
API Reranking for Automatic Code Completion: Leveraging Explicit
Intent and Implicit Cues from Code Context

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have signif-001
icantly advanced software development, par-002
ticularly in automatic code completion, where003
selecting suitable APIs from vast third-party004
libraries plays a critical role. However, current005
solutions either focus on recommending APIs006
based on user queries or code context, with-007
out considering both aspects simultaneously.008
To bridge this gap, we propose a novel frame-009
work APIRANKER to rerank candidate API010
documents based on both the explicit devel-011
oper intent and implicit cues in the incomplete012
code context. To generate training data for this013
task, we introduce a self-supervised ranking014
framework that automatically constructs data015
by assessing the relevance of API documents to016
code context with a perplexity-driven approach017
via comments. To enhance API relevance de-018
tection, we propose a novel reranking model019
that predicts relevance scores by capturing a020
hidden reasoning state to estimate relevance.021
The experimental results show the effective-022
ness of our approach, in both recommending023
more accurate APIs and enhancing automatic024
code completion. The code is available1 and025
the dataset will be released.026

1 Introduction027

The introduction of LLMs has led to advance-028

ments in automatic code completion (Husein et al.,029

2024), with recent models adopting the retrieve-030

then-generate paradigm (Nashid et al., 2024). This031

approach enables LLMs to dynamically retrieve up-032

to-date Application Programming Interface (API)033

information from documents, rather than relying034

solely on static training data.035

A crucial aspect of the code generation process is036

selecting suitable API docs from massive amounts037

of third-party libraries. The choice of API not only038

determines the functionality of the generated code039

1https://anonymous.4open.science/r/
APIRanker-C442

pandas.DataFrame.
sort_values

pandas.dt.
strftime

pandas.DataFrame.
read_csv

pandas.dt.
tz_localize

pandas.DataFrame.
sort_values

datetime.
astimezone

Numpy.sort

intent

incompete
code

df['datetime'] = df['datetime'].dt.tz_localize('UTC')
df = df.sort_values(by='datetime', ascending=True, ignore_index=True)

 df['datetime'] = df['datetime'].dt.strftime('%d-%b-%Y %H:%M:%S')
 df = df.sort_index(axis=0, level=None, ascending=True, inplace=False)

The pandas.DataFrame.sort_values() method is used to sort a DataFrame based on the values
of one or more columns...
DataFrame.sort_values(by, axis=0, ascending=True, inplace=False,
kind='quicksort',na_position='last', ignore_index=False, key=None)...

...

...

Top-k API documents

I have read a CSV file containing timestamps and events using pandas, and now I
want to ensure the 'datetime' column is correctly formatted, convert it to the
UTC timezone, and sort it from earliest to latest for further analysis.
Is there a solution?
```
import pandas as pd 
df = pd.read_csv('events.csv') 
df['datetime'] = pd.to_datetime(df['datetime']) 
```

Figure 1: Example of retrieval-augmented code com-
pletion with different retrieved top-k API documents.

but also affects its efficiency, maintainability, and 040

overall integration with the existing software sys- 041

tem (Wang et al., 2024b). Current research predom- 042

inantly focuses on two approaches: 1) retrieving 043

API docs based on user queries (query-based API 044

recommendation) (Wu et al., 2023), which neglects 045

the code context, and 2) completing user-written 046

code based on the preceding code context (Peng 047

et al., 2022), which fails to capture the developer’s 048

underlying intention behind the API usage. How- 049

ever, automating code completion with user prefer- 050

able APIs requires a more comprehensive model 051

that considers both the explicit intent conveyed by 052

user queries and the implicit cues embedded in the 053

code context. 054

Consider the following practical scenario shown 055

in Fig. 1: Alice is a developer, she encounters 056

a problem during her daily work, i.e., “convert 057

the ‘datatime’ column to UTC timezone and sort 058

it from earliest to latest for further analysis”. 059

She uses the LLM to complete her code. How- 060

ever, without knowing Alice’s intention or the 061

current code context, a large number of relevant 062

1

https://anonymous.4open.science/r/APIRanker-C442
https://anonymous.4open.science/r/APIRanker-C442

but unsuitable APIs may be recommended (e.g.,063

datetime.astimezone, numpy.sort, etc.). If the064

target APIs are not ranked in the top-k retrieval065

results, they will not be used for code comple-066

tion, causing the auto-completed code to misalign067

with her intended behavior. Now consider Alice068

inputs both her intent and the current code con-069

text, the target APIs (e.g., df.dt.tz_localize,070

pandas.DataFrame.sort_values) can be suc-071

cessfully retrieved, the LLM is likely to complete072

her code by smoothly integrating with the recom-073

mended API docs, effectively solving her problem.074

Based on our previous observations, there is a075

need for completing code using the correct APIs.076

However, recommending appropriate APIs based077

on both the developer’s intent and the incomplete078

code context is a challenging task: (i) Lack of079

code completion dataset annotated with rele-080

vant APIs hinders learning-based approaches.081

Curating training datasets for API recommenda-082

tion requires manually evaluating the relevance083

of API documentation to the developer’s require-084

ments. This process depends on domain expertise,085

additionally, developers rarely express intent in086

their code, which makes large-scale data collection087

impractical. (ii) The relevance of APIs to the088

developer’s requirements is hard to learn and089

capture. API documentation varies significantly090

in format, writing style, and level of detail across091

different third party libraries, making it difficult092

to directly link to developers’ requirements. Fur-093

thermore, developers’ requirements are expressed094

through implicit intent and subtle semantics in the095

incomplete code, recommending APIs that align096

with both aspects effectively is challenging.097

To tackle the above challenges, we propose a098

novel framework named APIRANKER, which is099

designed to rerank candidate APIs by jointly con-100

sidering the developer’s intent and the incomplete101

code context. To address the challenge of lacking102

training data, we propose a self-supervised rank-103

ing framework to automatically construct ranking104

data. Specifically, we leverage a perplexity-driven105

relevance ranking approach, which uses LLM as an106

evaluator to automatically estimate the relevance107

of API documents to developer requirements by108

measuring the perplexity of completed code. To109

bridge the gap between perplexity and true seman-110

tic relevance, we employ a perplexity alignment111

strategy using code comments as semantic anchors.112

To better learn and capture the relevance of API113

documentation to the developer’s requirements, we114

design a novel reranking model consisting of two 115

key components. First, a hidden reasoning state 116

extractor is designed to capture the relevance of the 117

API documentation to implicit cues within code 118

context, by extracting reasoning states from LLMs 119

during inference. Second, a relevance estimator 120

uses the reasoning states to explicitly predict a rele- 121

vance score, learning to differentiate the impact of 122

various API docs on code completion effectiveness. 123

In summary, our paper makes the following 124

contributions: (1) Joint consideration of devel- 125

opers’ intent and code context for API recom- 126

mendation. Prior research typically focuses on 127

either the developer’s intent or the code context 128

in isolation. To the best of our knowledge, our 129

work first thoroughly investigated API recommen- 130

dations based on both aspects simultaneously. (2) 131

A self-supervised ranking framework for rank- 132

ing data construction. We introduce a novel 133

self-supervised approach that generates ranking 134

data in the form of ⟨incomplete code, target code, 135

API docs, relevance scores⟩ automatically, elim- 136

inating the need for manual annotation. (3) An 137

API reranking model for better code comple- 138

tion. We design a novel reranking model that lever- 139

ages LLMs’ semantic understanding to rerank APIs 140

based on the relevance of API documents to a de- 141

veloper’s requirements. The experimental results 142

show the effectiveness of our model over a set of 143

baselines, showing its potential to enhance auto- 144

matic code completion by reranking candidate API 145

documents. We hope our study can lay the founda- 146

tions for this research topic. 147

2 Related Work 148

API Recommendations. API recommendation 149

methods typically rely on two main sources: nat- 150

ural language queries and contextual code infor- 151

mation. Some studies focus on query intent, such 152

as BIKER (Huang et al., 2018) and CLEAR (Wei 153

et al., 2022), while others emphasize code context, 154

like GAPI (Ling et al., 2021) and MEGA (Chen 155

et al., 2023). Deep learning models like Deep- 156

API (Gu et al., 2016) and CodeBERT (Feng 157

et al., 2020) enhance recommendations through 158

embedding-based methods, using pretrained mod- 159

els to calculate similarities between queries and 160

API docs. However, limited labeled data hampers 161

model performance (Ma et al., 2024). In contrast, 162

our approach leverages LLMs and automatically 163

generated data to reduce reliance on QA data, im- 164

2

proving API recommendation performance.165

Retrieval-augmented Code Generation.166

Retrieval-augmented generation (Gao et al., 2023)167

has proven valuable in code generation (Parvez168

et al., 2021), especially as code libraries are169

frequently updated (Lu et al., 2022). For instance,170

CodeGen4Libs (Liu et al., 2023) recommends171

class-level API docs through a two-stage process172

of retrieval and fine-tuning. DocPrompting (Zhou173

et al., 2022) enables continuous updates to the174

documentation pool, ensuring that the most175

current code libraries are used for generation.176

ToolCoder (Zhang et al., 2023b) integrates API177

search tools and uses automated data annotation to178

teach the model how to use tool usage information,179

thereby enhancing code generation.180

3 Methodology181

3.1 Task Definition182

Given a query q, which contains natural language183

(NL) intent x and the corresponding incomplete184

code snippet c, the objective is to successfully com-185

plete code snippet c via recommending correct API186

documents D for code completion from a large187

corpus of candidates.188

3.2 Self-supervised Ranking Framework189

The absence of a code completion dataset anno-190

tated with relevant APIs makes training models a191

challenging task. This is primarily due to the high192

cost of manual annotation and the difficulties of193

verifying the correctness of generated code based194

on the APIs. To address this challenge, we propose195

a perplexity-driven relevance ranking approach,196

leveraging the perplexity of LLM-generated code197

to construct training data. However, perplexity can198

be influenced by factors such as code formatting199

and syntactic variations, introducing noise that dis-200

torts accurate relevance estimation. To mitigate this201

issue, we propose a perplexity alignment strat-202

egy that enriches the code context with comments,203

reducing the perplexity shifts and aligning code204

semantics.205

Perplexity-driven Relevance Ranking. Evalu-206

ating the relevance of API documentation to pre-207

ceding code context is a time-consuming process,208

requiring complex execution environments (Wei209

et al., 2023). These obstacles lead to a scarcity of210

training data, further limiting the learning-based211

approach’s progress. To address this challenge,212

 candidate documents

Github Repository
incomplete code

target code code file

split

Dependency
Analysis

A
...

B

LLM

API Documentation
Corpus

target code
with comments

LLM

add comments

calculate perplexity

retrieve

Retriever

F F
...

A B

ranked candidate documents

dependency
files

Figure 2: Overview of the Self-supervised Ranking
Framework.
we propose a perplexity-driven relevance ranking 213

method, which assesses the relevance by measuring 214

the perplexity of LLM-generated code. 215

Specifically, as illustrated in Fig. 2, we construct 216

data from GitHub repositories2, API documents, 217

and an LLM as a perplexity evaluator. For a specific 218

code file that has cross-file dependencies, we ran- 219

domly select a middle position to split it into incom- 220

plete code c and the target code y, ensuring ample 221

context for retrieval and completion. We directly 222

use the incomplete code c as query q and retrieve 223

the top n API documents D = {d1, d2..., dn} as 224

candidates via the retrieval model. We use depen- 225

dency analysis tool3 to identify direct and indirect 226

dependency files of the code file, then each depen- 227

dency file is regarded as a potential API document 228

for user-defined functions, as it contains both the 229

detailed implementations and definitions of those 230

functions. Including these dependency files ensures 231

that query q is paired with relevant API documents. 232

For each API document d ∈ D, the perplexity 233

(PPL) of the target code y is defined as: 234

PPL(y|d, q) = e−
1
N

∑N
i=1 logP (yi|d,q,y<i), (1) 235

where P represents the probability distribution over 236

the LLM’s vocabulary, and N is the number of 237

tokens in the target code y. The relevance score 238

r between API document d and query q is then 239

defined by the perplexity of the target code y as: 240

r(d, q) =
1

PPL(y|d, q)
. (2) 241

Using the relevance score r, we can compare the 242

relevance of different API docs for the same query, 243

since lower perplexity indicates that LLM has less 244

difficulty in correctly completing the code with the 245

API docs. A higher value of r indicates a higher 246

relevance of the document to the query. 247

2https://github.com
3https://github.com/IBM/import-tracker, https:

//maven.apache.org

3

https://github.com
https://github.com/IBM/import-tracker
https://maven.apache.org
https://maven.apache.org

LLM

Tuned Frozen

Hidden Reasoning State Extractor

Relevance Detector

API document

</>

incomplete codeinstruction

...

...

(a) APIRanker

linear layer
SelfAttention

CrossAttention

FFN

xN

...

linear layer

multi-head attention

...

...

learnable vectors
(b) Hidden Reasoning State Extractor

(c) Relevance Estimator

Refer to the following documentation
to complete the code.

input token

last hidden state

reasoning state

Key,Value

Query

Query

Key,Value

Figure 3: Overview of APIRANKER. (a) is the training process of APIRANKER based on the collection of different
API documents Dr and the same incomplete code c as the query. (b) illustrates the structure of the hidden reasoning
state extractor. (c) illustrates the structure of the relevance estimator.

Perplexity Alignment via Anchor Comments.248

The perplexity score used for relevance estimation249

is intended to better reflect code semantics, while250

minimizing the influence of non-semantic factors,251

such as formatting variations (e.g., line breaks,252

indentation) and code syntactic variations (e.g.,253

bracket placement, variable declaration). These254

variations can cause significant shifts in perplexity,255

making it unreliable to reflect the true relevance of256

the API document and the code context. To address257

this issue, we incorporate a strategy of perplexity258

alignment via adding anchor comments into the259

target code. Anchor comments provide semantic260

information that enhances the logic representation261

during perplexity calculation, thereby reducing the262

sensitivity of perplexity shifts and enhancing the263

alignment of perplexity and logic relevance.264

Specifically, given an incomplete code c and the265

corresponding target code y, LLM is asked to add266

comments to each line of code y, as described by267

the following equations:268

ŷ = LLM(c, y), (3)269

where ŷ is the generated code with comments. The270

prompt of perplexity alignment guided by anchor271

comments is then constructed as Fig. 4.272

Based on the target code with comments ŷ, the273

relevance score r is calculated by Equation 2, of-274

fering a more accurate measure of the relevance275

between the API document and the query.276

• Instruction: Based on the following two consecutive
parts of the same code, Part A (the first half) and Part B
(the second half), both enclosed within <code> and </code>
tags, you should add comments to each line of code in Part
B as much as you can.
• Part A (the first half): c
• Part B (the second half): y

Figure 4: Prompt of perplexity alignment.

3.3 API Reranking Model Architecture 277

Inspired by LLMs’ strong abilities (Naveed et al., 278

2023) in natural language comprehension, we in- 279

corporate LLM into our model architecture to cap- 280

ture user intents. This design allows us to bypass 281

the need for modeling or learning from natural 282

language intent. However, LLMs still struggle to 283

capture implicit cues in code context and differ- 284

entiate between different API documents for the 285

same query. To tackle this issue, we propose a 286

novel reranking model architecture, APIRANKER, 287

for selecting the most suitable APIs from a set of 288

candidates. APIRANKER includes a hidden rea- 289

soning state extractor that leverages the reasoning 290

state to capture the relevance of the API document 291

to implicit cues from the code context. Addition- 292

ally, a relevance estimator is employed to detect the 293

reasoning state and explicitly predict a relevance 294

score between the API document and the query. 295

Hidden Reasoning State Extractor. A large 296

number of tokens in natural language generation 297

are produced solely for fluency, contributing little 298

to the underlying reasoning process. Inspired by 299

4

the previous studies on hidden reasoning state (Hao300

et al., 2024; Ouyang et al., 2022), we extract the301

representation of the reasoning state from the last302

hidden state of the LLM, allowing us to capture303

semantic relevance rather than relying on general304

tokens for linguistic coherence.305

Specifically, as illustrated in Fig. 3, given a query306

q (i.e., the incomplete code c) and an API document307

d, we prompt the LLM to perform code completion308

based on d and extract the sequence of hidden states309

through the decoder layer of LLMs as:310

h = DecoderLayer(d, q). (4)311

where h = {h1, h2, ..., hm} represents the se-312

quence of hidden states, m is the number of hidden313

states. During this process, the LLM’s parameters314

are kept frozen. To align the dimensions between315

the LLM and the state extractor, we introduce a316

linear layer as:317

h′ = Ws ∗ h+ bs, (5)318

where h′ is the hidden states after aligning, W∗319

and b∗ denote the trainable parameters in this sec-320

tion. Each layer of the state extractor consists of321

self-attention, cross-attention, and a feed-forward322

network (FFN) followed by layer normalization as:323

p′ = SelfAttention(p, p, p), (6)324

p′′ = CrossAttention(p′, h′, h′), (7)325

s = LayerNorm(FFN(p′′) + p′′), (8)326

where p denotes a set of learnable vectors used to327

capture the reasoning states and s represents the328

sequence of reasoning states, which serves as input329

for the next layer of the state extractor. We initialize330

the extractor with transformer weights pre-trained331

on code data, whereas the cross-attention layers are332

randomly initialized.333

Relevance Estimator. To assess relevance from334

the reasoning states, we propose a relevance esti-335

mator that aggregates semantic information from336

the reasoning states and predicts relevance scores.337

Specifically, as illustrated in Fig. 3(c), we use a338

learnable query vector with multi-head attention,339

where reasoning state s serves as both the key and340

value of attention. The final relevance score is then341

predicted by a neural network, as described by the342

following equations:343

g′ = LayerNorm(MHA(g, s, s)), (9)344

g′′ = LayerNorm(g′ + FFN(g′)), (10)345

r̂ = Wr ∗ g′′ + br, (11)346

where g is a learnable vector, representing the rele- 347

vance of states from the last reasoning states s of 348

state extractor, MHA denotes multi-head attention, 349

and r̂ represents the predicted relevance score. 350

3.4 Training and Inference 351

Training Objective. APIRANKER is trained on 352

a dataset consisting of pairwise comparisons be- 353

tween different API candidates for the same query. 354

As illustrated in Fig. 3, we use a cross-entropy loss, 355

where each training sample is labeled by perform- 356

ing comparisons between API document pairs. The 357

difference in rewards represents the log odds of one 358

document being preferred over the other, with this 359

preference determined by the relevance function r 360

(Section 3.2). To speed up comparison training, we 361

construct pairs from a set of K documents selected 362

evenly based on the difference in r values, chosen 363

from the top n candidate documents, and train on 364

all comparisons for each query as a single batch. 365

Formally, the training objective of the reranking 366

model is defined as: 367

L = − 1

(K2)
E(q,ŷ,dw,dl)∼Dr

[log σ(r̂(q, ŷ, dw)− r̂(q, ŷ, dl))],

(12) 368

where σ denotes the logistic function, r̂(q, ŷ, d) is 369

the scalar output of the reranking model for query 370

q, target code with comments ŷ and API document 371

d. dw is the preferred document out of the pair of 372

dw and dl, and Dr is the training data based on 373

score of relevance function r. 374

Inference. During the inference stage, given a set 375

of candidate documents D retrieved by the retrieval 376

model based on query q (i.e., NL intent and incom- 377

plete code), each document d ∈ D is evaluated by 378

APIRANKER, which produces a new ordering of 379

the candidate documents based on the relevance 380

between document and the query. 381

4 Experiments 382

4.1 Experimental Setup 383

Dataset. To study how API recommendation 384

benefits the automatic code completion task, we 385

construct a dataset APIRAC (API Retrieval- 386

Augmented Completion) for this task. We col- 387

lect 110,646 API docs from the dataset CodeRAG- 388

bench (Wang et al., 2024c) as retrieval sources. 389

Additionally, we gather 4,400 large-scale reposito- 390

ries from GitHub, based on the dataset presented 391

5

in the RLCoder (Wang et al., 2024a), with an equal392

number of Python and Java repositories, and split393

them into training and validation sets with a 10:1394

ratio. For a given code file, we add its associated de-395

pendency files to the retrieval sources as API candi-396

dates. Finally, we construct ⟨incomplete code, tar-397

get code, API docs, relevance scores⟩ training data398

using our self-supervised ranking framework. For399

the test data, we select DS-1000 (Lai et al., 2023)400

as the automatic code completion dataset, which401

includes general open-domain coding completion402

tasks. We use the human-annotated API documen-403

tation for DS-1000, provided by CodeRAG-bench,404

as a dataset for API recommendation. There is no405

overlap between the ground truth documents from406

test dataset and the APIs used in training. Overall407

statistics of the dataset are given in Table 1. Further408

details can be found in Appendix A.1.409

Baselines. We consider the following retrieval410

baselines: (1) Unixcoder: A cross-modal pre-411

trained model for programming language (Guo412

et al., 2022). (2) GIST-large: A model that en-413

hances text embedding fine-tuning by selecting neg-414

ative samples (Solatorio, 2024). (3) Arctic-Embed415

2.0: A multilingual text embedding model for re-416

trieval (Yu et al., 2024). (4) NV-Embed-v2: A417

embedding model ranked No.1 in the retrieval sub-418

category of the Massive Text Embedding leader-419

board (as of Aug 30, 2024) (Lee et al., 2024).420

Then we consider the following reranking meth-421

ods: (1) Unsupervised Passage Re-ranker (UPR):422

A pointwise approach based on query genera-423

tion (Sachan et al., 2022). (2) Relevance Gen-424

eration (RG): A pointwise approach based on rele-425

vance generation (Liang et al., 2022). (3) Pairwise426

Ranking Prompting- Sorting (PRP-Sorting): A427

pairwise method based on the log-likelihood of doc-428

ument generation, and it optimizes time complex-429

ity through heap sort (Qin et al., 2023). (4) Pair-430

wise Ranking Prompting-Sliding (PRP-Sliding):431

A variant of PRP based on the sliding window432

approach. (5)RepoCoder: A reranking method433

through iterative retrieval of code snippets based434

on code generation results (Zhang et al., 2023a).435

In addition, we adopt two widely adopted API436

recommendations approaches in software engineer-437

ing, BIKER (Huang et al., 2018) and GAPI (Ling438

et al., 2021), which consider either user intent439

or the code context, respectively. For automatic440

code completion, we consider the following code441

LLM: Starcoder2-7B (Lozhkov et al., 2024) and442

Sets Avg. Number Source Avg. Code Lines/Words
query canonical intent incomplete target

train 4,000 - Github - 38.2 41.4
val 400 - Github - 37.9 40.5
test 513 1.4 Stackflow 84 10.7 5

Table 1: Dataset Statistics.

CodeLlama-Instruct-7B (Roziere et al., 2023), 443

which are both trained and optimized for code- 444

related tasks. Further details on the above baselines 445

can be found in Appendix A.2. 446

Implementation Details. For API recommenda- 447

tion, we rerank the top 50 docs retrieved by dif- 448

ferent retrieval models. In our model, we chose 449

CodeLlama-Instruct-7B as the LLM and Unixcoder 450

as the initial weight of the hidden reasoning state 451

extractor. Further details can be found in Ap- 452

pendix A.3. 453

Evaluation Metrics To evaluate the performance 454

of API recommendation, we report the common 455

evaluation metrics (Zhang et al., 2017; Wei et al., 456

2023): Recall@k, NDCG@k, MRR@k, and MAP, 457

with k set to 10. We use Recall@k as the primary 458

metric since retrieval-augmented generation pri- 459

marily relies on key information that appears in the 460

context. To evaluate the performance of code com- 461

pletion based on API recommendation, we adopt 462

Pass@k and Improve@k metrics to measure the 463

execution correctness of programs, with k set to 1. 464

Further details can be found in Appendix A.4. 465

4.2 Experimental Results 466

API Recommendation Evaluation. Table 2 467

shows the experimental results of our approach 468

and reranking baselines on API recommendation 469

task. It is obvious that: (1) Regarding the Recall 470

and overall ranking performance of recommend- 471

ing correct APIs, our approach APIRANKER out- 472

performs all other reranking baselines by a large 473

margin across different retrieval models, demon- 474

strating substantial improvements in both the cov- 475

erage and ranking quality of relevant documents. 476

For example, APIRANKER achieves a Recall rate 477

of 32.36% on Arctic-Embed 2.0, surpassing the 478

next best method (i.e., UPR) by a significant mar- 479

gin of 11.72%. Similarly, in terms of NDCG@10, 480

APIRANKER outperforms the next best method 481

(i.e., RG) with a value of 18.39%, surpassing it 482

by a significant margin of 5.33%, which clearly 483

indicates its superior reranking capability. (2) Our 484

approach APIRANKER demonstrates consistent 485

6

Retrieval Size dim Reranking Method Recall@10 NDCG@10 MRR@10 MAP

Unixcoder 126M 768 - 2.44 1.35 0.98 1.15
BIKER - - - 11.65 8.57 6.65 6.27
GAPI - - - 7.18 4.67 3.55 2.99

GIST-large 335M 1024

- 15.25 6.88 3.87 4.79
RG 15.69 10.93 9.10 9.42

UPR 16.65 9.56 7.01 7.66
PRP-Sorting 7.00 2.35 0.87 2.42
PRP-Sliding 12.65 10.15 9.15 10.04
RepoCoder 11.09 4.15 5.91 7.21

APIRANKER 25.50 14.52 10.33 10.83

Arctic-Embed 2.0 568M 1024

- 18.86 10.83 7.72 8.71
RG 19.98 13.06 10.30 10.84

UPR 20.64 12.00 8.38 9.22
PRP-Sorting 8.45 2.80 1.12 3.11
PRP-Sliding 12.51 11.52 11.20 12.73
RepoCoder 17.67 8.18 7.27 7.66

APIRANKER 32.36 18.39 12.48 13.09

NV-Embed-v2 7.9B 4096

- 27.12 13.65 8.76 9.80
RG 22.53 14.37 11.30 12.29

UPR 25.53 14.34 10.27 11.37
PRP-Sorting 14.98 4.76 1.82 4.25
PRP-Sliding 23.59 13.33 9.46 10.93
RepoCoder 28.41 13.72 8.00 9.09

APIRANKER 30.17 15.49 9.53 11.08

Table 2: Evaluation results on the APIRAC dataset. All results in the table are reported in percentage (%). The best
method is in boldface, and the second best method is underlined for each metric.

Model Complexity Parameters
Method

Train Inference principle

RG O(N) 6.7B - Pointwise Perplexity
UPR O(N) 6.7B - Pointwise Perplexity
PRP-Sorting O(logN*N) 6.7B - Pairwise Perplexity
PRP-Sliding O(K*N) 6.7B - Pairwise Perplexity
APIRANKER O(N) 6.7B+160M Pairwise Pointwise Semantics

Table 3: Comparison of the reranking method. N is the
number of documents retrieved for reranking. K is the
number of documents to be returned after reranking.

improvements across all evaluation metrics post-486

reranking, irrespective of the underlying retrieval487

model. Even in the case of the strong retrieval488

baseline (e.g., NV-Embed-v2), where other meth-489

ods all show degraded performance compared to490

the original retrieval results, APIRANKER still491

demonstrates stable improvements, outperforming492

retrieval baseline across all metrics, which high-493

lights the effectiveness of our method in enhancing494

ranking quality and coverage in diverse retrieval495

scenarios. Overall, our method shows substan-496

tial and stable improvements in reranking dif-497

ferent API candidates compared to other mod-498

els, validating the effectiveness of our method499

for API recommendation. Further details on the500

above baselines can be found in Appendix A.5.501

Methods Comparison and Analysis. As illus-502

trated in Table 3, APIRanker demonstrates sev-503

eral key advantages over other reranking methods:504

(1) Its linear complexity O(N) ensures scalability, 505

making it suitable for large-scale applications. (2) 506

The pairwise training method improves its ability 507

to learn relevance preference, while the pointwise 508

inference ensures efficient inference. It achieves 509

higher accuracy with just 160M additional parame- 510

ters. (3) By leveraging semantic understanding of 511

relevance estimator, APIRanker excels in tasks that 512

require a deep comprehension of API documents in 513

comparison to models that rely solely on perplexity. 514

In the Appendix A.6, we provide further discussion 515

on PPL and log-probability based uncertainty. 516

Retrieval-augmented Completion Evaluation. 517

Using a retrieval-augmented generation approach, 518

we evaluated the performance of different rerank- 519

ing models in improving code completion perfor- 520

mance on Arctic-Embed 2.0. The experimental 521

results showed that: (1) As illustrated in Fig. 5(a), 522

APIRANKER consistently outperforms the no- 523

retrieval baseline and leads to stable improvements 524

in passing across both code LLMs, whereas other 525

reranking models (i.e., UPR, RG) cause perfor- 526

mance degradation. This decline can be attributed 527

to the noise of wrongly recommended APIs, which 528

disrupts the code LLM’s ability to generate code 529

that was previously correct. In contrast, API- 530

RANKER offers stable and reliable improvements 531

7

CodeLlama-Instruct-7b StarCoder2-7b
Models

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

Pa
ss

@
1

(a)
UPR
RG
APIRanker
no-retrieval

CodeLlama-Instruct-7b StarCoder2-7b
Models

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Im
pr

ov
e@

1

(b)
UPR
RG
APIRanker

Figure 5: Effect of API Recommendations on Code
Completion: Pass@1 and Improve@1 Evaluation for
CodeLlama-Instruct-7B and StarCoder2-7B. The top 10
documents were used as context, with the number of
documents incrementing from 1 to 10 in each trial. The
best result from 10 runs was reported.

Model
Recall@10

GIST-large Arctic-Embed

APIRANKER 25.50 32.36
w/o Perplexity Alignment 19.90 31.57
w/o Reasoning State Extractor 24.66 27.91
w/o Relevance Estimator 0.49 0.88

Table 4: Ablation study.

in retrieval-augmented generation, demonstrating532

practical usability in real-world applications. (2)533

As illustrated in Fig. 5(b), we analyze the per-534

centage of cases where recommended APIs enable535

code LLMs to correct outputs that it initially failed536

to generate (without recommended APIs). API-537

RANKER consistently outperforms other reranking538

models, achieving higher improvements in both539

code LLMs, highlighting its superior performance540

in scenarios where the code LLM’s capabilities fall541

short and external API knowledge is needed.542

Ablation Study. As illustrated in Table 4, we543

conduct an ablation study to assess the contribution544

of different techniques by removing key compo-545

nents (i.e., Perplexity Alignment via Comments,546

Hidden Reasoning State Extractor and Relevance547

Estimator) of our approach separately. The experi-548

mental results show that: (1) No matter which com-549

ponent we drop, it hurts the overall performance550

of our model, which signals the importance and551

effectiveness of all three components. (2) The re-552

call rate shows a significant drop in reranking per-553

formance on the candidate documents retrieved by554

GIST-large and Arctic-Embed 2.0 when the Hidden555

Reasoning State Extractor and Relevance Estimator556

are removed separately. Notably, the removal of the557

Relevance Estimator causes an enormous decrease,558

which makes the model fail to work properly. This559

I want to raise a 2-dimensional numpy array, let's call it A, to the power of some
number n, but I have thus far failed to find the function or operator to do that.
I'm aware that I could cast it to the matrix type and use the fact that then (similar
to what would be the behaviour in Matlab), A**n does just what I want, (for array
the same expression means elementwise exponentiation). Casting to matrix and
back seems like a rather ugly workaround though.
Surely there must be a good way to perform that calculation while keeping the
format to array?
```
import numpy as np
A = np.arange(16).reshape(4, 4)
n = 5
```

numpy.linalg.
matrix_power

16
2

1
18

2
41bmm()

addbmm()dot()

torch.nn.functional.
batch_norm

3
19

5
24

torch.dot

4
42 ...

Retrieval result = np.power(A, n)

Reranking result = np.linalg.matrix_power(A, n)

query

Top-k
APIs

Figure 6: The example of code completion based on
API recommendation.

justifies the importance and necessity of these two 560

components in our reranking model architecture. 561

Case Study and Manual Evaluation. As illus- 562

trated in Fig. 6, we present an example of genera- 563

tion using CodeLlama, based on API documents 564

retrieved (e.g., colored in red) by Arctic-Embed 2.0 565

and reranked by our model. The retrieved APIs 566

can’t properly handle matrix exponentiation for 567

Numpy, causing the completed code fails to pass 568

test cases. APIRANKER reranks the retrieved APIs 569

(e.g., colored in blue), successfully moving the cor- 570

rect API (e.g., colored in yellow) to the top, thus 571

enhancing the LLM to produce the correct solution. 572

This highlights that, APIRANKER can benefit au- 573

tomatic code completion task by providing more 574

accurate and effective API recommendations. In 575

addition, we conduct a manual evaluation to ver- 576

ify the validity of the relevance score predicted by 577

our framework. Further details can be found in 578

Appendix A.7. 579

5 Conclusions. 580

This research aims to recommend correct APIs to 581

enhance automatic code completion, by jointly con- 582

sidering both natural language intent and incom- 583

plete code. To perform this task, we propose an 584

approach APIRANKER that utilizes a self-learning 585

ranking framework to automatically construct train- 586

ing data. Then we propose a novel reranking model 587

to predict the relevance score between the API doc- 588

uments and the query, based on the LLM’s reason- 589

ing capabilities. The experimental results show the 590

effectiveness of our approach in both API recom- 591

mendation and automatic code completion. We 592

hope our study lays the foundations for this re- 593

search and provides valuable insights. 594

8

6 Limitations.595

Several limitations are concerned with our work.596

Firstly, due to the limited availability of code com-597

pletion test sets that support code evaluation in598

other languages, and the difficulty in constructing599

queries that simultaneously include both intent and600

incomplete code, our test is based on Python, one601

of the most popular programming languages used602

by developers. However, during the training of our603

method, we used data from two programming lan-604

guages Java and Python, and we believe that our605

approach can easily adapt to other programming606

languages. Secondly, our approach does not explic-607

itly create intent but rather leverages the language608

comprehension ability of LLMs to reduce the need609

for learning natural language intent. Exploring how610

to automatically generate high-quality intent from611

code is an interesting research topic for our future612

work.613

References614

Yujia Chen, Cuiyun Gao, Xiaoxue Ren, Yun Peng, Xin615
Xia, and Michael R Lyu. 2023. Api usage recom-616
mendation via multi-view heterogeneous graph rep-617
resentation learning. IEEE Transactions on Software618
Engineering, 49(5):3289–3304.619

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-620
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,621
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A622
pre-trained model for programming and natural lan-623
guages. arXiv preprint arXiv:2002.08155.624

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,625
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen626
Wang. 2023. Retrieval-augmented generation for627
large language models: A survey. arXiv preprint628
arXiv:2312.10997.629

Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and630
Sunghun Kim. 2016. Deep api learning. In Proceed-631
ings of the 2016 24th ACM SIGSOFT international632
symposium on foundations of software engineering,633
pages 631–642.634

Michael Günther, Jackmin Ong, Isabelle Mohr, Alaed-635
dine Abdessalem, Tanguy Abel, Mohammad Kalim636
Akram, Susana Guzman, Georgios Mastrapas, Saba637
Sturua, Bo Wang, et al. 2023. Jina embeddings 2:638
8192-token general-purpose text embeddings for long639
documents. arXiv preprint arXiv:2310.19923.640

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming641
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross-642
modal pre-training for code representation. arXiv643
preprint arXiv:2203.03850.644

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, 645
Zhiting Hu, Jason Weston, and Yuandong Tian. 2024. 646
Training large language models to reason in a contin- 647
uous latent space. arXiv preprint arXiv:2412.06769. 648

Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, 649
and Xinyu Wang. 2018. Api method recommenda- 650
tion without worrying about the task-api knowledge 651
gap. In Proceedings of the 33rd ACM/IEEE Interna- 652
tional Conference on Automated Software Engineer- 653
ing, pages 293–304. 654

Rasha Ahmad Husein, Hala Aburajouh, and Cagatay 655
Catal. 2024. Large language models for code com- 656
pletion: A systematic literature review. Computer 657
Standards & Interfaces, page 103917. 658

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, 659
and Sunghun Kim. 2024. A survey on large lan- 660
guage models for code generation. arXiv preprint 661
arXiv:2406.00515. 662

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, 663
Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih, Daniel 664
Fried, Sida Wang, and Tao Yu. 2023. Ds-1000: A 665
natural and reliable benchmark for data science code 666
generation. In International Conference on Machine 667
Learning, pages 18319–18345. PMLR. 668

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan 669
Raiman, Mohammad Shoeybi, Bryan Catanzaro, and 670
Wei Ping. 2024. Nv-embed: Improved techniques for 671
training llms as generalist embedding models. arXiv 672
preprint arXiv:2405.17428. 673

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris 674
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian 675
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku- 676
mar, et al. 2022. Holistic evaluation of language 677
models. arXiv preprint arXiv:2211.09110. 678

Chunyang Ling, Yanzhen Zou, and Bing Xie. 2021. 679
Graph neural network based collaborative filtering 680
for api usage recommendation. In 2021 IEEE Inter- 681
national Conference on Software Analysis, Evolution 682
and Reengineering (SANER), pages 36–47. IEEE. 683

Mingwei Liu, Tianyong Yang, Yiling Lou, Xueying Du, 684
Ying Wang, and Xin Peng. 2023. Codegen4libs: A 685
two-stage approach for library-oriented code gener- 686
ation. In 2023 38th IEEE/ACM International Con- 687
ference on Automated Software Engineering (ASE), 688
pages 434–445. IEEE. 689

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed- 690
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi, 691
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, 692
et al. 2024. Starcoder 2 and the stack v2: The next 693
generation. arXiv preprint arXiv:2402.19173. 694

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung- 695
won Hwang, and Alexey Svyatkovskiy. 2022. Reacc: 696
A retrieval-augmented code completion framework. 697
arXiv preprint arXiv:2203.07722. 698

9

Zexiong Ma, Shengnan An, Bing Xie, and Zeqi Lin.699
2024. Compositional api recommendation for library-700
oriented code generation. In Proceedings of the 32nd701
IEEE/ACM International Conference on Program702
Comprehension, pages 87–98.703

Marcellino Marcellino, Davin William Pratama,704
Steven Santoso Suntiarko, and Kristien Margi. 2021.705
Comparative of advanced sorting algorithms (quick706
sort, heap sort, merge sort, intro sort, radix sort) based707
on time and memory usage. In 2021 1st International708
Conference on Computer Science and Artificial Intel-709
ligence (ICCSAI), volume 1, pages 154–160. IEEE.710

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and711
Nils Reimers. 2022. Mteb: Massive text embedding712
benchmark. arXiv preprint arXiv:2210.07316.713

Noor Nashid, Taha Shabani, Parsa Alian, and Ali714
Mesbah. 2024. Contextual api completion for715
unseen repositories using llms. arXiv preprint716
arXiv:2405.04600.717

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad718
Saqib, Saeed Anwar, Muhammad Usman, Naveed719
Akhtar, Nick Barnes, and Ajmal Mian. 2023. A720
comprehensive overview of large language models.721
arXiv preprint arXiv:2307.06435.722

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,723
Carroll Wainwright, Pamela Mishkin, Chong Zhang,724
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.725
2022. Training language models to follow instruc-726
tions with human feedback. Advances in neural in-727
formation processing systems, 35:27730–27744.728

Arnold Overwijk, Chenyan Xiong, Xiao Liu, Cameron729
VandenBerg, and Jamie Callan. 2022. Clueweb22:730
10 billion web documents with visual and semantic731
information. arXiv preprint arXiv:2211.15848.732

Md Rizwan Parvez, Wasi Uddin Ahmad, Saikat733
Chakraborty, Baishakhi Ray, and Kai-Wei Chang.734
2021. Retrieval augmented code generation and sum-735
marization. arXiv preprint arXiv:2108.11601.736

Yun Peng, Shuqing Li, Wenwei Gu, Yichen Li, Wenx-737
uan Wang, Cuiyun Gao, and Michael R Lyu. 2022.738
Revisiting, benchmarking and exploring api recom-739
mendation: How far are we? IEEE Transactions on740
Software Engineering, 49(4):1876–1897.741

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang,742
Junru Wu, Le Yan, Jiaming Shen, Tianqi Liu, Jialu743
Liu, Donald Metzler, et al. 2023. Large language744
models are effective text rankers with pairwise rank-745
ing prompting. arXiv preprint arXiv:2306.17563.746

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten747
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,748
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.749
Code llama: Open foundation models for code. arXiv750
preprint arXiv:2308.12950.751

Devendra Singh Sachan, Mike Lewis, Mandar Joshi, 752
Armen Aghajanyan, Wen-tau Yih, Joelle Pineau, and 753
Luke Zettlemoyer. 2022. Improving passage retrieval 754
with zero-shot question generation. arXiv preprint 755
arXiv:2204.07496. 756

Aivin V Solatorio. 2024. Gistembed: Guided in-sample 757
selection of training negatives for text embedding 758
fine-tuning. arXiv preprint arXiv:2402.16829. 759

Yanlin Wang, Yanli Wang, Daya Guo, Jiachi Chen, 760
Ruikai Zhang, Yuchi Ma, and Zibin Zheng. 2024a. 761
Rlcoder: Reinforcement learning for repository-level 762
code completion. arXiv preprint arXiv:2407.19487. 763

Yong Wang, Yingtao Fang, Cuiyun Gao, and Linjun 764
Chen. 2024b. Api recommendation for novice pro- 765
grammers: Build a bridge of query-task knowledge 766
gap. IEEE Transactions on Reliability. 767

Zora Z. Wang, Akari Asai, Xinyan V. Yu, Frank F. Xu, 768
Yiqing Xie, Graham Neubig, and Daniel Fried. 2024c. 769
Coderag-bench: Can retrieval augment code genera- 770
tion? arXiv preprint arXiv:2406.14497. 771

Moshi Wei, Nima Shiri Harzevili, Alvine Boaye Belle, 772
Junjie Wang, Lin Shi, Song Wang, and Zhen Ming 773
Jiang. 2023. A survey on query-based api recommen- 774
dation. arXiv preprint arXiv:2312.10623. 775

Moshi Wei, Nima Shiri Harzevili, Yuchao Huang, Junjie 776
Wang, and Song Wang. 2022. Clear: contrastive 777
learning for api recommendation. In Proceedings 778
of the 44th International Conference on Software 779
Engineering, pages 376–387. 780

Di Wu, Xiao-Yuan Jing, Hongyu Zhang, Yang Feng, 781
Haowen Chen, Yuming Zhou, and Baowen Xu. 2023. 782
Retrieving api knowledge from tutorials and stack 783
overflow based on natural language queries. ACM 784
Transactions on Software Engineering and Method- 785
ology, 32(5):1–36. 786

Puxuan Yu, Luke Merrick, Gaurav Nuti, and Daniel 787
Campos. 2024. Arctic-embed 2.0: Multilingual 788
retrieval without compromise. arXiv preprint 789
arXiv:2412.04506. 790

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin 791
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and 792
Weizhu Chen. 2023a. Repocoder: Repository-level 793
code completion through iterative retrieval and gen- 794
eration. arXiv preprint arXiv:2303.12570. 795

Jingxuan Zhang, He Jiang, Zhilei Ren, and Xin Chen. 796
2017. Recommending apis for api related questions 797
in stack overflow. IEEE Access, 6:6205–6219. 798

Kechi Zhang, Huangzhao Zhang, Ge Li, Jia Li, Zhuo 799
Li, and Zhi Jin. 2023b. Toolcoder: Teach code gener- 800
ation models to use api search tools. arXiv preprint 801
arXiv:2305.04032. 802

Shuyan Zhou, Uri Alon, Frank F Xu, Zhiruo 803
Wang, Zhengbao Jiang, and Graham Neubig. 2022. 804
Docprompting: Generating code by retrieving the 805
docs. arXiv preprint arXiv:2207.05987. 806

10

A Appendix807

A.1 Dataset Construction Details808

We collect 110,646 API documentations from the809

dataset CodeRAG-bench (Wang et al., 2024c) as810

retrieval sources. These documents come from two811

main sources: official Python library documenta-812

tion provided by devdocs.io4 and content obtained813

from ClueWeb22 (Overwijk et al., 2022), a large-814

scale web corpus, covering a wide range of topics,815

from basic programming techniques to advanced816

library usage. Each page in ClueWeb22 includes817

code snippets and textual explanations. An API818

documentation typically includes the API’s pur-819

pose, function description, input parameters, out-820

put values, and example requests and responses.821

Howerever, we take into account the diversity of822

API descriptions in real-world scenarios and do not823

strictly restrict the structure or form of API docu-824

ments, as long as they can be converted into text or825

code formats.826

To support efficient vector queries based on co-827

sine similarity, we create vector search libraries828

using Milvus5, a high-performance vector database829

designed for scalability and providing fast, scalable830

similarity search and retrieval.831

In the training and evaluation data, for a spe-832

cific code file that has cross-file dependencies,833

we treat all the dependency files (i.e., both di-834

rect and indirect dependencies) of the code file835

as the candidate documentation for the code file.836

For the test data, we select DS-1000 (Lai et al.,837

2023) as the query (i.e., NL intent and incom-838

plete code) and code completion dataset, which839

includes general open-domain coding completion840

tasks (e.g., Matplotlib, Numpy, Pandas, Sklearn,841

Tensorflow).842

A.2 Baselines Setup detail843

Retrieval Baselines. Since the performance of844

code retrieval models (e.g., Unixcoder, Code-845

Bert (Feng et al., 2020), jina-base-v2-code (Gün-846

ther et al., 2023)) is not ideal (with poor retrieval847

performance), we do not conduct reranking experi-848

ments on it. Additionally, CodeBert and jina-base-849

v2-code are unable to recall any relevant API doc-850

uments in the top 50, we do not report retrieval851

results for these models.852

We consider the following retrieval baselines,853

which are dense retrievers that encode both the854

4https://devdocs.io
5https://github.com/milvus-io/milvus

query and code documentation into vector spaces 855

for retrieving semantically relevant documenta- 856

tion based on vector similarity: (1) Unixcoder: 857

Unixcoder (Guo et al., 2022) is a unified cross- 858

modal pre-trained model for programming lan- 859

guage. (2) GIST-large: GIST-large (Solatorio, 860

2024) is a method that improves text embedding 861

fine-tuning by selectively choosing negative sam- 862

ples. (3) Arctic-Embed 2.0: Arctic-Embed 2.0 (Yu 863

et al., 2024) is an open-source text embedding 864

model built for accurate and efficient multilingual 865

retrieval. (4) NV-Embed-v2: NV-Embed-v2 (Lee 866

et al., 2024) is a generalist embedding model that 867

ranks No. 1 in the retrieval sub-category of the Mas- 868

sive Text Embedding (MTEB) leaderboard (Muen- 869

nighoff et al., 2022). GIST-large and Arctic-Embed 870

2.0 are also ranked highly on the MTEB leader- 871

board. 872

Considering the context limitations of retrieval 873

and code generation, as well as the excessive length 874

of some API documentation, the retrieval model’s 875

maximum token encoding length is uniformly set 876

to 512. An API documentation typically includes 877

the API’s purpose, function description, input pa- 878

rameters, output values, and example requests and 879

responses. Most API documentation includes es- 880

sential information, and although some longer API 881

docs may be truncated at the "example" section, 882

the necessary details, including the description of 883

the API’s role and function, are typically present 884

within the first 512 tokens. 885

Reranking Baselines. We consider the following 886

reranking baselines, which are based on LLMs: 887

(1) Unsupervised Passage Re-ranker (UPR): 888

UPR (Sachan et al., 2022) is a pointwise approach 889

based on query generation. The prompt template 890

for UPR is shown in Fig. 7. In this approach, the 891

relevance score of an API document d to the query 892

q is measured by the probability of generating the 893

query.

• Instruction: Please write a question based on this pas-
sage.
• Passage: d
• Question: q

Figure 7: The prompt template for UPR. d is the API
document, q is the query.

894
(2) Relevance Generation (RG): RG (Liang 895

et al., 2022) is a pointwise approach based on rele- 896

vance generation. The prompt template for RG is 897

shown in Fig. 8. In this approach, the relevance of 898

11

https://devdocs.io
https://github.com/milvus-io/milvus

an API document d to the query q is defined as:899

si =

{
1 + p(Yes), if output Yes
1− p(No), if output No

(13)900

where p(Yes) and p(No) denote the probabilities901

of LLMs generating the tokens of “Yes” or “No”902

respectively.

• Instruction: Does the passage answer the query?
• Passage: d
• Query: q

Figure 8: The prompt template for UPR. d is the API
document, q is the query.

903
(3) Pairwise Ranking Prompting- Sorting904

(PRP-Sorting): PRP-Sorting (Qin et al., 2023) is905

a pairwise method based on the log-likelihood of906

document generation, and it optimizes time com-907

plexity through heap sort algorithm (Marcellino908

et al., 2021). The prompt template for PRP-Sorting909

is shown in Fig. 9. In this approach, to compare910

two API documents dA and dB , the one that is911

more relevant to the query q is determined based912

on which has a higher probability of generating913

“Passage A” or “Passage B”.

• Instruction: Given a query “q”, which of the following
two passages is more relevant to the query?
• Passage A: dA
• Passage B: dB

Figure 9: The prompt template for PRP-Sorting and
PRP-Sliding. d is the API document, q is the query.

914
(4) Pairwise Ranking Prompting-Sliding915

(PRP-Sliding): PRP-Sliding is a variant of PRP,916

which is based on the sliding window approach.917

The prompt template and comparison function for918

PRP-Sliding are the same as those for PRP-Sorting.919

(5) RepoCoder: RepoCoder (Zhang et al.,920

2023a) is a reranking method through iterative re-921

trieval of code snippets based on the result of code922

generation. The API documentation is provided923

as retrieval source for the RepoCoder. We con-924

ducted the experiment using a 2-iteration approach,925

following the method described in the RepoCoder926

paper.927

In order to comparing the performence of928

different reranking methods, we uniformly use929

CodeLlama-Instrcut-7B as the base LLMs. The930

comparison between methods is made using the931

same retrieval source. The maximum token length932

of an API document is set to 512.933

The baseline of API recommendations. We 934

adopt two common approaches of API recommen- 935

dations: (1) BIKER (Huang et al., 2018): BIKER 936

is an API recommendation approach that bridges 937

lexical and knowledge gaps by using word embed- 938

dings for similarity and similar questions retrieval 939

for supplementary information. Here, we take the 940

queries in the test set as the source of similar ques- 941

tions. (2) GAPI (Ling et al., 2021): GAPI uses 942

the code context as the query for API usage rec- 943

ommendation and employs graph neural networks 944

to capture high-order collaborative signals. How- 945

ever, due to differences in task setup and dataset, 946

the project structure information is not available in 947

our dataset. We only used text attributes to nodes 948

as input for API prediction since lacking project 949

structural information in our datasets. 950

Code Completion Baselines. For automatic 951

code completion, we consider the following code 952

LLMs: (1) Starcoder2-7B (Lozhkov et al., 2024), 953

which is trained on a vast programming dataset 954

and achieves superior performance on code-related 955

tasks. (2) CodeLlama-Instruct-7B (Roziere et al., 956

2023), which is a fine-tuned version of Code Llama, 957

optimized to follow natural language instructions 958

for code generation. 959

A.3 Implementation Details 960

In our approach, we chose CodeLlama-Instruct-7B 961

as the perplexity evaluator in the self-supervised 962

learning ranking framework and as the base LLM 963

of the reranking model. Additionally, UnixCoder is 964

chosen as the retriever in the self-supervised learn- 965

ing ranking framework and as the initial weight 966

of the hidden reasoning state extractor. All experi- 967

ments were conducted on two A800 GPUs. 968

In our self-supervised learning ranking frame- 969

work, we set the total length of the incomplete 970

code and the target code to be no more than 1024 971

tokens, ensuring that the ratio of 0.4 to 0.5 of the 972

total length is considered as the incomplete code. 973

The prompt template for the perplexity evaluator is 974

shown in 10. 975

In the design of the reranking model, we set 976

the number of learnable vectors in the hidden rea- 977

soning state extractor to 32. We employed the 978

AdamW optimizer with a learning rate of 1e-4. 979

The learning rate schedule was managed using the 980

WarmupCosineLR scheduler, where the learning 981

rate linearly warms up for the first 75 steps and then 982

follows a cosine decay towards a minimum ratio 983

12

of 0.0001 over a total of 750 steps. The batch size984

was set to 384, and the number of gradient accumu-985

lation steps was 4. The input length was capped at986

a maximum of 1152 tokens. We constructed pairs987

from a set of 4 documents, selected evenly based988

on the difference in values from the perplexity eval-989

uator, chosen from the top 20 candidate documents990

retrieved by the retriever. The prompt template for991

training is shown in Fig. 10. During the inference992

stage, we reranked the top 50 documents retrieved993

by different retrieval models. The input length was994

capped at a maximum of 1600 tokens. The prompt995

template for inference was the same as for training.996

• Instruction: Refer to the following documentation (be-
tween “— Documentation —” and “— End Documentation
—”) to complete the code.
• API document: d
• query: q

Figure 10: The prompt template for APIRANKER. d is
the API document, q is the query.

For retrieval-augmented code completion, we997

use top-k API documents as a context for auto-998

matic code completion, keeping only the first 512999

tokens in each document. The prompt template of1000

retrieval-augmented code completion is shown in1001

Fig. 11. During decoding, code is generated using1002

greedy decoding. The length of the output to a1003

maximum of 2048 tokens.1004

• Instruction: Refer to the following documentation (be-
tween “— Documentation —” and “— End Documentation
—”) to complete the code. Based on the following prob-
lem description and existing code, please write the code
to achieve the desired output. Place the executable code
between <code> and </code> tags, without any other non-
executable things.
• the top-k API documents: d1, ..., dk
• query: q

Figure 11: The prompt template for PRP-Sorting and
PRP-Sliding. di is the i-th API document, q is the query.

A.4 Evaluation Metrics1005

To evaluate the performance of API recommen-1006

dation, we report the common evaluation met-1007

rics (Zhang et al., 2017; Wei et al., 2023): (1) Re-1008

call@k, measures the proportion of correct API1009

documents in the the top-k recommendation results.1010

It is defined as follows:1011

Recall@k =
R
N
, (14)1012

where N is the total number of relevant documents,1013

and R is the number of relevant documents in top-k1014

recommended results. (2) NDCG@k, evaluates 1015

the ranking of correct documents in the top-k rec- 1016

ommendation results. As a normalized Discounted 1017

Cumulative Gaine, NDCG is calculated by dividing 1018

by a special ideal DCG, where all relevant docu- 1019

ments are ranked higher than irrelevant ones. It is 1020

defined as: 1021

NDCG@k =
DCG@k

ideal DCG@k
, (15) 1022

DCG@k =
k∑

i=1

2rel(i) − 1

log2(i+ 1)
, (16) 1023

where i represents the rank. rel(i) is a binary func- 1024

tion to check whether the API in rank i is correct 1025

or not. If the API at rank i is a correct API, then 1026

the value rel(i) is 1; otherwise, the value is 0. (3) 1027

MRR@k, represents the reciprocal of the position 1028

where the first correct API appears in the top-k 1029

recommendation results. It is defined as: 1030

MRR@k =
1

|Q|

Q∑
j=1

1

k_Ranki
, (17) 1031

where |Q| is the number of queries Q, and 1032

k_Ranki means the rank position of the first cor- 1033

rect answer in the top k recommended list for the 1034

i-th query. (4) Mean Average Precision (MAP), 1035

evaluates the overall performance by taking into 1036

account the ranking of correct API documents. It 1037

is defined as: 1038

MAP =
1

|Q|

Q∑
j=1

∑n
i=1(P (i)× rel(i))
#correct answers

, (18) 1039

P (i) =
#correct answers in top i

i
, (19) 1040

where p(i) is the precision at a given cut-off rank i. 1041

The value of k is set to 10, and n is set to 50. We 1042

use Recall@k as the primary metric since retrieval- 1043

augmented generation primarily relies on key infor- 1044

mation that appears in the context. 1045

To evaluate the performance of code completion 1046

based on API recommendation, we adopt Pass@k 1047

and Improve@k metrics to measure the execution 1048

correctness of programs: (1) Pass@k, is an evalua- 1049

tion metric that has been widely used in previous 1050

work (Jiang et al., 2024), computing the fraction 1051

of problems having at least one correct prediction 1052

within k samples. It is defined as: 1053

pass@k := Etask

[
1−

(
n−c
k

)(
n
k

)]
, (20) 1054

13

where n is the total number of sampled candidate1055

code solutions, k is the number of randomly se-1056

lected code solutions from these candidates for1057

each programming problem, with n ≥ k, and c is1058

the count of correct samples within the k selected.1059

(2) Improve@k, is the proportion of cases in which1060

the code LLM generates the correct output with1061

the recommended API documentation, compared1062

to when it initially failed without the recommended1063

API documentation. It is defined as:1064

Improve@k =

∑m
i=1 correct(i)

#failures in k samples
, (21)1065

where m is the number of problems that initially1066

failed to generate the code in the k samples, and1067

correct(i) is 1 if the i-th problem passes in the k1068

samples, and 0 if it fails. The value of k is set to 11069

in our experiment. Given the differences in the ca-1070

pabilities of code LLMs, there are instances where1071

a model, initially capable of generating correct out-1072

puts, may fail when code completion is based on1073

API documents. Therefore, we use Improve@k to1074

explore the potential for improvement.1075

A.5 Experimental Comparison of API1076

Recommendation.1077

The results show that APIRanker significantly out-1078

performs both BIKER and GAPI, demonstrating its1079

superior effectiveness over query-based methods1080

and code context-based method, verifying the ef-1081

fectiveness of APIRanker for combining user intent1082

and code context for API recommendation.1083

Based on the experimental results, our model1084

APIRanker is bertter than RepoCoder. (1) API-1085

Ranker significantly outperforms RepoCoder in1086

terms of different retrieval methods. This advan-1087

tage is likely due to the larger scale of API docu-1088

ment retrieval, which recalls a much larger num-1089

ber of similar documents compared to repository-1090

level code retrieval. (2) APIRanker achieves consis-1091

tent performance improvements, while Repocoder1092

is more dependent on the quality of the retrieval1093

model. For example, RepoCoder experiences a1094

notable decline in terms of using GIST-large and1095

Arctic-Embed, but shows an improvement when1096

paired with the strong retrieval model NV-Embed-1097

v2.1098

A.6 Discussing PPL and Log-Probability1099

Based Uncertainty.1100

PPL is the exponentiated average of the log-1101

probability based uncertainty, which is more suit-1102

able for assessing the overall model performance, 1103

as it aggregates token-level uncertainties into a 1104

comprehensive score. While the Log-Probability 1105

based uncertainty is used to calculate the genera- 1106

tion probability of each token, which offers more 1107

granular insight on individual token-level. In terms 1108

of our research of code completion, we care more 1109

about the model’s ability to generate complete code 1110

sequence, thus PPL is more appropriate. Regarding 1111

tasks for more detailed token-level analysis (e.g., 1112

keyword analysis, code style analysis), examining 1113

log-probability based uncertainty could be more 1114

informative. 1115

A.7 Manual Evaluation. 1116

To further validate the effectiveness of our refer- 1117

ence, we conduct a user study. In particular, we 1118

randomly select 100 training API-query pairs that 1119

are scored based on our framework and asked 3 1120

users (each with over 4 years of programming ex- 1121

perience) to assess them. Users are asked to answer 1122

the question: “Which of the two API documents 1123

is more helpful for the query?”, and every user is 1124

provided with three options (i.e., A is Better, B 1125

is Better, Cannot Determine/Both Equally). We 1126

calculate the agreement ratio between the manual 1127

evaluations and the automated scores. The results 1128

of the user study are as follows: 1129

Consistency Inconsistency Indeterminate
85% 11% 4%

Table 5: The result of the user study.

We calculate the Pearson correlation between 1130

the manual evaluations and the automated scores. 1131

The high consistency ratio of 94.8% indicates that 1132

our method aligns well with human evaluations, 1133

demonstrating its effectiveness in generating train- 1134

ing data for API reranking. 1135

14

	Introduction
	Related Work
	Methodology
	Task Definition
	Self-supervised Ranking Framework
	API Reranking Model Architecture
	Training and Inference

	Experiments
	Experimental Setup
	Experimental Results

	Conclusions.
	Limitations.
	Appendix
	Dataset Construction Details
	Baselines Setup detail
	Implementation Details
	Evaluation Metrics
	Experimental Comparison of API Recommendation.
	Discussing PPL and Log-Probability Based Uncertainty.
	Manual Evaluation.

