Estimating Clinical Lab Test Result Trajectories from PPG using Physiological Foundation Model and Patient-Aware State Space Model – a UNIPHY+ Approach

Anonymous Author(s)

Affiliation Address email

Abstract

Clinical laboratory tests provide essential biochemical measurements for diagnosis and treatment, but are limited by intermittent and invasive sampling. In contrast, photoplethysmogram (PPG) is a non-invasive, continuously recorded signal in intensive care units (ICUs) that reflects cardiovascular dynamics and can serve as a proxy for latent physiological changes. We propose UNIPHY+Lab, a framework that combines a large-scale PPG foundation model for local waveform encoding with a patient-aware Mamba model for long-range temporal modeling. Our architecture addresses three challenges: (1) capturing extended temporal trends in laboratory values, (2) accounting for patient-specific baseline variation via FiLMmodulated initial states, and (3) performing multi-task estimation for interrelated biomarkers. We evaluate our method on the two ICU datasets for predicting the five key laboratory tests. The results show substantial improvements over the LSTM and carry-forward baselines in MAE, RMSE, and R^{2} among most of the estimation targets. This work demonstrates the feasibility of continuous, personalized lab value estimation from routine PPG monitoring, offering a pathway toward non-invasive biochemical surveillance in critical care.

1 Introduction

2

8

9

10

11

12

13

14

15

16

17

18

19

20

22

26

27

28

29

30

Clinical laboratory tests are fundamental to modern medicine, providing quantitative measures that guide diagnosis, risk stratification, and treatment [22]. Core components such as electrolytes, lactate, blood glucose, and acid—base markers offer critical insights into a patient's metabolic, renal, and perfusion status [2]. However, these tests are inherently intermittent and invasive [19], typically requiring venous or arterial blood draws. Arterial sampling for acid—base analysis is particularly painful, technically challenging, and requires trained personnel [27], while samples must be processed immediately under strict handling conditions. Even in the intensive care unit (ICU), where labs are ordered more frequently, the temporal sparsity of these measurements makes it difficult to capture rapid changes in physiological parameters related to blood flow, metabolism, or acid—base balance [6]. In contrast, ICU monitors continuously collect high-frequency, non-invasive physiological signals such as photoplethysmography (PPG), which reflects cardiovascular dynamics and is automatically acquired via bedside sensors. Because PPG is already widely available and recorded without additional effort or discomfort, it presents an opportunity to estimate hidden physiological changes [23].

Recent studies have demonstrated the utility of deep learning models applied to PPG for disease detection and physiological parameter estimation. Applications include cardiovascular conditions

such as hypertension and atrial fibrillation [9, 3, 13, 7] as well as parameters like heart rate and blood pressure [24]. More recently, large-scale PPG foundation models (FMs) [21, 18, 5, 1] have shown strong generalization across downstream tasks and early evidence of estimating lab-like variables such as glucose trends. While promising, these capabilities have been explored only in narrow contexts and remain in their early stages, leaving open the question of whether PPG FMs can be extended to formal clinical laboratory test estimation. However, a major barrier is that current PPG FMs operate on short input segments (5–30s), focusing on instantaneous cardiovascular features rather than the long-term temporal patterns needed to model biochemical processes that evolve over minutes to hours. Clinical laboratory tests differ fundamentally from vital signs in that they reflect the underlying metabolic and homeostatic processes, which require extended temporal contexts to estimate [16]. To our knowledge, no prior work has combined PPG foundation models with long-range sequence modeling to estimate a standard clinical laboratory panel from continuous waveform data.

To address this gap, we propose UNIPHY+Lab, a framework for predicting clinical laboratory parameters directly from continuous PPG waveforms. Our method combines a PPG-based foundation model for local feature extraction with a state-space model (SSM) that integrates information over extended time windows. We address three key challenges: (1) modeling long-range temporal trends in lab values, (2) accounting for patient-specific baseline variation, and (3) performing multitask, multi-channel estimation for interrelated labs. Our results on two ICU datasets demonstrate that UNIPHY+Lab can provide high-temporal-resolution lab estimates without invasive sampling, enabling continuous and personalized biochemical monitoring in the ICU.

2 Method

To address the challenges of long-range physiological modeling, multi-task clinical lab estimation, and patient-specific variability, we propose a novel architecture UNIPHY+Lab, as illustrated in Figure 1. UNIPHY+Lab consists of three core components: a foundation model-based local encoder, a patient-aware state-space model for long-range temporal modeling, and a multi-head lab estimation module with task-specific decoding for estimation.

Local PPG Feature Encoder via Foundation Model For the continuous PPG waveform input, we first segment it into fixed length windows (30 sec-

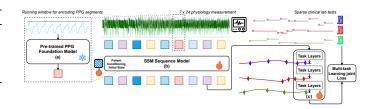


Figure 1: Overview of the UNIPHY+Lab framework. Continuous PPG waveforms are segmented into short windows and encoded by a pretrained foundation model (PPG-GPT) to capture local cardiovascular dynamics. These embeddings are processed by a multi-layer Mamba-based state-space model (SSM) to capture long-range temporal dependencies. Patient-specific conditioning is introduced via a personalized initialization of the SSM state, and multi-task regression heads estimate trajectories for multiple laboratory biomarkers.

onds in our study) and encode each window using a pretrained transformer-based foundation model. In this work, we adopt the PPG-GPT model [5], which has four different scales: 19 M (selected for this work), 85 M, 345 M, and 1B parameters are pretrained with 200 million 30-second PPG samples. For a window, the encoder splits the 30-second 40 Hz PPG signal into 30 non-overlapping patches as the input sequence of the GPT architecture. Then, we select the output feature of the last patch as the representation embedding for the current encoding window. This encoder captures local morphology and short-range waveform dynamics such as pulse shape, rhythm, and variability. These representations serve as localized features encoding the immediate cardiovascular context. The encoder can be optionally fine-tuned on the downstream task to adapt to the target lab prediction domain.

Long-Range Continuous Modeling via SSM To track latent physiological changes over extended time windows, we employ a stack (default 4 layers) of SSM blocks built upon the Mamba architecture [11] as the backbone encoder. Each state space block contains two sequential components: a state space layer with a selective scan mechanism that updates temporal memory across the entire sequence,

and a gated multilayer perceptron (gMLP) network that enhances nonlinear representations [20].

By maintaining internal hidden states that evolve across time, these SSM blocks enable the model to accumulate long-range dependencies, which are critical for continuous modeling and accurate laboratory value prediction.

Patient Conditioning Initial State for SSM The recent study [4] demonstrated that the length generalization of SSM models can benefit from initial state interventions (such as State Passing and Truncated Backpropagation Through Time). The core idea of the initial state intervention is to make the initial state "attainable," thereby decoupling the state position information from the state distribution. Inspired by the initial state intervention, we adopt a learnable initial state for the long-range continuous SSM. Meanwhile, we note that physiological waveforms often exhibit individual-specific distributions, making them potentially more personally identifiable than language data (the inputs of the empirical study in [4]). Hence, we incorporate a FiLM-like [17, 25] patient-specific modulation into the initialization of the SSM state.

As illustrated in Figure 2, the patient conditioning initial state (PCS) base is integrated from the embedding for multiple average results from different history labs. The initial state will be modulated by another embedding vector, which is the mean pooling of randomly sampled waveform embeddings of the same patient's history. This initial state will participate in the state transitions, enabling the model to adapt its trajectory dynamics based on the patient's context. (the gradient backpropagation of PCS in Appendix B)

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

130

Multiple Lab Estimation and Multi-task Learning To 112 address the heterogeneity of lab values, we adopt a multi-113 task prediction strategy in which each target biomarker is modeled using a distinct task layer. This design enables the architecture to specialize in both the statistical distribution and temporal dynamics of each biomarker. For each lab k, the corresponding task layer includes a lab-specific 118 SSM block and an estimation head. It receives the shared 119 temporal representation from the backbone encoder and 120 outputs a scalar lab value prediction. The lab-specific 121 regression SSM block also includes a PCS module, but 122 conditioned on a single lab's historical values. During 123 training, we ensure causal estimation by using only fea-124

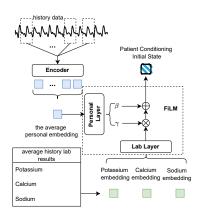


Figure 2: The Patient Conditioning Initial State (PCS) module enables the model to capture patient-specific lab trajectories more effectively.

tures available prior to the target lab measurement. Ground-truth values are linearly interpolated to align with the SSM outputs, and training is guided by a multi-task loss [14] with uncertainty-based weighting $L_{\text{total}} = \sum_{i=0}^{N} \left(\frac{1}{2\sigma_i^2} L_i + \log(\sigma_i)\right)$, where L_i denotes the MAE loss for the i-th task and σ_i is a learnable task-specific uncertainty parameter. This formulation allows the model to adaptively balance the contribution of each task according to its estimated uncertainty.

3 Experiment and Results

We chose five biomarkers as the estimation targets: *Potassium, Calcium, Sodium, Glucose, Lactate*, and used two large-scale ICU datasets: institutional data (3,796 patients) [8, 26] and MIMIC-III (4,146 patients) [15, 12, 10]. We compare our method with two baselines: a Long Short-Term Memory (LSTM) model to integrate a fixed-length (default 10 embeddings for 5 minutes) window of the PPG Foundation Model embeddings and a non-parametric last observation carried forward (LOCF) baseline. (the experiment details are in Appendix A)

As shown in Table 1, we report standard regression metrics including mean absolute error (MAE).

As shown in Table 1, we report standard regression metrics including mean absolute error (MAE), mean error (ME), root mean squared error (RMSE), and coefficient of determination (R^2) on both datasets. We report both ME and RMSE together, as ME quantifies prediction bias while RMSE reflects the variance and overall dispersion of errors. We observe that the baseline LSTM model and UNIPHY+Lab without the PCS have much larger errors and lower R^2 coefficients than LOCF. That indicates the baseline model, which relies on short windows of FM embeddings, struggles to

Table 1: Performance comparison on Institutional and MIMIC-III datasets across different lab estimation tasks, where ST, MT, and PCS refer to single-task, multi-task, and patient conditioning initial state, respectively. Best results are **bolded**.

Tasks	Methods	Institutional				MIMIC-III			
		MAE	ME	RMSE	R^2	MAE	ME	RMSE	R^2
Potassium	LSTM	0.450	0.084	0.637	-0.022	0.460	-0.022	0.619	-0.044
	LOCF	0.376	-0.015	0.659	-0.046	0.118	-0.005	0.182	0.155
	Our+MT	0.416	-0.017	0.623	0.002	0.135	-0.028	0.191	0.003
	Our+ST+PCS	0.313	-0.029	0.488	0.389	0.110	-0.015	0.156	0.345
	Our+MT+PCS	0.311	-0.014	0.484	0.397	0.099	-0.028	0.138	0.460
Calcium	LSTM	0.549	-0.039	0.771	-0.010	0.638	0.057	0.860	-0.059
	LOCF	0.296	-0.010	0.477	0.587	0.191	0.011	0.310	0.486
	Our+MT	0.549	0.016	0.727	0.004	0.319	-0.017	0.432	0.024
	Our+ST+PCS	0.287	0.000	0.426	0.650	0.197	-0.021	0.325	0.460
	Our+MT+PCS	0.284	-0.004	0.422	0.662	0.195	-0.001	0.295	0.613
Sodium	LSTM	3.586	0.420	4.846	-0.003	4.861	0.444	6.509	-0.095
	LOCF	1.873	-0.097	2.755	0.742	1.401	0.114	2.074	0.731
	Our+MT	3.785	0.115	5.244	0.001	3.028	0.397	3.951	-0.002
	Our+ST+PCS	2.045	0.024	2.910	0.691	1.774	-0.066	2.418	0.600
	Our+MT+PCS	2.015	-0.002	2.863	0.702	1.737	0.232	2.389	0.658
Glucose	LSTM	39.366	-5.826	64.816	-0.009	36.220	-3.598	57.012	-0.024
	LOCF	36.143	-3.006	77.351	-0.188	13.693	-0.800	28.113	-0.145
	Our+MT	39.321	-13.450	69.252	-0.029	13.899	-5.165	25.350	-0.038
	Our+ST+PCS	31.917	-6.009	62.047	0.230	12.254	-4.534	20.705	0.230
	Our+MT+PCS	31.926	-5.940	59.538	0.240	11.044	-2.927	19.380	0.285
Lactate	LSTM	1.781	-0.203	3.146	0.009	1.243	0.335	1.960	0.071
	LOCF	0.736	-0.180	1.318	0.505	0.542	-0.152	0.905	0.577
	Our+MT	1.070	-0.558	2.113	0.003	0.892	-0.667	1.187	0.063
	Our+ST+PCS	0.719	-0.151	1.289	0.518	0.579	-0.162	1.037	0.523
	Our+MT+PCS	0.752	-0.112	1.390	0.568	0.582	-0.139	0.985	0.557

capture meaningful relationships between physiological states and lab values with an independent and identically distributed (i.i.d.) assumption on the embeddings and lab values pairs. Although UNIPHY+Lab without PCS achieved higher performance than baseline LSTM, it still suffers from the patient-specific variability problem.

We find that incorporating the PCS into the Mamba backbone consistently improves performance across both single-task and multi-task settings. PCS addresses this by initializing the model's internal state with embeddings derived from each patient's historical PPG segments and prior lab values, modulated via FiLM to capture individual physiological distributions. This personalized initialization allows the state transitions to adapt immediately to a patient's unique baseline and variability, enabling the model to more accurately align with true lab trajectories over time. As shown in Table 1, adding PCS yields consistent gains in \mathbb{R}^2 and error metrics, reflecting its ability to preserve long-term temporal coherence while accounting for individual-specific waveform characteristics.

We also observe that the multi-task learning provides additional benefits over single-task training. Sharing the backbone representation across related lab prediction tasks encourages the model to leverage inter-lab correlations, improving robustness and reducing overfitting on sparsely measured targets. When combined with PCS, multi-task training consistently yields the highest R^2 scores and lowest error metrics in Table 1, demonstrating that personalization and multi-task learning are complementary for modeling heterogeneous, patient-specific biochemical trajectories.

4 Conclusion

We presented UNIPHY+Lab, a framework that integrates a large-scale PPG foundation model with a patient-aware Mamba state space model for continuous estimation of clinical laboratory values. The results show the effectiveness of the proposed methods and the potential of personalized, non-invasive monitoring from routine PPG data to provide high-temporal-resolution biochemical insights in critical care settings. For future work, we see two promising directions for extending this work. First, we will systematically analyze the impact of the foundation model scale. Second, beyond PPG, we plan to extend UNIPHY+Lab to incorporate additional physiological signals such as ECG, enabling a richer multi-modal learning to improve the fidelity of continuous lab value estimation.

References

170

- [1] Salar Abbaspourazad, Oussama Elachqar, Andrew C. Miller, Saba Emrani, Udhyakumar Nallasamy, and Ian Shapiro. Large-scale training of foundation models for wearable biosignals. arXiv preprint arXiv:2312.05409, 2023.
- [2] Ghurmallah Ali Alwasi, Abdulaziz Mohammed Alqahtani, Mohammed Khalaf Mohammed Alalaliany, Muhana Saleh Saeed, Ali Adulrahman Hassan Alshehri, Mohammed Abdullah Nasser Alqahtani, Yasser Ali Ahmad Asiri, Sultan Mohammed Ali Alshehri, and Moayad Hamed Shukr. The role of laboratory testing in disease diagnosis: A comprehensive review. *Journal of International Crisis and Risk Communication Research*, 7(S11):933, 2024.
- [3] Syed Khairul Bashar, Dong Han, Shirin Hajeb-Mohammadalipour, Eric Ding, Cody Whitcomb,
 David D McManus, and Ki H Chon. Atrial fibrillation detection from wrist photoplethysmogra phy signals using smartwatches. *Scientific reports*, 9(1):15054, 2019.
- [4] Ricardo Buitrago and Albert Gu. Understanding and improving length generalization in recurrent models. In *Forty-second International Conference on Machine Learning*.
- Zhaoliang Chen, Cheng Ding, Saurabh Kataria, Runze Yan, Minxiao Wang, Randall Lee, and
 Xiao Hu. Gpt-ppg: A gpt-based foundation model for photoplethysmography signals. arXiv
 preprint arXiv:2503.08015, 2025.
- [6] Luigi Devis, Emilie Catry, Patrick M Honore, Alexandre Mansour, Giuseppe Lippi, François Mullier, and Mélanie Closset. Interventions to improve appropriateness of laboratory testing in the intensive care unit: a narrative review. *Annals of intensive care*, 14(1):9, 2024.
- [7] Cheng Ding, Ran Xiao, Weijia Wang, Elizabeth Holdsworth, and Xiao Hu. Photoplethysmography based atrial fibrillation detection: an updated review from july 2019. *arXiv preprint* arXiv:2310.14155, 2023.
- 194 [8] Barbara J Drew, Patricia Harris, Jessica K Zègre-Hemsey, Tina Mammone, Daniel Schindler, Rebeca Salas-Boni, Yong Bai, Adelita Tinoco, Quan Ding, and Xiao Hu. Insights into the problem of alarm fatigue with physiologic monitor devices: a comprehensive observational study of consecutive intensive care unit patients. *PloS one*, 9(10):e110274, 2014.
- [9] Mohamed Elgendi, Richard Fletcher, Yongbo Liang, Newton Howard, Nigel H Lovell, Derek
 Abbott, Kenneth Lim, and Rabab Ward. The use of photoplethysmography for assessing
 hypertension. NPJ digital medicine, 2(1):60, 2019.
- 201 [10] Ary L Goldberger, Luis A Nunes Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov,
 202 Roger G Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley.
 203 Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex
 204 physiologic signals. *Circulation*, 101(23):e215–e220, 2000. RRID:SCR_007345.
- 205 [11] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
 206 arXiv preprint arXiv:2312.00752, 2023.
- 207 [12] Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
 208 Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii,
 209 a freely accessible critical care database. *Scientific data*, 3:160035, 2016.
- 210 [13] Min-Tsun Liao, Chih-Chieh Yu, Lian-Yu Lin, Ke-Han Pan, Tsung-Hsien Tsai, Yu-Chun Wu, and Yen-Bin Liu. Impact of recording length and other arrhythmias on atrial fibrillation detection from wrist photoplethysmogram using smartwatches. *Scientific Reports*, 12(1):5364, 2022.
- 213 [14] Lukas Liebel and Marco Körner. Auxiliary tasks in multi-task learning. *arXiv preprint* 214 arXiv:1805.06334, 2018.
- 215 [15] Benjamin Moody, George Moody, Mauricio Villarroel, Gari D. Clifford, and Ikaro Silva. Mimic-216 iii waveform database matched subset (version 1.0). https://doi.org/10.13026/c2294b, 2020. PhysioNet. RRID:SCR_007345.

- 218 [16] Guangkun Nie, Jiabao Zhu, Gongzheng Tang, Deyun Zhang, Shijia Geng, Qinghao Zhao, and Shenda Hong. A review of deep learning methods for photoplethysmography data. *arXiv* preprint arXiv:2401.12783, 2024.
- 221 [17] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film:
 222 Visual reasoning with a general conditioning layer. In *Proceedings of the AAAI conference on*223 artificial intelligence, volume 32, 2018.
- 224 [18] Arvind Pillai, Dimitris Spathis, Fahim Kawsar, and Mohammad Malekzadeh. Papagei: Open foundation models for optical physiological signals. In *ICLR 2025 Poster Session*, 2025.
- 226 [19] Mario Plebani, Michael Laposata, and Giuseppe Lippi. A manifesto for the future of laboratory medicine professionals, 2019.
- [20] Krithik Ramesh, Sameed M Siddiqui, Albert Gu, Michael D Mitzenmacher, and Pardis C Sabeti.
 Lyra: An efficient and expressive subquadratic architecture for modeling biological sequences.
 arXiv preprint arXiv:2503.16351, 2025.
- 231 [21] Mithun Saha, Maxwell A. Xu, Wanting Mao, Sameer Neupane, James M. Rehg, and Santosh Kumar. Pulse-ppg: An open-source field-trained ppg foundation model for wearable applications across lab and field settings. *arXiv* preprint arXiv:2502.01108, 2025.
- [22] Layana T Takieddine and Joe M El-Khoury. Laboratory anomalies in the basic metabolic panel:
 Core curriculum 2025. *American Journal of Kidney Diseases*, 85(1):104–114, 2025.
- 236 [23] Ali Tazarv and Marco Levorato. A deep learning approach to predict blood pressure from ppg 237 signals. In 2021 43rd Annual international conference of the IEEE engineering in medicine & 238 biology society (EMBC), pages 5658–5662. IEEE, 2021.
- Zhonghe Tian, Aiping Liu, Guokang Zhu, and Xun Chen. A paralleled cnn and transformer
 network for ppg-based cuff-less blood pressure estimation. *Biomedical Signal Processing and Control*, 99:106741, 2025.
- [25] Mehmet Ozgur Turkoglu, Alexander Becker, Hüseyin Anil Gündüz, Mina Rezaei, Bernd Bischl,
 Rodrigo Caye Daudt, Stefano D'Aronco, Jan Wegner, and Konrad Schindler. Film-ensemble:
 Probabilistic deep learning via feature-wise linear modulation. Advances in neural information
 processing systems, 35:22229–22242, 2022.
- [26] Ran Xiao, Duc Do, Cheng Ding, Karl Meisel, Randall J Lee, and Xiao Hu. Generalizability of superalarm via cross-institutional performance evaluation. *IEEE Access*, 8:132404–132412, 2020.
- Xiexiong Zhao, Tao Liu, Miao Huang, Ruixuan Li, Jianwei Zeng, Yihui Li, Ru Fu, Xiaogang Li,
 and Weihong Jiang. Accuracy and stability evaluation of different blood sampling methods in
 blood gas analysis in emergency patients: A retrospective study. *Journal of Clinical Laboratory* Analysis, 36(11):e24736, 2022.

A Overview of the Data

253

- Dataset We used two large-scale ICU datasets containing high-resolution photoplethysmography (PPG) waveforms, continuously recorded vital signs, and structured electronic health records (EHR) with laboratory results and clinical events: an ICU dataset collected in an academic medical institute [8, 26] (3,796 patients) and the MIMIC-III Waveform Database Matched Subset [15, 12, 10] (4,146 patients). Both datasets provide up to 7 days of temporal coverage across physiological and clinical data streams. Given the PPG FM extract embedding for each 30 seconds, the maximum length of the input for SSM is 20160.
- Target Biomarkers To focus on clinically meaningful and routinely measured outcomes, we chose five biomarkers as the estimation targets: Potassium, Calcium, Sodium, Glucose, and Lactate. Electrolytes like potassium, calcium, and sodium affect heart rhythm, muscle contraction, and blood pressure regulation—factors that shape the pulse waveform. Meanwhile, abnormal levels of glucose and lactate can lead to changes in vascular tone and circulation, which are also detectable through

PPG. To enable stable training and handle differences in value ranges across lab channels, we apply min-max normalization on each 30-second PPG segment and channel-wise min-max normalization to the ground-truth lab values based on global statistics computed from the training set.

Baseline We adopted a Long Short-Term Memory (LSTM) model to integrate a fixed-length (default 269 10 embeddings for 5 minutes) window of embeddings extracted from the same pretrained model, 270 centered around the time of the target measurement. The baseline model was adapted to the multitask 271 setting via hard parameter sharing, where a single backbone network is jointly trained to predict 272 all estimation targets. In addition, we implement a non-parametric last observation carried forward 273 (LOCF) baseline that uses the most recent available lab result as the predicted value. This baseline 274 represents a common clinical reference point, especially for slowly changing or sparsely measured 275 labs. 276

Training Detail Experiments were conducted on two NVIDIA L40S GPUs (40 GB each). Model training was implemented in PyTorch with Distributed Data Parallel (DDP), using a batch size of 64 for training and evaluation, over a maximum of 40 epochs. The learning rate was initialized at 1×10^{-6} , warmed up for 5 epochs, and then decayed to a final value of 1×10^{-7} following a cosine schedule from a base rate of 1×10^{-4} .

B Gradient Backpropagation to Initial State h_0 .

To incorporate individualized physiological priors, we initialize the state-space recurrence with a patient-specific hidden state h_0 , generated from historical laboratory values and a static patient embedding. Formally, this initialization is defined as

$$h_0 = g(e_{\text{patient}}, \ell_{\text{hist}}), \tag{1}$$

where e_{patient} is the patient embedding, ℓ_{hist} represents historical lab values, and $g(\cdot)$ is a learnable function implemented via FiLM modulation and nonlinear projection.

To support gradient-based learning of this initialization, we modify the CUDA-based selective scan kernel to compute gradients with respect to h_0 .

290 The hidden state evolves as:

282

291

$$h_{t+1} = \bar{\mathbf{A}}_t h_t + \bar{\mathbf{B}}_t x_t, \tag{2}$$

$$y_t = \bar{\mathbf{C}}_t h_t + \bar{\mathbf{D}} x_t, \tag{3}$$

where $\bar{\bf A}_t=\exp(\Delta_t{\bf A})$ is the time-varying state transition matrix after discretization, and $\bar{\bf B}_t=\bar{\bf B}_t(x_t), \bar{\bf C}_t=\bar{\bf C}_t(x_t)$ are input-dependent.

To compute the gradient of the loss \mathcal{L} with respect to the initial hidden state h_0 , we unroll the recurrence and apply the chain rule. The influence of h_0 on each output y_t propagates through the recurrent Jacobians:

$$\frac{\partial \mathcal{L}}{\partial h_0} = \sum_{t=0}^{L-1} \left(\frac{\partial \mathcal{L}}{\partial y_t} \cdot \bar{\mathbf{C}}_t \cdot \prod_{k=0}^{t-1} \bar{\mathbf{A}}_k \right). \tag{4}$$

Here, C_t directly maps hidden states to outputs and the product of A_k captures how h_0 influences h_t . This formulation allows backpropagation into the patient-specific initialization and supports gradient-based personalization within the Mamba architecture. (This derivation was inspired by a community discussion in the official Mamba repository issue #285 #488)