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Figure 1. Overview. From a phone capture of humans and animals in motion, HoliGS reconstructs temporally consistent geometry,
appearance, and depth, enabling novel-view synthesis, deformable mesh recovery, and dense depth estimation. These reconstructions
support a range of embodied applications, including actor-specific view synthesis (e.g., third-person and egocentric perspectives), object-
specific removal, and actor-centric visualization (e.g., dog’s-eye view). HoliGS also enables spatiotemporal behavior analysis such as
trajectory visualization.

Abstract

We propose HoliGS, a novel deformable Gaussian splat-001
ting framework that addresses embodied view synthesis002
from long monocular RGB videos. Unlike prior 4D Gaus-003
sian splatting and dynamic NeRF pipelines, which strug-004
gle with training overhead in minute-long captures, our005
method leverages invertible Gaussian Splatting deforma-006
tion networks to reconstruct large-scale, dynamic environ-007
ments accurately. Specifically, we decompose each scene008
into a static background plus time-varying objects, each009
represented by learned Gaussian primitives undergoing010
global rigid transformations, skeleton-driven articulation,011
and subtle non-rigid deformations via an invertible neu-012
ral flow. This hierarchical warping strategy enables robust013
free-viewpoint novel-view rendering from various embod-014
ied camera trajectories by attaching Gaussians to a com-015
plete canonical foreground shape (e.g., egocentric or third-016
person follow), which may involve substantial viewpoint017
changes and interactions between multiple actors. Our ex-018
periments demonstrate that HoliGS achieves superior re-019
construction quality on challenging datasets while signifi-020
cantly reducing both training and rendering time compared021

to state-of-the-art monocular deformable NeRFs. These re- 022
sults highlight a practical and scalable solution for EVS in 023
real-world scenarios. The source code will be released. 024

1. Introduction 025

Understanding and reconstructing dynamic 3D scenes from 026
monocular video remains a fundamental challenge in com- 027
puter vision, particularly in the context of Embodied View 028
Synthesis (EVS), where camera trajectories dynamically 029
follow actor motions. EVS tasks are crucial for immersive 030
AR/VR experiences, interactive gaming, and robotics, de- 031
manding representations capable of handling complex non- 032
rigid deformations, extreme viewpoint changes, and ex- 033
tended temporal sequences. 034

Despite recent advances in neural rendering for static 035
scenes [20, 36], extending these techniques to dynamic and 036
non-rigid scenarios reveals significant computational and 037
representational challenges. Existing neural radiance fields 038
(NeRF)-based methods [48] face high computational costs 039
during both training and inference, particularly when scal- 040
ing to minute-long sequences and involving multiple inter- 041
acting objects. This significantly restricts their practical ap- 042
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Figure 2. Performance of SOTA methods.

plicability in real-time environments.043

Gaussian Splatting (GS) approaches [20], known for effi-044
cient rendering in static scenes through compact anisotropic045
Gaussian primitives, also encounter limitations in dynamic046
contexts. Current deformable Gaussian Splatting tech-047
niques [17, 30] are typically constrained to short-duration048
captures or scenarios with minimal non-rigid motion. When049
applied to EVS tasks involving intricate interactions, these050
methods yield inconsistent reconstructions with noticeable051
artifacts(see Figure 2).052

Furthermore, several existing methods [23, 50, 58] rely053
heavily on off-the-shelf point-tracking models [17], intro-054
ducing significant computational overhead and exhibiting055
fragility under severe occlusions. These methods also fail056
to generalize effectively to arbitrary viewpoint trajectories057
essential for comprehensive EVS scenarios, severely limit-058
ing their utility in real-world conditions marked by frequent059
occlusions and the need for viewpoint flexibility.060

To overcome these critical limitations, we propose061
HoliGS, a holistic Gaussian Splatting method explicitly de-062
signed for EVS applications. Unlike previous methods, our063
framework introduces a Gaussian-based deformation model064
that directly manages articulated non-rigid transformations065
without relying on traditional tracking pipelines. This inno-066
vation ensures consistent and artifact-free reconstructions067
across complex sequences involving human and animal in-068
teractions.069

Specifically, our approach includes a novel deformable070
Gaussian Splatting pipeline and an optimized strategy to071
maintain high-quality rendering under extreme viewpoint072
variations, such as egocentric, third-person follow, and073
overhead perspectives. Additionally, we integrate an in-074
vertible deformation model, enabling stable reconstructions075
over prolonged durations without sacrificing efficiency.076

Extensive experimental evaluation demonstrates that077

Method
Entire
Scenes

Deform.
Objects

Global
6-DOF Traj.

Long
Videos

Extreme
Views

Fast
Rendering

BANMo ✗ ✓ ✗ ✓ ✓ ✗

RAC ✗ ✓ ✗ ✓ ✓ ✗

Vidu4D ✗ ✓ ✗ ✓ ✓ ✓
MoSca ✓ ✓ ✗ ✗ ✗ ✓
SoM ✓ ✓ ✗ ✗ ✗ ✓
SC-GS ✓ ✓ ✗ ✗ ✗ ✓
Dyn.Guss ✓ ✓ ✗ ✓ ✗ ✓
G.Marbles ✓ ✓ ✗ ✓ ✗ ✓
Total-Recon ✓ ✓ ✓ ✓ ✓ ✗

Ours ✓ ✓ ✓ ✓ ✓ ✓

Table 1. Comparison to Related Work. HoliGS targets embodied
view synthesis of dynamic scenes and process minute-long videos
of dynamic scenes, and render extreme views.

HoliGS significantly outperforms state-of-the-art methods 078
in terms of both rendering quality and computational speed, 079
achieving real-time rendering capabilities on consumer 080
hardware. Our results confirm robust performance across 081
diverse, challenging, dynamic sequences featuring multiple 082
interacting entities and complex articulated motions, sce- 083
narios where prior techniques either fail or produce substan- 084
tial visual artifacts. The main contributions of this work are: 085

• We introduce a holistic Gaussian Splatting method for 086
EVS tailored to 6-DOF embodied camera paths, outper- 087
forming existing state-of-the-art approaches [48, 67]. 088

• We propose an invertible deformation model that en- 089
sures stable reconstruction over extended periods with- 090
out compromising computational efficiency. 091

• We evaluate our model on diverse challenging dynamic 092
scenes against existing methods and show that our ap- 093
proach achieves robust view synthesis and scalable to 094
minute-long videos. 095

2. Related Work 096

Dynamic Scene Reconstruction. Reconstructing dynamic 097
scenes from videos has been an active research area, tradi- 098
tionally relying on multi-view stereo systems [1, 3, 4, 6, 099
12, 24, 28, 34, 42, 51, 73]. Recently, another series of 100
works focusing on monocular scene reconstruction methods 101
[5, 13, 25, 27, 31, 35, 49, 54–56, 63, 64, 68, 70, 71]. Dy- 102
namic methods often utilize either temporal conditioning as 103
an additional input dimension[39] or canonical-space rep- 104
resentations with deformation fields [25, 38]. Grid-based 105
representations [7, 45] have further accelerated these meth- 106
ods, enabling efficient optimization for dynamic scene re- 107
construction [6, 11, 47]. Despite significant progress, these 108
approaches still suffer from high computational costs, espe- 109
cially in real-time and long video scenarios with complex 110
motion patterns or prolonged video sequences. 111

Embodied View Synthesis (EVS). EVS introduces addi- 112
tional complexity, requiring representations capable of han- 113
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dling camera trajectories that closely follow or interact with114
dynamic subjects. Existing methods like DyCheck [14]115
highlight the inadequacies of current benchmarks, which116
often do not accurately reflect realistic everyday scenarios117
involving limited viewpoints and complex dynamics. Meth-118
ods designed specifically for monocular EVS [26, 48] aim119
to mitigate these issues through hybrid representations or120
generative methods. Nevertheless, these methods typically121
rely heavily on domain-specific priors or computationally122
intensive tracking modules, restricting their robustness un-123
der occlusions and generalization across diverse view tra-124
jectories.125

Articulated Object Reconstruction. Articulated object126
reconstruction, especially for humans and animals, often127
utilze parametric templates [2, 33, 44, 74], which impose128
strong geometric priors and facilitate reconstruction from129
sparse views or monocular videos [15, 16, 21, 59]. How-130
ever, these models typically struggle with capturing person-131
alized or detailed appearance variations. More recent non-132
parametric neural methods have combined neural radiance133
fields with articulated models [8, 9, 29, 40, 60, 61, 65, 66],134
capturing richer detail but at a significant computational135
cost. Our method diverges by directly modeling articulated136
motion without relying on predefined parametric templates,137
instead employing a flexible Gaussian-based deformation138
model optimized for dynamic reconstruction.139

Non-Rigid Structure from Motion. Non-rigid Structure140
from Motion (NRSfM) aims to reconstruct the 3D shape141
and deformation of objects from monocular videos, han-142
dling scenarios where scene points undergo complex, ar-143
ticulated, or continuous deformation. Traditional SfM and144
visual SLAM methods [37, 46, 53] typically assume static145
environments, enforcing strict epipolar constraints unsuit-146
able for dynamic scenes. Recent methods address this lim-147
itation by jointly estimating camera poses, scene geometry,148
and deformation fields [22, 72]. These approaches, how-149
ever, often rely on time-intensive test-time optimization or150
explicit motion segmentation, limiting their scalability and151
efficiency. Differently, our method leverages a Gaussian-152
based deformation model to explicitly encode articulated153
non-rigid transformations, enabling efficient reconstruction154
without the need for computationally costly per-video fine-155
tuning or explicit motion segmentation. This approach fa-156
cilitates robust reconstruction of dynamic interactions in157
everyday monocular videos, effectively overcoming chal-158
lenges posed by occlusions and extensive deformation.159

The proposed framework, HoliGS, combines the advan-160
tages of articulated object reconstruction and static Gaus-161
sian Splatting to enable efficient, high-quality embodied162
view synthesis for dynamic scenes captured from monocu-163
lar videos, overcoming limitations associated with existing164
methods.165

In this section, we introduce HoliGS, a hierarchical 4D166

representation that models dynamic scenes as the union of 167
a static background and time-varying deformable objects. 168
Our framework leverages Gaussian Splatting to represent 169
both the static and dynamic components and employs a se- 170
ries of invertible warping operations to capture articulated 171
and non-rigid deformations. The final scene at time t is 172
given by S(t)=G(t) ∪H, where H is the set of static back- 173
ground Gaussians and G(t) contains the dynamic, time- 174
varying Gaussians splitting articulated foreground objects. 175

2.1. Hierarchical Dynamic Warping 176
To robustly model motion ranging from whole-body trans- 177
lations to fabric flutter, we use a two-stage warping strat- 178
egy. At a glance, large articulated displacements are first 179
explained by a skeleton-driven transform, after which a soft, 180
flow-based deformation field refines any residual non-rigid 181
detail. All derivations and exact matrix expressions are de- 182
ferred to the supplementary material. 183
Global movements. Every video frame is aligned to the 184
camera via two rigid SE(3) transforms: the background- 185
to-camera map Gb and the object-root-to-camera map Go. 186
Both transforms are regressed by lightweight Fourier MLPs 187
that output six twist parameters per frame, giving us frame- 188
specific poses without needing an external tracker. 189
Skeleton-driven warping. The core articulated motion is 190
handled by a bone hierarchy with B bones. Each bone 191
b has a static reference pose

(
c∗b, V

∗
b ,Λ

∗
b

)
encoding cen- 192

ter, rotation, and scale, respectively. At time t, a learned 193
twist vector η̂b(t) ∈ SE(3) is exponentiated to produce 194
the bone pose Jb(t). We measure how much a 3-D point 195
P∗
k belongs to each bone by a Mahalanobis distance in the 196

bone’s scaled–rotated frame; a softmax over these distances 197
yields skinning weights w(t). Dual-quaternion blend skin- 198
ning (DQB) [18] fuses the individual bone transforms into a 199
single SE(3) map J(t), which is then applied to every Gaus- 200
sian center, rotation, and scale. Conceptually, this step cap- 201
tures all “rigid-but-articulated” effects such as limbs, torsos, 202
or tails. 203
Soft deformation field. After skeletal warping, many ob- 204
jects still exhibit subtle surface changes—loose clothing, 205
hair swaying, muscle bulges—that cannot be explained by 206
rigid bones. We address this with a soft deformation field 207
S(·, ωd) implemented as an invertible RealNVP flow [10]. 208
Given a canonical point X and a per-frame latent code ωd, 209
the field outputs a refined position X ′ = S(X,ωd). Invert- 210
ibility guarantees that S−1 exists; we therefore impose a 211
3-D cycle-consistency loss: Lcyc = ∥S−1(S(X,ωd), ωd) − 212
X∥22, which forces the forward and reverse mappings to 213
cancel out and stabilizes training. Because the flow oper- 214
ates in a fixed canonical space, it never has to chase a mov- 215
ing target, allowing it to converge quickly even when the 216
deformations are highly nonlinear. 217
Why hierarchy matters. Articulated bones give the model 218
an inductive bias toward plausible large-scale motion, while 219
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Figure 3. HoliGS Pipeline. Left—Warping network initialization: We jointly optimize poses, articulation, soft deformation, and in a neural
SDF proxy to obtain a fast converging deformation field that provides a strong starting point for Gaussian splitting. Right—after initial-
ization, the objective is switched to dynamic Gaussian splatting, and the deformed foreground is composited with the static background to
yield the final 4D scene.

the soft field soaks up the remaining fine detail. Each mod-220
ule solves a simpler task and therefore converges faster221
than a single, monolithic deformation network. Empiri-222
cally, the skeletal stage explains ≈ 90% of visible motion223
energy, leaving only low-amplitude corrections to the Real-224
NVP field. Full mathematical details—the Lie-algebra twist225
representation, the exact Mahalanobis weighting, and the226
DQB formulation—are provided in the supplementary ma-227
terials.228
Combined warping pipeline. Integrating the above com-229
ponents, a point X∗ in canonical space is warped to its dy-230
namic position at time t according to:231

Xt = Gt
o
−1 · J t−1 · S−1

(
X∗, ωt

d

)
. (1)232

Inspired by Omnimotion [57], HoliGS also enables a for-233
ward warp234

X∗ = S · J t ·Gt
o

(
Xt, ωt

d

)
. (2)235

This unified warping function seamlessly integrates global,236
skeletal articulation, and fine-scale deformations, enabling237
our framework to render high-quality 4D scenes with com-238
plex dynamics.239

2.2. Deformation Network Initialization240

For our dynamic scene representation, we establish ini-241
tial transformation parameters by pre-training a neural SDF242
that warps sampled points on camera rays from the static243
state to the warped states, similar to [65]. We apply244

Posenet [19] to obtain the rigid-body transformations T d 245
and time-dependent skeletons for each deformable object 246
in the scene. This network provides robust pose estimates 247
even under challenging viewing conditions. Concurrently, 248
we initialize the background component transformations T s 249
using camera pose information extracted from the capture 250
device’s motion sensors. This hybrid initialization strategy 251
ensures stable convergence during subsequent optimization 252
stages while accommodating both foreground dynamic ob- 253
jects and static background elements within our unified rep- 254
resentation. Then, we initialize the foreground Gaussian 255
point cloud from the pre-trained neural SDF by sampling 256
points on its surface, with objective function: 257

L = Lphoto︸ ︷︷ ︸
photometric
consistency

+λdepthLdepth + λSDFLSDF︸ ︷︷ ︸
geometric
constraints

258

+ λflowLflow + λcycleLcycle︸ ︷︷ ︸
motion

consistency

+ Lseg︸︷︷︸
mask

supervision

. (3) 259

Here, the photometric loss Lphoto enforces appear- 260
ance consistency. For geometry constraints: the depth 261
term Ldepth=

∑
pt ∥D(pt)−D̂(pt)∥22 aligns our predicted 262

depth D̂ with an off-the-shelf monocular depth esti- 263
mator D [41], promoting correct scene scale, and the 264
SDF term LSDF=

∑
Xt

i
(∥∇Xt

i
ΦSDF(X

t
i )∥2−1)2 enforces 265

the signed distance field ΦSDF to behave like a true 266
distance function by constraining its gradient norm to 267
one. Motion consistency is imposed by flow loss 268
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Lflow=
∑

pt ∥V (pt)−V̂ (pt)∥22 and cycle loss where269

Lcycle=
∑
i,j

λj βi,j ∥F t′

fwd,j(F t
bwd,j(X

t
i ))−Xt

i∥22 (4)270

weighted by importance factors λj and βi,j , aligning RAFT271
optical flow [52] and satisfying forward–backward cycle272
consistency. Finally, segmentation supervision is given273
by Lseg=

∑
pt ∥Mpred(p

t)−Mgt(p
t)∥22, with Mgt obtained274

from SAM [43]. pt ∈ R2 represents pixel coordinates275
at time t, Xt

i ∈ R3 denotes the i-th sample point in276
world space corresponding to Xt

i ∈ R3 in camera space.277
Weights {λdepth, λSDF, λflow, λcycle} are tuned to balance278
these complementary constraints.279

2.3. Deformable Gaussian Splatting Optimization280
Objectives281

Our composite Gaussian Splatting representation incorpo-282
rates N scene elements, global transformation matrices T i

t ,283
and bidirectional deformation fields F i

forward and F i
backward.284

The optimization process integrates multiple objectives to285
ensure high-quality reconstruction and temporal consis-286
tency:287

L = Lphoto + Ldepth + Lseg + Lnormal. (5)288

Besides the loss terms we explained in initialization, Lphoto,289
Ldepth, and Lseg, we incorporate additional normal super-290
vision to align the estimated entire scene surface normals291
with observed ones Lnormal =

∑
pt ∥N(pt)−N̂(pt)∥2. This292

comprehensive optimization framework ensures geometric293
accuracy, appearance fidelity, and temporal consistency in294
our dynamic scene representation.295

2.4. Embodied View Synthesis296

To effectively perform EVS, HoliGS transforms dynamic297
3D Gaussian primitives into consistent, egocentric view-298
points that naturally follow the motion of articulated ob-299
jects, such as humans and animals. Specifically, for each300
Gaussian primitive, we apply a forward warping function301
Wt→j : X∗ → Xt, which maps points from a canon-302
ical space X∗ to the deformed configuration at time t.303
This deformation accounts explicitly for non-rigid articu-304
lated transformations, ensuring accurate representation of305
complex motions such as limb articulations or interactions306
among multiple entities.307

Subsequently, to achieve embodied viewpoints, we em-308
ploy a rigid-body transformation G0

t , positioning the vir-309
tual egocentric camera within the world coordinate system.310
It aligns the viewer’s perspective with the foreground, en-311
abling realistic rendering of scenarios such as first-person312
views or third-person perspectives following actors in mo-313
tion (illustrated in Figure ??).314

By integrating the deformation network, our method re-315
liably synthesizes novel embodied viewpoints that remain316

coherent across complex motions. Our unified Gaussian- 317
based deformation and viewpoint adjustment strategy sig- 318
nificantly simplifies optimization and achieves near real- 319
time performance. This enables practical usage in interac- 320
tive AR/VR applications, immersive gaming experiences, 321
and robotics, where rapid viewpoint changes and accurate 322
motion tracking are essential. 323

2.5. Training and Optimization 324

We adopt a two-phase procedure to optimize our dynamic 325
Gaussian representation: Component pre-training and joint 326
refinement. During pre-training, each component (e.g., a 327
deformable object or the static background) is optimized 328
separately. Once pre-training is completed, all compo- 329
nents are combined for joint refinement using color, depth, 330
normal, and mask objectives. Training follows standard 331
Gaussian Splatting protocols [20]. The synergy between 332
our deformation-centric design and the parametric Gaus- 333
sian framework accelerates convergence considerably. On 334
NVIDIA H20 GPUs, each pre-training or refinement stage 335
completes in about 30 minutes, enabling full scenes (includ- 336
ing multiple deformable objects) to converge in two hours, 337
significantly faster than other approaches. 338
Component pre-training. We initialize the deformation 339
network by minimizing the overall loss (3), with default 340
weights set as: λdepth = 5 (or 1.5 for the HUMAN 1 se- 341
quence), λcolor = 0.1, λflow = 1, λcycle = 1, and λsegment = 342
1. This eikonal term is weighted by λSDF = 0.001 to en- 343
sure proper geometric properties. For this computation, we 344
sample 17 uniformly distributed points Xt

i along each cam- 345
era ray rt centered at the surface point derived from back- 346
projecting the ground-truth depth. 347
Joint fine-tuning. During the joint optimization phase, we 348
simultaneously refine all object representations by minimiz- 349
ing loss (5) for an additional 6,000 iterations. The default 350
weights for these objectives are λphoto = 1, λnormal = 1, 351
λdepth = 5, and λseg,j = 1. By default, we freeze the back- 352
ground’s appearance and geometry parameters while allow- 353
ing optimization of its global transformation T b

0 , the fore- 354

ground objects’ transformations T f
t , and the foreground ap- 355

pearance and geometry parameters (for HUMAN 1, we use 356
λdepth = 1.5), we allow background appearance and geom- 357
etry optimization during joint fine-tuning). This joint fine- 358
tuning phase significantly enhances the visual coherence of 359
foreground elements and improves the modeling of inter- 360
object interactions. 361

2.6. Qualitative and Quantitative Results 362
Figure 5 shows representative visualizations comparing the 363
photometric and depth reconstruction quality of HoliGS 364
against Total-Recon [48], Deformable GS [69], and 365
4DGS [62]. These results demonstrate the superior perfor- 366
mance of our method under various challenging conditions. 367

Quantitative results for novel view synthesis are reported 368
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Figure 4. Foreground Embodied Trajectory. For two challenging sequences, HumanCat and HumanDog, we show: (i) the joint bird’s-
eye-view (BEV) trajectory of a foreground actor, (ii) the articulated animal trajectory, (iii) the articulated human trajectory, and (iv) both
objects’ embodied camera pose. Our method recovers smooth, collision-free paths that faithfully follow each actor while remaining
mutually consistent, enabling stable first-person or over-the-shoulder replays for complex multi-agent interactions.
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Figure 5. Baseline Comparison. We qualitatively compare HoliGS against four SOTA baselines and a direct NVS ground-truth reference
across Dog 1, Cat 1, Human 1, and the challenging multi-actor Human 2 & Cat sequences. Each column shows photometric renderings
(top) and corresponding depth reconstructions (bottom). Red inset boxes highlight the most error-prone regions for articulated motion
and occlusion (e.g. tail swing, paw lift, garment folds, and human–animal interaction). Compared with baselines, HoliGS better preserves
fine-grained appearance and yields geometrically consistent depth maps with fewer tearing or bleeding artifacts—especially under large
viewpoint changes and prolonged, highly non-rigid deformations.

in Tables 2 and 3. Table 2 presents visual metrics across the369 Total-Recon dataset, while Table 3 reports depth accuracy 370
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DOG 1 (V1)
(626 images)

DOG 1 (V2)
(531 images)

CAT 1 (V1)
(641 images)

CAT 1 (V2)
(632 images)

CAT 2 (V1)
(834 images)

CAT 2 (V2)
(901 images)

LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑

HyperNeRF .634 12.84 .673 .432 14.27 .721 .521 14.86 .632 .438 14.87 .597 .641 12.32 .632 .397 15.68 .657
D2NeRF .540 13.37 .694 .546 11.74 .685 .687 10.92 .545 .588 11.88 .548 .556 12.55 .664 .595 12.71 .604
HyperNeRF (w/ depth) .373 16.86 .730 .425 16.95 .740 .532 14.37 .621 .371 15.65 .617 .330 18.47 .728 .376 16.56 .670
D2NeRF (w/ depth) .507 13.44 .698 .532 11.88 .690 .685 10.81 .534 .580 12.00 .563 .561 12.59 .656 .553 12.76 .629
Total-Recon (w/ depth) .271 17.60 .745 .313 17.78 .768 .382 15.77 .657 .333 16.44 .652 .237 21.22 .793 .281 18.52 .713

Deformable-gs (w/ depth) .520 12.35 .432 .490 12.78 .450 .565 11.92 .398 .530 12.30 .410 .600 11.50 .380 .510 12.60 .420
4DGS (w/ depth) .525 12.40 .425 .495 12.65 .445 .570 11.85 .390 .535 12.25 .415 .605 11.45 .375 .515 12.55 .430
GS-marble −− OOM −− .530 12.45 .430 −− OOM −− −− OOM −− −− OOM −− −− OOM −−
MoSca −− OOM −− .312 19.95 .695 −− OOM −− −− OOM −− −− OOM −− −− OOM −−
Shape-of-Motion −− OOM −− .282 20.85 .785 −− OOM −− −− OOM −− −− OOM −− −− OOM −−

Ours .251 20.12 .825 .285 21.37 .791 .319 20.52 .711 .285 21.74 .693 .203 22.94 .693 .262 22.07 .763

CAT 3
(767 images)

HUMAN 1
(550 images)

HUMAN 2
(483 images)

HUMAN - DOG

(392 images)
HUMAN - CAT

(431 images)
MEAN

LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑

HyperNeRF .592 13.74 .624 .632 11.94 .603 .585 14.97 .620 .487 15.04 .699 .462 13.52 .512 .531 14.00 .635
D2NeRF .759 11.03 .578 .588 11.88 .638 .630 12.13 .599 .576 12.41 .652 .628 10.41 .453 .611 11.97 .608
HyperNeRF (w/ depth) .514 14.86 .635 .501 13.25 .664 .445 15.58 .665 .450 15.01 .704 .456 14.40 .535 .428 15.80 .667
D2NeRF (w/ depth) .730 11.08 .582 .585 12.14 .638 .609 12.11 .612 .608 12.30 .633 .645 10.51 .451 .599 12.02 .611
Total-Recon (w/ depth) .261 19.89 .734 .213 18.39 .778 .264 16.73 .712 .256 16.69 .756 .233 17.67 .630 .278 18.11 .724

Deformable-gs (w/ depth) .550 12.45 .410 .505 12.80 .430 .560 11.95 .400 .540 12.10 .420 .590 11.70 .390 .542 12.22 .413
4DGS (w/ depth) .545 12.50 .415 .510 12.75 .435 .565 11.90 .405 .535 12.15 .425 .595 11.65 .385 .545 12.19 .413
GS-marble −− OOM −− .548 12.50 .415 .555 12.08 .405 .538 12.32 .418 .580 11.85 .399 −− NA −−
MoSca −− OOM −− −− OOM −− .263 18.15 .711 .241 21.10 .781 .243 19.05 .730 −− NA −−
Shape-of-Motion −− OOM −− .214 18.45 .776 .262 16.78 .715 .253 16.75 .758 .235 17.55 .635 −− NA −−

Ours .247 20.50 .744 .211 20.19 .782 .251 18.78 .725 .247 20.56 .776 .229 21.34 .688 .263 21.31 .747

Table 2. Quantitative Comparisons on Novel View Synthesis (Visual Metrics). We compare our method to previous dynamic NVS
works and their depth-supervised variants on the 11 sequences of our stereo RGB dataset in terms of LPIPS, PSNR, and SSIM. Our
method significantly outperforms all baselines for all sequences.

DOG 1 DOG 1 (V2) CAT 1 CAT 1 (V2) CAT 2 CAT 2 (V2) CAT 3 HUMAN 1 HUMAN 2 HUMAN - DOG HUMAN - CAT MEAN

Acc↑ ϵdepth↓ Acc↑ ϵdepth↓ Acc↑ ϵdepth↓ Acc↑ ϵdepth↓ Acc↑ ϵdepth↓ Acc↑ ϵdepth↓ Acc↑ ϵdepth↓ Acc↑ ϵdepth↓ Acc↑ ϵdepth↓ Acc↑ ϵdepth↓ Acc↑ ϵdepth↓ Acc↑ ϵdepth↓

HyperNeRF .107 .687 .176 .870 .316 .476 .314 .564 .277 .765 .252 .811 .213 .800 .053 .821 .067 1.665 .072 .894 .162 .862 .198 .855
D2NeRF .219 .463 .220 .456 .346 .334 .403 .314 .333 .371 .339 .361 .231 .523 .066 1.063 .128 .890 .078 .847 .126 .880 .247 .739
HyperNeRF .352 .331 .357 .338 .552 .206 .596 .209 .605 .154 .612 .170 .451 .285 .211 .591 .249 .611 .283 .565 .214 .613 .439 .374
D2NeRF .338 .423 .270 .445 .510 .325 .362 .313 .438 .298 .376 .318 .243 .496 .086 .984 .131 .813 .154 .789 .176 .757 .302 .549
Total-Recon .841 .165 .790 .167 .889 .184 .894 .124 .967 .050 .925 .081 .949 .066 .909 .142 .849 .142 .827 .204 .914 .104 .895 .131

Def.GS .172 .599 .183 .612 .320 .415 .328 .432 .295 .485 .271 .494 .225 .598 .070 .912 .109 .940 .085 .862 .145 .795 .215 .632
4DGS .175 .603 .178 .620 .315 .423 .325 .436 .292 .481 .268 .499 .232 .592 .073 .908 .113 .936 .089 .859 .142 .802 .200 .651
GS-marble −− OOM .180 .615 −− OOM −− OOM −− OOM −− OOM −− OOM .175 .710 .210 .838 .187 .801 .143 .799 −− NA
MoSca −− OOM .792 .165 −− OOM −− OOM −− OOM −− OOM −− OOM −− OOM .850 .141 .826 .205 .912 .106 −− NA
S.o.M −− OOM .788 .168 −− OOM −− OOM −− OOM −− OOM −− OOM .908 .144 .845 .145 .825 .206 .911 .108 −− NA

Ours .845 .160 .795 .163 .880 .190 .898 .122 .970 .048 .928 .079 .955 .064 .915 .138 .855 .139 .830 .202 .920 .102 .901 .127

Table 3. Quantitative Comparisons on Novel View Synthesis (Depth Metrics). We compare HoliGS to previous works on the Total-
Recon dataset in terms of the average accuracy at 0.1m (Acc@0.1m) and the RMS depth error ϵdepth (units: meters). Our method signifi-
cantly outperforms all baselines for all sequences.

metrics (Acc@0.1m and RMS depth error). Our method371
consistently outperforms the baselines in both sets of met-372
rics.373

Table 4 evaluates the contribution of each deform com-374
ponent systematically removing key elements: the depth su-375
pervision, the normal supervision, the deformation field F t,376
soft deformation S, pose initialization from external esti-377
mators, and the rigid transformation T t

j , where j identifies378
a deformable object. For all ablations, we maintain the same379

core optimization objectives used in our full method while 380
initializing camera parameters T t

b from device sensors. For 381
configurations without rigid body modeling, we initialize 382
each object’s pose with predictions from PoseNet and op- 383
timize them during reconstruction; for row 6, we replace 384
these predictions with identity transformations. 385

Geometric supervision. Table 4 demonstrates that remov- 386
ing depth supervision (row 2) significantly reduces aver- 387
age accuracy. Ablation visualization (in Appendix) reveals 388
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Methods Depth Loss Normal Loss Deform. Obj. Root Init. Root Motion Deform. Soft LPIPS↓ Acc@0.1m↑

(1) Full model ✓ ✓ ✓ ✓ ✓ ✓ .263 .896

(2) w/o loss Ldepth ✗ ✓ ✓ ✓ ✓ ✓ .385 .847

(3) w/o loss Lnormal ✓ ✗ ✓ ✓ ✓ ✓ .288 .832

(4) w/o deform. Jj ✓ ✓ ✗ ✓ ✓ ✓ .305 .853

(5) w/o Soft deform Gj ✓ ✓ ✓ ✗ ✓ ✓ .293 .870

(6) w/o root-body init. ✓ ✓ ✓ ✗ ✓ ✗ .301 .862

(7) w/o root-body Gj ✓ ✓ ✓ ✗ ✗ ✓ N/A N/A

Table 4. Ablation Study. Removing depth supervision (2) signif-
icantly hurts performance, while removing the deformation field
(3) and PoseNet-initialization of root-body poses (4) hurts mod-
erately. Most importantly, removing root-body poses entirely (5)
prevents convergence (N/A) as the deformation field alone has to
explain global object motion (see Figure 4). These experiments
justify our hierarchical modeling of motion, as even root-bodies
without a deformation field (3) or poorly initialized root-bodies
(4) are better than no root-bodies (5). We visualize these ablations
in Appendix.

that this stems from scale inconsistency between objects -389
while removing depth supervision does not severely impact390
training-view RGB renderings, it introduces critical fail-391
ure modes in novel-view reconstructions: (a) floating fore-392
ground objects, evidenced by misaligned shadows, and (b)393
incorrect occlusion relationships between subjects. Without394
depth supervision, our method overfits to training perspec-395
tives and produces a degenerate scene representation where396
objects fail to maintain consistent scale relationships.397

Similarly, our results show that normal supervision (row398
3) provides crucial geometric guidance. Without normal399
constraints, the model struggles to capture fine surface de-400
tails and produces less coherent object boundaries, particu-401
larly in regions with complex geometry. The normal super-402
vision helps maintain surface continuity and improves the403
definition of sharp features.404

Deformation modeling. Table 4 indicates that eliminating405
the deformation field (row 4) substantially degrades perfor-406
mance. Without this component, our approach must explain407
non-rigid motion using only rigid transformations, result-408
ing in coarse approximations that fail to capture articulated409
movements like limb motion. The MLP-based soft defor-410
mation component (row 5) further enhances our model’s411
ability to represent complex non-rigid movements through412
the transformation (1).413

Similar to established approaches, our method enables414
bidirectional warping, with the inverse transformation de-415
fined as (2). This hierarchical structure allows our model to416
handle both global positioning and local deformations ef-417
fectively. Removing the neural soft deformation component418
results in notable artifacts around joints and other highly ar-419
ticulated regions.420

Removing pose initialization from external networks421
(row 6) produces similarly detrimental effects, leading to422
noisy appearance and geometry artifacts. Most signifi-423
cantly, Table 4 shows that eliminating object-specific rigid424

transformations entirely (row 7) causes optimization failure 425
(N/A), even though the deformation field and soft deforma- 426
tion components can theoretically represent all continuous 427
motion. It proves challenging for deformation fields alone 428
to model global positioning, as such movements can de- 429
viate substantially from canonical configurations, compli- 430
cating convergence. These findings justify our hierarchical 431
motion representation, which explicitly models object posi- 432
tioning through rigid transformations while capturing non- 433
rigid deformations through a combination of MLPs. Our ab- 434
lations further suggest that the underwhelming performance 435
of baseline methods on challenging dynamic scenes may 436
stem from insufficient object-centric motion modeling. 437

In this work, we have presented a novel approach for em- 438
bodied view synthesis from monocular RGB videos, with 439
a particular focus on dynamic scenes featuring humans in- 440
teracting with animals. Our primary technical contribution 441
is a deformable Gaussian splatting framework that hierar- 442
chically decomposes scene dynamics into object-level mo- 443
tions, which are further decomposed into rigid transforma- 444
tions and localized deformations. This hierarchical struc- 445
ture enables effective initialization of object poses and fa- 446
cilitates optimization over long sequences with significant 447
motion. 448

Future Work. We aim to integrate event-aware sen- 449
sors (e.g., event cameras or high-frame-rate IMUs) to bet- 450
ter capture motion discontinuities. We also plan to couple 451
the warping network with a lightweight, on-the-fly boot- 452
strap module that refines pose and Gaussian splitting priors 453
across diverse articulated objects, including humans, ani- 454
mals, and furniture. To support real-time embodied view 455
synthesis on mobile platforms, we will improve our splitting 456
kernels and memory layout for deployment on AR glasses 457
and edge devices. 458
Limitations. Despite the demonstrated effectiveness of 459
our approach, our generic pose estimation sometimes 460
mis-match the anatomical accuracy of specialized para- 461
metric models such as SMPL[32] for humans, which offer 462
more robust initializations and appropriate joint constraints. 463
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