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Abstract
Matrix completion is a classical problem that has received recurring interest from a wide range of
fields. In this paper, we revisit this problem in an ultra-sparse sampling regime, where each entry
of an unknown, n×d matrix M (with n ≥ d) is observed independently with probability p = C/d,
for a fixed constant C ≥ 2. This setting is motivated by applications involving large, sparse panel
datasets, where the number of rows (users) far exceeds the number of columns (items). When each
row contains only C—fewer than the rank of M—accurate imputation of M is impossible. Instead,
we focus on estimating the row span of M , or equivalently, the averaged second-moment matrix
T = M⊤M/n.

The empirical second-moment matrix computed from observational data exhibits non-random
and sparse missingness. We propose an unbiased estimator that normalizes each nonzero entry of
the second moment by its observed frequency, followed by gradient descent to impute the missing
entries of T . This normalization divides a weighted sum of n binomial random variables by their
total number of ones—a nonlinear operation. We show that the estimator is unbiased for any value
of p and enjoys low variance. When the row vectors of M are drawn uniformly from a rank-r factor
model satisfying an incoherence condition, we prove that if n ≥ O(dr5ϵ−2C−2 log d), any local
minimum of the gradient-descent objective is approximately global and recovers T with error at
most ϵ2.

Experiments on both synthetic and real-world data validate our approach. On three MovieLens
datasets, our algorithm reduces bias by 88% relative to several baseline estimators. We also empiri-
cally evaluate the linear sampling complexity of n relative to d using synthetic data. Finally, on the
Amazon reviews dataset with sparsity 10−7, our method reduces the recovery error of T by 59%
and M by 38% compared to existing matrix completion methods.

1. Introduction

Matrix completion is a classical problem that has received sustained attention across several dis-
ciplines, including compressive sensing [7], machine learning [44], and signal processing [12]. A
seminal result in the literature states that when the unknown matrix M is low rank and satisfies an
incoherence assumption (i.e., the row norms of the low-rank factors are approximately balanced),
exact recovery from a uniformly random subset of entries is achievable [6].

In this paper, we study matrix completion in an ultra-sparse sampling regime, where the sam-
pling probability p = C/d, for some constant C ≥ 2, resulting in roughly Cn observed entries in
total. This is less than nr log d, the number of bits required to store the rank-r factors of an n by d
matrix. Although recovering M itself is information-theoretically impossible [11], we show that it
is possible to recover one side of M—specifically, the second-moment matrix T = M⊤M/n—in
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this regime. In other words, when M is a tall matrix, our goal is to recover the subspace spanned
by the row vectors of M .

There are several motivations for revisiting matrix completion in the ultra-sparse sampling
regime. First, many large-scale panel datasets are extremely sparse in practice. For example, con-
sider the Amazon reviews dataset [26], which contains roughly 54 million users and 48 million
items, with about 571 million observed reviews in total. The resulting sparsity level is as low as
10−7. Therefore, we need matrix completion methods that can remain effective under this level of
ultra-sparsity. Second, many recommendation systems must preserve data privacy. In such settings,
each user may contribute only a small portion of data to a central server, often after adding white
noise for differential privacy [36]. The central server then aggregates these contributions by com-
puting summary statistic such as the low-rank subspace spanned by the row vectors. This summary
statistic can then be shared publicly, allowing each user to project their data locally onto the learned
subspace [48]. In these scenarios, the number of users can be orders of magnitude larger than the
number of items (see Table 2 for concrete examples), which motivates studying recovery of the row
space of M when n≫ d.

Recent work by [8] initiates the study of one-sided matrix completion, whose goal is to esti-
mate the averaged second-moment matrix of the row vectors of M , denoted by

T =
1

n
M⊤M,

under the setting where two entries per row are observed. In other words, the matrix T captures
the row-space structure of M . Their analysis leaves open the general case where more than two
entries are observed per row. To illustrate the challenge, let M̂ denote the observed data matrix
and I the corresponding binary mask indicating observed entries. Because M̂ is highly sparse, the
information it contains is insufficient to recover M directly—rendering standard matrix completion
guarantees inapplicable to this regime. Let Ω denote the set of nonzero entries of the empirical
second-moment matrix M̂⊤M̂ , which has the same dimension as T . We make two key observations
about M̂⊤M̂ that together highlight the technical challenges in recovering T under ultra-sparse
sampling:

1. The missing patterns in Ω is highly non-random: diagonal entries are almost always observed,
while off-diagonal entries are extremely sparse. For a detailed calculation, see Claim 1. More-
over, the observation frequencies in the off-diagonal entries of I⊤I are sparse and unevenly
distributed.

2. Although stochastic gradient algorithms are widely used in practice [32], providing theoret-
ical guarantees for matrix completion is technically challenging [47] and has not been done
under non-random missingness, to the best of our knowledge.

To address the first issue, we analyze a weighted estimator that normalizes each nonzero entry
of M̂⊤M̂ by the corresponding entry at I⊤I . This approach corresponds to the Hájek estimator
[22, 43], which divides two random quantities—making its analysis more subtle due to nonlinearity.
Our key observation is that the Hájek estimator is exactly unbiased on the observed subset Ω, unlike
prior results that show only asymptotical unbiasedness as n→∞. This finite-sample unbiasedness
arises from the symmetry of pairwise products in computing the second-moment matrix.
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Table 1: Comparison between this work and several closely related results on matrix completion
under an ultra-sparse sampling regime. Here, M ∈ Rn× d with n ≥ d, and T = 1

nM
⊤M denotes

the averaged second-moment matrix of the rows of M . We focus on the one-sided or ultra-sparse
settings where exact recovery of M itself is infeasible.

Estimand Sampling Regime Main Approach (Reference)

M p = O( 1n) Thresholded Alternating Minimization [18]
T Two entries per row Nuclear-Norm Regularization [8]
T p = C

n ,∀C ≥ 2 Hájek-GD with Incoherence Regularization (This paper)

Furthermore, a first-order approximation analysis on the variance of the Hájek estimator reveals
that this estimator achieves lower variance than the classical Horvitz-Thompson estimator [25],
leading to more stable and less biased empirical estimates, a result corroborated by our experiments.

To tackle the second issue, we establish recovery guarantees for any local minimizer of a loss
function defined between the normalized empirical second-moment matrix and its low-rank factor-
ization used to impute missing entries of T that lie outside Ω. Under a rank-r factor model for the
rows of M , we show that if

n ≥ O
(
dr5C−2ϵ−2 log d

)
,

then any local minimizer of the loss objective is within ϵ2 Frobenius norm distance to T . The big-O
notation above ignores dependencies of the bound on the condition number of M as well as the
incoherence condition number (See Assumption 4 for the definition). This bound assumes standard
incoherence conditions—without which recovery is information-theoretically impossible [6]—and
is optimal in scaling relative to d. Importantly, the result holds for any constant C, thus generalizing
prior results and closing an open question left by Cao et al. [8]. A key technical step is establishing
a concentration inequality to tackle the non-random missingness of Ω, by leveraging a conditional
independence property at each row of M̂⊤M̂ . This conditional independence property enables us
to analyze and bound the bias of the Hájek estimator row by row, ensuring consistency even under
heterogeneous observation patterns.

Numerical results. We extensively validate our approach on both synthetic and real-world
datasets. We find that the Hájek estimator is particularly effective under extreme sparsity. For in-
stance, when each row has only two observed entries, our method outperforms a prior nuclear-norm
regularization baseline by 70% in recovering T . We also explore using one-sided matrix comple-
tion as a subroutine for imputing missing entries of M . On the Amazon reviews dataset, we extend
our estimator to impute M via least-squares regression after estimating T , achieving 21% and 38%
lower root mean squared error (RMSE) than alternating gradient descent and soft-impute with alter-
nating least squares [12, 23, 33], respectively. Ablation studies further show that the Hájek estimator
reduces bias on Ω by 99% relative to the Horvitz-Thompson estimator on synthetic data, and by 88%
on average across three MovieLens datasets. Incorporating an incoherence regularization term [19]
into the loss further decreases recovery error of T by 22% on synthetic data and by 52% on the
Amazon review dataset.

Summary of contributions. This paper revisits the matrix completion problem under an ultra-
sparse sampling regime, where only Cn entries are observed from an unknown n × d matrix for a
constant C ≥ 2. Our contributions are threefold:
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1. We design a new algorithm for one-sided matrix completion based on the Hájek estimator,
accompanied by a detailed theoretical analysis. We prove that the Hájek estimator is an
unbiased estimator of the second-moment matrix for any sampling probability p and achieves
lower variance than the Horvitz-Thompson estimator.

2. We establish near-optimal sample complexity bounds for one-sided matrix completion under
a low-rank, incoherent factor model. Our results apply to gradient-based optimization and
extend to general sampling patterns beyond those considered in prior work. See Table 1 for a
comparison of sample complexity and main approach.

3. We perform extensive experiments on synthetic and real-world datasets, demonstrating the
practical effectiveness of our approach and showing that one-sided matrix completion can be
used as a robust subroutine for full matrix recovery. The implementation and reproducible
code are available at: https://github.com/VirtuosoResearch/Matrix-completion-ultrasparse-
implementation.

One limitation of our sample complexity result lies in the common-means assumption in the rank-r
factor model. We believe this condition can be relaxed if each factor is perturbed by random noise
(see Remark 6). Another limitation concerns the existence of exact low-rank factor models for
recovering T and the need to specify the true rank in the gradient-descent procedure (see Remark
9). We discuss possible extensions to address these issues in Section 4.

Organizations. The remainder of this paper is organized as follows. Section 2 describes the
problem setup and notations. Section 3 presents the estimator and the main theoretical results.
Section A outlines the proof sketch and two extensions. Section B and C provide empirical results
and related work, respectively. Section 4 concludes with open directions. Complete proofs appear
in Appendix D-E, and additional experiments in Appendix F.

2. Preliminaries and Notations

Let M denote an n by d, unknown matrix. Assume the rank of M is equal to r. Without loss of
generality, suppose that n ≥ d. For example, each row of M may include the ratings of a user,
while each column may correspond to the ratings of an item. We observe a partial matrix, denoted
by M̂ . Let I ∈ {0, 1}n×d denote the indicator matrix on the observed entries of M̂ . Our goal is to
recover the averaged second-moment matrix T := M⊤M/n, given M̂ and I .

We assume that each entry of M̂ is observed independently with probability p ∈ (0, 1), follow-
ing prior literature (e.g., Candes and Recht [6], Ge et al. [19], Sun and Luo [47]). We focus on a
constant sampling regime, where p = C/d, for some fixed integer C ≥ 2. In such a regime, m is
roughly Cn, less than the number of bits to represent an n by r matrix.

An important quantity for working with one-sided estimation is I⊤I , which is a symmetric
matrix in dimension d. This matrix provides the empirical frequency counts for the empirical second
moment matrix M̂⊤M̂ . For example, consider an off-diagonal entry (i, j), where i ̸= j and both
i, j are in [d]. The (i, j)-th entry of I⊤I , denoted as (I⊤I)i,j , is equal to the number of overlapping,
nonzero entries between the i-th and j-th column of M̂ . That is,

[
I⊤I

]
i,j

=

n∑

k=1

Ik,iIk,j . (1)
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Let Ω denote the indices of the nonzero entries of I⊤I . We now make the following observation
regarding the observed entries within Ω. In particular, we find that the sampling patterns of Ω are
non-random in the following sense.

Claim 1 For every i = 1, 2, . . . , d, the diagonal entries satisfy that

Pr[(i, i) ∈ Ω] = 1− (1− p)n.

The off-diagonal entries satisfy that for every i = 1, . . . , d, and j = 1, . . . , d such that j ̸= i,

Pr[(i, j) ∈ Ω] = 1− (1− p2)n.

To illustrate, recall that p = C/d. Suppose n = O(d log d). The probability that (i, i) ∈ Ω is
roughly 1 − e−pn ≈ 1 − d−O(C). Then by a union bound, with probability at least 1 − O(d−1), it
must be the case that (i, i) ∈ Ω, for every i = 1, 2, . . . , d.

For each off-diagonal entry, it is observed in Ω with probability equal to 1 − (1 − p2)n. For
simplicity of notation, let us denote this as q in the rest of the paper. Note that q roughly equal to
np2 = O(C2d−1 log d).

To account for the difference in sampling probabilities between diagonal and off-diagonal en-
tries of Ω, let PΩ : Rd×d → Rd×d be a weighted projection operator defined as follows:

[PΩ(Z)]i,j =





qZi,i if (i, i) ∈ Ω,

Zi,j if (i, j) ∈ Ω and j ̸= i,

0 if (i, j) /∈ Ω.

Estimators. Having introduced the mask matrix I⊤I and its nonzero index set Ω, next, we dis-
cuss the normalization of the empirical second moment of the observed matrix, given by M̂⊤M̂ .
One way to normalize M̂⊤M̂ for one-sided matrix completion is via the Horvitz-Thompson (HT)
estimator [25], which inversely reweights each entry with the true sampling probability (i.e., p on
the diagonal entries and p2 on the off-diagonal entries):

T i,j =





∑n
k=1 M

2
k,iIk,i

np , if i = j,∑n
k=1 Mk,iMk,jIk,iIk,j

np2
, if i ̸= j.

One can verify that E[T i,j ] = Ti,j . Notice that np2 is the expectation of (I⊤I)i,j (cf. equation
(1)), while np is the expectation when i = j. When p is too small, np2 becomes small, resulting in
high fluctuation in the off-diagonal entries. Another approach, known as the Hájek estimator [22],
is to normalize each entry in Ω by the estimated sampling probability, which is canceled out since
the probability value is the same across different k, leading to the following expression, for any
(i, j) ∈ Ω:

T̂i,j =





∑n
k=1 M

2
k,iIk,i∑n

k=1 Ik,i
, if i = j,∑n

k=1 Mk,iMk,jIk,iIk,j∑n
k=1 Ik,iIk,j

, if i ̸= j.

5



ONE-SIDED MATRIX COMPLETION FROM ULTRA-SPARSE SAMPLES

The theoretical analysis of the Hájek estimator is challenging due to its nonlinear form, which
involves dividing one random variable by another. It is known that the Hájek estimator is asymptot-
ically unbiased [22] in the large n limit, incurring an error of O(n−1/2). In addition, the Hájek es-
timator provides a variance reduction effect compared to the Horvitz-Thompson estimator in causal
inference [24]. Little is known in the matrix completion problem, and several natural questions
arise. First, how does this estimator work for one-sided matrix completion? What is the bias of T̂ ,
and how does the Hájek estimator compare to the Horvitz-Thompson estimator? Second, how can
we use T̂ to impute the missing entries outside Ω? The rest of this paper is dedicated to answering
these questions.

Notations. Before continuing, we provide a list of notations for describing the results. Following
the convention of big-O notations, given two functions f(n) and g(n), let f(n) ≤ O(g(n)) indicate
that there exists a constant c independent of n such that when n ≥ n0 for some large enough
n0, then f(n) ≤ c · g(n). We use the notation f(n) ≲ g(n) as a shorthand for indicating that
f(n) = O(g(n)). Let Õ(g(n)) denote that O(logc(n)g(n)) for some constant c independent of n.
We also use the little-o notation f(n) ≤ o(g(n)), which means that f(n)/g(n) goes to zero as n
goes to infinity.

Let [d] = {1, 2, . . . , d} denote a shorthand notation for the set from 1 up to d. We use N (a, b)
to denote a Gaussian distribution with mean set at a and variance equal to b. We use the notation
(x)+ = max(x, 0) to denote a truncation operation set above zero.

Let ∥·∥F denote the Frobenius norm of an input matrix. Let ∥·∥2 denote the spectral norm of
the input matrix and let ∥·∥ denote the Euclidean norm of a vector. Let ⟨X,Y ⟩ = Tr[X⊤Y ] denote
the inner product between two matrices that have the same dimensions. Let ∥·∥∞ denote the infinity
norm of a matrix, which corresponds to its largest entry in absolute value.

3. Estimation and Recovery Guarantees

In this section, we present a thorough analysis of the Hájek estimator in the one-sided matrix com-
pletion problem. We begin by analyzing the bias of T̂ compared to T on the observed entries Ω. A
key observation is that T̂ provides an unbiased estimate of T , as stated formally below.

Lemma 2 Suppose the entries of M̂ are sampled from M independently with a fixed probability
p ∈ (0, 1). Let Ω denote the index set corresponding to the non-zero entries of M̂⊤M̂ . Then, the
following must be true:

E
[
T̂i,j

∣∣∣(i, j) ∈ Ω
]
= Ti,j , (2)

for any 1 ≤ i, j ≤ d. As a corollary of equation (2), we have that

E
[
T̂i,j

]
= Pr

[
(i, j) ∈ Ω] · Ti,j .

Unlike conventional results showing that the Hájek estimator is asymptotically consistent [43],
in the one-sided matrix completion setting, we find that the Hájek estimator is unbiased in the
presence of finitely many samples. As a remark, the same unbiased estimation result can also be
stated in the setting where every row has k uniformly random entries from M , for arbitrary integers
k ≥ 2. The proof is similar to that of Lemma 2.
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We now describe the main ideas for proving Lemma 2. First, we note that for any k > 1,
conditioned on [I⊤I]i,j = k, M̂⊤M̂ must be equal to the sum of k pairs chosen from M1,iM1,j ,
M2,iM2,j , . . . , Mn,iMn,j . Furthermore, the choice of k such pairs out of n is uniformly at random
among all possible

(
n
k

)
combinations, because the choices are symmetric. Thus, the average of k

randomly chosen pairs must be equal to the average of all n pairs in expectation. This is stated
precisely in the following equation:

E

[
1

k

(
M̂⊤M̂

)
i,j

∣∣∣∣∣
(
I⊤I

)
i,j

= k

]
=

1

n

n∑

a=1

Ma,iMa,j = Ti,j , (3)

which leads to the conclusion of equation (2). See the full proof in Appendix D.

3.1. Variance Reduction

Having established that T̂ provides an unbiased estimate of T , we turn to studying the variance of T̂ .
We show that the Hájek estimator incurs lower variance relative to the Horvitz-Thompson estimator.
We first derive an approximation of V ar(T̂ ) to tackle the nonlinearity of the Hájek estimator.

Theorem 3 Suppose p = C
d for some fixed integer C ≥ 2. Suppose n ≥ O(d log d). Then, with

probability at least 1−O(d−1), (i) all of the diagonal entries of T̂ are in Ω, and (ii) for any diagonal
entries of T̂ , the variance of T̂i,i, for any i = 1, 2, . . . , d, is approximated by

V ar
(
T̂i,i

)
=

1− p

np

(
1

n

n∑

k=1

M4
k,i

)
− 1− p

np
T 2
i,i +O

(
1

np

)
. (4)

For any nonzero, off-diagonal entries in Ω, the variance of T̂i,j , for any 1 ≤ i ̸= j ≤ d, is
approximated by

V ar
(
T̂i,j

∣∣∣(i, j) ∈ Ω
)
=

1

n

(
n∑

k=1

M2
k,iM

2
k,j

)
− T 2

i,j +O

(
(log d)2

d

)
. (5)

We now compare the variance of the Hájek estimator, V ar(T̂ ), with the variance of the Horvitz-
Thompson estimator, V ar(T ), since both estimators are unbiased. We first derive the variance
of T to make the comparison. For diagonal entries, we have that T i,i = (np)−1(M̂⊤M̂)i,i, for
i = 1, . . . , d. For off-diagonal entries, we have T i,j = (np2)−1(M̂⊤M̂)i,j , for i ̸= j. Then, we
calculate the variance of T as:

V ar
(
T i,i

)
=

1− p

n2p

n∑

k=1

M4
k,i, ∀ i = 1, . . . , d, (6)

V ar
(
T i,j

)
=

1− p2

n2p2

n∑

k=1

M2
k,iM

2
k,j , ∀ j = 1, . . . , d and j ̸= i, (7)

which can be verified based on the definition of T in Section 2. Now we can compare equations (6)
and (7) with equations (4) and (5), respectively.
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p = 0.01
p = 0.05 p = 0.1 C = 10 C = 50

C = 100
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Figure 1: An illustration of the variance reduction using the Hájek estimator vs. the Horvitz-
Thompson (HT) estimator, measured on synthetic data with n = 104 and d = 103, by repeating
the data sampling procedure 100 times and calculating the variance across either uniform sampling
with probability p, or sampling C entries per row. In particular, V ar(T̂ ) is generally 10−3 lower
than V ar(T ). For details regarding the simulation setup, see Section B.

• Notice that the diagonal entries are nonzero with high probability over all the diagonal entries.
By comparing equation (4) to equation (6), we see a reduction in the second term of equation
(4), −(1− p)T 2

i,i/(np), which is at the same order as the first term.

• The off-diagonal entries are nonzero with probability equal to q ≈ np2 = Õ(d−1). By
comparing equation (5) to (7), we see that equation (7) is larger than the first term of equation
(5) by a factor of np2/(1− p2). In addition, the second term of equation (5), which is always
negative, further reduces to the variance of T̂i,j compared with T i,j .

Algorithmic implications. One consequence of variance reduction is that the empirical perfor-
mance of the Hájek estimator tends to be much more stable than the Horvitz-Thompson estimator in
the ultra-sparse setting. This is illustrated in Figure 1, measured on synthetic datasets with n = 104

and d = 10d, for various values of p (uniform sampling) and C (i.e., sampling C entries per row
without repetition).

3.2. Sample Complexity

Next, we consider the entries outside Ω. We minimize a reconstruction error objective between T̂
and XX⊤, for some X ∈ Rd×r, plus a regularization penalty of R(X), as follows:

ℓ(X) :=
1

2

∥∥∥PΩ(XX⊤ − T̂ )
∥∥∥
2

F
+ λR(X), (8)

where λ > 0 is a regularization parameter. R(X) is defined as
∑d

i=1(∥Xi∥ − α)4+, where Xi ∈ Rr

is the i-th row vector of X , for i = 1, . . . , d, and α is a scalar that roughly corresponds to the
row vector norms of X . This penalty regularizes the maximum ℓ2-row-norm of X , and is shown
to provide theoretical properties in the optimization landscape of matrix completion [19, 20]. We
summarize our procedure in Algorithm 1, which uses gradient descent to minimize ℓ(X). As a
remark, in the loss objective ℓ(X), we recover the diagonal and off-diagonal entries of T̂ together
via XX⊤, while reweighting the diagonal entries of XX⊤, which is based on Lemma 2.1

1. We remark that there are other algorithms besides gradient descent for the imputation step, such as subspace recovery
on the Grassmann manifold [4]. [54] design an iterative Gaussian-Newton algorithm for matrix recovery based on a
linearization of the recovery objective. A natural extension of our approach involves using the Hájek estimator in the
first step, and then applying these methods (instead of stochastic gradients) in the second step.
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We analyze this algorithm in a common means model, where each row of M follows a mixture
of r vectors u1, u2, . . . , ur ∈ Rd. Let Mi denote the i-th row vector of M . For every i = 1, 2, . . . , n,
assume that Mi is drawn uniformly at random from u1, u2, . . . , ur. Let U = [u1, u2, . . . , ur]/

√
r

denote a d by r matrix corresponding to the combined rank-r factors. Let κ = σmax(U)/σmin(U)
denote the condition number of U . A critical condition to ensure guaranteed recovery in matrix
completion is the following assumption regarding the row norms of U .

Assumption 4 (See also Definition 1.1 in [40] and Assumption 1 in [19]) Let Uei denote the i-
th row vector of a d by r matrix U , where ei ∈ Rd is the i-th basis vector, for any i = 1, 2, . . . , d.
The coherence of U is given by

µ :=
d

r
max
1≤i≤d

∥Uei∥2

∥U∥2F
. (9)

Assuming that µ(U) is a fixed value that does not grow with d; That is, µ(U) does not increase
with the dimensionality of the problem. We show the following performance guarantee of gradient
descent for recovering T , measured in terms of the Frobenius norm distance between a local mini-
mizer and T . In particular, recall that λ refers to the strength of the regularization penalty, while α
refers to the magnitude of the norm of the row vectors. See also the description of the incoherence
penalty term below equation (8).

Theorem 5 Suppose the rows of M follow a mixture of r common factors given by U ∈ Rd×r.
Additionally, the coherence of U is at most µ for some fixed µ ≥ 1 that does not grow with d.
Suppose each entry of M is observed with probability p = C

d for some fixed integer C ≥ 2, and let

q = 1 − (1 − p2)n. Let α = 4κ2r
√

µ
d and λ = (r+1)dq

16r2µ3 . When n ≥ cdr5κ6µ2 log(d)
C2ϵ2

for some fixed

constant c and ϵ ∈ (0, 1), with probability at least 1−O(d−1) over the randomness of Ω, when d is
large enough, any local minimizer X of ℓ(·) satisfies

∥∥∥XX⊤ − T
∥∥∥
2

F
≤ ϵ2. (10)

This result implies that any local minimum solution of the loss objective is also approximately a
global minimum solution. We defer a proof sketch of this result to Section A. We remark that prior
results have established one-sided matrix completion guarantees when each row has two observed
entries [8]. By contrast, Theorem 5 applies to arbitrary values of C ≥ 2 in each row.

Notice that Theorem 5 crucially relies on the assumption that n is much larger than d. To
provide several concrete examples, Table 2 in Section B presents the values of n and d for several
real-world datasets, including MovieLens and Amazon reviews. In these examples, the average
n/d is roughly 10, which justifies the assumption that n can be much larger d in practice. Our
experiments, presented later in Section B.2, further validate the sample complexity result using
synthetic data.

Algorithmic implications. A crucial step in the proof is to leverage the incoherence assumption,
which reduces local optimality conditions from finite samples to the entire population. Later in
Section B.3, we also empirically demonstrate that the use of the incoherence regularization penalty
helps improve performance on real-world datasets.

9
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Algorithm 1 Hájek estimation with gradient descent (Hájek-GD) for one-sided matrix completion

Input: A partially-observed data matrix M̂ ∈ Rn×d

Require: Rank of the second-moment matrix r, number of iterations t, and learning rate η
Output: A d by d matrix

1: I ∈ Rn×d ← The 0-1 indicator mask corresponding to the nonzero entries of M̂
2: Ω ⊆ [d]× [d]← The set of indices corresponding to the nonzero entries of I⊤I
3: T̂ ∈ Rd×d ← The element-wise division between M̂⊤M̂ and I⊤I on Ω
4: X0 ∈ Rd×r ← A random Gaussian matrix whose entries are sampled independently from
N (0, d−1)

5: for i = 1, . . . , t do
6: Xi ← Xi−1 − η∇ℓ(Xi−1), where ℓ(·) is defined in equation (8)
7: end for
8: return T̂ plus the entries of XtX

⊤
t outside Ω

Remark 6 The common means model is often used to study learning from heterogeneous datasets
such as multitask learning and distributed learning. See, e.g., Dobriban and Sheng [14], Kolar
et al. [31]. In particular, Kolar et al. [31] study union support recovery under the common means
model, further assuming that every mean vector is perturbed by another noise addition of ϵi (added
to Mi). Despite the simplicity of this model, several learning problems can be reduced to the
Normal means model [5]. Dobriban and Sheng [14] study a distributed ridge regression problem,
where each every individual performs a ridge regression on a local machine, and then, the ridge
estimators are aggregated together on a central server. In particular, the samples of each individual
are assumed to follow a linear model with the same β, plus independent random noise ϵ with mean
zero and variance σ2. One way to extend the common means model is by positing a noise addition,
such as a noise vector ϵi added to Mi, whose entries are drawn independently from a Gaussian
distribution N (0, σ2/d). Our proof can be naturally applied to this extension. In particular, there
are three places that need to be modified to account for the noise addition, including: 1) The
proof of Lemma E.1, in particular equations (27), (28), and (29). 2) The proof of Corollary 11,
in particular, adding the dependence of σ2 to the numerator in equations (31) and (32). 3) The
proof of Corollary 12, which inherits the dependence on σ2 from Corollary 11. These extensions
will rely on concentration bounds on Gaussian random variables. Finally, we would also need to
incorporate the noise variance in the diagonal entries of T̂ . We can de-bias this by subtracting a
suitably scaled diagonal matrix in the objective ℓ(X).

Another plausible extension is to instead assume that each Mi is a linear combination of the
r low-rank factors. This setting appears to be significantly more challenging and would likely go
beyond the techniques developed in this paper, as one would first need to disentangle the linear
dependence and design a new estimator capable of learning the low-rank subspace spanned by the
latent factors. One promising direction for tackling this problem is to use the spectral estimator
developed in the work of [10]. This is left as an open question for future work.

Discussions. In the proof of Theorem 5, we tackle the error terms arising from the diagonal
and off-diagonal entries separately. This is because the diagonal entries are fully observed with
high probability. By contrast, the off-diagonal entries are only sparsely observed. At a high level,
as n increases, the concentration errors in the diagonal entries will decrease (at a rate of n−1/2).

10
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Meanwhile, q will also increase, leading to more observed samples in the off-diagonal entries. Thus,
we can set n carefully to ensure that the error between T̂ and T , when restricted to Ω, is sufficiently
small. The details can be found in Appendix E.1-E.2.

We now discuss our work from the perspective of prior work by [17]. Their work examines a
low-rank plus noise common factor model. Their estimators involve a low-rank estimator, plus a
diagonal matrix. In particular, this diagonal matrix is designed to offset the bias contributed by the
noise term. As an extension, if we incorporate the noise term into the latent factor model of Mi,
we would similarly need to de-bias the diagonal entries to account for the norms of the noise. The
proof can be extended to handle this setting by estimating the magnitude of the noise variance, and
then adding this bias to the objective ℓ(X).

4. Conclusion

In this paper, we study the problem of matrix completion in an ultra-sparse sampling regime, where
in each row, only a constant number of entries are observed in each row. While recovering the entire
matrix is not possible, we focus on the one-sided matrix completion problem. We apply the Hájek
estimator from the econometrics literature to this problem, and present a thorough analysis of this
estimator. We demonstrate that this estimator is unbiased and achieves a lower variance compared
to the Horvitz-Thompson estimator. Then, we use gradient descent to impute the missing entries
of the second-moment matrix and analyze its sample complexity under a low-rank mixture model.
The sample complexity bound is optimal in its dependence on the dimension d. Our result applies
to the case of observing C entries at each row, resolving an open question from prior work.

Extensive experiments on both synthetic and real-world datasets demonstrate that our approach
is more efficient for sparse matrix datasets compared to several commonly used matrix completion
methods. Ablation studies validate the use of a low-rank matrix incoherence regularizer in the
algorithm.

Our paper opens up several promising avenues for future work. First, it would be valuable to
theoretically analyze the sensitivity of the Hájek estimator to noise injection, which could inform
the design of privacy-preserving matrix completion algorithms in the ultra-sparse sampling regime.
Second, our current sample-complexity bound exhibits a high dependence on the rank of the latent
factor model; improving this rank dependence remains another interesting open question. It would
also be interesting to understand to what extent linear sample complexity of n relative to d can be
achieved under ultra-sparse sampling, by further relaxing the assumptions required in our analysis.
Finally, extending our framework to other forms of panel data such as low-rank tensors or low-rank
mixture models, is another promising avenue left for future work.
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Appendix A. Proof Techniques and Extensions

Next, we present a sketch of our proof. There are two major challenges in analyzing the Hájek
estimator in the ultra-sparse sampling regime: First, the estimator involves dividing one random
variable by another random variable, resulting in a nonlinear estimator. Further, the missing pat-
terns in Ω are non-random, depending on the diagonal and off-diagonal entries, respectively. Our
approach to tackle this non-linearity is via a first-order approximation technique for analyzing the
Hájek estimator on the diagonal entries. Further, we carefully analyze the bias in the off-diagonal
entries.

Second, the sampling patterns of Ω are not fully independent. To this end, we establish a
concentration inequality that handles the concentration error row by row in Ω. This is based on the
observation that, conditioned on one row, expect the diagonal entries, the randomness of each entry
in that row would be independent across different entries. This row-by-row concentration argument
also allows us to analyze the spectral norm of the bias matrix. As a remark, this type of argument
has been used in matrix completion with non-random missing data [1]. However, prior work focuses
on analyzing nuclear norm regularization methods, while our result now applies to gradient-based
optimization. Next, we outline the main results in addressing the above two challenges.

A.1. Main Proof Ideas

Bias and variance of the Hájek estimator. Recall that T̂ is unbiased by Lemma 2. Thus, the
variance of T̂ is the same as the expected squared error between T̂ and T . A key result for deriving
the variance of the Hájek estimator is as follows.
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Lemma 7 In the setting of Theorem 5, suppose p = C/n for some fixed integer C ≥ 2 and
n ≥ d(log d)/ϵ2. Let Si = {j : (i, j) ∈ Ω, j ̸= i} denote the set of indices corresponding to the
nonzero entries in the i-th row of T̂ . With probability at least 1 − O(d−1), the following must be
true, for every i = 1, 2, . . . , d,

V ar
(
T̂i,i

)
≤ µ2r

d2np

(
1 + ϵ

√
6C−1

d

)(
1 + r

√
3 log(d/2)

2n

)
, (11)

∑

j∈Si

V ar
(
T̂i,j

)
≤ µq

d

(
1 + 3r

√
3 log(d/2)

2d

)
+ Õ

(
d−3
)
. (12)

Proof sketch. The proof regarding the diagonal entries in equation (11) is based on a first-order
approximation of V ar(T̂i,i). For every i = 1, 2, . . . , d, let

Ai,i :=
n∑

k=1

M2
k,iIk,i and Bi,i :=

n∑

k=1

Ik,i. (13)

We perform Taylor’s expansion of T̂i,i around (E [Ai,i] ,E [Bi,i]) as follows (See also Chapter 5.5,
[43]):

T̂i,i =
E [Ai,i]

E [Bi,i]
+

1

E [Bi,i]
(Ai,i − E [Ai,i])− E [Ai,i]

(E [Bi,i])2
(Bi,i − E [Bi,i]) + ϵi,i. (14)

Above, the first term to the right of equation (14) stems from the zeroth-order expansion. The
second and third terms arise from taking the partial derivatives over Ai,i, Bi,i, respectively. ϵi,i is
an error term that is at the order of the variance of Ai,i, Bi,i, which can be calculated in close form
based on equation (13).

Given that T̂ is unbiased, V ar(T̂i,i) is equal to the expectation after squaring both sides of
equation (14). As a result, we derive the variance approximation of T̂i,i by carefully analyzing each
term, which will lead to equation (4).

• Figure 2 provides an illustration of equation (14) (except the ϵi,i error term) and the corre-
sponding variance estimate from equation (4). We find that both approximations hold with
negligible errors for various sampling probabilities p (uniform sampling with probability p)
and C (fixed number of entries per row).

• This simulation uses n = 104 and d = 103 and follows the setup stated in the synthetic data
generation process, which can be found in Section B.

As for the off-diagonal entries of T̂ , note that when (i, j) ∈ Ω, with high probability the (i, j)-th
entry of I⊤I must be one. Thus, V ar(T̂i,j) is equal to the variance of n values M1,iM1,j , . . . ,Mn,iMn,j

(plus some small errors). This leads to the variance approximation of equation (5). See Appendix
E.1 for the full proof.

A concentration inequality for operator PΩ. In order to analyze the optimization landscape of
the loss objective ℓ(·), we will first derive the first-order and second-order optimality conditions.
However, these are stated on the observed set Ω, and we need to turn them into the full set on T . To
this end, we develop the following concentration inequality, which helps reduce finite-sample local
optimality conditions to the full matrix.
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Figure 2: We illustrate the results from applying a first-order approximation to the variance of the
diagonal entries of Hájek-GD, run on synthetic data with n = 104 and d = 103. Setting one:
Sample each entry with probability p. Setting two: Sample C entries per row without repetition. In
particular, the approximation errors incurred by both first-order Taylor’s expansion and the variance
approximation are generally less than 10−6.

Lemma 8 Let W ∈ Rd×d be a d by d symmetric matrix such that ∥W∥∞ ≤ ν
d , for some fixed

positive value of ν. Then, with probability at least 1 − O(d−1), the following statement must be
true:

∥PΩ(W )− qW∥2 ≤ qν

√
16 log(2d)

dq
. (15)

The proof of this concentration result can be found in Appendix E.2.
The last ingredient involves analyzing the population loss of one-sided matrix completion, build-

ing on the machinery of [19]. These are discussed in detail in Appendix E.3 and E.4, which involve
analyzing the population landscape and then reducing empirical case to the population case, respec-
tively.

• In particular, we extend their analysis to account for the bias of T̂ and the non-random miss-
ingness of Ω due to the diagonal and off-diagonal entries.

• The treatment of the bias of T̂ relative to T is especially tedious and requires careful calcula-
tion. We build on Lemma 7 and 8 to give the bias of each diagonal entry, and the bias of each
row — See Corollary 11.

• The final proof of Theorem 5 can be found in Appendix E.5. We also discuss our work from
the perspective of the work of [19] in Remark 21.

Remark 9 The above sample complexity result assumes the existence of a low-rank factor model,
and the gradient descent algorithm requires knowing the exact rank of the factor model. In practice,
one can adjust the rank parameter in the gradient descent algorithm via cross-validation. See
a detailed ablation analysis in Appendix F.3. It is an interesting question to examine adaptive
optimization methods that can automatically learn or estimate the true rank without knowing it.
One natural extension of our technique is by running SVD on T̂ and from the decomposition infer
the rank of T . For example, this can be achieved by analyzing the spectrum induced by the noise
added to T̂—See Corollary 11 in Appendix E.1 for the analysis of the bias T̂ − T on Ω.
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Algorithm 2 Missing data imputation using one-sided matrix completion

Input: A partially observed M̂ ∈ Rn×d

Require: Rank r, number of iterations t, learning rate η
Output: An k by d matrix corresponding to the imputed rows of S

1: Z ← Hájek-GD(M̂ ; r, t, η) // May add Gaussian noise to the non-zero entries of M̂
2: UrDrU

⊤
r ← rank-r SVD of Z

3: Ω← set of indices corresponding to the nonzero entries of M̂⊤M̂

4: Q← argminQ∈Rn×r
1
2

∑
i∈S,(i,j)∈Ω

((
QU⊤

r

)
i,j
− M̂i,j

)2

5: return QX⊤

A.2. Extensions

We now describe two extensions of our approach. In the first extension, we use Hájek-GD to recover
the unobserved entries of M . To accomplish this, we solve a least-squares regression problem that
projects the observed entries of M onto the span of the recovered second-moment matrix. An
illustration of this overall procedure is provided in Figure 3, and the complete algorithm is detailed
in Algorithm 2. In particular, when C ≥ O(r log d), one can show that this least-squares procedure
can accurately recover every row of M .

As discussed in the introduction, recovery guarantees are generally impossible when the number
of samples is extremely limited. However, one practical way to view this algorithm is as a user-level
recovery procedure: when a user performs the local least-squares regression, it is likely that they
will have access to additional local data beyond the ultra-sparse global observations. In such cases,
the least-squares step can accurately reconstruct the entire row based on the recovered row space.

In the second extension, we further generalize our recovery guarantees to account for differential
privacy (DP) using the Gaussian mechanism. We begin by recalling the notion of differential privacy
in the context of matrix completion. Given an input M̂ , an algorithmA is said to satisfy (ε, δ)-joint
differential privacy if, for any i ∈ {1, 2, . . . , n}, replacing the i-th row of M (and the corresponding
row of M̂ ) by another vector x ∈ X ⊆ Rd yields matrices M̂ and M̂ ′ that differ in only one row.
Then, for any set of measurable events S,

Pr
[
A(M̂) ∈ S

]
≤ exp(ε) Pr

[
A(M̂ ′) ∈ S

]
+ δ, (16)

This definition follows prior work on user-level DP for matrix completion [36, 48]. To satisfy (ε, δ)-
DP, we perturb the nonzero entries of M̂ with Gaussian noise drawn from N (0, σ2). To determine
the appropriate noise level σ, we measure the ℓ2-sensitivity of the algorithm A : Rn×d → Rd×d as:

∆2(A) = max
M∼M ′

∥∥A(M)−A(M ′)
∥∥
F
, (17)

where M ∼M ′ denotes that the two matrices differ in at most one row.
By standard results in the DP literature, when

σ =
2
√
ln (1.25δ−1)∆2(A)

ε
,

the algorithm Hájek-GD combined with the Gaussian mechanism satisfies the (ε, δ)-joint differen-
tial privacy with high probability. See Theorem A.1 in Dwork and Roth [16] for the full statement.
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Figure 3: Illustration of the proposed one-sided matrix completion pipeline. Input: A partially
observed matrix M̂ ∈ Rn×d. Each row represents a user’s data (e.g., movie ratings), and each
column represents an item. Thus, M is a tall-and-skinny matrix, with n being larger than d. Step 1:
Apply the Hájek estimator to correct for non-random missingness in the empirical second-moment
matrix M̂⊤M̂ over the observed index set Ω. Step 2: Impute the remaining unobserved entries of
T by running gradient descent on a low-rank reconstruction loss between the estimated and true
second-moment matrices. The final T combines the observed entries from T̂ with the missing
entries from XtX

⊤
t , where Xt denotes the t-th gradient descent iterate. Extension: Perform full

matrix imputation by projecting onto the recovered low-rank subspace Ur (obtained via rank-r SVD
of the estimated T ) and solving a least-squares regression problem to estimate the missing entries
of M .

In Appendix F.3, we empirically estimate the sensitivity of Hájek-GD and find that ∆2(A) remains
small—typically between 11 and 19 across several datasets.

Together, these two extensions show that our approach can (i) leverage the recovered row space
to impute missing entries of M , and (ii) ensure privacy-preserving estimation under standard Gaus-
sian noise perturbation.

Appendix B. Experiments

In this section, we evaluate our proposed approach through extensive experiments on both synthetic
data and real-world datasets.

Synthetic data generation. We generate synthetic data by sampling each entry of M ∈
Rn×d independently from a Gaussian distribution N (1/

√
d, 1/d), where d denotes the number of

columns. Unless otherwise stated, we fix n = 104 and d = 103. To construct a low-rank ground-
truth matrix, we perform an SVD of M and retain the top-10 singular values and corresponding
singular vectors, truncating the lower tail. The observed matrix M̂ is then obtained by sampling
each entry independently with probability p = C/d. We also consider an alternative sampling
scheme that selects exactly C entries per row without replacement, and find that the results are
qualitatively similar under both schemes.

Real-world datasets. We further evaluate our algorithm on several large, sparse matrix datasets:
(i) three MovieLens datasets with 20 million and 32 million nonzero entries; (ii) an Amazon Re-
views dataset [26]; and (iii) a Genomics dataset from the 1, 000 Genomes Project [8]. These datasets
are standard testbeds for sparse matrix completion and cover a wide range of sparsity leves and
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scales representative of real-world recommendation and biological data. Their detailed statistics are
summarized in Table 2. We formulate the prediction task on each dataset as a regression problem.

Table 2: The detailed statistics of five real-world matrix datasets used in our experiments.

Dataset Genomes Amazon Reviews MovieLens-20M MovieLens-25M MovieLens-32M

# Rows 100, 000 100, 000 138, 000 162, 000 200, 948
# Columns 2, 504 50, 000 27, 000 62, 000 87, 585
# Nonzero 2.5× 108 1.3× 106 2× 107 2.5× 107 3.2× 107

Baselines. We compare our method against three strong baselines widely used in the matrix-
completion literature:

1. Nuclear-norm regularization [8], which coincides with the same weighted estimator as Hájek-
GD when each row contains exactly two entries. One difference between our implementation
and theirs is that we also add the incoherence regularization term to the loss function.

2. Alternating Gradient Descent (alternating-GD).

3. Soft-Impute with Alternating Least Squares (softImpute-ALS) [23].

To adapt the latter two methods for one-sided matrix completion, we first apply each baseline to re-
cover the full matrix M and then compute the corresponding second-moment matrix T as M⊤M/n.
Additional dataset descriptions and implementation details are provided in Appendix F.

Evaluation metrics. For one-sided matrix completion, we measure compare the recovery error
as the Frobenius norm between the estimated and true T matrices. For full matrix imputation,
we compare Algorithm 2 to alternating-GD and softImpute-ALS, reporting the root mean squared
error (RMSE) between the imputed and ground-truth values. All experiments are implemented in
PyTorch and executed on an Ubuntu server with 16 Intel Xeon CPUs and one Nvidia Quadro 6000
GPU.

Summary of numerical results. For one-sided matrix completion in the sparsest regime—
where each row has only two observed entries—we find that Hájek-GD reduces recovery error by
70% compared to nuclear-norm regularization on synthetic data. Across all three real-world datasets
(each with sparsity below 1%), Hájek-GD reduces the recovery error of T by at least 42% relative
to alternating-GD and by 59% relative to softImpute-ALS.

When using Hájek-GD to impute the missing entries of M as part of Algorithm 2, the overall
approach achieves an 85% reduction in RMSE compared to alternating-GD and softImpute-ALS
on synthetic data where each row has only two entries. On real-world datasets, Hájek-GD further
reduces RMSE by at least 21% relative to alternating-GD and by 38% relative to softImpute-ALS.

Finally, we conduct ablation studies to validate our algorithmic design choices. In particular, we
highlight the benefits of incorporating the incoherence regularization R(X) in the loss and demon-
strate that Hájek-GD remains robust under random noise perturbations in the input. Together, these
findings indicate that our approach is particularly effective and stable in ultra-sparse matrix
regimes.
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Figure 4: Comparing the bias of the Hájek estimator vs. the Horvitz-Thompson estimator, measured
as the mean squared error between T̂ (or T ) and T on the index set Ω. Left: Reporting the bias on
synthetic matrix data with n = 104 and d = 103. Middle: Reporting the bias on MovieLens
datasets. We consider both uniform sampling with probability p as well as sampling C entries
from each row. Right: We further consider a non-uniform sampling setting, where the sampling
probability at each row is proportional to the number of nonzero entries in that row.

B.1. Measuring Bias on Observed Entries

We begin by comparing the bias between T̂ and T , measured by the sum of squared errors between
T̂ (and T ) with T on Ω. Our finding is illustrated in Figure 4. First, we find that the bias of T̂
compared to T , is at the order of 10−4 to 10−2 for various p. In Figure 4 left, we find that on
synthetic datasets, the bias of T̂ is 9× 10−4 and the bias of T is 0.3 averaged over various sampling
probabilities, resulting in a reduction of 99%. In Figure 4 right, we observe that for three MovieLens
datasets, the bias of T̂ is 6× 10−4 and the bias of T is 5× 10−3, resulting in a reduction of 88%.

Additionally, we test a biased sampling procedure, where users who watch more movies tend to
rate more movies as well (also known as “snowball effects” [9]). For each i = 1, . . . , n, we sample
its entries with probability pi equal to C/d times the number of non-zeros in row i. We find that
under this biased sampling procedure, the bias of T̂ is 3 × 10−4 and the bias of T is 5 × 10−3,
resulting in a reduction of 93%. As explained earlier, these results stem from the variance reduction
effect of T̂ .

B.2. Recovery Results for Synthetic Matrix Data

We now examine one-sided recovery error by keeping the number of samples m fixed while varying
p and d separately. Since the sample complexity on n grows linearly with d times log(d), the error
should remain roughly constant as we fix m/d while slowly increasing d. We report simulation
results under three regimes. For all three setting, we fix the number of rows n = 104.

First, we set the rank r = 10, noise injection variance σ2 = 1, and vary d from 103 to 5 × 103

and p from 2/d to 10/d. As shown in Figure 5 left, the estimation error remains flat for different
values of p and m, which suggests that sample complexity does not grow with d, after adjusting for
m/d.

Second, we set the sampling probability p = 2/d, σ2 = 1, and vary d from 103 to 5× 103 and
r from 5 to 25. As shown in Figure 5 middle, the estimation error remains flat for a given rank r, as
d grows.
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Figure 5: Illustration of the recovery error of Algorithm 1. Left: We vary the sampling probability
and find that the error roughly stays constant after we also fix the number of samples. Middle: We
see similar results as we fix the number of samples but vary the rank of the underlying matrix. Right:
We gradually increase the noise level and find that the estimation errors also increase. The reported
results are aggregated based on five independent runs.

Third, we set the dimension d = 103, p = 2/d, r = 10, while varying σ2 from 1 to 50. We
find that as σ2 increases, the estimation error grows linearly, as shown in Figure 5 right. This is
consistent with our bounds in Theorem 5, where n grows proportionally with σ2.

Similar results on synthetic data are further illustrated in Figure 7 (See Appendix F.2). We see
a consistent trend in which our approach reduces the recovery error across different settings of C
(expected number of entries at each row) and n, compared to all three baseline methods, including
alternating-GD, softImpute-ALS, and nuclear norm regularization. In the setting with the fewest
observed entries (C = 2 and n = 104), Hájek-GD achieves the lowest error of 0.10, representing a
70% reduction compared to the closest baseline, nuclear norm regularization, which yields an error
of 0.48. In the setting with C = 10 observed entries per row, Hájek-GD achieves an error of 0.06,
outperforming alternative-GD and nuclear norm regularization, whose error rates are 0.09 and 0.17,
respectively.

B.3. Recovery Results for Real-World Matrix Data

Next, we report the results on three real-world datasets in Table 3. We find that our approach
consistently achieves the lowest error for recovering T and M , compared to two baseline methods.
For one-sided matrix completion, Hájek-GD improves upon alternating-GD by 42% and softImpute-
ALS by 59% on average. For recovering the entire matrix, our approach reduces recovery error by
21% relative to alternating-GD and by 38% relative to softImpute-ALS, averaged over the three
datasets. In particular, on the Amazon reviews dataset, Hájek-GD reduces estimation of T by 59%
and recovery of M by 21% relative to the best performing baseline.

An important design in Hájek-GD is the use of an incoherence regularization penalty of R(·)
(see Section 3.2). We now describe the results from varying regularization parameter λ and the
threshold α (used in the truncation of R(·)), as part of R(·), on a synthetic dataset with p = 10/d
and also the Amazon Review dataset. We vary λ between 10−4, 10−3, 10−2, and we vary α between
10−5, 10−4, 10−3, 10−2, 10−1. We find that on synthetic datasets, the lowest recovery error is
achieved when λ = 10−4 and α = 10−3, leading to an error of 2.8 × 10−3, compared to the error
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Table 3: Results from applying our approach on three real-world datasets with up to 32 million
entries, as compared with two baseline methods, namely alternating-GD and softImpute-ALS. We
report both the recovery errors and the running time (measured in the number of seconds when
evaluated on an Ubuntu server). We run each experiment with five random seeds to calculate the
mean and the standard deviation.

Dataset MovieLens-32M Amazon Reviews Genomes MovieLens-32M Amazon Reviews Genomes

T One-sided recovery error Running time

AlternatingGD 9.1±0.1 × 10−3 3.3±1.3 × 10−3 7.0±1.6 × 10−5 7.2±0.1 × 102 4.8±0.1 × 102 23.2±5.0

SoftImputeALS 9.1±0.1 × 10−3 3.2±0.3 × 10−3 1.9±0.5 × 10−4 6.3±4 × 104 5.1±0.3 × 103 959.8±40

Algorithm 1 4.7±0.1 × 10−3 1.3±0.2 × 10−3 5.8±0.1 × 10−5 1.5±0.1 × 102 2.8±0.2 × 102 1.3±0.1

M Root mean squared recovery error Running time

AlternatingGD 1.7±0.1 2.6±0.1 0.2±0.1 5.7±0.1 × 102 2.2±0.1 × 102 23.2±5.0

SoftImputeALS 1.4±0.1 3.3±0.1 0.4±0.1 6.3±4 × 104 4.8±0.3 × 103 959.9±40

Algorithm 2 1.1±0.1 1.9±0.1 0.2±0.1 5.6±0.1 × 102 2.8±0.2 × 102 14.7±0.2

rate of 3.6 × 10−3 without using the regularization. In other words, we can reduce the recovery
error by 22%.

On the Amazon Reviews dataset, the lowest recovery error is achieved when λ = 10−2 and
α = 10−1, at 1.3 × 10−2, compared to 2.7 × 10−2 without using the incoherence regularizer. As
a result, incorporating the incoherence regularization penalty of R(·) reduces the recovery error by
52%.

Runtime scaling as the dimensions grow. Below, we report experiment results to illustrate the
runtime scaling of Hájek-GD as a function of both d (number of columns) and |Ω| (number of
nonzero entries in T̂ ). In particular, we consider both synthetic data and real-world data. In Figure
6 left, we illustrate the running time (measured in seconds) as a function of the dimension d. We
also vary C to ensure the robustness of our findings. In Figure 6 right, we illustrate the running
time from Hájek-GD on the MovieLens datasets with various sampling probabilities p. We find
that the runtime of Hájek-GD scales near linearly with the number of observed entries |Ω|. It is an
interesting question to precisely analyze the runtime scaling of gradient descent in low-rank matrix
completion. See, e.g., several recent works for references [29, 30, 35, 37, 50, 52].

Appendix C. Related Work

The problem of recovering a low-rank matrix from a few potentially noisy entries has a rich his-
tory of studies in the literature, spanning a wide variety of areas, including collaborative filtering,
machine learning, and compressed sensing [7]. One of the earliest results from the matrix com-
pletion literature involves a maximum-margin matrix factorization approach [44], which minimizes
the reconstruction error plus a trace norm penalty on the low-rank factors. Under an incoherent
condition on the low-rank factors plus a joint incoherence condition, [6] show that exact recovery of
the unknown matrix is possible by minimizing the nuclear norm of the reconstructed matrix, subject
to equality constraints on the observed entries. The joint incoherence condition on the factors is
further shown to be unnecessary [11]. [13] sharpen the known bounds through a leave-one-out anal-
ysis, which leads to a convergence guarantee for projected gradient descent on a rank-constrained
formulation. Complementary to these results, [53] show error bounds on the nuclear norm regular-
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Figure 6: Illustration of the runtime scaling of Hájek-GD as d and m increase. Left: We vary the
dimension d and find that the runtime of Hájek-GD increases roughly linearly in d as d increases.
To ensure the robustness of our findings, we report the results for three values of C (recall that the
sampling probability p = C/d). Right: We vary the number of entries m between three MovieLens
datasets and find that the runtime of Hájek-GD increases as m increases. The reported results are
based on five independent runs.

ized objective, relative to the error of the best rank-r approximation of M . Further references about
different algorithmic approaches to matrix completion can be found in the survey by [46].

Recent literature has studied the optimization geometry of the loss landscape of matrix comple-
tion using rank-constrained first-order optimization methods [19, 47]. Provided with a regulariza-
tion on the incoherence (balance between the rows of low-rank factors), it is possible to prove that
all local minimum solutions of the matrix completion reconstruction error objective are also global
minimum [20]. By carefully analyzing the local geometry of the matrix factorization objective,
it is possible to achieve exact recovery under the incoherence condition [47]. Provided with this
characterization, one can obtain convergence rates through the literature on finding local minima
in nonconvex optimization problems [39, 49]. In particular, it is known that many optimization al-
gorithms, including cubic regularization, trust-region methods, and stochastic gradient descent, can
efficiently find a local minimizer. See a recent textbook on first-order and stochastic optimization
methods for further references [32].

There is a closely related problem of low-rank matrix recovery, whose aim is to reconstruct a
low-rank matrix based on a linear system of measurement equations of the unknown matrix [42].
The optimization landscape of low-rank matrix recovery from random linear measurements in the
presence of arbitrary outliers is studied by [33]. Besides, there are studies on the dynamics of gra-
dient descent assuming the factorization is over-parameterized [34, 37]. Additionally, matrix fac-
torization has connections to two-layer neural networks and random matrices, which have inspired
studies on the dynamics of deep linear networks [28]. Another related problem is nonnegative ma-
trix factorization, which has also been studied for “tall-and-skinny” matrices [3]. There is also a
line of work on the recovery of a low-rank plus sparse matrix [27]. Another plausible direction in
the ultra-sparse sampling setting is to instead recover a low-rank approximation of the underlying
matrix from just O(n) samples. See [18] for further references of this setting.

The one-sided matrix completion problem has been recently formulated and studied in the spe-
cial case where each row contains only two randomly observed entries [8]. This work complements
their paper in four aspects. First, their sample complexity bound focuses on the setting where every
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row has two observed entries, while our result applies to more general settings that allow for any
constant C. Second, their result builds on proof techniques for matrix completion with nuclear norm
regularization penalty. By contrast, our result applies to gradient-based optimization algorithms,
which are faster and easier to implement in practice. Third, our result builds on the incoherence
assumption from the MC literature. Finally, we explore the use of one-sided matrix completion
for full matrix completion and find that this can also lead to improved results for imputing missing
entries of the full matrix.

First-order stochastic gradient methods also have applications in large-scale matrix completion
[38]. In particular, one can apply stochastic gradient updates in an asynchronous protocol, making
it suitable for distributed platforms [41]. Besides the nuclear norm minimization approach, alter-
nating minimization such as alternating least squares and low-rank matrix factorization are also
widely used in practice [23]. More recently, Wang et al. [48] consider a low-rank matrix factoriza-
tion approach to private matrix completion. Assuming the M matrix is indeed of low rank, their
work shows a sample complexity bound that scales linearly in dimension. The difference between
our work and this work is that we focus on an ultra-sparse sampling regime where there are only
O(n) randomly sampled entries, rendering the accurate recovery of the entire matrix information
theoretically impossible. In light of our new results, it may also be worth resisting the dynamics of
zeroth-order and first-order methods for nonconvex optimization [21, 45] when high rates of noise
are added during each iteration.

The idea of using the estimated probability to reweight a population statistic is known as the
Hájek estimator [22]. It has often been used to tackle sparse and non-random sampling data [43].
It is known from the causal inference literature [24] that the Hájek estimator incurs lower variance
than the Horvitz-Thompson estimator, which weights each observation inversely with the true prob-
ability. To our knowledge, the analysis of this estimator for one-sided matrix completion appears to
be new in the MC literature. Unlike conventional results [22] where the Hájek estimator is shown
to be asymptotically unbiased, for one-sided matrix completion, we find that it is unbiased even in
the finite sample regime. Recent work [2] develops the estimation of counterfactuals when potential
outcomes have a factor structure for block-missing panel data. Duan et al. [15], Xiong and Pelger
[51] develop the inferential theory for latent factor models in large-dimensional panel data with gen-
eral non-random missing patterns by proposing a PCA-based estimator on an adjusted covariance
matrix.

Appendix D. Proof of Theorem 3

First, we present the proof of the unbiasedness of the Hájek estimator on the observed set Ω.

25



ONE-SIDED MATRIX COMPLETION FROM ULTRA-SPARSE SAMPLES

Proof [Proof of Lemma 2] Suppose that (I⊤I)i,j = k, for any k ≥ 1. Then, conditioned on
(I⊤I)i,j = k, the expectation of T̂i,j is equal to

E
[
T̂i,j

∣∣∣(I⊤I)i,j = k
]
= E

[
1

k
(M̂⊤M̂)i,j

∣∣∣∣∣(I
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]
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[
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∣∣∣(I⊤I)i,j = k
]
·Ma,iMa,j .

Notice that for a fixed a, the event that Ia,iIa,j = 1 are pairwise independent for all a = 1, 2, . . . , n.
Given that k out of the n pairs are chosen, the probability that q is chosen is equal to

(
n−1
k−1

)
/
(
n
k

)
=

k/n. Thus, the above is equal to

1

k

n∑
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k

n
·Ma,iMa,j = Ti,j ,

which concludes the proof of equation (3). To finish the proof that T̂ is unbiased, notice that
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which concludes the proof of equation 2.

Next, we present the proof of Theorem 3, which provides a first-order approximation to the
variance of the Hájek estimator on Ω.
Proof [Proof of Theorem 3] For equation (4), we use Taylor’s expansion on V ar(T̂i,i). For ease of
presentation, let us denote Ai,i = (M̂⊤M̂)i,i, and let Bi,i = (I⊤I)i,i, for any 1 ≤ i ≤ d. Thus,
conditioned on the event that Bi,i ̸= 0, the (i, i)-th entry of T̂ , given by T̂i,i, is equal to Ai,i

Bi,i
.

By Taylor’s expansion, we approximate the ratio statistic using the delta method as:

Ai,i

Bi,i
=

E [Ai,i]

E [Bi,i]
+

1

E [Bi,i]
(Ai,i − E [Ai,i])− E [Ai,i]

(E [Bi,i])2
(Bi,i − E [Bi,i]) + ϵi,i, (18)

where ϵi,i is at the order of the variance of Ai,i and Bi,i, which is O(1/(np)). Thus, based on the
first-order expansion, the variance of Ai,i

Bi,i
is approximated by:

V ar

[
Ai,i

Bi,i

]
=

V ar [Ai,i]

(E [Bi,i])2
+

(E [Ai,i])
2V ar [Bi,i]

(E [Bi,i])4
− 2E [Ai,i] · Cov(Ai,i, Bi,i)

(E [Bi,i])3
+O

(
1

np

)
,

(19)

where the error term is based on the approximation error that stems from ϵi,i in equation (18).
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Now we look into simplifying equation (19). Based on the definition of Ai,i, Bi,i, we get the
following facts, for any i = 1, . . . , d:

E [Bi,i] = np, V ar [Bi,i] = np(1− p), (20)

E [Ai,i] = p(M⊤M)i,i, Cov(Ai,i, Bi,i) = (p− p2)(M⊤M)i,i. (21)

To verify the above results, let us introduce a Bernoulli random variable Xk, which is equal to 1
with probability p, or 0 with probability 1− p, for k = 1, 2, . . . , n. Thus, we can write

Ai,i =

n∑

k=1

M2
k,iXk, and Bi,i =

n∑

k=1
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As a result,
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)
(p+ (n− 1)p2)− np2(M⊤M)i,i

= (p− p2)(M⊤M)i,i.

Therefore, by plugging in the results from equations (20) and (21) back into equation (19), we obtain
an approximate variance of the ratio statistic as:

V ar[Ai,i]

n2p2
+

p2(M⊤M)2i,i · np(1− p)

n4p4
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n3p3

=
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n2p4
−

(1− p)(M⊤M)2i,i
n3p

. (22)

This applies to any diagonal entries of T̂ . In particular, notice that the first term of equation (22) is
precisely the variance of T i,i, which reweights the observed entries based on the true probability.
This leads to the following variance estimate for the diagonal entries:

V ar[Ai,i]

n2p2
−

(1− p)(M⊤M)2i,i
n3p

. (23)

Finally, we write down the variance of Ai,i as follows:

V ar
[
Ai,i

]
= p(1− p)

n∑

k=1

M4
k,i. (24)
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Notice that the probability that Bi,i is equal to zero is at most O(d−C). We can add this error
analysis into the above proof, which does not affect the order of the error term. This concludes the
proof of equation (4) in Theorem 3 regarding the variance approximation of the diagonal entries.

Next, we consider the case of off-diagonal entries in equation (5). The probability that an off-
diagonal entry of T̂ is nonzero is

1− (1− p2)n,

which is approximately np2 = C2(log d)2/d. Thus, conditioned on the fact that (I⊤I)i,j ̸= 0, the
dominating event is when (I⊤I)i,j = 1. The error to this, which is when there are at least two
nonzero entries in the sum, is less than

Pr[(I⊤I)i,j ≥ 2]

Pr[(I⊤I)i,j ̸= 0]
≈ np2.

When the (i, j)-th entry of I⊤I is equal to one, then T̂i,j = (M̂⊤M̂)i,j . The variance of T̂i,j ,
conditioned on (I⊤I)i,j = 1, is thus given by

1

n

n∑

k=1

(
Mk,iMk,j −

1

n

(
n∑

k′=1

Mk′,iMk′,j

))2

.

After simplifying the above, we reach the conclusion of equation (5). The proof is thus completed.

Appendix E. Proof of Theorem 5

We analyze the sample complexity of Algorithm 1. In particular, we will analyze ℓ(·). Without loss
of generality, let us assume that ∥U∥2F = r within this section. This also implies σmax(U) ≥ 1 ≥
σmin(U).

A key part of the proof is analyzing the bias of T̂ (relative to T ). Let N ∈ Rd×d denote the bias
of the Hájek estimator, where

Ni,j = T̂i,j − Ti,j , ∀(i, j) ∈ Ω,

Ni,j = 0, ∀(i, j) /∈ Ω.

Here is a road map of this section:

• First, in Appendix E.1, we bound the variance of the Hájek estimator, on the observed set Ω.

• Second, in Appendix E.2, we derive a concentration bound that applies to the weighted pro-
jection PΩ. By a similar argument, we also derive the spectral norm of N .

• Third, in Appendix E.3, we derived the local optimality conditions from ℓ(·), and then we
argue that any local minimum solution of ℓ(·) must satisfy the incoherence assumption with
a suitable condition number.

• Fourth, in Appendix E.4, we use the incoherence assumption to reduce the local optimality
conditions on the empirical loss to the population loss.

Finally, in Appendix E.5, we analyze the population loss and, based on that, complete the proof of
Theorem 5. We provide a detailed comparison between this work and the work of [19] in Remark
21.
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E.1. Proof of Lemma 7

In the following proof, we bound the variance of the diagonal entries of T̂ and also its off-diagonal
entries grouped by each row.
Proof Based on Lemma 2, we already know that T̂ is unbiased on Ω. Next, we derive the variance
of the diagonal and off-diagonal entries of T̂ separately, since

E
[
(T̂i,j − Ti,j)

2
]
= V ar[T̂i,j ], for any (i, j) ∈ Ω. (25)

For the diagonal entries of T , with probability at least 1−O(d−1), all of them are observed in Ω. In
particular, when n ≥ d log d/ϵ2, by the Chernoff bound and union bound, with probability at least
1−O(d−1), for all i = 1, 2, . . . , d,

∣∣∣(I⊤I)i,i − E
[
(I⊤I)i,i

]∣∣∣ ≤ ϵ

√
6C−1

d
np.

Thus, we can get that

V ar[T̂i,i] ≤
(
1 + 3ϵ

√
6C−1

d

)
V ar

(Ai,i

np

)
.

Next, notice that

Ai,i =

n∑

k=1

M2
k,iXk. (26)

Therefore, the variance of Ai,i/(np) is equal to

V ar
[Ai,i

np

]
=

1− p

n2p

n∑

k=1

M4
k,i

≤ 1− p

np

(
1

r

r∑

s=1

u4i,s

)(
1 +

max1≤s≤r u
4
i,s

r−1
∑r

s=1 u
4
i,s

√
3 log(d/2)

2n

)

(by Hoeffding’s inequality)

≤ 1− p

np


1

r

(
r∑

s=1

u2i,s

)2


(
1 + r

√
3 log(d/2)

2n

)
(27)

≤ 1− p

np

µ2r

d2

(
1 + r

√
3 log(d/2)

2n

)
,

which concludes the proof of equation (11). Similar to this calculation, by applying Hoeffding’s
inequality, we can also show that

Ai,i

np
≤ 1

r

r∑

s=1

µ2
i,s

(
1 + r

√
3 log(d/2)

2n

)
≤ µ

d

(
1 + r

√
3 log(d/2)

2n

)
. (28)

Next, we examine the off-diagonal entries of T̂ . From Theorem 3, the variance of the off-
diagonal entries is approximated by the variance of a single entry. Consider the case where we
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condition on taking two overlapping entries from columns i and j. Denote the two entries as a1, a2.
We have that

V ar
[a1 + a2

2

]
=

V ar[a1] + V ar[a2]

4
+ Cov[a1, a2] ≤

V ar[a1] + V ar[a2]

2
,

by the Cauchy-Schwarz inequality on the covariance. The probability that we observe three over-
lapping entries is less than Õ(d−3). Since the size of Ω is O(d2q) = Õ(d−1). The probability that
such events can happen is less than Õ(d−1). In summary, we have shown that for every (i, j) ∈ Ω
where i ̸= j,

V ar[T̂i,j ] ≤
(
1

n

(
n∑

k=1

M2
k,iM

2
k,j

)
− T 2

i,j

)
+ Õ(d−3)

≤ 1

n

n∑

k=1

M2
k,iM

2
k,j + Õ(d−3).

We now look at the sum of the variances of all the observed entries in the i-th row. Let the set be
denoted by Si = {j : (i, j) ∈ Ω, j ̸= i}, for all i = 1, 2, . . . , d. We have

1

n

∑

j∈Si

n∑

k=1

M2
k,iM

2
k,j (29)

≤
∑

j∈Si

(
1

r

r∑

s=1

u2i,su
2
j,s

)(
1 +

maxrs=1 u
2
i,su

2
j,s

r−1
∑r

s=1 u
2
i,su

2
j,s

√
3 log(d/2)

2n

)
(by Hoeffding’s inequality)

≤1

r

r∑

s=1

u2i,s · q ∥us∥2
(
1 +

maxdj=1 u
2
j,s

r−1
∑d

j=1 u
2
j,s

√
3 log(d/2)

2d

)(
1 + r

√
3 log(d/2)

2n

)

(by Hoeffding’s inequality)

≤q

r
· max
1≤s′≤r

∥us′∥2 ·
r∑

s=1

u2i,s ·
(
1 + r

√
3 log(d/2)

2d

)(
1 + r

√
3 log(d/2)

2n

)

(relax ∥us∥2 by its max over s)

≤µq

d
·
(
1 + 3r

√
3 log(d/2)

2d

)
(by the incoherence assumption on U )

The last line uses the premise that the maximum ℓ2 norm of a factor is at most 1, and also n ≥ d.
In particular, the above Hoeffding’s inequality applies uniformly to all i with probability at least
1−O(d−1). In summary, we have shown that

∑

j∈Si

V ar[T̂i,j ] ≤
µq

d

(
1 + 3r

√
3 log(d/2)

2d

)
+ Õ

(nq
d3

)
,

where we use the fact that with probability at least 1 − d−2, |Si| ≤ 2nq. Therefore, we conclude
that equation (12) is true.
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As a remark, one corollary we can draw from the above calculation is that

V ar[T̂i,j ] ≤
µ2r2

d2

(
1 + r

√
3 log(d/2)

2n

)
+ Õ(d−3). (30)

This can be seen by following the steps from equation (29) for a fixed pair of (i, j) ∈ Ω.

Remark 10 In the case that Mi is a noisy perturbation of one of the r factors, we can extend the
proof following equation (29). Another natural extension is to assume that every Mi is a linear
combination of the r factors, µ1, . . . , µr. This seems to be a much more challenging problem, as
one would need to design estimators to first disentangle the linear combination patterns. This is left
for future work.

Next, we build on Lemma 2 to examine the bias of T̂ on the observed set Ω. Another corollary
from the above variance calculation is the following bound on the bias of T̂ . We consider the
diagonal and off-diagonal entries separately.

Corollary 11 In the setting of Lemma 7, suppose n ≥ dr. Then, with probability at least 1 −
O(d−1), for every i = 1, 2, . . . , d, the following must hold:

Ni,i ≤
√

32C−1µ2 log(d)

nd2
, (31)

∑

j∈Si

|Ni,j | ≤ q ·
√
2µ+ Õ(d−1/2). (32)

Proof First, we have that

|Ni,i| =
∣∣∣T̂i,i − Ti,i

∣∣∣ =
∣∣∣∣
Ai,i

Bi,i
− Ti,i

∣∣∣∣ =
∣∣∣∣∣

(
1± ϵ

√
6C−1

d

)
Ai,i

np
− Ti,i

∣∣∣∣∣

≤
∣∣∣∣
Ai,i

np
− Ti,i

∣∣∣∣+ ϵ

√
6C−1

d

Ai,i

np
.

By equation (28), the latter is at most

ϵ

√
6C−1

d

µ

d

(
1 + r

√
3 log(d/2)

2n

)
≤
√

8C−1µ2 log(d)

d2n
,

since ϵ ≤
√

d log d/n. As for the former, by equation (31), we have

V ar[Ni,i] ≤ (1 + ϵ
√
6C−1/d)V ar

[Âi,i

np

]
.

Recall that Ai,i is the sum of n Bernoulli random variables (cf. equation (26)), by Bernstein’s
inequality, with probability at least 1−O(d−1), for all i = 1, 2, . . . , d,

∣∣∣∣
Ai,i

np
− Ti,i

∣∣∣∣ ≤
√

6V ar(Ni,i) · log(d/2)
n

+
3
(
maxrs=1 u

2
i,s

)
log(d/2)

3n

≤
√

7µ2r log(d/2)

d2n2p
+

µ2r2 log(d/2)

nd
,
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for large enough values of d. Specifically, we have used the bound on the variance of T̂i,i in Lemma
7, using equation (11). Notice that the second term is a lower-order term relative to the first. This
shows that equation (31) holds for large enough values of d.

For equation (32), based on the proof of Lemma 7,

∑

j∈Si

|Ni,j | ≤
√
|Si| ·

∑

j∈Si

N2
i,j (by the Cauchy-Schwarz inequality)

≤
√

2dq ·
∑

j∈Si

N2
i,j (since |Si| ≤ 2dq)

≤

√√√√2dq ·
(
µq

d

(
1 + 3r

√
3 log(d/2)

2d

)
+ Õ(d−3) +

2µ2r2

d2
·
√

3 log(d/2)

2d

)
, (33)

where the last line is by applying Hoeffding’s inequality to the sequence {N2
i,j : j ∈ Si} (which are

all independent from each other), and holds with probability at least 1− d−1 over all possible i. In
particular, the expectation on this sequence is based on equation (12) and the maximum is based on
equation (30). From the last line above, we conclude that equation (32) is true.

E.2. Proof of Lemma 8

Proof By the weighted operation in PΩ and the condition that all the diagonals have been observed,
we can cancel out the diagonal entries between PΩ(W ) and qW . In the rest of the following, we
focus on the off-diagonal entries. Let x ∈ Rd denote a unit vector. We have that

∥PΩ(W )− qW∥2 = max
x:∥x∥=1

x⊤(PΩ(W )− qW )x.

Next, we expand the right-hand side above as:

x⊤(PΩ(W )− qW )x =

d∑

i=1


 ∑

j∈Si:j ̸=i

Wi,jxixj − q
∑

1≤j≤d:j ̸=i

Wi,jxixj




≤
d∑

i=1

∣∣∣∣∣∣
∑

j∈Si:j ̸=i

Wi,jxixj − q
∑

1≤j≤d:j ̸=i

Wi,jxixj

∣∣∣∣∣∣
︸ ︷︷ ︸

ei

.

We focus on a fixed i above. By Bernstein’s inequality, with probability at least 1 − O(d−2), we
have

ei ≤
√
4q(1− q)

∑

1≤j≤d:j ̸=i

(
W 2

i,jx
2
ix

2
j

)
log(2d) + ∥W∥∞ |xi| max

1≤j≤d
|xj |

≤ ∥W∥∞ |xi|
√

4q(1− q) log(2d) + ∥W∥∞ |xi| max
1≤j≤d

|xj | .
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Above, we have plugged in the variance and the maximum values at the i-th row. As a result,

d∑

i=1

ei ≤
ν√
d

√
4q(1− q) log(2d) +

ν

d

d∑

i=1

|xi| max
1≤j≤d

|xj | . (34)

In particular, we have used the bound on ∥W∥∞ ≤ ν/
√
d and the fact that

∑
i |xi| ≤

√
d via the

Cauchy-Schwarz inequality.
Next, we notice that

d∑

i=1

|xi| max
1≤j≤d

|xj | ≤ 1.

To see this, notice that if we look at a particular pair xi, xj . Conditioned on a fixed x2i + x2j and
|xi| ≤ λ, |xj | ≤ λ, |xi| + |xj | are maximized when xi = xj . This implies that when

∑d
i=1 |xi| is

maximized, all the non-zero xi’s must be equal to each other. Suppose there are k of them, and they
are all equal to a. Then, we must have ka2 ≤ 1, a ≤ λ. As a result,

d∑

i=1

|xi| ·max
j
|xj | = kaλ ≤ 1.

By rearranging equation (34), and using the fact that dq ≥ 4 log(2d) to relax the second term in
equation (34), we have concluded the proof of equation (15).

With a similar proof, we can derive a bound on the spectral norm of N , stated as follows.

Corollary 12 In the setting of Lemma 7, as long as q ≥ 4 log(2d)
d , then with probability at least

1−O(d−1), the spectral norm of PΩ(N) satisfies:

∥PΩ(N)∥2 ≤ q

√
32µ2r2 log(2d)

dq
+O

(
q

√
log(d)

nd2

)
. (35)

Proof Let x ∈ Rd be any unit vector. Note that N is a symmetric matrix. Therefore, we expand
x⊤Nx as follows:

x⊤Nx = q
d∑

i=1

Ni,ix
2
i

︸ ︷︷ ︸
e1

+
∑

1≤i≤d

∑

j∈Si:j ̸=i

Ni,jxixj

︸ ︷︷ ︸
e2

.

By equation (31), Corollary 11,

e1 ≤ q

√
32C−1µ2 log(d)

nd2

d∑

i=1

x2i = q

√
32C−1µ2 log(d)

nd2
.

As for e2, notice that |Ni,j | =
∣∣∣T̂i,j − Ti,j

∣∣∣ ≤ 2µr/d. By following the proof of Lemma 8 above
(cf. equation (34)), we have that

e2 ≤
2µr√
d

√
4q(1− q) log(2d) +

2µr

d
.
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Since dq ≥ 4 log(2d), the second term on the right is less than or equal to the first term on the right.
Put together, we can see that equation (35) is true.

Another implication is the inner product of two matrices under the projection operator.

Proposition 13 Suppose ∥X∥∞ · ∥Y ∥∞ ≤ ν
d . With probability at least 1 − O(d−1) over the

randomness of Ω, for any two matrices X,Y ∈ Rd×d, we have

|⟨PΩ(X), Y ⟩ − q⟨X,Y ⟩| ≤ qν

√
16 log(2d)

dq
. (36)

Proof With probability at least 1 − O(d−1), the diagonal entries of ⟨PΩ(X), Y ⟩ are canceled out
with that of q⟨X,Y ⟩. As for the off-diagonal entries, let

e2 =
∑

1≤i≤d

∑

j∈Si:j ̸=i

Xi,jYi,j − q
∑

1≤i≤d

∑

1≤j≤d:j ̸=i

Xi,jYi,j .

Notice that for a fixed i, whether j ∈ Si or another j′ ∈ Si are independent events. Thus, we
apply Bernstein’s inequality to each row, similar to the steps following equation (34), which leads
to the bound on e2 stated in equation (36).

E.3. Local Optimality and Incoherence

First, we derive the first-order and second-order optimality conditions of ℓ(X), accounting for the
weighted projection PΩ to offset the imbalance between diagonal and off-diagonal entries in Ω.

Proposition 14 (See also Proposition 5.1, [19]) Suppose X is a local optimum of ℓ(X) (See equa-
tion (8)). Then, the first-order optimality condition is equivalent to

2PΩ(T̂ )X = 2PΩ(XX⊤)X + λ∇R(X). (37)

The second-order optimality condition is equivalent to

∀V ∈ Rd, ⟨PΩ(V X⊤ +XV ⊤), XV ⊤ + V X⊤⟩+ λ⟨V,∇2R(X)V ⟩
≥ 2⟨PΩ(T̂ −XX⊤), V V ⊤⟩. (38)

Proof The gradient formula of equation (37) can be seen by directly taking the gradient on ℓ(X),
and separating the gradient from the squared loss vs the regularizer. As for the Hessian formula of
equation (38), when V is sufficiently small, one has that∇ℓ(X+V ) = [∇2ℓ(X)]V . Thus, we have
that

∇ℓ(X + V )

=2PΩ(V X⊤ +XV ⊤ + V V ⊤ +XX⊤)(X + V )− 2PΩ(T̂ )(X + V ) + λ∇R(X + V ).

34



ONE-SIDED MATRIX COMPLETION FROM ULTRA-SPARSE SAMPLES

By the second-order optimality condition, one has that V ⊤∇ℓ(X + V ) ≥ 0, when V tends to zero.
Plugging this into the above, we get

V ⊤∇ℓ(X + V )

=2⟨PΩ(V X⊤ +XV ⊤), XV ⟩+ 2⟨PΩ(XX⊤), V V ⊤⟩ − 2⟨PΩ(T̂ ), V V ⊤⟩+ λ∇R(X + V ) + e

=⟨PΩ(V X⊤ +XV ⊤), XV ⊤ + V X⊤⟩+ 2⟨PΩ(XX⊤ − T̂ ), V V ⊤⟩+ λ⟨V,∇2R(X)V ⟩+ e

=⟨PΩ(V X⊤ +XV ⊤), V X⊤ +XV ⊤⟩+ 2⟨PΩ(XX⊤ − T̂ ), V V ⊤⟩+ λ⟨V,∇2R(X)V ⟩+ e,

where e = O(∥V ∥2F ) denotes an error term. When V tends to zero, we have that equation (38) must
be true for any V ∈ Rd based on the second-order optimality condition.

Next, we show that the regularizer of R(X) leads the row norms of X to be bounded by at
most 2α, which builds on the first-order optimality conditions above. As a result, we can use
concentration tools to reduce the first- and second-order optimality conditions for their population
versions. Based on that, we show that X must be bounded away from zero.

We begin by analyzing the effect of the regularizer. We show the following property, which
results from adding the incoherence regularizer and can be derived based on the gradient of the
regularizer.

Proposition 15 The gradient of R(X) satisfies that for any Y ∈ Rd×r,

⟨∇R(X), Y ⟩ = 4λ
d∑

i=1

(
∥Xi∥3 − α

)3
+

⟨Xi, Y
⊤ei⟩

∥Xi∥
.

where ei ∈ Rd is the i-th basis vector. As a consequence,

⟨(∇R(X))i, Xi⟩ ≥ 0, for every i = 1, 2, . . . , d.

We first notice that because of the regularizer, any matrix X that satisfies the first-order opti-
mality condition must also satisfy the incoherence condition.

Lemma 16 Let Si denote the set of observed entries in Î at the i-th row, for i = 1, 2, . . . , d.
Suppose |Si| ≤ 2dq, for any i = 1, 2, . . . , d. In the setting of Theorem 5, for any X that satisfies
the first-order optimality of equation (37), we have

d
max
i=1
∥Xi∥ ≤ max

(
2α, 2

√
µ(r + 1)q/λ

)
. (39)

Proof Let i⋆ = argmaxi ∥Xi∥ be the index of the row that has the highest norm in X . Recall that
Xi ∈ Rr refers to the i-th row vector of X . Suppose the i-th row of Ω consists of entries with index
[i] × Si, where Si is the set of indices in the i-th row that are observed in Ω. If |Xi⋆ | ≤ 2α, then
equation (39) is true. Otherwise, let us assume that |Xi⋆ | ≥ 2α.

We will compare the i⋆-th row of the left and right-hand sides of equation (37). First, we have
the following identity based on the projection matrix PΩ:

(
PΩ(T̂ )X

)
i⋆
=
(
PΩ(UU⊤ +N)X

)
i⋆
=
(
PΩ(UU⊤)

)
i⋆
X +Ni⋆X,
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where the sub-index on i⋆ refers to the i⋆-th row of the enclosed matrix. Then, the ℓ1-norm of
PΩ(UU⊤) is at most
∥∥∥
(
PΩ(UU⊤)

)
i⋆

∥∥∥
1
=
∑

j∈Si⋆

|⟨Ui⋆ , Uj⟩| (40)

≤
∑

j∈Si⋆

∥Ui⋆∥ · ∥Uj∥ ≤
∑

j∈Si⋆

µr

d
(by the incoherence assumption on U )

≤ 2µrdq

d
= 2µrq. (by |Si⋆ | ≤ 2dq)

Second, we look at the ℓ1 norm of the i⋆-th row of N . By using Corollary 11, we can bound the
ℓ2-norm of the left of equation (37) by

∥∥∥(PΩ(T̂ )X)i⋆
∥∥∥ ≤

(∥∥∥(PΩ(UU⊤))i⋆
∥∥∥
1
+ ∥(PΩ(N))i⋆∥1

)
· d
max
i=1
∥Xi∥

≤
(
2µr +

√
2µ+ Õ(d−1/2) + Õ(n−1)

)
q ∥Xi⋆∥ , (41)

where we use equations (40), (31), and (32) above, along with the fact that p = C
n .

Next, we lower bound the norm of the right-hand side of equation (37). We have that

(PΩ(XX⊤)X)i⋆ =
∑

j∈Si⋆

⟨Xi⋆ , Xj⟩Xj .

Thus, by taking an inner product with Xi⋆ , we get

⟨(PΩ(XX⊤)X)i⋆ , Xi⋆⟩ =
∑

j∈Si⋆

⟨Xi⋆ , Xj⟩2 ≥ 0.

Using Proposition 15, we obtain that

⟨(PΩ(XX⊤)X)i⋆ , (∇R(X))i⋆⟩ = 4λ (|Xi⋆ | − α)3+

∑
j∈Si⋆

⟨Xi⋆ , Xj⟩2
∥Xi⋆∥

≥ 0. (42)

It follows that
∥∥∥(PΩ(XX⊤)X)i⋆ + (λ∇R(X))i⋆

∥∥∥ ≥ ∥(λ∇R(X))i⋆∥ (by equation (42))

=
4λ(∥Xi⋆∥ − α)3+

∥Xi⋆∥
· ∥Xi⋆∥ (by Proposition 15)

≥ λ

2
∥Xi⋆∥3 (since ∥Xi⋆∥ ≥ 2α)

Therefore, plugging in the equation above and the equation (41) into the first-order optimality con-
dition (37). We obtain equation (39). Thus, the proof is completed.

The condition that |Si| ≤ 2dq for all i can be shown via Chernoff bounds (recall that q =
1 − (1 − p2)n). To see this, notice that conditioned on row i, the event of whether j ∈ Si (for
any j between 1 and d but not equal to i) is independent from each other. In expectation, the size
of |Si| should be equal to dq. In the setting of Theorem 5, dq is at least 2 log(d). Therefore, with
probability at least 1−O(d−2), |Si| ≤ 2dq, for all i = 1, 2, . . . , d.
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E.4. Reduction of Local Optimality Conditions

One consequence of the above result is the following population version of the first-order optimality
condition.

Lemma 17 Suppose α ≤
√

µ(r + 1)q/λ and λ ≥ dq/8. In the setting of Theorem 5, with high
probability over the randomness of Ω, for any X ∈ Rd×r that satisfies the first-order optimality
condition (37), we have that

∥X∥F ≤ σmax(U)
√
r +
√
δ, where δ = 3

√
32µ2r3 log(2d)/(dq), (43)

∥∥∥UU⊤X −XX⊤X − γ∇R(X)
∥∥∥
F
≤ 42σmax(U)

√
µ2r4 log(2d)

dq
. (44)

Proof By the incoherence assumption on U , we have that

∥∥∥UU⊤
∥∥∥
∞
≤ µr

d
∥U∥2F ≤

µr3/2

d

∥∥∥UU⊤
∥∥∥
F
,

by applying the Cauchy-Schwarz inequality. By setting ν = µr3/2
∥∥UU⊤∥∥

F
in Lemma 8, from

equation (15) we get
∥∥∥PΩ(UU⊤)X − qUU⊤X

∥∥∥
F
≤
∥∥∥PΩ(UU⊤)X − qUU⊤

∥∥∥
2
· ∥X∥F

≤ qδ1 ∥X∥F , (45)

for δ1 = 4
√
µ2r3 log(2d)/(dq).

Next, by the incoherence condition on X in equation (39), we have that

∥X∥∞ ≤
4µ(r + 1)q

λ
.

Using equation (15) from Lemma 8 with ν = 4µ(r + 1)dq/λ, we have
∥∥∥PΩ(XX⊤)X − qXX⊤X

∥∥∥
F
≤
∥∥∥PΩ(XX⊤)− qXX⊤

∥∥∥
2
∥X∥F

≤ qδ2 ∥X∥F , (46)

where δ2 = 4µ(r + 1)
√
dq log(2d)/λ ≤ 32µ(r + 1)

√
log(2d)/(dq), for λ ≥ dq/8.

We also need to add the error induced by N , given by

∥PΩ(N)X∥F ≤ ∥PΩ(N)∥2 · ∥X∥F
≤ qδ3 ∥X∥F , (47)

where δ3 =
√
32µ2r2 log(2d)/(dq) + Õ(n−1d−2), and the bound on the spectral norm of PΩ(N)

is shown in Corollary 12.
Now, by plugging equations (45), (46), and (47) into the first-order optimality condition (cf.

equation (37)), we have shown that
∥∥∥UU⊤X −XX⊤X − γ∇R(X)

∥∥∥
F
≤ δ ∥X∥F , (48)
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where δ = δ1 + δ2 + δ3. When ∥X∥F ≤ σmax(U)
√
r, both equations (43) and (44) are proved.

Otherwise, by the triangle inequality

q
∥∥∥UU⊤X

∥∥∥
F
≥
∥∥∥PΩ(UU⊤)X

∥∥∥
F
− qδ1 ∥X∥F

=
∥∥∥PΩ(XX⊤)X + λR(X)

∥∥∥
F
− qδ1 ∥X∥F − ∥PΩ(N)∥2 ∥X∥F

≥
∥∥∥PΩ(XX⊤)X

∥∥∥
F
− q(δ1 + δ3) ∥X∥F

≥ q
∥∥∥XX⊤X

∥∥∥
F
− q(δ1 + δ2 + δ3) ∥X∥F , (49)

where the second step is by equation (42) and the spectral norm bound on N , and the last step is
again by the triangle inequality. Then, we have that

∥∥∥UU⊤X
∥∥∥
2

F
≤
∥∥∥UU⊤

∥∥∥
2

2
· ∥X∥2F ≤ (σmax(U))4 ∥X∥2F .

On the other hand,
∥∥XX⊤X

∥∥2
F

=
∑d

i=1 σ
6
i , where σi is the i-th singular value of X , for i =

1, 2, . . . , r. Notice that

r∑

i=1

σ2
i ≤

(
r∑

i=1

σ6
i

) 1
3

r
2
3 ⇒

(
r∑

i=1

σ2
i

) 3
2

· r−1 ≤
(

r∑

i=1

σ6
i

) 1
2

by Hölder’s inequality. Thus, plugging in this fact into the above equation (49), we obtain that

∥X∥2F =
r∑

i=1

σ2
i ≤ r · σmax(U))2 + (δ1 + δ2 + δ3)r ≤ r · (σmax(U))2 + δ,

which implies that ∥X∥F ≤ r1/2σmax(U)+ δ1/2. This concludes the proof of equation (43), which
implies equation (44) based on equation (48).

Second, we look at the second-order optimality condition and show that this condition implies
that the smallest singular value of X is lower bounded from below.

Lemma 18 In the setting of Theorem 5, suppose X satisfies the second-order optimality con-
dition (38) and equation (39). Suppose α ≥ 4κr

√
µ/d and λ = µ(r + 1)q/α2. When q ≥

cκ6µ2r3 log(d)
d for a fixed constant c > 0, and d is large enough, with probability at least 1−O(d−1)

over the randomness of Ω, we have that

(σmin(X))2 ≥ 1

8
(σmin(U))2. (50)

Proof Let A = {i : ∥Xi∥ ≤ α} be the index set of row vectors of X whose ℓ2 norm is at most
α. Let UA be the matrix that has the same i-th row as the i-th row of U for every i ∈ A, and 0
elsewhere. Let v ∈ Rr be a unit vector such that ∥Xv∥ = σmin(X).

We show that
σmin(UA) ≥ (1− (32κ)−1)σmin(U).
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Let B = {1, 2, . . . , d}\A. Since for any i ∈ B, ∥Xi∥ ≥ α, we have that |B|α2 ≤ ∥X∥2F ≤
(σmax(U))2r + δ by equation (43). It also follows that |B| ≤ (σmax(U)2r + δ)/α2.

Next, we have that

σmin(UA) = σmin(U − UB)

≥ σmin(U)− σmax(UB)

≥ σmin(U)− ∥UB∥F
≥ σmin(U)−

√
|B|rµ/d

≥ σmin(U)−
√

(σmax(U)2r + δ)rµ

dα2

≥ (1− 1

4
)σmin(U), (51)

where the last line is because α ≥ 4κr
√
µ/d. It also follows that UA has a column rank equal to r.

Notice that there must exist a unit vector uA in the column span of UA such that ∥X⊤uA∥ ≤
σmin(X). To see this, we can simply decompose the column span of UA into one in the column
span of X and another into the orthogonal subspace. Since uA is a unit vector, we can also write
uA as uA = UAβ, for some β ∈ Rr where ∥β∥ ≤ 1

σmin(UA) ≤ 4
3σmin(U) . Further,

∥uA∥∞ ≤
(

d
max
i=1
∥UAei∥

)
· ∥β∥ ≤ 4

√
µr/d

3σmin(U)
.

Next, we plug in V = uAv
⊤ in the second-order optimality condition of equation (38). Note

that since uA is in the column span of UA, it is supported on the subset of columns spanned by A,
and therefore [∇2R(X)]V = 0.2 Therefore, the term about the Hessian of the regularization term
in equation (38) is equal to zero. Thus, by taking V = uAv

⊤ in equation (38), we get that

⟨PΩ(uA(Xv)⊤ +Xvu⊤A), uA(Xv)⊤ +Xvu⊤A⟩ ≥ 2u⊤APΩ(UU⊤ −XX⊤)uA + 2u⊤ANuA. (52)

Note that
∥Xv∥∞ ≤ (

d
max
i=1
∥Xi∥) ∥v∥ ≤ 2

√
µ(r + 1)q/λ = 2α,

based on Lemma 16 and the fact that v is a unit vector. As a result,
∥∥∥Xvu⊤A

∥∥∥
∞
≤ 8α

√
µr/d

3σmin(U)
:=

δ1
d
,

where δ1 = 8κ2r3/2µ
3σmin(U) . By applying Proposition 13 to the left-hand side of equation (52), we have

that

∣∣∣⟨PΩ(uA(Xv)⊤ +Xvu⊤A), uA(Xv)⊤ +Xvu⊤A⟩ − q
∥∥∥uA(Xv)⊤ +Xvu⊤A

∥∥∥
F

∣∣∣ ≤ qδ1

√
16 log(2d)

dq
.

Next, by applying Lemma 8 to the first term in the right-hand side of equation (52), we get

∣∣∣u⊤APΩ(UU⊤ −XX⊤)uA − qu⊤A(UU⊤ −XX⊤)uA

∣∣∣ ≤ qδ2

√
16 log(2d)

dq
,

2. For details about the calculation regarding ∇2R(·), see Lemma 18, [20].
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where δ2 = d
∥∥UU⊤ −XX⊤∥∥

∞ ≤ µr + 4dα2 ≤ 65κµr. Finally, we apply the spectral norm
bound on N from equation (12) to u⊤ANuA. Put together, we get

q
∥∥∥Xvu⊤A + uA(Xv)⊤

∥∥∥
2

F
≥ 2q⟨UU⊤ −XX⊤, uAu

⊤
A⟩ − δq,

where

δ = (δ1 + δ2)

√
16 log(2d)

dq
+

√
32µ2r2 log(2d)

dq
+ Õ(n−1/2d−1).

By simplifying the above calculation and using the fact that uA is a unit vector, we get that

4 ∥Xv∥2 + 2
∥∥∥X⊤uA

∥∥∥
2
≥ 2

∥∥∥U⊤uA

∥∥∥
2
− δ. (53)

Recall that uA is a unit vector and uA is in the column span of UA. Therefore,

∥U⊤uA∥ = ∥U⊤
A uA∥ ≥ (σmin(UA))

2,

and the right hand side of equation (53) is greater than 2(σmin(UA))
2 − δ.

Moreover, recall that ∥Xv∥ = σmin(X) and ∥X⊤uA∥ ≤ σmin(X), therefore, the left hand side
of equation (53) is at most 6(σmin(X))2, in which we apply Cauchy-Schwarz to the cross term. Put
together, from equation (53) we conclude that

(σmin(X))2 ≥ 1

3
(σmin(UA))

2 − δ

6
≥ 3

16
(σmin(U))2 − δ

6
,

by equation (51).
Thus, when dq ≥ cκ6r3µ3 log(d), for c = 16 × 652 × 9, we have that δ

6 ≤ (σmin(U))2/16,
which concludes the proof of equation (50).

E.5. Characterization of The Population Loss

In the next result, we show that we could remove the effect of the regularizer term in the residual
error. We use the fact that the regularizer follows the same direction as X , as stated in Proposition
15.

Lemma 19 In the setting of Theorem 5, suppose X ∈ Rd×r satisfies that

(σmin(X))2 ≥ 1

8
(σmin(U))2,

and α ≥ 4κ2r
√
µ/d,

∥∥∥UU⊤X −XX⊤X
∥∥∥
2

F
≤
∥∥∥UU⊤X −XX⊤X − γ∇R(X)

∥∥∥
2

F
, for any γ ≥ 0. (54)

Proof Let S = {i ∈ [d] : |Xi| ≥ α} be the index set of row vectors of X whose ℓ2 norm is greater
than α. By the definition of the regularizer R(X), for any i not in S, we have that (∇R(X))i = 0.
Thus, for any i /∈ S, we have that

∥∥∥UiU
⊤X −XiX

⊤X
∥∥∥ =

∥∥∥UiU
⊤X −XiX

⊤X + (∇R(X))i

∥∥∥ .
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For any i that is in S, we have that
∥∥∥UiU

⊤X −XiX
⊤X
∥∥∥
2
=
∥∥∥UiU

⊤X −XiX
⊤X − (γ∇R(X))i

∥∥∥
2
,

where Ui, Xi are the i-th row vectors of U,X ∈ Rd×r, for every i = 1, 2, . . . , d. As for each i ∈ S,
we will show that

⟨(∇R(X))i, XiX
⊤X − UiU

⊤X⟩ ≥ 0. (55)

By Proposition 15, we have

(∇R(X))i =

(
4λ

d∑

i=1

(|Xi|3 − α)3+
|Xi|

)
Xi := aiXi,

where ai ≥ 0 denotes the multiplier in front of Xi. Then, we have that

⟨(∇R(X))i, XiX
⊤X⟩ = ai

∥∥∥XX⊤
i

∥∥∥
2

≥ ai ∥Xi∥2 σmin

(
X⊤X

)

≥ ai
8
∥Xi∥2 (σmin(U))2,

by the condition on the smallest singular value of U . On the other hand,

⟨(∇R(X))i, UiU
⊤X⟩ =ai⟨Xi, UiU

⊤X⟩
≤ai ∥Xi∥ · ∥Ui∥ · σmax(U) · σmax(X)

≤ai ∥Xi∥ ∥Ui∥ (σmax(U))22
√
r

(by equation (43), plus σmax(X) ≤ ∥X∥F )

≤ai ∥Xi∥ ∥Ui∥ (σmin(U))22κ2
√
r (since σmax(U) = κ · σmin(U))

≤ ai
16
∥Xi∥2 (σmin(U))2,

where the last step is because

∥Xi∥ ≥ α ≥ 4κ2r

√
µ

d
≥ 4κ2

√
r ∥Ui∥ ,

since ∥Ui∥ ≤
√
µr/d by Assumption 4. Putting both sides together, we therefore conclude that

equation (55) must hold. The proof is completed.

Finally, we show that the above result also implies that UU⊤ is close to XX⊤.

Lemma 20 In the setting of Theorem 5, suppose X ∈ Rd×r satisfies equations (44) and (54).
Then, with probability at least 1−O(d−1), the following must be true

∥∥∥XX⊤ − UU⊤
∥∥∥
2

F
≤ cµ2r5κ6 log(2d)

dq
, (56)

for a fixed constant c > 0.
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Proof We separate U into one part that is in the column span of X and another part that is orthogonal
to the column span of X . Let U = Z + V where Z is the projection of U to the column span of
X , and V is the projection of U to the orthogonal column subspace of X . In particular, we have
V ⊤X = 0. Thus,

UU⊤X = (Z + V )(Z + V )⊤X = ZZ⊤X + V Z⊤X

⇒
∥∥∥UU⊤X −XX⊤X

∥∥∥
2
=
∥∥∥ZZ⊤X −XX⊤X

∥∥∥
2

F
+
∥∥∥V Z⊤X

∥∥∥
2

F
≤ δ2, (57)

for δ = 42σmax(U)
√

µ2r4 log(2d)
dq , by applying equation (44) and also equation (54).

Notice that Z has the same column span as X . As a result,
∥∥∥ZZ⊤X −XX⊤X

∥∥∥
2

F
≥ σ2

min(X)
∥∥∥ZZ⊤ −XX⊤

∥∥∥
2

F
,

which can be verified by inserting the SVD of X into the above inequality. Combined with equation
(57), we thus have that

∥∥∥ZZ⊤ −XX⊤
∥∥∥
2

F
≤ δ2

(σmin(X))2
≤ 8δ2

(σmin(U))2
,

since (σmin(X))2 ≥ (σmin(U))2/8.
Next, let a ∈ Rd, b ∈ Rr be two unit vectors such that a⊤ZZ⊤Xb = σmin(ZZ⊤X). From

equation (57) we can infer that
∣∣∣σmin(ZZ⊤X)− a⊤XX⊤Xb

∣∣∣ ≤ δ. (58)

Now we consider two cases. Suppose a⊤XX⊤Xb is positive. Then the left-hand side of equation
(58) must be at least

a⊤XX⊤Xb− σmin(ZZ⊤X) = σmin(XX⊤X)− σmin(ZZ⊤X).

The other case is that if a⊤XX⊤Xb is negative, then the left hand side of equation (58) must be at
least

∣∣∣a⊤XX⊤Xb
∣∣∣− σmin(ZZ⊤X) ≥ σmin(XX⊤X)− σmin(ZZ⊤X).

We know that
σmin(XX⊤X) ≥ (σmin(U))3/(8

√
8).

Thus, if δ ≤ (σmin(U))3/(16
√
8), then

σmin(ZZ⊤X) ≥ (σmin(U))3/(16
√
8).

On the other hand,

σmin(ZZ⊤X) ≤ σmax(Z) · σmin(Z
⊤X)

≤ ∥U∥2 · σmin(Z
⊤X),
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which implies

σmin(Z
⊤X) ≥ (σmin(U))3

8
√
8 ∥U∥2

.

Also note that
∥∥V Z⊤X

∥∥2
F
≤ δ2, which implies that

∥V ∥2F ≤
δ2

(σmin(Z⊤X))2
≤ 512δ2 ∥U∥22

(σmin(U))6
=

512δ2κ2

(σmin(U))4
.

Finally, ∥∥∥ZV ⊤
∥∥∥
F
≤ ∥Z∥2 · ∥V ∥F ≤ ∥U∥2 · ∥V ∥F ,

since Z is a projection of U to the column space of X .
In summary, we have that

∥∥∥UU⊤ −XX⊤
∥∥∥
2

F

=
∥∥∥ZZ⊤ −XX⊤

∥∥∥
2

F
+ 2

∥∥∥ZV ⊤
∥∥∥
2

F
+
∥∥∥V V ⊤

∥∥∥
2

F

≤ 16δ2

(σmin(U))2
+

1024δ2κ4

(σmin(U))2
+

5122δ4κ4r

(σmin(U))8

≤(512κ4r + 1024κ4 + 16)δ2

(σmin(U))2
,

since δ ≤ (σmin(U))3/(8
√
8), which concludes the proof of equation (56), for c = 422 × 512.

Now we are ready to complete the proof of Theorem 5.
Proof [Proof of Theorem 5] Suppose X satisfies the first-order and second-order optimality condi-
tions. Then by Lemma 16 and Lemma 17, we have that X satisfies the incoherence condition in
equation (39). As a result, (σmin(X))2 ≥ (σmin(U))2/8 by Lemma 18. In particular, we require α
to be at least 4κ2r

√
µ/d.

In addition, based on Lemma 17, we require α ≤
√
µ(r + 1)q/λ, which requires

λ ≥ µ(r + 1)q/α2 ≥ dq/8.

Recall that
q = 1− (1− p2)n = 1− (1− C2/d2)n ≈ C2n/d2.

When

n ≥ cdr5κ6µ2 log(2d)

C2ϵ2
,

the right hand side of equation (56) is at most ϵ2. This concludes the proof of equation (10).

Remark 21 Our proof has been inspired by the important early work of [19]. We build on and
expand their work in three aspects.
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• First, in the one-sided completion setting, the sampling patterns are non-random. In par-
ticular, the diagonal entries are fully observed, while the off-diagonal entries are sparsely
observed. Thus, there is a mix of dense and sparse samplings in Ω. To address this problem,
we use a weighted projection as defined in Section 2.

• Second, the bias of the Hájek estimator is complex due to the nonlinear form of the estimator,
and requires a delicate analysis of the noise matrix N . This is studied in detail in Corollary
11 and Corollary 12.

• Third, the observation patterns in the off-diagonal entries of Ω are not completely indepen-
dent, requiring a new, row-by-row concentration inequality that leverages a conditional inde-
pendence property, i.e., Lemma 8.

More broadly, non-uniform sampling patterns are very common in real-world datasets and have
received lots of recent interest in causal inference [1, 51]. We hope this work inspires further
studies of modeling non-uniform sampling on sparse panel data from an optimization perspective.

Appendix F. Omitted Experiments

In this section, we describe the dataset statistics and pre-processing procedures. The MovieLens-
32M dataset comprises 32 million user ratings on approximately 87, 000 movies, collected from
the MovieLens recommendation platform, with ratings ranging from 1 to 5. The sparsity ratio is
roughly 3× 10−4. We also consider two related MovieLens datasets with 20 million and 25 million
entries to ensure the robustness of our findings. We split 80% into training and hold out the rest for
testing.

The Amazon Reviews dataset includes 571 million user ratings on 48 million products, collected
from Amazon, with ratings ranging from 1 to 5. The sparsity ratio is roughly 2 × 10−7. For the
Amazon reviews dataset, we choose the Automotive category with 50, 000 items rated by 100, 000
users as M . We use 80-20 split.

The Genomes dataset contains phased genotype data for 2, 054 individuals gathered from di-
verse populations. The dataset is represented as a dense matrix, with rows representing genomic
sites and columns corresponding to individuals. Each entry represents a biallelic genotype, encoded
as 0 or 1. We map them to 1 and 2, and use 0 to indicate missing entries. This dataset is fully
observed. Thus, we use 1% for training and hold out the rest for testing.

For MovieLens and Amazon Reviews datasets, we use T̂ on M⊤M to obtain the ground truth
second-moment matrix. Then, the estimation error is evaluated against this matrix. In our experi-
ments, we set the sampling probability p = 0.8. Given that the original datasets have an average
sparsity of approximately 0.3%, even with p = 0.8, the number of observed entries remains very
sparse. When T is not fully observed, we focus on measuring the mean squared error within the
observed entries instead and treat the missing entries as zero.

F.1. Implementation

We provide a detailed description of all the baseline methods we have implemented in our experi-
ments.
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Alternating GD

SoftImpute ALS

Nuclear Norm Reg.

Algorithm 1
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Figure 7: One-sided recovery error of T (shown in the left two columns) and the root mean squared
recovery error of the original matrix M (shown in the right two columns) using our algorithms on
synthetic matrix data. Top left: One-sided recovery error under uniform sampling by varying p, and
sampling two entries per row (C = 2) while varying the number of rows n. Top right: Recovery
error on M , also under uniform sampling, and sampling two entries per row. Overall, we find
that our approach consistently provides more accurate estimates compared with the three baseline
methods, all of which are widely used in the matrix completion literature. Bottom: Vary C and
repeat the same experiment.

Alternating-GD minimizes the squared reconstruction error on the observed entries of M . We
minimize the following objective:

min
X∈Rn×r,Y ∈Rd×r

∥PΩ(XY ⊤ −M)∥2F ,

where PΩ denotes the projection onto the observed entries. We initialize X and Y from an isotropic
Gaussian distribution. We perform the optimization using Adam with a learning rate of 0.1 over
300 training epochs.

SoftImpute-ALS alternates between matrix completion using singular value decomposition (SVD)
and imputing missing values [23]. At each iteration, missing entries are filled with the current es-
timates, followed by SVD and soft thresholding of the singular values. The resulting truncated
low-rank approximation is used to update the matrix. We repeat this process until convergence, as
measured by the Frobenius norm difference between successive reconstructions, or until a maxi-
mum of 500 iterations. We set the target rank to the same as r and the convergence threshold to
10−5.

Nuclear norm regularization is another commonly used approach for matrix completion. In one-
sided estimation, we compute empirical averages based on the observed data [8]. For off-diagonal
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entries (i, j), we identify all samples in which the pair (i, j) appears and average the product of
the corresponding entries from the two relevant columns. For diagonal entries (i, i), we consider
all samples where index i appears in either position of a pair, square the corresponding data matrix
entry for each such sample, and average these squared values. We then estimate the full matrix
using symmetric alternating gradient descent by solving the following optimization problem:

min
X∈Rd×r

∥∥∥PΩ(XX⊤ − T )
∥∥∥
2

F
+ λ ∥X∥⋆ ,

where ∥X∥⋆ denotes the nuclear norm of X and λ is set as 0.01. We perform the optimization using
Adam with a learning rate of 0.1 for 1, 000 steps.

Hyperparameter configurations. We report the hyperparameter configurations used in our ex-
periments. The learning rate η is varied from 10 to 105, the regularization coefficient λ from 10−2

to 10−5, and the regularization parameter α from 10−4 to 1. Based on cross-validation, we select
η = 104, λ = 10−4, and α = 10−3, which yield the lowest error. For the Amazon Review dataset,
we set λ = 0.01 and α = 0.1.

F.2. Omitted Comparison Results

First, we report the runtime comparison between Hájek-GD and nuclear norm regularization. We
run gradient descent with 1, 000 iterations until it has converged. We also fix the number of observed
entries as 200d while varying d from 103 to 104. We find that our approach requires 0.95 seconds
for d = 103 and 1.61 seconds for d = 104. By contrast, solving a convex program with nuclear
norm penalty takes 5.68 seconds for d = 103 and 100.34 seconds for d = 104, measured on the
Ubuntu server.

Second, we present the recovery error for imputing M , illustrated in Figure 7. Our approach
consistently reduces the recovery error compared to all three baseline methods. For instance, when
C = 2 (sampling two entries per row), our approach incurs an error of 0.0003, compared to 0.002
for nuclear norm regularization. We also observe similar results on synthetic data when sampling
five entries per row (C = 5) or sampling ten entries per row (C = 10) in Figure 7.

Similar results are observed when our approach is applied to recover the missing entries of M .
For recovering M , our approach reduces estimation error by 94% relative to alternating-GD and by
98% compared to softImpute-ALS.

Finally, we report the results on MovieLens-20M and MovieLens-25M in Table 4. For one-
sided matrix completion, our approach reduces the Frobenius norm error between the estimate and
the true T by up to 87% compared to alternating-GD and up to 75% compared to softImpute-ALS,
while also achieving lower running times.

For recovering the missing entries of M , our approach reduces the RMSE by up to 10% com-
pared to alternating-GD and up to 6% compared to softImpute-ALS.

F.3. Ablation Analysis

Setting the rank of the target matrix. In Section B, we use a target rank of 10 for all the reported
experiments. To further assess the robustness of our approach, we conduct additional experiments
on three real-world datasets using Algorithm 1, with the target rank in the range of 1 to 30. The
results are shown in Table 5. We find that larger ranks may lead to overfitting in sparse settings;

46



ONE-SIDED MATRIX COMPLETION FROM ULTRA-SPARSE SAMPLES

Table 4: We report the recovery error for both one-sided matrix completion (i.e., recovering T ),
and recovering M , along with the corresponding running time (measured in seconds on an Ubuntu
server) on three MovieLens datasets. We run each experiment with five random seeds and report
the mean and standard deviation.

Dataset MovieLens-20M MovieLens-25M MovieLens-20M MovieLens-25M

Estimating T One-sided recovery error Running time (Seconds)

Alternating-GD 0.015±0.009 0.006±0.002 1.9±0.1 × 102 4.4±0.1 × 102

SoftImpute-ALS 0.008±0.005 0.006±0.002 3.4±0.1 × 103 9.4±0.7 × 103

Algorithm 1 0.002±0.001 0.002±0.10 4.8±0.2 × 101 1.1±0.6 × 102

Estimating M Root mean squared error Running time (Seconds)

Alternating-GD 1.11±0.00 1.27±0.02 1.9±0.1 × 102 4.4±0.1 × 102

SoftImpute-ALS 1.09±0.00 1.25±0.00 3.4±0.1 × 103 9.4±0.7 × 103

Algorithm 2 0.99±0.00 1.04±0.00 1.0±0.1 × 102 2.6±0.1 × 102

Table 5: We vary the rank of the variable matrix in Hájek-GD, corresponding to the results we
reported in Table 3. The results are averaged over five independent runs.

Dataset MovieLens-20M Amazon Reviews Genomes

Estimating T (Using Algorithm 1) One-sided recovery error on T

r = 1 7.0±0.1 × 10−3 4.5±0.1 × 10−3 5.8±0.1 × 10−5

r = 10 4.7±0.1 × 10−3 1.3±0.1 × 10−3 5.8±0.1 × 10−5

r = 20 1.9±0.1 × 10−3 1.3±0.1 × 10−3 5.8±0.1 × 10−5

r = 30 1.8±0.1 × 10−3 1.3±0.1 × 10−3 5.8±0.1 × 10−5

Estimating M (Using Algorithm 2) Root mean squared recovery error on M

r = 1 3.7±0.1 4.6±0.1 0.1±0.1

r = 10 1.1±0.1 1.9±0.1 0.2±0.1

r = 20 1.0±0.1 2.3±0.1 0.2±0.1

r = 30 1.0±0.1 2.7±0.1 0.2±0.1

for example, on the Amazon dataset, increasing r beyond 10 results in worse performance when
recovering M from the estimated T .

We also run similar analyses on synthetic data and find that the algorithm is not particularly
sensitive to different choices in this context. In particular, we conduct different simulations by
varying the rank r of M between 1 and 50. We vary the target rank used in Algorithm 1 between 1
and 50. We find that the estimation errors are comparable between different choices of target ranks.

Sensitivity of Algorithm 1. We evaluate the sensitivity of adding noise to M̂ on the final output
of Algorithm 1. We use synthetic datasets with varied numbers of rows between 5d and 20d, and
a fixed dimension of 1, 000. We also test different ranks of M , ranging from 5 to 20. We add
Gaussian noise with a standard deviation that ranges from 0 to 0.01 to the input. Interestingly, we
find that estimation error increases linearly with σ. Moreover, when varying n, the sensitivity level
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Figure 8: Illustrating the estimation error after adding Gaussian noise with mean zero and variance
σ2 to M̂ on the non-zero entries. Left: We vary the number of rows n with a fixed rank r = 10.
Right: We vary rank r (of M ) with a fixed m = 20d. Across all six cases, the sensitivity level,
measured by the slope of the line, is at most 19 and drops to 11 as the sample size increases or the
rank decreases. We report the mean and standard deviation from five independent runs.

of Hájek-GD (recall its definition in equation (17)) is generally low. When n = 5d, the slope of the
line is 19. When n = 10d, the slope decreases to 14. When n = 20d, the slope further decreases to
13.

Similar results hold after varying the rank between 20, 10, 5, and the sensitivity level ranges
between 16, 13, 11. See illustration in Figure 8.
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