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ABSTRACT

Score-based generative modeling through differential equations has driven break-
throughs in high-fidelity image synthesis, offering modular model design and
efficient sampling. However, this success has not been widely translated to time-
series forecasting yet. This gap stems from the sequential nature of time series,
in contrast to the unordered structure of images. Here, we extend the theoretical
formulation used for images to explicitly address sequential structures. We propose
a diffusion-based forecasting framework (TEDM) that adapts score estimation to
temporal settings and elucidates its design space. Such a design allows empiri-
cal computation of noise and signal scaling directly from data, avoiding external
schedules. Notably, this reduces sampling complexity to linear in the forecast
horizon. Without elaborate preprocessing, TEDM sets new state-of-the-art results
on multiple forecasting benchmarks. These results illustrate the growing potential
of diffusion models beyond vision. TEDM generates low-latency forecasts using a
lightweight architecture, making it ideal for real-time deployment.

1 INTRODUCTION

Multivariate time-series forecasting drives critical decision-making across domains as varied as
demand planning (Kamarthi et al. (2024)), financial risk assessment, weather prediction (Oskarsson
et al. (2024), stock market analysis (Zou et al. (2023)), and energy load forecasting (Symeonidis
& Nikolaidis (2025)). Unlike classical regression tasks, time-series data exhibit unique characteris-
tics—trend, seasonality, and autocorrelation—that demand models capable of capturing temporal
dependencies and quantifying predictive uncertainty, particularly in high-stakes settings such as
meteorology and finance (Box et al. (2015)).

Recent advances in deep learning have dramatically improved forecasting accuracy by leveraging se-
quence models. Transformer-based architectures in particular—such as Informer (Zhou et al. (2021))
and Autoformer (Wu et al. (2021))—have consistently topped benchmark leaderboards. However,
these approaches exhibit high computational complexity (quadratic time and memory requirements)
(Kim et al. (2024); Kong et al. (2025)), and have poor long-term forecasting performance.

Diffusion models have emerged as a powerful generative paradigm across modalities, achieving
state-of-the-art results in image, speech, and video synthesis (Xing et al. (2024); Ahsan et al. (2025)).
Early attempts to adapt diffusion modeling to time series, like TimeGrad (Rasul et al. (2021)), showed
promise in computational complexity, by processing sequences using recurrent networks instead of
transformers. Nevertheless, they fall short in forecasting long horizons. Other approaches followed
(Yang et al. (2024); Su et al. (2025)), demonstrating that longer horizons are possible at the expense
of more preprocessing and model complexity, additional to the inherent sampling inefficiency of
diffusion models (Ma et al. (2025)).

To strike a balance between long-term forecasting performance and computational complexity, a
deeper understanding of the design space of diffusion models is needed. In the vision domain, this was
elucidated by the EDM framework of (Karras et al. (2022)) and imported to time series forecasting in
climate applications (Price et al. (2025)). This allows optimization of noise and scale schedules, as
well as time-discretization strategies and solvers for the diffusion process. However, the sampling
inefficiency remains, scaling as O(SH) for S diffusion steps and H forecasting steps.
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Figure 1: (a) Denoising signals corrupted with structured noise. (b) TEDM uses score-based
generative modeling to forecast time series by numerical integration of an ordinary (ODE) or
stochastic (SDE) differential equation. The main characteristic of TEDM is reducing the physical
time and the diffusion time to the same axis, as we support by theory.

To address these limitations, we propose TEDM (Time Series Forecasting with Elucidated Diffusion
Models), an autoregressive diffusion framework tailored for multivariate probabilistic forecasting.
We extend the theoretical background of EDM for time series forecasting. Optimization of the design
space thus leads to significant reduction in complexity and increase in accuracy by:

* Treating the diffusion and physical time axes as the same (see Fig. 1b). This reduces
sampling complexity from O(SH) to O(H).

* Using, for the first time, noise and scale schedules estimated empirically from the data. This
avoids inductive biases from guiding the diffusion with artificially imposed schedules.

This allows TEDM to achieve state-of-the-art results on several long-sequence forecasting benchmarks
at a fraction of the cost of traditional methods. We find that the best case for space complexity is
O(T d) for a given sequence of T' timesteps and d features—still giving promising results and then
making our approach suitable for online settings.

2 RELATED WORK

Sequence Models. RNNs (Hewamalage et al. (2021)) and TCNs (Chen et al. (2020)) have
been applied to capture nonlinear, temporal dependencies. Recently, Transformer-based vari-
ants—Informer (Zhou et al. (2021)), Autoformer (Wu et al. (2021)), DLinear, and iTransformer (Liu
et al. (2024))—tackle long-range interactions via attention mechanisms and are dominating leader-
boards. However, attention on sparse or irregularly-sampled timestamps can degrade, and preserving
temporal ordering remains challenging (Wu et al. (2021)). Additionally, most Transformer-based
forecasters produce only point estimates, limiting uncertainty quantification.

Diffusion models. Popularized by Score Matching with Langevin Dynamics (SMLD) (Song &
Ermon (2020)) and Denoising Diffusion Probabilistic Models (DDPM) (Ho et al. (2020)), they are
promising for probabilistic time series forecasing due to their generative nature. TimeGrad (Rasul et al.
(2021)) pioneered autoregressive score-based forecasting by combining RNN encoders with per-step
diffusion sampling, though it inherits RNNs’ inefficiencies over long horizons. Non-autoregressive
variants—such as TimeDiff (Shen & Kwok (2023)) and TSDiff (Kollovieh et al. (2023)) generate
the prediction horizon in one step—bypassing error accumulation and enabling parallel forecasting.
ARMD (Gao et al. (2025)) improves autoregression and sampling complexity by supervising a
devolution network that effectively learns to “jump” the S diffusion steps.
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Despite substantial advances, most of the existing diffusion-based forecasters are merely adaptations
of image-domain DDPMs that do not completely harness the multivariate and temporal structures
of time-series data. This is due to an incomplete knowledge of the full design space of diffusion
models that EDM helps to elucidate. In the following, we describe this background and introduce the
changes needed for time series forecasting ultimately leading to TEDM.

3 BACKGROUND

3.1 EDM: UNIFIED DESIGN SPACE FOR DIFFUSION MODELS

Karras et al. (2022) present a unified framework for analyzing and improving diffusion-based
generative models for image synthesis. Their core contribution is the disentanglement of architectural,
training, and sampling components into a modular design space, enabling independent optimization
of each element. This allowed them to find optimal choices for each component and push the state of
the art for image synthesis.

Deterministic sampling. In their formulation, sampling is grounded on the probability flow ordinary
differential equation (ODE)

dx; S .

= o %= 5 6100V logpy (). M

t St

Here, z; € R is the sample, o, is a time-dependent noise schedule, s, is a time-dependent scale
schedule, and p;(;) = s; “p(x¢/s¢; 01) is the marginal distribution of the diffusion process. The
latter is expressed in terms of a mollified version of the data distribution obtained by adding i.i.d
Gaussian noise—of standard deviation o;—to the samples. The term V, log p;(x;) is called the
score function (Song et al. (2021)).

Deterministic sampling is achieved by integrating the ODE backwards, from time 7" where x is
completely noisy (o maximum), to time 0 where x is the prediction (o ~ 0). A related stochastic
differential equation (SDE) adds noise during sampling for improved robustness. The authors Karras
et al. (2022) propose using a second-order Heun’s method with a linear schedule o, = ¢ and constant
scaling s; = 1, which leads to smoother sampling trajectories.

Denoising score matching. Training is based on denoising score matching: given clean data
Y ~ Ddaa and Gaussian noise € ~ N (0, I), the data is corrupted with unstructured noise n = ;€.
The training objective then minimizes the expected value:

]Eywpdam,t-:NN(O,I) UlD(y +n; Ut) - y||2] . (2)

This loss encourages the denoiser D(x; 0;) to estimate the conditional expectation of the clean signal
given the noisy input y 4+ n as well as the noise level o;. It is related to the score function (see Eq.
(3) of Karras et al. (2022)) by:
D(x;04) —x
Vaz logp(z;or) = % (3)
O

Preconditioning. To improve stability and expressiveness, the authors propose a preconditioned
architecture for the denoiser Dy:

Dy(x;0) = coip(0) T + cour(0) Fo(cin(0) ; Cnoise (0))-

Here, Fy is the core neural network to be trained, and cgip, Cin, Cout, Cnoise are scalar functions of o
that control signal scaling and conditioning. These are derived analytically by requiring the network
inputs and training targets to have unit variance (ciy, Cout), and amplifying errors in Fy as little as
possible (cuip). Except for cpoise (Which is chosen empirically), these functions are expressed in terms
of O'gata = Var(y), which is uniformly set in image datasets. The authors also propose a log-normal
distribution for sampling noise levels o during training, along with loss weighting A(o) = 1/¢2,, (o).
This modular reformulation facilitates targeted improvements and enhances compatibility with a

range of generative architectures.

Importantly, this unified framework subsumes earlier methods like DDPM, DDIM, and SMLD
(Song et al. (2021)). These differ mainly in their o, and s; schedules, time discretizations, and
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preconditioning schemes. For instance, DDPM uses o, = t, s; = 1 (as EDM), and stochastic
sampling. DDIM replaces the stochastic reverse process with Euler integration of the same ODE and
time steps as DDPM. SMLD instead models the score function directly with a variance-exploding
SDE. This modular view reveals that improvements in training or sampling can often be transferred
across models without retraining the network.

3.2 EXTENDING EDM TO MULTIVARIATE SERIES

Adapting EDM to multivariate time-series introduces unique challenges not present in image domains.
First, applying a shared noise schedule across all features assumes uniform scale and dynamics. In
practice, features may differ in variance or predictive importance, making uniform noise injection
suboptimal. Feature-specific noise scaling is needed. Second, time-series exhibit strong temporal
dependencies. EDM’s i.i.d. Gaussian noise assumption can disrupt autocorrelated patterns, especially
when noise is added independently at each time step. Structured noise or causal conditioning
mechanisms may be required to preserve temporal coherence. Finally, architectural design must
respect the sequential nature of time. Preconditioning schemes should account for temporal scale and
position. Temporal encodings, autoregressive models, or attention-based architectures may be better
suited than standard convolutional backbones. We discuss next how these challenges are theoretically
and experimentally addressed by TEDM.

4 TEDM METHODOLOGY

4.1 PROBLEM DEFINITION

Given a multivariate series y1.7 € RE*T with C features and 7" time steps, the problem is to forecast
the next H steps. The forecast is done through a mapping fg : y1.7 — Y7T+1.7+H, consisting of a
learned estimator of the score function and its autoregressive use in an ODE (or SDE) solver. Unless
otherwise necessary, we omit the subscript from the respective variables. The theoretical results in
the following are derived in appendix A.

4.2 DATA-DRIVEN NOISE AND SCALE SCHEDULES

We extend the EDM formulation to multivariate noise schedules. With X, := s; 2 Cov(zx,), the
forward ODE in (1) takes now the more general form

dx 5 :
d7t = l Ly — %S? EtV:c logpt(wt)' (4)
t St

We restrict to deterministic sampling in the following and leave probabilistic forecasts (based on our
SDE (A.65)) for Appendix D. In our formulation, the score function becomes (Eq. (A.25))

Valogpi(xi) = s; 'S [D(@e /s, 20) — a1 /51, (5

and allows the backward ODE associated to Eq. (4) to be written as (Eq. (A.54))
dxy = —(dlog s;) oy + %st(dEt) S [D(x )50, 1) — x40 /54] 6)

This expression suggests our proposed contributions:

* Since dt does not appear in the difference equation, we do not need any strategy to quantify
time increments, as needed by all previous approaches. As a consequence, we take the
physical time-axis of the time series as the time-axis of the diffusion process.

* Diffusing across the time-series horizon implies that the noise ¥, and scale s; schedules
acquire physical meanings. Unlike any other diffusion model so far, we empirically estimate
these from the data.

The way to estimate these schedules is suggested from their definition. We can show (Eq. (A.5))
that the scale s; obeys E(x;) = s; E(x(). Furthermore, we show (Eq. (A.7)) that Cov(x;) = s7 ;.
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Therefore, we estimate s; and 3; from the input data window y;.7, by empirical estimations of the
above relations. We follow two approaches:

Cumulative estimation. We estimate s; and XJ; from the cumulative mean and covariance of the
data, respectively. That is,

E(z¢) ~ Mean(y1.4), E(zo) ~y11, = & = Mean(y1.4) © y1.1, (7

where the division is element-wise and the reduction is along the sequence axis. Similarly, we
estimate X; from the cumulative covariance of the data,

Cov(xzt) ~ Cov(y1t), = 3, =8, Cov(yi.t) 5th7 )
where S, = diag(3, 11, cs 8y é) is a matrix, build from (7), that applies a congruent scaling to the
covariance matrix, preserving its positive definiteness.

Sliding window estimation. We estimate s, and 3; from the mean and covariance of a sliding
window over the input y;.7. This allows more flexibility to adapt to local changes in the data statistics.
It also avoids the problem of defining the variance for the first data point of a window—technically
zero, so interpolated in the cumulative estimation above. Additionally, it helps mitigate issues with
data values (y1.1 in Eq. (7)) close to zero that may blow up the cumulative scale estimate.

4.3 TRAINING

As with EDM, we train using denoising score matching. Given subsequences of clean data y ~ pgaa,
we compute the associated subsequences of empirical X. Gaussian noise € ~ N(0, I) is drawn
and structured with this schedule: n = X'/?e. Since every time step (and feature) in the data
subsequence is corrupted with a different noise level, the noise is no longer i.i.d. as in EDM. The
denoiser learns to remove this noise (see Fig. 1a), by minimizing

Eympune~no.1) [|1Do(y + 1 2) —y?] . 9

We evaluate different architectures for the denoiser. They differ in the way the temporal structure is
leveraged and whether conditioning on past data is done. We extend the preconditioning scheme of
EDM to matrix-valued X. For this, the denoiser is expressed as (Eq. (A.27))

Dy(z, %) = Csisip T + 500t Fo (Cxiin @5 Csinoise )-

By imposing that the inputs and training targets of Fy have unit variance, and that its errors are
amplified as little as possible, we have (Egs. (A.35)):

Cs.in = (Cov(y) + 2)71/2,
Csisip = Cov(y)(Cov(y) + X) 7,
Sond = Cov(y)(Cov(y) +X)7' X,
As = 1/0%;;0m.

The matrix C's:.noise 1S chosen empirically, as in EDM, and Ax; weighs the loss function in Eq. (9).
Note that these expressions reduce to those of EDM when ¥ = ¢21I. Furthermore, they hold even
when X is estimated from y, provided that the estimator is unbiased.

4.4 INFERENCE

Once the denoiser is trained, the score function is estimated by (5). Knowing the score function
provides the mechanism for sampling by ODE (or SDE) integration. Since the diffusion and physical
time axes are the same, this allows forecasting the next time step by an Euler step of (6) (Eq. (A.55)):
I} Yo+ 550 (B — 1), 3, [Do(@e/se, Be) — Ui/ s] »

St

Yir1 = |I —log
St—1

where (-) denotes the projection onto the cone of positive semi-definite matrices. Here, s; and X,
are replaced by their estimates in (7) and (8) (or their sliding window counterparts). This inference
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Figure 2: Random test windows from all datasets. Each subplot corresponds to one dataset and shows
5 windows from randomly selected time indices and feature dimensions.

rule is general, and can be implemented by a Cholesky factorization of 3, that allows applying 3, !
to vectors. The projection to the positive semi-definite cone requires diagonalization of 3, — 3,1,
which may be costly for large feature size d.

An efficient approximation is obtained when the noise covariance is considered diagonal, i.e.
¥, = diag(07,, ..., 07 ). In this case, the inference rule simplifies considerably, since all matrix
operations reduce to element-wise operations on the feature dimensions. The Eurler step in this case
becomes (Eq. (A.53))

Vir1 = [I log —— 2;/22 1/2} Yt + st [log 21/22;—11/2} DG(gt/StZ 2t)~ (10)

St—1
Remarkably, this inference rule holds exactly beyond the diagonal approximation (see Remark A.1),
as long as the principal axes of ¥; do not change with time (only its eigenvalues do). This applies
to systems with stable directions of variability but evolving intensities along those directions—e.g.
spatial climate patterns, brain signals with stable spatial modes, etc. Due to its simplicity and
efficiency, we consider the diagonal approximation for the rest of this work.

Startmg from the given data window ¥, := y;.7, an Euler step then transforms this window to predict
Yo = Y2.711- Assummg T = H (the horizon length), after H Euler steps (see Fig. 1b), we get
the predicted window 9145 := yr41.7+1. Thus inference time is O(H) instead of O(HS) for S
diffusion steps, since one Euler step replaces one diffusion step.

Intuitively, every data point in the given window (a single x; or vy, in our description) may be
imagined to be a particle “propagated by diffusion” to a corresponding data point in the predicted
window. All these particles in the window are processed in parallel by the network that learned to
denoise the signals.

5 EXPERIMENTS

5.1 DATASETS

We evaluate our approach on eight widely used Table 1: Comparison of benchmark time series
multivariate datasets: ETTh1, ETTh2, ETTm1, datasets: data size and feature count.

ETTm?2, Exchange, Solar, Stock, and Weather. Dataset Timesteps Dim (d)
The Electricity-Transformer-Temperature (ETT)

datasets (Zhou et al. (2021)) are standard E¥¥E1ll/ EETFTI?HZQ égagég ;

long-sequence forecasting benchmarks, sampled h 7!588 .

hourly (ETTh) and every 15 minutes (ETTm) Exchange ,

from two power-transformer stations. The Ex- Weather 52,695 21

change dataset (Zhou et al. (2021)) contains Solar 52,560 137
Stock 4,431 6

daily exchange rates across major currency pairs.
The Solar dataset (Lai et al. (2018)) consists of 10-minute solar power measurements from 137 sta-
tions, and the Stock dataset provides daily Google stock prices from 2004-2019 (Yoon et al. (2019);
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Yuan & Qiao (2024)). Dataset sizes and feature counts are reported in Table 1. Randomly selected
test samples are shown in Fig. 2. Further dataset details are provided in Appendix C.1.

5.2 DATA PREPROCESSING

It is known that time series forecasting methods requiring extensive preprocessing typically un-
derperform simpler methods (Makridakis et al. (2020)). Such preprocessing include stationarity
transformations (Liu et al. (2022)), seasonal adjustments (Findley & Monsell (2019)), multi-resolution
analysis (Li et al. (2024a)), etc. These steps often make the approaches cumbersome and introduce
inductive biases.

Our method does not require complicated preprocessing. The datasets are partitioned into train (70%),
validation (10%), and test (20%) sets, according to the standard practice for these benchmarks (Liu
et al. (2024)). Following Gao et al. (2025), we apply z-score normalization to the data. We further
partition the sets into subsequences y;.7 (windows). For training, each window has T' = H (horizon
length) time steps, consumed by the denoiser network in batches. For validation and testing, padding
is added for TEDM to compute time shifts as appearing in Eq. (10). Each window has 2H time steps
(plus padding and additional context for conditional denoising). The first 7" time steps are given to the
models for forecasting, the last H steps are the ground truths to contrast with the model predictions.
We fix H = 96 timesteps for all datasets, as in Gao et al. (2025), and refer to Appendix E for longer
horizons.

5.3 BASELINES

We are inspired by ARMD (Gao et al. (2025)) and follow their experimental setup closely. However,
we include newer diffusion baselines that were not available at the time of their publication. In
particular, NsDiff Ye et al. (2025) is a recent approach that extends diffusion models to non-stationary
time series, providing a strong baseline for our experiments. They provide a codebase to evaluate
TMDM Li et al. (2024b), DiffusionTS Yuan & Qiao (2024), TimeDiff Shen & Kwok (2023), among
others. We use their codebase and experimental setup to evaluate these methods for H =T = 96.

5.4 METRICS

We follow the evaluation methodology of Zhou et al. (2021) and use the mean square error (MSE)
and mean absolute error (MAE) to measure performance when comparing z-score normalized data.
This has become standard practice in time series forecasting (Gao et al. (2025)). For probabilistic
forecasts in Appendix D, we use the standard continuous ranked probability score (CRPS) (Matheson
& Winkler (1976)) and quantile interval coverage error (QICE) (Han et al. (2022)).

5.5 NETWORK ARCHITECTURES

One of the advantages of elucidating the design space of diffusion models is that the selection of
model architectures is more intuitive. The denoiser (as an estimator of the score function used for
inference) has a job independent from the forecasting task (see Fig. 1a). This separation makes
it ideal for generalization, and gives more flexibility when designing architectures aimed at better
denoising outcomes. We considered several architectures, ranging from the simplest Linear network,
with O(T d) space complexity, to the most complex UNet architecture. These architectures optionally
accept a condition on past data, to support conditional denoising (Batzolis et al. (2021)). For more
details on these architectures, see Appendix C.3.

5.6 MAIN RESULTS

Table 2 shows that TEDM delivers state-of-the-art accuracy across the majority of datasets, achieving
the best MSE and MAE on ETTh2 (0.214 /0.319), ETTm2 (0.135 / 0.253), and Exchange (0.069 /
0.183). On ETTm1, TEDM ranks second (MSE 0.419, MAE 0.421) behind ARMD, and on Weather,
TEDM is also second (MSE 0.223, MAE 0.261), close to the strongest baseline on that dataset.
The only dataset where TEDM trails the simpler TimeDiff/ARMD pairing is ETTh1 (MSE 0.595,
MAE 0.524), which we attribute to typical large-amplitude changes (see Fig. 2) that stress TEDM’s
assumption of smooth flows (see Assumption A.1).
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Table 2: MSE and MAE scores (prediction horizon H = 96) for diffusion-based forecasting methods.
Best scores per dataset are in bold; second best are underlined. Lower is better.

Methods Metric ETThl ETTh2 ETTml ETTm2 Exchange Weather

TimeDiff MSE 0.417 0.364 0.548 0.209 0.208 0.228
MAE 0.456 0.393 0.485 0.296 0.331 0.305
DiffusionTS MSE 1.032 3.017 0.976 3.517 3.302 0.625
u MAE 0.757 1.340 0.726 1.472 1.493 0.609
TMDM MSE 0.534 0.564 0.421 0.313 0.212 0.180
MAE 0.514 0.517 0.408 0.350 0.338 0.241
ARMD MSE 0.445 0.311 0.337 0.181 0.093 0.232
MAE 0.459 0.338 0.376 0.255 0.203 0.291
NsDiff MSE 0.552 0.460 0.450 0.250 0.146 0.223
MAE 0.506 0.452 0.434 0.328 0.280 0.276
TEDM MSE 0.595 0.214 0.419 0.135 0.069 0.223
MAE 0.524 0.319 0.421 0.253 0.183 0.261

TEDM NsDiff TMDM DiffusionTS TimeDiff

EITm2

T T T T T T T T T T
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
—— context  seeee target prediction

Figure 3: Models evaluated on a sample from the ETTm?2 test set.

Table 3: MSE and MAE scores (prediction horizon H = 96) for non diffusion-based forecasting
methods. Best scores per dataset are in bold. Lower is better. Results taken from Gao et al. (2025).

Methods Metric ETThl ETTh2 ETTml ETTm2 Exchange Solar Stock

MSE 0386 0.297 0.334 0.180 0.086  0.203 0.342
MAE 0405 0349 0368 0.264 0.206  0.413 0.413

MSE 0.384 0340 0.338 0.187 0.107  0.427 0.427

iTransformer

TimesNet — \/AE 0402 0347 0375 0267 0234 0499 0499
Dlincar MSE 0386 0333 0345 0.93 0088 0286 0286
i MAE 0400 0387 0372 0292 0218 0325 0.325
pucnrsy  MSE 0414 0302 0329 0175 0088 0516 0516
MAE 0419 0348 0367 0259 0205 0524 0.524

Client MSE 0392 0305 0336 0.84 0086 0352 0352
MAE 0409 0353 0369 0267 0206 0433 0433

TEDM MSE 0595 0214 0419 0135 0069 1061 0.056

MAE 0524 0319 0421  0.253 0.183 0.662 0.182

These quantitative gains are mirrored by the qualitative behavior in Fig. 3 (more in appendix G):
TEDM tracks target trends more faithfully, with better phase alignment and amplitude calibration, and
fewer spurious oscillations than competing diffusion models. We also compare with state-of-the-art
non-diffusion methods (see Table 3), confirming the superiority of TEDM for several datasets.

These results indicate that elucidating the design space—decoupling the denoiser from the sampler
while carefully selecting the schedule and integration strategy—confers consistent advantages in
performance across diverse temporal patterns.
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Table 4: Ablation study of elucidated models. Lower is better. Percentage gains (in parentheses)

indicate improvement of TEDM over EDM.

Methods Metric ETTh2 ETTm2 Exchange
iDDPMDDIM MAE 0657 06t 093
EDM MAE 045 0405 05
TEDM (cumulatve 5= 1) VIAE 0377 () 0249 (39%) 0241 (55%)
TEDM (cumulative 33;, empirical s;) Mi% 8?3‘% g%gj; 8;?8 ggzzg 8(1)2513 Egg%
TEDM (sliding 3;, empirical s¢) ﬁi% 8%8 Ejggz; 8;33 gggz; 8(1)32 ggg‘.j;

-0.2 -2.0

T T T T T T T T T T T T T T
0 50 100 150 200 100 125 150 175 200 O 50 100 150 200 100 125 150 175 200

EDM —— Observed —— TEDM

Figure 4: Forecasts generated by EDM, iDDPM+DDIM, and TEDM on four randomly selected
subsequences from the ETTm?2 dataset. Only a section of the initial subsequences for the right panels
is observed for better comparison of the forecasts.

5.7 ABLATION STUDIES

We adapt the EDM work of Karras et al. (2022) from images to time series. The inherited modularity
allows us to try different noise schedules, time discretization and sampling strategists. For instance,
EDM, iDDPM-+DDIM, and TEDM, all in a unified codebase. We refer to these as “Elucidated”
models, since they fit into a general, modularized diffusion framework, mirroring the terminology
from Karras et al. (2022).

Our extension of the EDM framework to time series gives results consistent with those in the vision
domain. That is, EDM is consistently better than iDDPM+DDIM, by harnessing optimization of
the design space. For time series, this is a result already leveraged by the best weather forecasting
framework to date (Price et al. (2025)). Our contribution goes further in two main dimensions:

1. By considering empirical, rather than preset, noise (3;) and scale (s;) schedules, we get
performance gains (see Table 4) of up to 85% in MSE (66% in MAE) with respect to EDM.
Fig. 4 shows qualitative results.

2. By aligning the diffusion and physical time axes, we significantly reduce the time complexity
of sampling, getting resource benefits comparable to ARMD (see Table 5). The latter does
not harness the optimization of the design space though, as shown in the main results.

We also evaluated the loss of skill when considering different forecast horizons. This is shown in
Table 6 and compared against the classical skill (Hyndman & Athanasopoulos (2018)) of a forecast
that extrapolate the mean of the context window (see appendix B). This is the minimal-skill forecast
(yet better than random). TEDM is still able to leverage pattern-wise information to forecast much
better than the latest observed average. For a comparison with other methods, see appendix E.
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Table 5: Average per-batch training and inference time (seconds), memory (MB), and test MSE on
ETTm?2. Lower is better.

Method Train Time (s) Train Mem (MB) Test Time (s) Test Mem (MB) MSE

TimeDiff 0.022 759 21.38 125 0.209
DiffusionTS 0.098 3112 634.96 14595 3.517
TMDM 0.207 15600 26.83 193 0.313
NsDiff 0.107 2682 9.80 1125 0.250
ARMD 0.009 20.7 0.02 21.3 0.181
TEDM 0.004 21.3 0.11 23.9 0.135

Table 6: MSE and MAE scores for TEDM on ETTh2, ETTm?2, and Exchange for longer forecasting
horizons, with baseline (mean) forecast errors. Lower is better.

Horizon Metric ETTh2 ETTm2 Exchange Baselinepea,

96 MSE 0216  0.132 0.068 1.010
MAE 0321 0.251 0.182 0.801
192 MSE 0.260  0.163 0.153 1.005
MAE 0354 0.282 0.276 0.800
336 MSE 0.326  0.248 0.283 1.003
MAE 0396 0.351 0.382 0.799
720 MSE 0.528  0.298 0.602 1.001
MAE 0.510 0.386 0.571 0.798

6 LIMITATIONS OF THIS WORK

Although the theoretical foundations of TEDM have a general scope within the diffusion framework,
not all time series can be represented as the It processes underlying such framework. For instance, our
formulation cannot capture long-memory dynamics such as those exhibited by fractional Brownian
motion (Mandelbrot & Van Ness (1968)). Similarly, our framework cannot represent heavy-tailed
or power-law noise (e.g., a-stable processes; Samorodnitsky & Taqqu (1994)), nor the jump-driven
behaviors (Applebaum (2009)), all of which violate the diffusion regularity assumptions. Furthermore,
its effectiveness was shown in the diagonal approximation of the data covariance, which most likely
breaks down for datasets with high-dimensional feature space (e.g. Solar in Table 3).

7 CONCLUSION AND FUTURE WORK

We present TEDM, the first time series forecasting framework that fully elucidates its design space,
grounded on a solid theoretical background. This allows TEDM to reduce the computational
complexity to levels suitable for online deployment. We plan to extend our work with a more
detailed analysis of the skill in probabilistic forecasting, including a method to sample prediction
intervals without ensembling. Aditionally, we foresee the usage of TEDM for anomaly detection,
data compression and imputation tasks.

8 USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) only to polish the writing and to help search and organize
related work. No modeling ideas, algorithmic designs, experiments, analyses, or reported results
were produced by LLMs; all technical content and empirical results were created and verified by the
authors.

10
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In the following, we provide theoretical derivations and experimental details of the main results in
the paper.
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A THEORETICAL FOUNDATIONS OF TEDM

A.1 PRELIMINARY

Following Song et al. (2021), we consider diffusion processes as solutions to an Itd SDE

d.’l}t = f(:ct,t) dt—l—G(cct,t) dwt, (Al)
where f(-,t) : R? — R% and G(-,t) : RY — R¥*<. Here, w; is a Wiener process, with changes
having zero-mean, E(dw;) = 0, and being uncorrelated: E(dw;dw]) = Idt.

To simplify notation, we label functions of time with a subscript, e.g. the drift term is written as
f(xe,t) = fi(x:). Also, we explicitly keep the time dependence of x; when important from the
context, otherwise we just use @.

We consider the diffusion term, G(x;,t) = G4, to be independent of « (or slowly varying with ).
See Assumption A.1 for a more concrete statement about this condition. The SDE then becomes
diL‘t = ft(IEt) dt + Gt dwt. (A2)

In the following, we consider the case of affine drift term, for which the perturbation kernel is
Gaussian.

A.2 PERTURBATION KERNEL

The transition probability density for drift terms of the form f;(x) = fi;x, with f; : R — R, is
Gaussian (Eq. 29 in Song et al. (2021)):

pot(xi|x0) = N (245 i1, Vi), (A.3)
with mean p; and covariance V;. To find these moments, we express (A.2) in the form
dwt = fta:t dt + Gt dwt. (A4)

Taking expectation value
dE($t) = ftE(wt) dt + Gt ]E(dwt)

= ftE(mt) dt
dpe = frpedt
dp
dr e
e = elo 747 g = spo,
where the scale process is defined as
E(z;) = s; E(mo), s = elo 7. (A.5)
Using this, and the integral form
t
Ty = Sxg + St/ 8;1G7—dw7—, (A6)
0
of the It6 process (A.2), we can find the covariance as
V; = Cov(xy)
t
= Cov (st/ sTlGwaT>
0
t
= sf/ 572 Cov(G,dw,)
0

¢
:sf/ 57°G,GT Cov(dw,)
0

t
zsf/ 572G, GrIdr
0

= 2%, (A7)
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where we have defined
t
% = / s 2G,GLdr (A.8)
0
523, = G,GT. (A.9)
The perturbation kernel (A.3) can then be written as

pot (Ti|x0) = N (43 5020, 523;). (A.10)

A.3 SCORE FUNCTION AND DENOISER

The score function is defined as V, log p;(x), where p;(x) is the marginal distribution. The latter is
obtained by integrating (A.10) over all initial conditions:

pe(x) = /dPOt(w\wo)pdara(-’Bo)d-’Bo
R

= N (z; 5120, 57 2t) Pdata(T0)dTo

Rd
=54 /dN(iﬁ/St; X0, 3t) Pdaa(T0 ) dxo
R
= s, p(a/s1, 1), (A11)
where we have used the fact that
1 1 _
N@y,) = ——— ¢ 2@ ¥ = @) (A.12)

(2m)/2|3[1/2 €
and therefore we can express
N (@ 510, 525,) = 57N (/545 20, Bo). (A.13)
Following Eq. 19 in Karras et al. (2022), we have defined the mollified version of the data distribution
p(x, ) = paaa(x) x* N(0; X), (A.14)

as a convolution that effectively corrupts data samples with Gaussian noise.

Score function. The score function is calculated from (A.11)

Vzlogpi(x) = Vg log [s[dp(x/st, Et)]
= Vg logp(w/si, 5t)
o Vap(x/st, 34)
B p(w/5t7 Et)
_ 1 Vi p(Z,3)

=5 G T =x/s4. (A.15)

To evaluate this, we need an analytical expression for the probability density of the data.

Consider a dataset with a finite number of samples {y1,--- ,ynx}. Assume that these arise from
transforming the dataset {1, - - - , zy } using a continuously differentiable mapping g, so Y = g(X).

The discrete dataset has density fx (x) = Efil Pa; 0(x — x;), where py, is the probability mass of
x;. The density of Y is known to be
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= /Rd [prl 5(w—$i)‘| 6(y —g(x)) dx

%

N =1
_ 2 P, /R 3@ — @)y - g(@)) do

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

In the case of images, ¢ is the identity mapping and p,,, = 1/N is the uniform density. For time-
series, one can think of a propagator g that takes each x; into the corresponding y; after a number of

physical time steps. One can then write the data distribution as

pdata wO me, Lo — yz
With this, we can evaluate (A.11) as

p(x, %) = dN(fﬁ;OEm 33t) Pdaa(T0)dxo
R

N(il) w(h

Rd

i=1

N
= pa, N(&;9i, 5)
=

N

i=1
From (A.12) we have

=N(@;y, %) [-27 (@~ y)],
Substituting in (A.23)

Vzp(z, %) Zp:cl (x; yzazt)[ Dy 1(m_y7)]

“":22) = p(@, 2y) D(2, 2) — & p(&, By)]

=p(z, %) 2;1 [D(z,3;) — 2]
where we have defined
Zi]\il pwiN(fﬁ§ Yi» X¢)Yi
Ei[il Pa, N (&59i,5¢)

D('ia Et) =

Substituting in (A.15)
Vw logpt(a:) = St_l Zt_l [D(.’B/St, Et) — m/St] .
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(A21)

(A.22)

(A.23)

(A.24)
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Denoiser. We want to show that (A.25) links the score function to the denoiser. That is, (A.24) is
the optimal solution of the denoising objective

‘C(D; 2) = Ey"’pdz\u\EnNN(O,z) HD(y + n, 2) - y”2
= Ey’\’pdalaEwNN(y¢2) ||D(x7 E) - yH2

By | Ny DD, 3) - ylde
N

— [ S e N (@i DD, 3) - i Pda
i=1

= L(D;x, %) dx.
R4
Since the integrand is positive everywhere, the optimal solution D, satisfies

D,(xz,X) = in L(D;x,X).

(z,X) = arg S, (D;z, %)

Since this is a convex optimization problem, the unique solution is found as
0= VD(:B,E) ﬁ(D7 Zz, E)

N
= VD(zx) me/\/(w;yi, )| D(z, E) - yil?
=1
N
= mer/\/’(wv Yi, 2) vD(m,E)”D(w7 E) - y'LHZ
=1

N
=1

N
D1 PeN (Y 2) yi
Zi]\;1 p:ciN(iL'§ Yi, 2)
This optimal solution agrees with (A.24).

D,(z,X) =

A.4 TRAINING WITH PRECONDITIONING
Motivated by Karras et al. (2022), we train the denoiser Dy (x, X) by minimizing a weighted version
of the denoising objective
L(Dp) = Ex~pe A(2) L(Dy; X),
= ExnpeEynpg En~aro,3) MZ) | Do(y +n, %) — yl?, (A.26)

where Ps; is a distribution over noise covariances, and A(X) is a weighting function. For simplicity,
we write single functions of X in terms of subscripts, e.g. A\(X) = Ax.

We extend the EDM preconditioning strategy as
Dy (w; 2) = CE;skip T + Cxout FG(CE;in €T, CE;noise ), (A.27)

where Fy(-; -) is a neural network with parameters 0; C's;sip, Csin, and C's:;noise are preconditioning
matrices that depend on the noise covariance X, and cx,q 1S a scalar. Substituting in (A.26)

L(0) = Es yn As||Csskip(¥ + 1) + cs0uFo (Csiin(Y + 1); Csinoise) — Y7,
=Esyn )‘EC%;out”FO(CE;iH(y + 1); Csinoise) — C):lwm (¥ — Cxisip(y + 1)) ||2a

- EZ,y,n AEC%;out”FH(CE;in(y + n)7 CZ;noise) - Rargel(yv n, 2) ||2a (A28)

which is just the lz-supervision of the neural network Fy(-;-) to match the target function. While
doing this, it is required that:
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* Fj sees unit-variance inputs. This is achieved by choosing Csx:., such that
Cov(Csin(y +m)) =1,
Csin Cov(y +n)Cxy, =1,
Csiin (Cov(y) + 2) Cxy, = 1,
Cs.in = (Cov(y) + =)V, (A.29)

Note that this holds even when X is estimated from the data y, as long as the estimator is
unbiased. This is because, in general, from the law of total covariance,

Cov(y + n) = E[Cov(y + n|y)] + Cov(E[y + n|y]) = Cov(y) + E[X],

since Cov(y|y) = 0, Cov(n|y) = 3, and E[y + nl|y] = y.
* Fiarger gives unit-variance outputs. This is achieved by choosing cs.qu such that
COV(EaIget(ya n, E)) = Ia

Cov ( L (y — Csyoip(y + n))) =1,

Cx;out
1
5 Cov (I = Cxkip)y — Csisiipn) = 1,
CZ;oul
(I — Csiuip) Cov(y) (I — Cxiskip)” + Cxiskip = Crip = Coou- (A.30)

* Errors in Iy are amplified as little as possible. This is achieved by choosing Cs.ip
above to minimize cx.q. For this, we can set up the optimization problem

: 2
min CE;out
Csiskip

st. (I = Csixip) Cov(y) (I = Csiaip)” + Csiskip = Crgip = oul -

This is a constrained matrix optimization problem that can be solved with Lagrange multi-
pliers. That is, we define the Lagrangian

2
E(CE;ski[u CSsout) A) = Csout

+Tr[A((I = Csip) Cov(y) (I = )"

+ CE;skip Y Cg;skip - C2Z;outI):| .
where A is a symmetric matrix of Lagrange multipliers. Setting the gradients to zero gives
the optimality conditions
VC):;\HP L= —2A(I — CE;skip) COV(y) + 2A CE;skip 3= 0,
chzou, L= 262;0ut - 262;0ut TI‘(A) =0,
(A.30)

Va L= (I - Csgap) Cov(y) (I = Csisip)” + Csiskip B Cgip — Coul = 0.
From the second condition, we have that either ¢s;.ou = 0 or Tr(A) = 1. The former is not
acceptable, since it would lead to a trivial solution. The latter implies that A # 0. Therefore,
the first condition can be written as

_2(1 - CE;skip) COV(y) +2 CE;skip Y= 07

(I — Csixip) Cov(y) = Csiip X, (A.31)
Csisip(Cov(y) + X) = Cov(y),
Cs.skip = Cov(y)(Cov(y) + =)L (A.32)

Substituting (A.31) back in the constraint equation (A.30), we find
(I = Csiip) Cov(y) (I = Csiip)” + Csisiip T Cstigiip = Cxoul
Csiip E (I — Cxisip)” + Cxiskip = Chgip = ol
Cxisip E = Coul

Cov(y)(Cov(y) + ) 'S 2V I (A33)
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With As; = Cov(y)(Cov(y) + X)~! X, we see that Az e = c&,,€, 50 . is the
eigenvalue of A, with eigenvector e. To minimize cs;oy, it must be chosen as the smallest
eigenvalue of Ax.

* The loss weighing is uniform. This is achieved by choosing Ax; such that
A CEou = 1, (A.34)

so Ay is the inverse of the smallest eigenvalue of Asx:.

The preconditioning then ensures that the neural network Fjy is trained on unit-variance inputs and
targets, while minimizing the amplification of errors and ensuring uniform loss weighting.

Preconditioning summary. The preconditioning matrices and scalars are

Csxin = (Cov(y) + )7 '/2, (A.35)
Cs;skip = Cov(y)(Cov(y >+ 2)*1 (A.36)
&.oud = Cov(y)(Cov(y) + X)7' X, (A37)

As = 1/ ou- (A.38)

The remaining C's;;poise 15 chosen empirically, as in EDM.

A.4.1 SIMPLEST CASE: DIAGONAL X

In the isotropic case, ¥ = ¢21, the preconditioning reduces to the EDM case, only if the data is
assumed identically and independently distributed (i.i.d.), so that Cov(y) = o2, I. In this case, each
preconditioning component simplifies to

1
/2 2’
Udata+0

2
Odata
2 2
O data t+o

Co’;in =

Ca;skip =
2 2
2 _ Odata O
- 2 27
O data +o
2 2
o adata +o
2
Odata O

For images, Karras et al. (2022) use o4y, = 0.5. For standardized time series with unit variance,
Price et al. (2025) use c4aa = 1 for weather forecasting.

In the anisotropic but diagonal case, & = diag(c?, 03, ...,032), and assuming i.i.d. data, Cov(y) =
03,1, the preconditioning components become

1 1 1
Cz;in:diag< ) PR >7
Vit 0l Voo T3 VoGt oG

2 2 2
g g g
: data data data
CE;skipdlag< P} 29 o PRI D) 2);
O data + 01 Odata + 03 O data + 04
2 2
% = min 7%“ J
Sout — . - 2 ’
j=1,....d Udata+0
1

C

33;0ut

This is the next level of complexity, allowing different noise levels per dimension, but still assuming
uncorrelated data. This is the case that is used in our experiments, where we set o4y, = 1, following
Price et al. (2025).
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A.4.2 GENERAL CASE: FULL X

In this case, we first notice that the sampled noise n = »1/2¢ withe ~ N (0,X) is fully structured.
But the square root of 3'/2 is no longer computed as the element-wise square root of the diagonal
elements. For noise sampling, it is sufficient to decompose X via Cholesky, ¥ = LL”, where L is
a lower-triangular matrix. Then, noise samples are obtained as n = Le, with € ~ A/(0, I). Such
noise samples will have covariance X, since Cov(n) = L Cov(e) LT = LLT = 3.

The preconditioning matrices and scalars can be written, just in terms of 32, by using (A.7), so that
Cov(y) = s23. This gives

Csin = (°T +X)7V/2 = ﬁ =12 (A.39)
Crurp = $°X(s*°2 + 2) ! = % I, (A.40)
cgz;ou[ = smallest eigenvalue of 1j_7232 3, (A4l
g = LS 1 (A42)

s2  smallest eigenvalue of X

Note that C's:., can be efficiently applied to vectors v only in terms of L™ 'v (up to an orthogonal

rotation). This is due to the known relation »1/2¢ = QL*LU, for some orthogonal matrix . Thus,
we only need to solve linear systems with L, which is efficient since L is lower-triangular.

A.5 SAMPLING DURING INFERENCE

The general forward SDE (A.1)

has no infomation about the data distribution pgye, (). Such information is learned through the score
function V4, log p:(x), where p; () is the marginal density of x; at time ¢. There are two main ways
of incorporating this information into the sampling process:

1. Deterministic (ODE): by removing the noise term from the SDE, and adjusting the drift
term to include the score function.

2. Stochastic (SDE): by going backwards in time with a backward SDE that includes the score
function in the drift term.

Both ways start from the forward Kolmogorov (or Fokker-Planck) equation, which describes how
the marginal density p;(x) evolves with time. We write it as a continuity equation, by defining the
probability flux

Ji(x) = fu(@) pi(x) — 5Va - [Gi(@)GF (z)pi()] - (A44)
With this, density changes occur by flux transport
Op ;im) =V, Ji(z). (A.45)

Assumption A.1 (Smooth flows). The changes V, - [Gy(x)GY ()] are negligible. That is, there
exist ¢ > 0 such that |V, - [Gi(z)GY (x)] || < c||Gi(x)GT (x)||. This allows to drop the
x-dependence of Gy (2)GT (z) and, from (A.9), just write G,GT = 5233,

Intuitively, the temporal rate of 32; does not vary considerably from sample « to sample. This leaves
jump processes out of scope. For these, Itd processes have to be generalized to jump-diffusion
stochastic dynamics Anvari et al. (2016).

Using assumption A.1, we can write the flux (A.44) as
Ji(x) = fi(x) pe(z) — %GthTVmpt(m)a
= fo(@) pe() — 5575 Vapi(@). (A.46)
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A.5.1 DETERMINISTIC SAMPLING

This is achieved by obtaining values of x; without the noise term in the SDE, but still distributed
according to p;(x). We see from (A.43) that making the diffusion term G;(x) = 0 removes the
noise from the SDE. This manifests, from (A.44), as the probability flux being proportional to the
drift term f; (). This gives a general recipe for obtaining the desired ODE: find a new process

de = f](x)dt, (A47)

that has the same probability flux (A.46) as the original, but proportional to the drift term f;*(x). We
can rewrite (A.46) as

Ji(@) = fi(x) pe(x) — 3575 Vapi(z)
= ft(ac)pt(a:) - %sztpt(w) Va logpt(w)
= [f(@) = §75: Vo log (@) pi(@)

= fi (@) pe(),

from which the new drift term f;(x) is readily obtained. The ODE running backward in time is
obtained, from (A.47), by changing the sign of f;"(x). This is the one used for deterministic sampling,
in which backward evolution is linked to denoising:

dx

o= —fi(x) + %szt V. logp: (). (A.48)

Bringing back the affine drift ft(ac) = fix = ($¢/5s¢) @, and the score from (A.25), we have that

dx
—=——a+ 1573, s, 57 [D(> /50, 5h) — /5¢]
St
dl -
S N (1.49)

Simplest cases: 3; commutes with 3. We want to find the conditions under which the ODE
(A.49) can be expressed in terms of logarithmic differentials of both s, and X;.

Lemma A.1. If 3; commutes with Et, then

dlog 3,
dt

=3, (A.50)
Proof. The Daleckii-Krein formula Higham (2008), for I'; = log ¥;, reads
I, = /Ooo (40D 'S (S + D) dn. (A.51)
If 3, commutes with 3; (i.e. (3, ilt} = 0), then they can be diagonalized simultaneously, so that
T, = /OOO (UAU” +9I) ' UAUT (UAUT +9I) " dn,

-U (/ (Ac+nI) " Ay (Ag 4+ 9" dn) U”
0

< At Ai2 M. T
=U / dia, : , . sy . dn |U",
( 0 & (()\t,l +1)2" (A2 +1)? (Ata + 77)2> 77)

. ).\tl }\t2 At,d T
=Ud . U
e (Au Py m)
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where the 7-integrals were computed element-wise, as fooo()\ +n)"2dn=1/\ ]
Under such a commutation condition, we can rewrite (A.49) as

dx dlog s; dlog X
T TR + 15 o [D(x/st,2:) — x /54

der = — [dlog s¢ + %dlog Et] T + %st [dlog 3] D(x/st, X¢)
— [dlog(si21/)] @ + 50 [d1og 21| Diw/s1, 30),

where we have used the property log £¥ = klog X, always valid for symmetric positive definite
matrices, and log(aX) = log(a)I + log X, for scalar a. The latter is valid for any matrix 3.

This gives the deterministic ODE:

dx; = — [dlog(stEi/Q)} T+ Sy [dlogE /2 ] D(xy/st, %4). (A.52)

Now, in an Euler step, we can approximate [Ef,E ] =0=[3,% — %1 = —[%,Z¢1]
Therefore, given functions f and g, log[f(X;)g(Z;_1)] = gf( ¢) +log g(X¢_1). This can be
used to write an Euler step of (A.52) as

Tig] — Ty = — {log(stEi/Q) - log(st_lziﬁ)} T + Sy [log 22/2 log 3,7 1/2 } (ze/st, 2¢)

= —[108 - + (1021 —log 2/3) |, + 5, [log /% ~ log 5}/3 | D(a /50,30
tf

= — [log ;—tlEiﬂE:m] T + 54 {log 21/22 11/2} (xe/ 51, %4)

izi/zﬁt_l/z}wt—l—st{logzl/z 1{2} ()50, 50),s (A.53)

Tip1 = [I —log S
t—1

where we have approximated the differentials of the logarithms as backward differences that exploit
the current and previous steps.

Remark A.1. The case of X; being diagonal (considered in the main text) is included in the com-
mutation condition, since diagonal matrices always commute. However, the inference formula of
this section applies more generally to processes for which the principal axes of 3; remain fixed in
time, while only the eigenvalues change. This was assumed when writing X, = UA, U7, with fixed
orthogonal U and time-varying diagonal A;.

General case: unconstrained 3;. We can have processes respecting assumption A.1, with the
principal axes of 3J; allowed to change with time. Deterministic sampling in this case, can be obtained
from (A.49), which can be written as

dx dlog s S
7t = — s tiljt—F%StEt Et 1[D(Cct/3t72t)_$t/5t],
dt dt
dlog s S
= — df t$t+%st2t Et 1[D(:ct/st,2t)—ast/st],
dmt = fdlog St Lt —+ %Stdzt Et_l [D($t/st7 Et) — wt/st] . (A54)

An Euler step of this reads,
LTiy1 — g = — (log St — log Stfl) Ty + %St (Et — Et,1)+ 2;1 [D(wt/st, Et) - mt/st} s

Tiy1 = |:I — IOg I:l Lt + %St (Et — Et,1)+ E;l [D(act/st, Et) — Ilft/St] 5 (ASS)

St—1
where () denotes the projection onto the cone of positive semi-definite matrices—since 3, > 0 for
the It6 diffusion to be well defined, d33; > O as well, and hence its finite-difference approxnnatlons
Again, as in the general preconditioning case, the matrix ;' has to be applied to vectors via L;
where 3; = L; LI is the Cholesky decomposition of ;.
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A.5.2 STOCHASTIC SAMPLING

We could also sample from the data distribution by going backwards in time with a backward SDE.
We anticipated how to do this with the ODE, by reversing the sign of the flux term. This manifested
itself in the sign change of the drift term in (A.47).

In general, the time reversal entails a new Itd6 SDE of the form
dx = f,(z) dt + G(x) do, (A.56)
where the probability flux is reversed
Ji(x) = —J(x). (A.57)

Writing (A.46) in a form proportional to p;(z), we have J; = [fi(z) — 3573, V, log pi(z) | pi ().
Therefore, from (A.57), we get

ft(w) - %ngt Va logpt(w)} pi(x) = — {ft(fE) - %S?Et Vg 1ogpt(:v)} pi(x)
fil@) = 3578 Vo log pr(a) = — | fil@) — §573% Vi log pi(a)]
fulx) = —fi(x) + 57 % Va log pi ()
The backward SDE (A.56) thus acquires the form
da = {— Fi(@) + 5233, V, log pt(w)] dt + G, da, (A.58)

containing the score function in the new drift term.

Karras et al. (2022) derived a SDE sampler for isotropic diffusion. Here, we extend their derivation
to the anisotropic but diagonal case.

Simplest case: Diagonal 3;. We consider the anisotropic heat equation
Oqi(x)
ot

whose solution, with initial value qo() := pgan (), is the marginal density ¢;(x) = p¢(x). The
matrix K, is considered diagonal, with different elements along the diagonal implying anisotropy.
Taking Fourier transform along the x-dimension, we get

= Vo KiVaqi(z), (A.59)

04t (v)
ot
The target solution g;(x) = p:(x) and its Fourier transform §;(v) are given by (A.11) and (A.14)

— — (VK. v) @w), (A.60)

@ () = 87 “Paaa(®/50) * N (0; ) (A.61)
Gt (V) = Paaa (V) exp [—%I/th I/} . (A.62)
Differentiating (A.62) along the time axis, we have
0q; (v . R
qé(t ) _ _ (%uth u) G (v). (A.63)

Equating with the right-hand side of (A.60), we get
VK v = %UTZ'L‘, v
K, =33,
the second equality resulting from assuming 3; diagonal. Substituting in (A.59) we have

8pt (IE)
ot

= 1Va X Vapi(x), (A.64)

A, @)
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Equating the right-hand sides of (A.64) and (A.45), we get
—Ji(x) = 13, Vapi(z)
—fi(x) pe(x) + %sztvat(w) = %2tvmpt($)
—fi(x) pe(z) = %(1 - S?)Etvat(m)

—1(2_1)3 Vapi(x)
ft(w) - 2( t 1)275 pt(iE)

Sfi(x) = %(s? —1)%,V, logp(x).

Substituting in the forward (A.2) and backward (A.58) SDE we get, respectively,
dey = 1(s] — 1)3,Vy log pi() dt + Gy dwy, (A.65)
de_ = (s} + 1)2,Vy logpy(2) dt + Gy di,. (A.66)

Since, from (A.9), sfﬁ)t = G,GT is an equation involving diagonal matrices, we can safely write

G, = stSi / % This leads to the SDE for diagonal 3, after the score function is written in terms of
the denoiser and (A.50) is used.

General case: full ;. Bringing back the drift term f(x) = ($;/s:) @ = (% log s;)  into (A.58),
we have

de, = [—% log sy s + stt Ve logpt(:ct)} dt + Gy d@y,
= |:—% IOg St Ty + S?Et St_l Et_l [D(mt/st,zt) - a)t/st]} dt + Gt d(;’t,

—% log St Ty + Stzt Et_l [D(mt/st, Et) — .’Bt/St]:| dt + Gt d(;)t,

—(leg St) T + st(dEt) Et_l [D(:ct/st, Et) — SCt/St] =+ Gt d(;)t

Now, for the It diffusion to be well defined, we need GthT = s%flt to be positive semi-definite.

We can then still write Gy = stil% / 2, and take into account that finite difference approximations of
d¥; have to be projected back to the positive semi-definite cone if needed.

B BASELINE MEAN FORECAST

In this appendix we derive the theoretical MSE and MAE of the mean forecast baseline used in our
experiments. The derivation follows the classical normality assumption for forecasting errors (see,
e.g., Hyndman & Athanasopoulos (2018)).

B.1 SETUP
Let (y;)Z_; be a univariate time series generated as

ye=pten e S N(0,02), (A.67)

with unknown mean y and variance 2. We observe T past values y1, . . . , y7 and consider forecasting
a future value yr i, where H > 1.

The baseline forecast we use is the sample mean

T
. _ 1
Yr+H|T = Y1 ‘= T ; Yt (A.68)

which is constant across horizons H.

Throughout, expectations and variances are taken with respect to the joint distribution of
(y1,...,y1, yr+m) under the model (A.67). We first derive the distribution of the forecast error
er+H, and then obtain closed-form expressions for MSE and MAE.
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B.2 DISTRIBUTION OF THE FORECAST ERROR

The forecast error at horizon H is

er+H = Yr+H — Yr+H|T = YT+H — YT-
Using (A.67) and (A.68), we can write

Yr+H = b+ €1+ H,
yr = p+Eer,

1 ) o2
Er ::Tgath(Q T)'

By independence of the innovations,

where

2 —
€T+HNN(07U ), ET+HJ_ET.
Hence,
er+H = E€7+H —EéT.

Since e pr is a linear combination of independent Gaussian random variables,

1
€T+ H NN(O, 0'2 (1+ T)) .

Note that this distribution does not depend on the horizon H.

B.3 MEAN SQUARED ERROR (MSE)

The MSE of the baseline forecast at horizon H is
MSEmean(T) := E[eF, ]

Using (A.75),
1
MSEmean(T) = Var(eT+H) = 0'2 <1 + T) .
In particular, if the time series is standardized so that 2 = 1, we obtain
1
MSEmean T - ]. —.
(T) =1+

B.4 MEAN ABSOLUTE ERROR (MAE)
The MAE of the baseline forecast at horizon H is

MAEmean(T) = E[|€T+H|] .
From (A.75), we have

1
erem ~ N(0,72), 2= o? <1+T> .
Let Z ~ N(0,1) and write er gy = 7Z. Then

EHeT-i-HH = TE“Z” .
It is a standard result that for a standard normal random variable,

E[|Z|] = \/Z
MAEean(T) = \/ET = \/Z o—m.

In the standardized case o2 = 1, this simplifies to

MAEean(T) = \F,/H;.
™
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Table 7: TEDM hyperparameters selected per dataset: context backward shift k., variance clamping
interval [Umin, Umax), and scale clamping interval [Smin, Smax]-

Dataset kclx Umin Umax Smin Smax
ETThl 0 59x107% 191 1.25 9.38
ETTh2 1 9.8x107°% 6.38 047 1.74
ETTml 4 57x1077 233 1.24 2.68
ETTm2 0 7.6x1072% 7.17 0.74 5.14
Exchange 9 6.9 x 1077 7.72 0.87 4.58
Stock 1 4.6x107° 7.69 0.11 2.17
Weather 1 4.6x107° 7.69 0.11 2.17

B.5 SUMMARY

Under the Gaussian error model (A.67) and the mean baseline forecast (A.68), the theoretical error
measures—for standardized datasets with unit variance (02 = 1)—are

1
MSEean(T) = 1 + —, (A.85)

T
MAEpean(T) = \F \/1+ % (A.86)
v

These expressions are used to compute the Baseline column in Table 6, where T' = H.

C EXPERIMENTS

C.1 DATASETS

The ETT, Exchange, Weather, and Solar datasets are available from https://github.
com/thuml/iTransformer, and the Stock dataset from https://github.com/
Y-debug-sys/Diffusion-TS.

C.2 HYPERPARAMETERS

For each dataset we tune a small set of hyperparameters on the validation split and then keep the
selected configuration fixed for all reported test results. Concretely, we vary (a) the context backward
shift k. used for conditional denoising (i.e. the context window is shifted to the past by k. to act
like a conditioning window), (b) the clamping range (Smin, Smax) Of the scale schedule s, (c) the
clamping range (Umin, Umax) Of the variance schedule X, and (d) the choice of denoising network
architecture. The best intervals are tuned via small discrete grids on the validation set, and chosen
to minimize validation MSE. We also compare two noise schedule variants—cumulative vs. sliding
3;—and, for each dataset, and report results using the better-performing variant. The final per-dataset
hyperparameters used in all experiments are summarized in Table 7.

C.3 DENOISER NETWORK ARCHITECTURES

We evaluate several denoising backbones of varying complexity.

LinearNet. LinearNet is a simple fully connected layer that applies a linear transformation
Linear(seqg-len, seg-len) along the temporal dimension of the noised input. It does not in-
corporate any temporal inductive bias (e.g., recurrence or attention) and serves as a minimalist
baseline to assess the impact of architectural complexity.

UNet. Our UNet adapts the ADM architecture from “Diffusion Models Beat GANs on Image

Synthesis” (Dhariwal & Nichol, 2021) to sequential data, leveraging alias-free resampling (Anjum,
2024) and rotary embeddings (Su et al., 2023) for time series. Noise levels are embedded (via
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learned or sinusoidal embeddings) and mapped into a high-dimensional space through two linear
layers. The encoder stacks residual 1D convolutional blocks with downsampling between resolutions
and applies self-attention at selected scales. Unless otherwise specified, the UNet uses feature
size d = feat_size equal to the number of dataset features, Kaiser kernel size 64, and Kaiser
B = 14.77, which are kept fixed across all datasets.

ConvLSTMNet. ConvLSTMNet combines convolutional filtering with a bidirectional LSTM to
capture both local and long-range temporal dependencies. Diffusion noise is embedded via positional
or learned sinusoidal mappings, and the noised signal is adapted through shift-and-scale convolutions.
A lightweight pre-LSTM 1D convolution refines these features, which are then processed by a
bidirectional LSTM layer.

AttnNet. AttnNet employs a single cross-attention layer (Vaswani et al., 2023) to enable the
denoiser to leverage mutual information between the noised sequence and the conditioning context at
each time step. Concretely, it uses a single multi-head attention block

nn.MultiheadAttention(embed.-dim = d, num_-heads = d),

with the same configuration shared across all datasets.

AttnNetSigma. AttnNetSigma extends AttnNet by stacking two cross-attention modules: one
attends from the noised input to its context, and the other attends to the noise level. Each attention
block is followed by a residual connection and LayerNorm (He et al., 2015).

AttnPosEmbNet. AttnPosEmbNet augments cross-attention with learned time-step embeddings
and Feature-wise Linear Modulation (FiLM) conditioning on the noise level (Perez et al., 2017). This
design allows the denoiser to modulate its representations explicitly as a function of diffusion time.

C.4 TRAINING

We train all models with a batch size of 128 and select hyperparameters via validation tuning
separately for each dataset. Optimization is performed with Adam (Kingma & Ba, 2017), using a
linear learning-rate warmup over the first 15% of epochs, followed by a reduce-on-plateau schedule.
Models are trained without early stopping, and we report results from the final checkpoint evaluated
on the held-out test set. All experiments are run on a single machine equipped with § NVIDIA Tesla
A100 GPUs (40 GiB each). To facilitate exact reproducibility, we fix random seeds for data shuffling
and parameter initialization.

C.5 OTHER ABLATION STUDIES

To identify the most influential hyperparameters within our diffusion framework, we conducted
systematic ablations over various parameters and architectures. In our ablation study, for each
parameter, we measured validation MSE across a grid of candidate values. Parameters exhibiting
the strongest correlation with forecasting accuracy were selected for further processing. Using such
parameters, we did fine-grained tuning to obtain our best results in Table 2. These results were
obtained with the UNet, with the lightweight architectures (e.g. AttnNet or LinearNet) still delivering
SOTA performance with minimal compute—in the datasets in which we outperform.

We designed multiple ablation studies to get more insight about TEDM. The most significant studies
are shown in Fig. 5. For conditionally denoising, we use a conditioning window obtained from the
given window by striding backwards by a predefined number of steps k.x. We notice in Fig. 5(a) that
this may hinder performance.

We also studied clamping of values in the scaled schedule s;. Since we compute it from E(x;) = s;xo,
in the cumulative evaluation—element-division of the starting point from the cumulative average—the
division can blow up for data close to zero. Figs. 5 (b) & (c) show that there is more sensitivity to the
minimum values than to the maximum used for clamping.

Finally, we considered several denoiser architectures of varying space complexity (discussed in the
SM). Most remarkably, using just a Linear layer with space complexity O(T d) gives results (V in
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Figure 5: Ablation study on min-max normalized validation MSE across different experimental con-
figurations and datasets. Subplots (a)—(d) correspond to: (a) context backward shift for conditionally
denoising, (b) minimum value for clamping s, (¢) maximum value for clamping s;, and (d) different
network architectures (see SM): Roman numerals I-VI denote, in the respective order, the following
architectures: AttnNet, AttnSigmaNet, AttnPosEmbNet, ConvLSTMNet, LinearNet and UNet.

Table 8: CRPS and QICE for probabilistic forecasts with the SDE in section A.5.2 (prediction horizon
H = 96). Datasets: ETTh2, Exchange. Lower is better.

Methods Metric ETTh2 Exchange
CRPS  0.380 0.287

TimeDiff o1cE 0142 0.099
DiffusionT$ glfgs (1):(1)32 (1):323
TMDM g§§,§ ﬁ %
NsDiff gfé’g 8;323 3j§§§
rEpM  CRPS 0589 0775

QICE  0.093 0.111

Fig. 5), in several datasets, comparable to the best network using self-attention between the given
and context window (I in Fig. 5).

D PROBABILISTIC FORECASTS

Karras et al. (2022) derived their SDE for stochastic sampling from the isotropic heat equation.
Our analogous SDE derivation, in section A.5.2 (for the anisotropic case), theoretically relies on
the assumption of diagonal ;. Examples of the skill when sampling from that SDE is shown
quantitatively in Table 8 and qualitatively in Fig. 6. As seen, TEDM’s probabilistic calibration
(CRPS/QICE) lags behind most of the other methods.

The fact that deterministic sampling outper- Table 9: Probabilistic skill by sampling quantiles
forms other methods in point-forecast skill, using ODE (prediction horizon H = 96). Datasets:
while probabilistic sampling underperforms is ETTh2, Exchange. Lower is better.

intriguing. Our hypothesis is that the inference Methods Metric ETTh2 Exchange
rule for deterministic sampling (derived in sec-

tion A.5.1) is more general and hence the di- NsDiff CRPS  0.349 0.222
agonal approximation of 3; better represents QICE  0.025 0.038
cases with weakly correlated features. To test CRPS 0.294 0.186
this hypothesis, we introduce a novel method to TEDM QICE  0.040 0.093

sample quantiles of the predictive distribution
by only using TEDM’s deterministic inference rule. Preliminary results of this method (explained
in detail in a future publication) are shown in Table 9. It shows promising results in probabilistic
forecast, being competitive with NsDiff.
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Figure 6: Probabilistic forecasts on the ETTm2 dataset, using the SDE of section A.5.2. The plots
show the predicted mean, uncertainty bounds (95% prediction intervals), and ground-truth values for
two representative time series.

Table 10: MSE and MAE scores for diffusion-based forecasting methods with horizon H = 192.
TEDM uses the best of the noise schedule variant (cumulative/sliding 33;) per dataset. Lower is
better.

Methods Metric ETTh2 ETTm2 Exchange
MSE 0364 0.209 0.208

TmeDIff — \iAE 0393 0296 0331
Diffusions \i'e 1340 1a12 1493
™DM e 0317 030 0338
NDIf\RE 04s2 0328 0280
TEpM  MSE 0260 0163 0153

MAE 0354 0.282 0.276

E LONGER HORIZONS

We reproduce the primary diffusion baselines table for a subset of datasets (ETTh2, ETTm?2, Ex-
change) and update TEDM with the best of the two noise schedule variant (cumulative/sliding 33;)
provided; other methods follow the same evaluation protocol as in the main text.

On ETTh2 and ETTm2, TEDM achieves the best MSE among the compared diffusion methods,
improving over ARMD while also delivering strong MAE (second-best behind ARMD). On Exchange,
ARMD remains the most accurate on both MSE and MAE, with NsDiff second on MSE and TEDM
a close third. Overall, these results indicate that TEDM remains competitive for longer forecast
horizons.

To characterize computational scaling over longer horizons, Fig. 7 reports relative per-batch training
and inference time/memory for TEDM as a function of forecast horizon (normalized to the cost at
horizon 96). We observe only moderate growth with horizon on different dataset. This indicates that
TEDM remains practical for long-horizon forecasting.

F ROBUSTNESS

All TEDM results are averaged over 4 random seeds (different data shuffles and parameter initializa-
tions); we report mean values in the main tables, and mean =+ standard deviation in Table 11. Our
method shows low variance across seeds, indicating stable training and inference.

29



Under review as a conference paper at ICLR 2026

Train memory (rel.) Train time (rel.) Test memory (rel.) Test time (rel.)

-
o
L

|

Relative factor
(w.r.t. horizon 96)
w
o
L
|

-
33}
1

1

96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720
Horizon Horizon Horizon Horizon
B ETTh2 B ETTm2 B Exchange

Figure 7: Relative per-batch training and inference memory (MB) and time (s) for TEDM across
datasets and forecast horizons, normalized by the cost at horizon H = 96. All measurements are
obtained on the same hardware and with a fixed batch size. Apparent drops in cost at larger horizons
compared to the preceding horizon are due to dropping incomplete batches, which slightly changes
the number of processed batches and thus the reported averages.

Table 11: TEDM robustness over 4 random seeds at horizon 96. Reported are mean =+ std over seeds.
Dataset MSE MAE

ETThl  0.598 £ 0.002 0.526 £ 0.001
ETTh2  0.216 £ 0.001 0.320 &£ 0.001
ETTml  0.419 £0.003 0.442 + 0.002
ETTm2 0.137 £0.001 0.254 &£ 0.000
Exchange 0.069 £ 0.000 0.184 + 0.001
Solar 1.108 £ 0.034 0.721 £ 0.042
Stock 0.055 £ 0.001 0.180 + 0.002
Weather  0.225 4+ 0.005 0.268 £ 0.008

G MORE FORECAST SAMPLES AND FAILURE CASES

Figure 8 shows TEDM forecasts on eight benchmark datasets. Each row corresponds to a dataset and
each column to a randomly selected test window and feature. Across smoother series (ETTh1, ETTh2,
ETTm?2), TEDM tracks level, trend, and seasonality, while on more volatile datasets (Exchange,
Solar-Energy, Stock) it still captures the overall direction and scale of movements. These examples
qualitatively support the quantitative gains reported in our main results.
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Figure 8: Qualitative TEDM forecasts across eight benchmark datasets. Each panel shows a randomly
sampled test window and feature: black solid lines are input histories, black dashed lines are ground-
truth futures, and orange lines are TEDM forecasts. Time is shown as input followed by forecast
steps.

31



