-quality intent from
code is an interesting research topic for our future
work.

References

Yujia Chen, Cuiyun Gao, Xiaoxue Ren, Yun Peng, Xin
Xia, and Michael R Lyu. 2023. Api usage recom-
mendation via multi-view heterogeneous graph rep-
resentation learning. IEEE Transactions on Software
Engineering, 49(5):3289-3304.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. arXiv preprint arXiv:2002.08155.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen
Wang. 2023. Retrieval-augmented generation for
large language models: A survey. arXiv preprint
arXiv:2312.10997.

Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and
Sunghun Kim. 2016. Deep api learning. In Proceed-
ings of the 2016 24th ACM SIGSOFT international
symposium on foundations of software engineering,

pages 631-642.

Michael Giinther, Jackmin Ong, Isabelle Mohr, Alaed-
dine Abdessalem, Tanguy Abel, Mohammad Kalim
Akram, Susana Guzman, Georgios Mastrapas, Saba
Sturua, Bo Wang, et al. 2023. Jina embeddings 2:
8192-token general-purpose text embeddings for long
documents. arXiv preprint arXiv:2310.19923.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross-
modal pre-training for code representation. arXiv
preprint arXiv:2203.03850.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li,
Zhiting Hu, Jason Weston, and Yuandong Tian. 2024.
Training large language models to reason in a contin-
uous latent space. arXiv preprint arXiv:2412.06769.

Qiao Huang, Xin Xia, Zhenchang Xing, David Lo,
and Xinyu Wang. 2018. Api method recommenda-
tion without worrying about the task-api knowledge
gap. In Proceedings of the 33rd ACM/IEEE Interna-
tional Conference on Automated Software Engineer-
ing, pages 293-304.

Rasha Ahmad Husein, Hala Aburajouh, and Cagatay
Catal. 2024. Large language models for code com-
pletion: A systematic literature review. Computer
Standards & Interfaces, page 103917.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim,
and Sunghun Kim. 2024. A survey on large lan-
guage models for code generation. arXiv preprint
arXiv:2406.00515.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruigi Zhong, Luke Zettlemoyer, Wen-tau Yih, Daniel
Fried, Sida Wang, and Tao Yu. 2023. Ds-1000: A
natural and reliable benchmark for data science code
generation. In International Conference on Machine
Learning, pages 18319-18345. PMLR.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan
Raiman, Mohammad Shoeybi, Bryan Catanzaro, and
Wei Ping. 2024. Nv-embed: Improved techniques for
training llms as generalist embedding models. arXiv
preprint arXiv:2405.17428.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, et al. 2022. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110.

Chunyang Ling, Yanzhen Zou, and Bing Xie. 2021.
Graph neural network based collaborative filtering
for api usage recommendation. In 2021 IEEE Inter-
national Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 36—47. IEEE.

Mingwei Liu, Tianyong Yang, Yiling Lou, Xueying Du,
Ying Wang, and Xin Peng. 2023. Codegen4libs: A
two-stage approach for library-oriented code gener-
ation. In 2023 38th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE),
pages 434-445. 1EEE.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
et al. 2024. Starcoder 2 and the stack v2: The next
generation. arXiv preprint arXiv:2402.19173.

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-
won Hwang, and Alexey Svyatkovskiy. 2022. Reacc:
A retrieval-augmented code completion framework.
arXiv preprint arXiv:2203.07722.

Zexiong Ma, Shengnan An, Bing Xie, and Zeqi Lin.
2024. Compositional api recommendation for library-
oriented code generation. In Proceedings of the 32nd
IEEE/ACM International Conference on Program
Comprehension, pages 87-98.

Marcellino Marcellino, Davin William Pratama,
Steven Santoso Suntiarko, and Kristien Margi. 2021.
Comparative of advanced sorting algorithms (quick
sort, heap sort, merge sort, intro sort, radix sort) based
on time and memory usage. In 2021 Ist International
Conference on Computer Science and Artificial Intel-
ligence (ICCSAI), volume 1, pages 154-160. IEEE.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and
Nils Reimers. 2022. Mteb: Massive text embedding
benchmark. arXiv preprint arXiv:2210.07316.

Noor Nashid, Taha Shabani, Parsa Alian, and Ali
Mesbah. 2024. Contextual api completion for
unseen repositories using llms. arXiv preprint
arXiv:2405.04600.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad
Saqib, Saeed Anwar, Muhammad Usman, Naveed
Akhtar, Nick Barnes, and Ajmal Mian. 2023. A
comprehensive overview of large language models.
arXiv preprint arXiv:2307.06435.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730-27744.

Arnold Overwijk, Chenyan Xiong, Xiao Liu, Cameron
VandenBerg, and Jamie Callan. 2022. Clueweb22:
10 billion web documents with visual and semantic
information. arXiv preprint arXiv:2211.15848.

Md Rizwan Parvez, Wasi Uddin Ahmad, Saikat
Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
2021. Retrieval augmented code generation and sum-
marization. arXiv preprint arXiv:2108.11601.

Yun Peng, Shuqing Li, Wenwei Gu, Yichen Li, Wenx-
uan Wang, Cuiyun Gao, and Michael R Lyu. 2022.
Revisiting, benchmarking and exploring api recom-
mendation: How far are we? IEEE Transactions on
Software Engineering, 49(4):1876-1897.

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang,
Junru Wu, Le Yan, Jiaming Shen, Tianqi Liu, Jialu
Liu, Donald Metzler, et al. 2023. Large language
models are effective text rankers with pairwise rank-
ing prompting. arXiv preprint arXiv:2306.17563.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

10

Devendra Singh Sachan, Mike Lewis, Mandar Joshi,
Armen Aghajanyan, Wen-tau Yih, Joelle Pineau, and
Luke Zettlemoyer. 2022. Improving passage retrieval

with zero-shot question generation. arXiv preprint
arXiv:2204.07496.

Aivin V Solatorio. 2024. Gistembed: Guided in-sample
selection of training negatives for text embedding
fine-tuning. arXiv preprint arXiv:2402.16829.

Yanlin Wang, Yanli Wang, Daya Guo, Jiachi Chen,
Ruikai Zhang, Yuchi Ma, and Zibin Zheng. 2024a.
Rlcoder: Reinforcement learning for repository-level
code completion. arXiv preprint arXiv:2407.19487.

Yong Wang, Yingtao Fang, Cuiyun Gao, and Linjun
Chen. 2024b. Api recommendation for novice pro-
grammers: Build a bridge of query-task knowledge
gap. IEEE Transactions on Reliability.

Zora Z. Wang, Akari Asai, Xinyan V. Yu, Frank F. Xu,
Yiqing Xie, Graham Neubig, and Daniel Fried. 2024c.
Coderag-bench: Can retrieval augment code genera-
tion? arXiv preprint arXiv:2406.14497.

Moshi Wei, Nima Shiri Harzevili, Alvine Boaye Belle,
Junjie Wang, Lin Shi, Song Wang, and Zhen Ming
Jiang. 2023. A survey on query-based api recommen-
dation. arXiv preprint arXiv:2312.10623.

Moshi Wei, Nima Shiri Harzevili, Yuchao Huang, Junjie
Wang, and Song Wang. 2022. Clear: contrastive
learning for api recommendation. In Proceedings
of the 44th International Conference on Software
Engineering, pages 376-387.

Di Wu, Xiao-Yuan Jing, Hongyu Zhang, Yang Feng,
Haowen Chen, Yuming Zhou, and Baowen Xu. 2023.
Retrieving api knowledge from tutorials and stack
overflow based on natural language queries. ACM
Transactions on Software Engineering and Method-

ology, 32(5):1-36.

Puxuan Yu, Luke Merrick, Gaurav Nuti, and Daniel
Campos. 2024. Arctic-embed 2.0: Multilingual
retrieval without compromise. arXiv preprint
arXiv:2412.04506.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and
Weizhu Chen. 2023a. Repocoder: Repository-level
code completion through iterative retrieval and gen-
eration. arXiv preprint arXiv:2303.12570.

Jingxuan Zhang, He Jiang, Zhilei Ren, and Xin Chen.
2017. Recommending apis for api related questions
in stack overflow. IEEE Access, 6:6205-6219.

Kechi Zhang, Huangzhao Zhang, Ge Li, Jia Li, Zhuo
Li, and Zhi Jin. 2023b. Toolcoder: Teach code gener-
ation models to use api search tools. arXiv preprint
arXiv:2305.04032.

Shuyan Zhou, Uri Alon, Frank F Xu, Zhiruo
Wang, Zhengbao Jiang, and Graham Neubig. 2022.
Docprompting: Generating code by retrieving the
docs. arXiv preprint arXiv:2207.05987.

A Appendix

A.1 Dataset Construction Details

We collect 110,646 API documentations from the
dataset CodeRAG-bench (Wang et al., 2024c) as
retrieval sources. These documents come from two
main sources: official Python library documenta-
tion provided by devdocs.io* and content obtained
from ClueWeb22 (Overwijk et al., 2022), a large-
scale web corpus, covering a wide range of topics,
from basic programming techniques to advanced
library usage. Each page in ClueWeb22 includes
code snippets and textual explanations. An API
documentation typically includes the API’s pur-
pose, function description, input parameters, out-
put values, and example requests and responses.
Howerever, we take into account the diversity of
API descriptions in real-world scenarios and do not
strictly restrict the structure or form of API docu-
ments, as long as they can be converted into text or
code formats.

To support efficient vector queries based on co-
sine similarity, we create vector search libraries
using Milvus>, a high-performance vector database
designed for scalability and providing fast, scalable
similarity search and retrieval.

In the training and evaluation data, for a spe-
cific code file that has cross-file dependencies,
we treat all the dependency files (i.e., both di-
rect and indirect dependencies) of the code file
as the candidate documentation for the code file.
For the test data, we select DS-1000 (Lai et al.,
2023) as the query (i.e., NL intent and incom-
plete code) and code completion dataset, which
includes general open-domain coding completion
tasks (e.g., Matplotlib, Numpy, Pandas, Sklearn,
Tensorflow).

A.2 Baselines Setup detail

Retrieval Baselines. Since the performance of
code retrieval models (e.g., Unixcoder, Code-
Bert (Feng et al., 2020), jina-base-v2-code (Giin-
ther et al., 2023)) is not ideal (with poor retrieval
performance), we do not conduct reranking experi-
ments on it. Additionally, CodeBert and jina-base-
v2-code are unable to recall any relevant API doc-
uments in the top 50, we do not report retrieval
results for these models.

We consider the following retrieval baselines,
which are dense retrievers that encode both the

*https://devdocs.io
Shttps://github.com/milvus-io/milvus

11

query and code documentation into vector spaces
for retrieving semantically relevant documenta-
tion based on vector similarity: (1) Unixcoder:
Unixcoder (Guo et al., 2022) is a unified cross-
modal pre-trained model for programming lan-
guage. (2) GIST-large: GIST-large (Solatorio,
2024) is a method that improves text embedding
fine-tuning by selectively choosing negative sam-
ples. (3) Arctic-Embed 2.0: Arctic-Embed 2.0 (Yu
et al., 2024) is an open-source text embedding
model built for accurate and efficient multilingual
retrieval. (4) NV-Embed-v2: NV-Embed-v2 (Lee
et al., 2024) is a generalist embedding model that
ranks No. 1 in the retrieval sub-category of the Mas-
sive Text Embedding (MTEB) leaderboard (Muen-
nighoff et al., 2022). GIST-large and Arctic-Embed
2.0 are also ranked highly on the MTEB leader-
board.

Considering the context limitations of retrieval
and code generation, as well as the excessive length
of some API documentation, the retrieval model’s
maximum token encoding length is uniformly set
to 512. An API documentation typically includes
the API’s purpose, function description, input pa-
rameters, output values, and example requests and
responses. Most API documentation includes es-
sential information, and although some longer API
docs may be truncated at the "example" section,
the necessary details, including the description of
the API’s role and function, are typically present
within the first 512 tokens.

Reranking Baselines. We consider the following
reranking baselines, which are based on LLMs:
(1) Unsupervised Passage Re-ranker (UPR):
UPR (Sachan et al., 2022) is a pointwise approach
based on query generation. The prompt template
for UPR is shown in Fig. 7. In this approach, the
relevance score of an API document d to the query
q is measured by the probability of generating the

query.

e Instruction: Please write a question based on this pas-
sage.

e Passage: d

o Question: ¢

Figure 7: The prompt template for UPR. d is the API
document, q is the query.

(2) Relevance Generation (RG): RG (Liang
et al., 2022) is a pointwise approach based on rele-
vance generation. The prompt template for RG is
shown in Fig. 8. In this approach, the relevance of

https://devdocs.io
https://github.com/milvus-io/milvus

an API document d to the query ¢ is defined as:

.

where p(Yes) and p(No) denote the probabilities
of LLMs generating the tokens of “Yes” or “No”
respectively.

1 + p(Yes),
1- p(N0)7

if output Yes
. (13)
if output No

e Instruction: Does the passage answer the query?
e Passage: d
e Query: g

Figure 8: The prompt template for UPR. d is the API
document, q is the query.

(3) Pairwise Ranking Prompting- Sorting
(PRP-Sorting): PRP-Sorting (Qin et al., 2023) is
a pairwise method based on the log-likelihood of
document generation, and it optimizes time com-
plexity through heap sort algorithm (Marcellino
et al., 2021). The prompt template for PRP-Sorting
is shown in Fig. 9. In this approach, to compare
two API documents d4 and dp, the one that is
more relevant to the query q is determined based
on which has a higher probability of generating
“Passage A” or “Passage B”.

e Instruction: Given a query “q”, which of the following
two passages is more relevant to the query?

e Passage A: da

e Passage B: dp

Figure 9: The prompt template for PRP-Sorting and
PRP-Sliding. d is the API document, g is the query.

(4) Pairwise Ranking Prompting-Sliding
(PRP-Sliding): PRP-Sliding is a variant of PRP,
which is based on the sliding window approach.
The prompt template and comparison function for
PRP-Sliding are the same as those for PRP-Sorting.

(5) RepoCoder: RepoCoder (Zhang et al.,
2023a) is a reranking method through iterative re-
trieval of code snippets based on the result of code
generation. The API documentation is provided
as retrieval source for the RepoCoder. We con-
ducted the experiment using a 2-iteration approach,
following the method described in the RepoCoder
paper.

In order to comparing the performence of
different reranking methods, we uniformly use
CodeLlama-Instrcut-7B as the base LLMs. The
comparison between methods is made using the
same retrieval source. The maximum token length
of an API document is set to 512.

12

The baseline of API recommendations. We
adopt two common approaches of API recommen-
dations: (1) BIKER (Huang et al., 2018): BIKER
is an API recommendation approach that bridges
lexical and knowledge gaps by using word embed-
dings for similarity and similar questions retrieval
for supplementary information. Here, we take the
queries in the test set as the source of similar ques-
tions. (2) GAPI (Ling et al., 2021): GAPI uses
the code context as the query for API usage rec-
ommendation and employs graph neural networks
to capture high-order collaborative signals. How-
ever, due to differences in task setup and dataset,
the project structure information is not available in
our dataset. We only used text attributes to nodes
as input for API prediction since lacking project
structural information in our datasets.

Code Completion Baselines. For automatic
code completion, we consider the following code
LLMs: (1) Starcoder2-7B (Lozhkov et al., 2024),
which is trained on a vast programming dataset
and achieves superior performance on code-related
tasks. (2) CodeLlama-Instruct-7B (Roziere et al.,
2023), which is a fine-tuned version of Code Llama,
optimized to follow natural language instructions
for code generation.

A.3 Implementation Details

In our approach, we chose CodeLlama-Instruct-7B
as the perplexity evaluator in the self-supervised
learning ranking framework and as the base LLM
of the reranking model. Additionally, UnixCoder is
chosen as the retriever in the self-supervised learn-
ing ranking framework and as the initial weight
of the hidden reasoning state extractor. All experi-
ments were conducted on two A800 GPUs.

In our self-supervised learning ranking frame-
work, we set the total length of the incomplete
code and the target code to be no more than 1024
tokens, ensuring that the ratio of 0.4 to 0.5 of the
total length is considered as the incomplete code.
The prompt template for the perplexity evaluator is
shown in 10.

In the design of the reranking model, we set
the number of learnable vectors in the hidden rea-
soning state extractor to 32. We employed the
AdamW optimizer with a learning rate of le-4.
The learning rate schedule was managed using the
WarmupCosineLLR scheduler, where the learning
rate linearly warms up for the first 75 steps and then
follows a cosine decay towards a minimum ratio

of 0.0001 over a total of 750 steps. The batch size
was set to 384, and the number of gradient accumu-
lation steps was 4. The input length was capped at
a maximum of 1152 tokens. We constructed pairs
from a set of 4 documents, selected evenly based
on the difference in values from the perplexity eval-
uator, chosen from the top 20 candidate documents
retrieved by the retriever. The prompt template for
training is shown in Fig. 10. During the inference
stage, we reranked the top 50 documents retrieved
by different retrieval models. The input length was
capped at a maximum of 1600 tokens. The prompt
template for inference was the same as for training.

e Instruction: Refer to the following documentation (be-
tween “— Documentation —” and “— End Documentation
—") to complete the code.

o API document: d

e query: ¢

Figure 10: The prompt template for APIRANKER. d is
the API document, q is the query.

For retrieval-augmented code completion, we
use top-k API documents as a context for auto-
matic code completion, keeping only the first 512
tokens in each document. The prompt template of
retrieval-augmented code completion is shown in
Fig. 11. During decoding, code is generated using
greedy decoding. The length of the output to a
maximum of 2048 tokens.

e Instruction: Refer to the following documentation (be-
tween “— Documentation —” and “— End Documentation
—") to complete the code. Based on the following prob-
lem description and existing code, please write the code
to achieve the desired output. Place the executable code
between <code> and </code> tags, without any other non-
executable things.

o the top-k API documents: d1, ..., d

e query: ¢

Figure 11: The prompt template for PRP-Sorting and
PRP-Sliding. d; is the i-th API document, q is the query.

A.4 Evaluation Metrics

To evaluate the performance of API recommen-
dation, we report the common evaluation met-
rics (Zhang et al., 2017; Wei et al., 2023): (1) Re-
call@k, measures the proportion of correct API
documents in the the top-k recommendation results.

It is defined as follows:
R
Recall@k = N’ (14)

where N is the total number of relevant documents,
and R is the number of relevant documents in top-k

13

recommended results. (2) NDCG @Kk, evaluates
the ranking of correct documents in the top-k rec-
ommendation results. As a normalized Discounted
Cumulative Gaine, NDCG is calculated by dividing
by a special ideal DCG, where all relevant docu-
ments are ranked higher than irrelevant ones. It is
defined as:

DCGQk

NDCGek = ideal DCGQE’ (15
k rel(i) _

DCG@k = 2 L (16)

“— logy(i + 1)’

where ¢ represents the rank. rel() is a binary func-
tion to check whether the API in rank ¢ is correct
or not. If the API at rank ¢ is a correct API, then
the value rel(7) is 1; otherwise, the value is 0. (3)
MRR@XK, represents the reciprocal of the position
where the first correct API appears in the top-k
recommendation results. It is defined as:

1

k_Rank;’ a7

Q
MRRQk = 1 Z
Q| st

where |@| is the number of queries), and
k_Rank; means the rank position of the first cor-
rect answer in the top k recommended list for the
i-th query. (4) Mean Average Precision (MAP),
evaluates the overall performance by taking into
account the ranking of correct API documents. It
is defined as:

Q n . .
1 S (P(1) x rel(7))
MAP = — =1 18
Q] 32:31 #correct answers (18)
Pi) = #correct ans.wers in top i’ (19)

1

where p(7) is the precision at a given cut-off rank ¢.
The value of & is set to 10, and n is set to 50. We
use Recall @k as the primary metric since retrieval-
augmented generation primarily relies on key infor-
mation that appears in the context.

To evaluate the performance of code completion
based on API recommendation, we adopt Pass @k
and Improve @k metrics to measure the execution
correctness of programs: (1) Pass@k, is an evalua-
tion metric that has been widely used in previous
work (Jiang et al., 2024), computing the fraction
of problems having at least one correct prediction
within k samples. It is defined as:

("c)
(¢)

1—

pass@k := K

] ;o (20)

where n is the total number of sampled candidate
code solutions, k is the number of randomly se-
lected code solutions from these candidates for
each programming problem, with n > k, and c is
the count of correct samples within the k selected.
(2) Improve @k, is the proportion of cases in which
the code LLM generates the correct output with
the recommended API documentation, compared
to when it initially failed without the recommended
API documentation. It is defined as:

>t correct(i)

#failures in k samples’

Improve @k = 20
where m is the number of problems that initially
failed to generate the code in the £ samples, and
correct(i) is 1 if the i-th problem passes in the k
samples, and 0 if it fails. The value of £ is set to 1
in our experiment. Given the differences in the ca-
pabilities of code LLMs, there are instances where
a model, initially capable of generating correct out-
puts, may fail when code completion is based on
API documents. Therefore, we use Improve @k to
explore the potential for improvement.

A.5 Experimental Comparison of API
Recommendation.

The results show that APIRanker significantly out-
performs both BIKER and GAPI, demonstrating its
superior effectiveness over query-based methods
and code context-based method, verifying the ef-
fectiveness of APIRanker for combining user intent
and code context for API recommendation.

Based on the experimental results, our model
APIRanker is bertter than RepoCoder. (1) API-
Ranker significantly outperforms RepoCoder in
terms of different retrieval methods. This advan-
tage is likely due to the larger scale of API docu-
ment retrieval, which recalls a much larger num-
ber of similar documents compared to repository-
level code retrieval. (2) APIRanker achieves consis-
tent performance improvements, while Repocoder
is more dependent on the quality of the retrieval
model. For example, RepoCoder experiences a
notable decline in terms of using GIST-large and
Arctic-Embed, but shows an improvement when
paired with the strong retrieval model NV-Embed-
v2.

A.6 Discussing PPL and Log-Probability
Based Uncertainty.

PPL is the exponentiated average of the log-
probability based uncertainty, which is more suit-

14

able for assessing the overall model performance,
as it aggregates token-level uncertainties into a
comprehensive score. While the Log-Probability
based uncertainty is used to calculate the genera-
tion probability of each token, which offers more
granular insight on individual token-level. In terms
of our research of code completion, we care more
about the model’s ability to generate complete code
sequence, thus PPL is more appropriate. Regarding
tasks for more detailed token-level analysis (e.g.,
keyword analysis, code style analysis), examining
log-probability based uncertainty could be more
informative.

A.7 Manual Evaluation.

To further validate the effectiveness of our refer-
ence, we conduct a user study. In particular, we
randomly select 100 training API-query pairs that
are scored based on our framework and asked 3
users (each with over 4 years of programming ex-
perience) to assess them. Users are asked to answer
the question: “Which of the two API documents
is more helpful for the query?”, and every user is
provided with three options (i.e., A is Better, B
is Better, Cannot Determine/Both Equally). We
calculate the agreement ratio between the manual
evaluations and the automated scores. The results
of the user study are as follows:

Consistency | Inconsistency | Indeterminate

85% 11% 4%

Table 5: The result of the user study.

We calculate the Pearson correlation between
the manual evaluations and the automated scores.
The high consistency ratio of 94.8% indicates that
our method aligns well with human evaluations,
demonstrating its effectiveness in generating train-
ing data for API reranking.

	Introduction
	Related Work
	Methodology
	Task Definition
	Self-supervised Ranking Framework
	API Reranking Model Architecture
	Training and Inference

	Experiments
	Experimental Setup
	Experimental Results

	Conclusions.
	Limitations.
	Appendix
	Dataset Construction Details
	Baselines Setup detail
	Implementation Details
	Evaluation Metrics
	Experimental Comparison of API Recommendation.
	Discussing PPL and Log-Probability Based Uncertainty.
	Manual Evaluation.

