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Abstract

Clinical laboratory tests provide essential biochemical measurements for diagnosis1

and treatment, but are limited by intermittent and invasive sampling. In contrast,2

photoplethysmogram (PPG) is a non-invasive, continuously recorded signal in3

intensive care units (ICUs) that reflects cardiovascular dynamics and can serve as a4

proxy for latent physiological changes. We propose UNIPHY+Lab, a framework5

that combines a large-scale PPG foundation model for local waveform encoding6

with a patient-aware Mamba model for long-range temporal modeling. Our ar-7

chitecture addresses three challenges: (1) capturing extended temporal trends in8

laboratory values, (2) accounting for patient-specific baseline variation via FiLM-9

modulated initial states, and (3) performing multi-task estimation for interrelated10

biomarkers. We evaluate our method on the two ICU datasets for predicting the five11

key laboratory tests. The results show substantial improvements over the LSTM12

and carry-forward baselines in MAE, RMSE, and R2 among most of the estima-13

tion targets. This work demonstrates the feasibility of continuous, personalized14

lab value estimation from routine PPG monitoring, offering a pathway toward15

non-invasive biochemical surveillance in critical care.16

1 Introduction17

Clinical laboratory tests are fundamental to modern medicine, providing quantitative measures18

that guide diagnosis, risk stratification, and treatment [22]. Core components such as electrolytes,19

lactate, blood glucose, and acid–base markers offer critical insights into a patient’s metabolic,20

renal, and perfusion status [2]. However, these tests are inherently intermittent and invasive [19],21

typically requiring venous or arterial blood draws. Arterial sampling for acid–base analysis is22

particularly painful, technically challenging, and requires trained personnel [27], while samples23

must be processed immediately under strict handling conditions. Even in the intensive care unit24

(ICU), where labs are ordered more frequently, the temporal sparsity of these measurements makes it25

difficult to capture rapid changes in physiological parameters related to blood flow, metabolism, or26

acid–base balance [6]. In contrast, ICU monitors continuously collect high-frequency, non-invasive27

physiological signals such as photoplethysmography (PPG), which reflects cardiovascular dynamics28

and is automatically acquired via bedside sensors. Because PPG is already widely available and29

recorded without additional effort or discomfort, it presents an opportunity to estimate hidden30

physiological changes [23].31

Recent studies have demonstrated the utility of deep learning models applied to PPG for disease32

detection and physiological parameter estimation. Applications include cardiovascular conditions33
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such as hypertension and atrial fibrillation [9, 3, 13, 7] as well as parameters like heart rate and blood34

pressure [24]. More recently, large-scale PPG foundation models (FMs) [21, 18, 5, 1] have shown35

strong generalization across downstream tasks and early evidence of estimating lab-like variables such36

as glucose trends. While promising, these capabilities have been explored only in narrow contexts and37

remain in their early stages, leaving open the question of whether PPG FMs can be extended to formal38

clinical laboratory test estimation. However, a major barrier is that current PPG FMs operate on short39

input segments (5–30s), focusing on instantaneous cardiovascular features rather than the long-term40

temporal patterns needed to model biochemical processes that evolve over minutes to hours. Clinical41

laboratory tests differ fundamentally from vital signs in that they reflect the underlying metabolic and42

homeostatic processes, which require extended temporal contexts to estimate [16]. To our knowledge,43

no prior work has combined PPG foundation models with long-range sequence modeling to estimate44

a standard clinical laboratory panel from continuous waveform data.45

To address this gap, we propose UNIPHY+Lab, a framework for predicting clinical laboratory46

parameters directly from continuous PPG waveforms. Our method combines a PPG-based foundation47

model for local feature extraction with a state-space model (SSM) that integrates information over48

extended time windows. We address three key challenges: (1) modeling long-range temporal49

trends in lab values, (2) accounting for patient-specific baseline variation, and (3) performing multi-50

task, multi-channel estimation for interrelated labs. Our results on two ICU datasets demonstrate51

that UNIPHY+Lab can provide high-temporal-resolution lab estimates without invasive sampling,52

enabling continuous and personalized biochemical monitoring in the ICU.53
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Figure 1: Overview of the UNIPHY+Lab framework. Continuous
PPG waveforms are segmented into short windows and encoded
by a pretrained foundation model (PPG-GPT) to capture local
cardiovascular dynamics. These embeddings are processed by
a multi-layer Mamba-based state-space model (SSM) to capture
long-range temporal dependencies. Patient-specific conditioning
is introduced via a personalized initialization of the SSM state,
and multi-task regression heads estimate trajectories for multiple
laboratory biomarkers.

To address the challenges of55

long-range physiological mod-56

eling, multi-task clinical lab es-57

timation, and patient-specific58

variability, we propose a novel59

architecture UNIPHY+Lab, as60

illustrated in Figure 1. UNI-61

PHY+Lab consists of three62

core components: a foundation63

model-based local encoder, a64

patient-aware state-space model65

for long-range temporal model-66

ing, and a multi-head lab estima-67

tion module with task-specific68

decoding for estimation.69

Local PPG Feature Encoder70

via Foundation Model For the71

continuous PPG waveform in-72

put, we first segment it into73

fixed length windows (30 sec-74

onds in our study) and encode each window using a pretrained transformer-based foundation model.75

In this work, we adopt the PPG-GPT model [5], which has four different scales: 19 M (selected76

for this work), 85 M, 345 M, and 1B parameters are pretrained with 200 million 30-second PPG77

samples. For a window, the encoder splits the 30-second 40 Hz PPG signal into 30 non-overlapping78

patches as the input sequence of the GPT architecture. Then, we select the output feature of the79

last patch as the representation embedding for the current encoding window. This encoder captures80

local morphology and short-range waveform dynamics such as pulse shape, rhythm, and variability.81

These representations serve as localized features encoding the immediate cardiovascular context. The82

encoder can be optionally fine-tuned on the downstream task to adapt to the target lab prediction83

domain.84

Long-Range Continuous Modeling via SSM To track latent physiological changes over extended85

time windows, we employ a stack (default 4 layers) of SSM blocks built upon the Mamba architec-86

ture [11] as the backbone encoder. Each state space block contains two sequential components: a state87

space layer with a selective scan mechanism that updates temporal memory across the entire sequence,88
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and a gated multilayer perceptron (gMLP) network that enhances nonlinear representations [20].89

By maintaining internal hidden states that evolve across time, these SSM blocks enable the model90

to accumulate long-range dependencies, which are critical for continuous modeling and accurate91

laboratory value prediction.92

Patient Conditioning Initial State for SSM The recent study [4] demonstrated that the length93

generalization of SSM models can benefit from initial state interventions (such as State Passing94

and Truncated Backpropagation Through Time). The core idea of the initial state intervention is95

to make the initial state "attainable," thereby decoupling the state position information from the96

state distribution. Inspired by the initial state intervention, we adopt a learnable initial state for97

the long-range continuous SSM. Meanwhile, we note that physiological waveforms often exhibit98

individual-specific distributions, making them potentially more personally identifiable than language99

data (the inputs of the empirical study in [4]). Hence, we incorporate a FiLM-like [17, 25] patient-100

specific modulation into the initialization of the SSM state.101
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Figure 2: The Patient Conditioning Ini-
tial State (PCS) module enables the
model to capture patient-specific lab tra-
jectories more effectively.

As illustrated in Figure 2, the patient conditioning ini-102

tial state (PCS) base is integrated from the embedding103

for multiple average results from different history labs.104

The initial state will be modulated by another embedding105

vector, which is the mean pooling of randomly sampled106

waveform embeddings of the same patient’s history. This107

initial state will participate in the state transitions, enabling108

the model to adapt its trajectory dynamics based on the109

patient’s context. (the gradient backpropagation of PCS110

in Appendix B)111

Multiple Lab Estimation and Multi-task Learning To112

address the heterogeneity of lab values, we adopt a multi-113

task prediction strategy in which each target biomarker is114

modeled using a distinct task layer. This design enables115

the architecture to specialize in both the statistical distribu-116

tion and temporal dynamics of each biomarker. For each117

lab k, the corresponding task layer includes a lab-specific118

SSM block and an estimation head. It receives the shared119

temporal representation from the backbone encoder and120

outputs a scalar lab value prediction. The lab-specific121

regression SSM block also includes a PCS module, but122

conditioned on a single lab’s historical values. During123

training, we ensure causal estimation by using only fea-124

tures available prior to the target lab measurement. Ground-truth values are linearly interpolated to125

align with the SSM outputs, and training is guided by a multi-task loss [14] with uncertainty-based126

weighting Ltotal =
∑N

i=0

(
1

2σ2
i
Li + log(σi)

)
, where Li denotes the MAE loss for the i-th task and127

σi is a learnable task-specific uncertainty parameter. This formulation allows the model to adaptively128

balance the contribution of each task according to its estimated uncertainty.129

3 Experiment and Results130

We chose five biomarkers as the estimation targets: Potassium, Calcium, Sodium, Glucose, Lactate,131

and used two large-scale ICU datasets: institutional data (3,796 patients) [8, 26] and MIMIC-III132

(4,146 patients) [15, 12, 10]. We compare our method with two baselines: a Long Short-Term133

Memory (LSTM) model to integrate a fixed-length (default 10 embeddings for 5 minutes) window134

of the PPG Foundation Model embeddings and a non-parametric last observation carried forward135

(LOCF) baseline. (the experiment details are in Appendix A)136

As shown in Table 1, we report standard regression metrics including mean absolute error (MAE),137

mean error (ME), root mean squared error (RMSE), and coefficient of determination (R2) on both138

datasets. We report both ME and RMSE together, as ME quantifies prediction bias while RMSE139

reflects the variance and overall dispersion of errors. We observe that the baseline LSTM model140

and UNIPHY+Lab without the PCS have much larger errors and lower R2 coefficients than LOCF.141

That indicates the baseline model, which relies on short windows of FM embeddings, struggles to142
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Table 1: Performance comparison on Institutional and MIMIC-III datasets across different lab
estimation tasks, where ST, MT, and PCS refer to single-task, multi-task, and patient conditioning
initial state, respectively. Best results are bolded.

Tasks Methods Institutional MIMIC-III

MAE ME RMSE R2 MAE ME RMSE R2

Potassium

LSTM 0.450 0.084 0.637 -0.022 0.460 -0.022 0.619 -0.044
LOCF 0.376 -0.015 0.659 -0.046 0.118 -0.005 0.182 0.155
Our+MT 0.416 -0.017 0.623 0.002 0.135 -0.028 0.191 0.003
Our+ST+PCS 0.313 -0.029 0.488 0.389 0.110 -0.015 0.156 0.345
Our+MT+PCS 0.311 -0.014 0.484 0.397 0.099 -0.028 0.138 0.460

Calcium

LSTM 0.549 -0.039 0.771 -0.010 0.638 0.057 0.860 -0.059
LOCF 0.296 -0.010 0.477 0.587 0.191 0.011 0.310 0.486
Our+MT 0.549 0.016 0.727 0.004 0.319 -0.017 0.432 0.024
Our+ST+PCS 0.287 0.000 0.426 0.650 0.197 -0.021 0.325 0.460
Our+MT+PCS 0.284 -0.004 0.422 0.662 0.195 -0.001 0.295 0.613

Sodium

LSTM 3.586 0.420 4.846 -0.003 4.861 0.444 6.509 -0.095
LOCF 1.873 -0.097 2.755 0.742 1.401 0.114 2.074 0.731
Our+MT 3.785 0.115 5.244 0.001 3.028 0.397 3.951 -0.002
Our+ST+PCS 2.045 0.024 2.910 0.691 1.774 -0.066 2.418 0.600
Our+MT+PCS 2.015 -0.002 2.863 0.702 1.737 0.232 2.389 0.658

Glucose

LSTM 39.366 -5.826 64.816 -0.009 36.220 -3.598 57.012 -0.024
LOCF 36.143 -3.006 77.351 -0.188 13.693 -0.800 28.113 -0.145
Our+MT 39.321 -13.450 69.252 -0.029 13.899 -5.165 25.350 -0.038
Our+ST+PCS 31.917 -6.009 62.047 0.230 12.254 -4.534 20.705 0.230
Our+MT+PCS 31.926 -5.940 59.538 0.240 11.044 -2.927 19.380 0.285

Lactate

LSTM 1.781 -0.203 3.146 0.009 1.243 0.335 1.960 0.071
LOCF 0.736 -0.180 1.318 0.505 0.542 -0.152 0.905 0.577
Our+MT 1.070 -0.558 2.113 0.003 0.892 -0.667 1.187 0.063
Our+ST+PCS 0.719 -0.151 1.289 0.518 0.579 -0.162 1.037 0.523
Our+MT+PCS 0.752 -0.112 1.390 0.568 0.582 -0.139 0.985 0.557

capture meaningful relationships between physiological states and lab values with an independent143

and identically distributed (i.i.d.) assumption on the embeddings and lab values pairs. Although144

UNIPHY+Lab without PCS achieved higher performance than baseline LSTM, it still suffers from145

the patient-specific variability problem.146

We find that incorporating the PCS into the Mamba backbone consistently improves performance147

across both single-task and multi-task settings. PCS addresses this by initializing the model’s internal148

state with embeddings derived from each patient’s historical PPG segments and prior lab values,149

modulated via FiLM to capture individual physiological distributions. This personalized initialization150

allows the state transitions to adapt immediately to a patient’s unique baseline and variability, enabling151

the model to more accurately align with true lab trajectories over time. As shown in Table 1, adding152

PCS yields consistent gains in R2 and error metrics, reflecting its ability to preserve long-term153

temporal coherence while accounting for individual-specific waveform characteristics.154

We also observe that the multi-task learning provides additional benefits over single-task training.155

Sharing the backbone representation across related lab prediction tasks encourages the model to156

leverage inter-lab correlations, improving robustness and reducing overfitting on sparsely measured157

targets. When combined with PCS, multi-task training consistently yields the highest R2 scores158

and lowest error metrics in Table 1, demonstrating that personalization and multi-task learning are159

complementary for modeling heterogeneous, patient-specific biochemical trajectories.160

4 Conclusion161

We presented UNIPHY+Lab, a framework that integrates a large-scale PPG foundation model with a162

patient-aware Mamba state space model for continuous estimation of clinical laboratory values. The163

results show the effectiveness of the proposed methods and the potential of personalized, non-invasive164

monitoring from routine PPG data to provide high-temporal-resolution biochemical insights in critical165

care settings. For future work, we see two promising directions for extending this work. First, we166

will systematically analyze the impact of the foundation model scale. Second, beyond PPG, we plan167

to extend UNIPHY+Lab to incorporate additional physiological signals such as ECG, enabling a168

richer multi-modal learning to improve the fidelity of continuous lab value estimation.169
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A Overview of the Data253

Dataset We used two large-scale ICU datasets containing high-resolution photoplethysmography254

(PPG) waveforms, continuously recorded vital signs, and structured electronic health records (EHR)255

with laboratory results and clinical events: an ICU dataset collected in an academic medical institute [8,256

26] (3,796 patients) and the MIMIC-III Waveform Database Matched Subset [15, 12, 10] (4,146257

patients). Both datasets provide up to 7 days of temporal coverage across physiological and clinical258

data streams. Given the PPG FM extract embedding for each 30 seconds, the maximum length of the259

input for SSM is 20160.260

Target Biomarkers To focus on clinically meaningful and routinely measured outcomes, we chose261

five biomarkers as the estimation targets: Potassium, Calcium, Sodium, Glucose, and Lactate.262

Electrolytes like potassium, calcium, and sodium affect heart rhythm, muscle contraction, and blood263

pressure regulation—factors that shape the pulse waveform. Meanwhile, abnormal levels of glucose264

and lactate can lead to changes in vascular tone and circulation, which are also detectable through265
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PPG. To enable stable training and handle differences in value ranges across lab channels, we apply266

min-max normalization on each 30-second PPG segment and channel-wise min-max normalization267

to the ground-truth lab values based on global statistics computed from the training set.268

Baseline We adopted a Long Short-Term Memory (LSTM) model to integrate a fixed-length (default269

10 embeddings for 5 minutes) window of embeddings extracted from the same pretrained model,270

centered around the time of the target measurement. The baseline model was adapted to the multitask271

setting via hard parameter sharing, where a single backbone network is jointly trained to predict272

all estimation targets. In addition, we implement a non-parametric last observation carried forward273

(LOCF) baseline that uses the most recent available lab result as the predicted value. This baseline274

represents a common clinical reference point, especially for slowly changing or sparsely measured275

labs.276

Training Detail Experiments were conducted on two NVIDIA L40S GPUs (40 GB each). Model277

training was implemented in PyTorch with Distributed Data Parallel (DDP), using a batch size of278

64 for training and evaluation, over a maximum of 40 epochs. The learning rate was initialized at279

1× 10−6, warmed up for 5 epochs, and then decayed to a final value of 1× 10−7 following a cosine280

schedule from a base rate of 1× 10−4.281

B Gradient Backpropagation to Initial State h0.282

To incorporate individualized physiological priors, we initialize the state-space recurrence with a283

patient-specific hidden state h0, generated from historical laboratory values and a static patient284

embedding. Formally, this initialization is defined as285

h0 = g(epatient, ℓhist), (1)

where epatient is the patient embedding, ℓhist represents historical lab values, and g(·) is a learnable286

function implemented via FiLM modulation and nonlinear projection.287

To support gradient-based learning of this initialization, we modify the CUDA-based selective scan288

kernel to compute gradients with respect to h0.289

The hidden state evolves as:290

ht+1 = Ātht + B̄txt, (2)
291

yt = C̄tht + D̄xt, (3)
where Āt = exp(∆tA) is the time-varying state transition matrix after discretization, and B̄t =292

B̄t(xt), C̄t = C̄t(xt) are input-dependent.293

To compute the gradient of the loss L with respect to the initial hidden state h0, we unroll the294

recurrence and apply the chain rule. The influence of h0 on each output yt propagates through the295

recurrent Jacobians:296

∂L
∂h0

=

L−1∑
t=0

(
∂L
∂yt

· C̄t ·
t−1∏
k=0

Āk

)
. (4)

Here, C̄t directly maps hidden states to outputs and the product of Āk captures how h0 influences297

ht. This formulation allows backpropagation into the patient-specific initialization and supports298

gradient-based personalization within the Mamba architecture. (This derivation was inspired by a299

community discussion in the official Mamba repository issue #285 #488)300
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