
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TEDM: TIME SERIES FORECASTING WITH ELUCI-
DATED DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Score-based generative modeling through differential equations has driven break-
throughs in high-fidelity image synthesis, offering modular model design and
efficient sampling. However, this success has not been widely translated to time-
series forecasting yet. This gap stems from the sequential nature of time series,
in contrast to the unordered structure of images. Here, we extend the theoretical
formulation used for images to explicitly address sequential structures. We propose
a diffusion-based forecasting framework (TEDM) that adapts score estimation to
temporal settings and elucidates its design space. Such a design allows empiri-
cal computation of noise and signal scaling directly from data, avoiding external
schedules. Notably, this reduces sampling complexity to linear in the forecast
horizon. Without elaborate preprocessing, TEDM sets new state-of-the-art results
on multiple forecasting benchmarks. These results illustrate the growing potential
of diffusion models beyond vision. TEDM generates low-latency forecasts using a
lightweight architecture, making it ideal for real-time deployment.

1 INTRODUCTION

Multivariate time-series forecasting drives critical decision-making across domains as varied as
demand planning (Kamarthi et al. (2024)), financial risk assessment, weather prediction (Oskarsson
et al. (2024), stock market analysis (Zou et al. (2023)), and energy load forecasting (Symeonidis
& Nikolaidis (2025)). Unlike classical regression tasks, time-series data exhibit unique characteris-
tics—trend, seasonality, and autocorrelation—that demand models capable of capturing temporal
dependencies and quantifying predictive uncertainty, particularly in high-stakes settings such as
meteorology and finance (Box et al. (2015)).

Recent advances in deep learning have dramatically improved forecasting accuracy by leveraging se-
quence models. Transformer-based architectures in particular—such as Informer (Zhou et al. (2021))
and Autoformer (Wu et al. (2021))—have consistently topped benchmark leaderboards. However,
these approaches exhibit high computational complexity (quadratic time and memory requirements)
(Kim et al. (2024); Kong et al. (2025)), and have poor long-term forecasting performance.

Diffusion models have emerged as a powerful generative paradigm across modalities, achieving
state-of-the-art results in image, speech, and video synthesis (Xing et al. (2024); Ahsan et al. (2025)).
Early attempts to adapt diffusion modeling to time series, like TimeGrad (Rasul et al. (2021)), showed
promise in computational complexity, by processing sequences using recurrent networks instead of
transformers. Nevertheless, they fall short in forecasting long horizons. Other approaches followed
(Yang et al. (2024); Su et al. (2025)), demonstrating that longer horizons are possible at the expense
of more preprocessing and model complexity, additional to the inherent sampling inefficiency of
diffusion models (Ma et al. (2025)).

To strike a balance between long-term forecasting performance and computational complexity, a
deeper understanding of the design space of diffusion models is needed. In the vision domain, this was
elucidated by the EDM framework of (Karras et al. (2022)) and imported to time series forecasting in
climate applications (Price et al. (2025)). This allows optimization of noise and scale schedules, as
well as time-discretization strategies and solvers for the diffusion process. However, the sampling
inefficiency remains, scaling as O(SH) for S diffusion steps and H forecasting steps.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ODE

SDE

step
Euler

step
Euler

step
Euler

Diffusion across physical time

 Score
function

Given Forecast

Denoiser

Signal

Structured
 noise

Corrupted
 signal

Denoised
 signal

(a) (b)

 Neural
network

Denoiser

Figure 1: (a) Denoising signals corrupted with structured noise. (b) TEDM uses score-based
generative modeling to forecast time series by numerical integration of an ordinary (ODE) or
stochastic (SDE) differential equation. The main characteristic of TEDM is reducing the physical
time and the diffusion time to the same axis, as we support by theory.

To address these limitations, we propose TEDM (Time Series Forecasting with Elucidated Diffusion
Models), an autoregressive diffusion framework tailored for multivariate probabilistic forecasting.
We extend the theoretical background of EDM for time series forecasting. Optimization of the design
space thus leads to significant reduction in complexity and increase in accuracy by:

• Treating the diffusion and physical time axes as the same (see Fig. 1b). This reduces
sampling complexity from O(SH) to O(H).

• Using, for the first time, noise and scale schedules estimated empirically from the data. This
avoids inductive biases from guiding the diffusion with artificially imposed schedules.

This allows TEDM to achieve state-of-the-art results on several long-sequence forecasting benchmarks
at a fraction of the cost of traditional methods. We find that the best case for space complexity is
O(T d) for a given sequence of T timesteps and d features—still giving promising results and then
making our approach suitable for online settings.

2 RELATED WORK

Sequence Models. RNNs (Hewamalage et al. (2021)) and TCNs (Chen et al. (2020)) have
been applied to capture nonlinear, temporal dependencies. Recently, Transformer-based vari-
ants—Informer (Zhou et al. (2021)), Autoformer (Wu et al. (2021)), DLinear, and iTransformer (Liu
et al. (2024))—tackle long-range interactions via attention mechanisms and are dominating leader-
boards. However, attention on sparse or irregularly-sampled timestamps can degrade, and preserving
temporal ordering remains challenging (Wu et al. (2021)). Additionally, most Transformer-based
forecasters produce only point estimates, limiting uncertainty quantification.

Diffusion models. Popularized by Score Matching with Langevin Dynamics (SMLD) (Song &
Ermon (2020)) and Denoising Diffusion Probabilistic Models (DDPM) (Ho et al. (2020)), they are
promising for probabilistic time series forecasing due to their generative nature. TimeGrad (Rasul et al.
(2021)) pioneered autoregressive score-based forecasting by combining RNN encoders with per-step
diffusion sampling, though it inherits RNNs’ inefficiencies over long horizons. Non-autoregressive
variants—such as TimeDiff (Shen & Kwok (2023)) and TSDiff (Kollovieh et al. (2023)) generate
the prediction horizon in one step—bypassing error accumulation and enabling parallel forecasting.
ARMD (Gao et al. (2025)) improves autoregression and sampling complexity by supervising a
devolution network that effectively learns to “jump” the S diffusion steps.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Despite substantial advances, most of the existing diffusion-based forecasters are merely adaptations
of image-domain DDPMs that do not completely harness the multivariate and temporal structures
of time-series data. This is due to an incomplete knowledge of the full design space of diffusion
models that EDM helps to elucidate. In the following, we describe this background and introduce the
changes needed for time series forecasting ultimately leading to TEDM.

3 BACKGROUND

3.1 EDM: UNIFIED DESIGN SPACE FOR DIFFUSION MODELS

Karras et al. (2022) present a unified framework for analyzing and improving diffusion-based
generative models for image synthesis. Their core contribution is the disentanglement of architectural,
training, and sampling components into a modular design space, enabling independent optimization
of each element. This allowed them to find optimal choices for each component and push the state of
the art for image synthesis.

Deterministic sampling. In their formulation, sampling is grounded on the probability flow ordinary
differential equation (ODE)

dxt

dt
=

ṡt
st

xt − s2t σ̇tσt∇x log pt(xt). (1)

Here, xt ∈ Rd is the sample, σt is a time-dependent noise schedule, st is a time-dependent scale
schedule, and pt(xt) = s−d

t p(xt/st;σt) is the marginal distribution of the diffusion process. The
latter is expressed in terms of a mollified version of the data distribution obtained by adding i.i.d
Gaussian noise—of standard deviation σt—to the samples. The term ∇x log pt(xt) is called the
score function (Song et al. (2021)).

Deterministic sampling is achieved by integrating the ODE backwards, from time T where xT is
completely noisy (σT maximum), to time 0 where x0 is the prediction (σ0 ∼ 0). A related stochastic
differential equation (SDE) adds noise during sampling for improved robustness. The authors Karras
et al. (2022) propose using a second-order Heun’s method with a linear schedule σt = t and constant
scaling st = 1, which leads to smoother sampling trajectories.

Denoising score matching. Training is based on denoising score matching: given clean data
y ∼ pdata and Gaussian noise ε ∼ N (0, I), the data is corrupted with unstructured noise n = σtε.
The training objective then minimizes the expected value:

Ey∼pdata,ε∼N (0,I)

[
∥D(y + n;σt)− y∥2

]
. (2)

This loss encourages the denoiser D(x;σt) to estimate the conditional expectation of the clean signal
given the noisy input y + n as well as the noise level σt. It is related to the score function (see Eq.
(3) of Karras et al. (2022)) by:

∇x log p(x;σt) =
D(x;σt)− x

σ2
t

. (3)

Preconditioning. To improve stability and expressiveness, the authors propose a preconditioned
architecture for the denoiser Dθ:

Dθ(x;σ) = cskip(σ)x+ cout(σ)Fθ(cin(σ)x; cnoise(σ)).

Here, Fθ is the core neural network to be trained, and cskip, cin, cout, cnoise are scalar functions of σ
that control signal scaling and conditioning. These are derived analytically by requiring the network
inputs and training targets to have unit variance (cin, cout), and amplifying errors in Fθ as little as
possible (cskip). Except for cnoise (which is chosen empirically), these functions are expressed in terms
of σ2

data = Var(y), which is uniformly set in image datasets. The authors also propose a log-normal
distribution for sampling noise levels σt during training, along with loss weighting λ(σ) = 1/c2out(σ).
This modular reformulation facilitates targeted improvements and enhances compatibility with a
range of generative architectures.

Importantly, this unified framework subsumes earlier methods like DDPM, DDIM, and SMLD
(Song et al. (2021)). These differ mainly in their σt and st schedules, time discretizations, and

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

preconditioning schemes. For instance, DDPM uses σt = t, st = 1 (as EDM), and stochastic
sampling. DDIM replaces the stochastic reverse process with Euler integration of the same ODE and
time steps as DDPM. SMLD instead models the score function directly with a variance-exploding
SDE. This modular view reveals that improvements in training or sampling can often be transferred
across models without retraining the network.

3.2 EXTENDING EDM TO MULTIVARIATE SERIES

Adapting EDM to multivariate time-series introduces unique challenges not present in image domains.
First, applying a shared noise schedule across all features assumes uniform scale and dynamics. In
practice, features may differ in variance or predictive importance, making uniform noise injection
suboptimal. Feature-specific noise scaling is needed. Second, time-series exhibit strong temporal
dependencies. EDM’s i.i.d. Gaussian noise assumption can disrupt autocorrelated patterns, especially
when noise is added independently at each time step. Structured noise or causal conditioning
mechanisms may be required to preserve temporal coherence. Finally, architectural design must
respect the sequential nature of time. Preconditioning schemes should account for temporal scale and
position. Temporal encodings, autoregressive models, or attention-based architectures may be better
suited than standard convolutional backbones. We discuss next how these challenges are theoretically
and experimentally addressed by TEDM.

4 TEDM METHODOLOGY

4.1 PROBLEM DEFINITION

Given a multivariate series y1:T ∈ RC×T , with C features and T time steps, the problem is to forecast
the next H steps. The forecast is done through a mapping fθ : y1:T 7→ ŷT+1:T+H , consisting of a
learned estimator of the score function and its autoregressive use in an ODE (or SDE) solver. Unless
otherwise necessary, we omit the subscript from the respective variables. The theoretical results in
the following are derived in appendix A.

4.2 DATA-DRIVEN NOISE AND SCALE SCHEDULES

We extend the EDM formulation to multivariate noise schedules. With Σt := s−2
t Cov(xt), the

forward ODE in (1) takes now the more general form

dxt

dt
=

ṡt
st

xt − 1
2s

2
t Σ̇t∇x log pt(xt). (4)

We restrict to deterministic sampling in the following and leave probabilistic forecasts (based on our
SDE (A.65)) for Appendix D. In our formulation, the score function becomes (Eq. (A.25))

∇x log pt(xt) = s−1
t Σ−1

t

[
D(xt/st;Σt)− xt/st

]
, (5)

and allows the backward ODE associated to Eq. (4) to be written as (Eq. (A.54))

dxt = −(d log st)xt +
1
2st(dΣt)Σ

−1
t [D(xt/st,Σt)− xt/st] . (6)

This expression suggests our proposed contributions:

• Since dt does not appear in the difference equation, we do not need any strategy to quantify
time increments, as needed by all previous approaches. As a consequence, we take the
physical time-axis of the time series as the time-axis of the diffusion process.

• Diffusing across the time-series horizon implies that the noise Σt and scale st schedules
acquire physical meanings. Unlike any other diffusion model so far, we empirically estimate
these from the data.

The way to estimate these schedules is suggested from their definition. We can show (Eq. (A.5))
that the scale st obeys E(xt) = st E(x0). Furthermore, we show (Eq. (A.7)) that Cov(xt) = s2t Σt.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Therefore, we estimate st and Σt from the input data window y1:T , by empirical estimations of the
above relations. We follow two approaches:

Cumulative estimation. We estimate st and Σt from the cumulative mean and covariance of the
data, respectively. That is,

E(xt) ∼ Mean(y1:t), E(x0) ∼ y1:1, ⇒ ŝt = Mean(y1:t)⊙ y−1
1:1 , (7)

where the division is element-wise and the reduction is along the sequence axis. Similarly, we
estimate Σt from the cumulative covariance of the data,

Cov(xt) ∼ Cov(y1:t), ⇒ Σ̂t = Ŝt Cov(y1:t) Ŝ
T
t , (8)

where Ŝt = diag(ŝ−1
t,1 , . . . , ŝ

−1
t,C) is a matrix, build from (7), that applies a congruent scaling to the

covariance matrix, preserving its positive definiteness.

Sliding window estimation. We estimate st and Σt from the mean and covariance of a sliding
window over the input y1:T . This allows more flexibility to adapt to local changes in the data statistics.
It also avoids the problem of defining the variance for the first data point of a window—technically
zero, so interpolated in the cumulative estimation above. Additionally, it helps mitigate issues with
data values (y1:1 in Eq. (7)) close to zero that may blow up the cumulative scale estimate.

4.3 TRAINING

As with EDM, we train using denoising score matching. Given subsequences of clean data y ∼ pdata,
we compute the associated subsequences of empirical Σ. Gaussian noise ε ∼ N (0, I) is drawn
and structured with this schedule: n = Σ1/2ε. Since every time step (and feature) in the data
subsequence is corrupted with a different noise level, the noise is no longer i.i.d. as in EDM. The
denoiser learns to remove this noise (see Fig. 1a), by minimizing

Ey∼pdata,ε∼N (0,I)

[
∥Dθ

(
y + n;Σ

)
− y∥2

]
. (9)

We evaluate different architectures for the denoiser. They differ in the way the temporal structure is
leveraged and whether conditioning on past data is done. We extend the preconditioning scheme of
EDM to matrix-valued Σ. For this, the denoiser is expressed as (Eq. (A.27))

Dθ(x,Σ) = CΣ;skip x+ cΣ;out Fθ(CΣ;in x;CΣ;noise).

By imposing that the inputs and training targets of Fθ have unit variance, and that its errors are
amplified as little as possible, we have (Eqs. (A.35)):

CΣ;in = (Cov(y) +Σ)−1/2,

CΣ;skip = Cov(y)(Cov(y) +Σ)−1,

c2Σ;outI = Cov(y)(Cov(y) +Σ)−1 Σ,

λΣ = 1/c2Σ;out.

The matrix CΣ;noise is chosen empirically, as in EDM, and λΣ weighs the loss function in Eq. (9).
Note that these expressions reduce to those of EDM when Σ = σ2I . Furthermore, they hold even
when Σ is estimated from y, provided that the estimator is unbiased.

4.4 INFERENCE

Once the denoiser is trained, the score function is estimated by (5). Knowing the score function
provides the mechanism for sampling by ODE (or SDE) integration. Since the diffusion and physical
time axes are the same, this allows forecasting the next time step by an Euler step of (6) (Eq. (A.55)):

ŷt+1 =
[
I − log

st
st−1

I
]
ŷt +

1
2st (Σt −Σt−1)+ Σ−1

t [Dθ(ŷt/st,Σt)− ŷt/st] ,

where (·)+ denotes the projection onto the cone of positive semi-definite matrices. Here, st and Σt

are replaced by their estimates in (7) and (8) (or their sliding window counterparts). This inference

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

-3.0

-1.5

0.0

Etth1

-1.6

-0.8

0.0

Etth2

-2.0

0.0

2.0

Ettm1

-2.0

-1.0

0.0

Ettm2

0 20 40 60 80

0.0

0.8

1.6

Exchange

0 20 40 60 80

0.0

1.0

2.0

Solar

0 20 40 60 80

0.2

0.4

0.6

Stock

0 20 40 60 80

-1.0

0.0

1.0

Weather

Figure 2: Random test windows from all datasets. Each subplot corresponds to one dataset and shows
5 windows from randomly selected time indices and feature dimensions.

rule is general, and can be implemented by a Cholesky factorization of Σt that allows applying Σ−1
t

to vectors. The projection to the positive semi-definite cone requires diagonalization of Σt −Σt−1,
which may be costly for large feature size d.

An efficient approximation is obtained when the noise covariance is considered diagonal, i.e.
Σt = diag(σ2

t,1, . . . , σ
2
t,C). In this case, the inference rule simplifies considerably, since all matrix

operations reduce to element-wise operations on the feature dimensions. The Eurler step in this case
becomes (Eq. (A.53))

ŷt+1 =
[
I − log

st
st−1

Σ
1/2
t Σ

−1/2
t−1

]
ŷt + st

[
logΣ

1/2
t Σ

−1/2
t−1

]
Dθ(ŷt/st;Σt). (10)

Remarkably, this inference rule holds exactly beyond the diagonal approximation (see Remark A.1),
as long as the principal axes of Σt do not change with time (only its eigenvalues do). This applies
to systems with stable directions of variability but evolving intensities along those directions—e.g.
spatial climate patterns, brain signals with stable spatial modes, etc. Due to its simplicity and
efficiency, we consider the diagonal approximation for the rest of this work.

Starting from the given data window ŷ1 := y1:T , an Euler step then transforms this window to predict
ŷ2 := y2:T+1. Assuming T = H (the horizon length), after H Euler steps (see Fig. 1b), we get
the predicted window ŷ1+H := yT+1:T+H . Thus inference time is O(H) instead of O(HS) for S
diffusion steps, since one Euler step replaces one diffusion step.

Intuitively, every data point in the given window (a single xt or yt in our description) may be
imagined to be a particle “propagated by diffusion” to a corresponding data point in the predicted
window. All these particles in the window are processed in parallel by the network that learned to
denoise the signals.

5 EXPERIMENTS

5.1 DATASETS

Table 1: Comparison of benchmark time series
datasets: data size and feature count.

Dataset Timesteps Dim (d)
ETTh1/ETTh2 17,420 7
ETTm1/ETTm2 69,680 7
Exchange 7,588 8
Weather 52,695 21
Solar 52,560 137
Stock 4,431 6

We evaluate our approach on eight widely used
multivariate datasets: ETTh1, ETTh2, ETTm1,
ETTm2, Exchange, Solar, Stock, and Weather.
The Electricity-Transformer-Temperature (ETT)
datasets (Zhou et al. (2021)) are standard
long-sequence forecasting benchmarks, sampled
hourly (ETTh) and every 15 minutes (ETTm)
from two power-transformer stations. The Ex-
change dataset (Zhou et al. (2021)) contains
daily exchange rates across major currency pairs.
The Solar dataset (Lai et al. (2018)) consists of 10-minute solar power measurements from 137 sta-
tions, and the Stock dataset provides daily Google stock prices from 2004–2019 (Yoon et al. (2019);

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Yuan & Qiao (2024)). Dataset sizes and feature counts are reported in Table 1. Randomly selected
test samples are shown in Fig. 2. Further dataset details are provided in Appendix C.1.

5.2 DATA PREPROCESSING

It is known that time series forecasting methods requiring extensive preprocessing typically un-
derperform simpler methods (Makridakis et al. (2020)). Such preprocessing include stationarity
transformations (Liu et al. (2022)), seasonal adjustments (Findley & Monsell (2019)), multi-resolution
analysis (Li et al. (2024a)), etc. These steps often make the approaches cumbersome and introduce
inductive biases.

Our method does not require complicated preprocessing. The datasets are partitioned into train (70%),
validation (10%), and test (20%) sets, according to the standard practice for these benchmarks (Liu
et al. (2024)). Following Gao et al. (2025), we apply z-score normalization to the data. We further
partition the sets into subsequences y1:T (windows). For training, each window has T = H (horizon
length) time steps, consumed by the denoiser network in batches. For validation and testing, padding
is added for TEDM to compute time shifts as appearing in Eq. (10). Each window has 2H time steps
(plus padding and additional context for conditional denoising). The first T time steps are given to the
models for forecasting, the last H steps are the ground truths to contrast with the model predictions.
We fix H = 96 timesteps for all datasets, as in Gao et al. (2025), and refer to Appendix E for longer
horizons.

5.3 BASELINES

We are inspired by ARMD (Gao et al. (2025)) and follow their experimental setup closely. However,
we include newer diffusion baselines that were not available at the time of their publication. In
particular, NsDiff Ye et al. (2025) is a recent approach that extends diffusion models to non-stationary
time series, providing a strong baseline for our experiments. They provide a codebase to evaluate
TMDM Li et al. (2024b), DiffusionTS Yuan & Qiao (2024), TimeDiff Shen & Kwok (2023), among
others. We use their codebase and experimental setup to evaluate these methods for H = T = 96.

5.4 METRICS

We follow the evaluation methodology of Zhou et al. (2021) and use the mean square error (MSE)
and mean absolute error (MAE) to measure performance when comparing z-score normalized data.
This has become standard practice in time series forecasting (Gao et al. (2025)). For probabilistic
forecasts in Appendix D, we use the standard continuous ranked probability score (CRPS) (Matheson
& Winkler (1976)) and quantile interval coverage error (QICE) (Han et al. (2022)).

5.5 NETWORK ARCHITECTURES

One of the advantages of elucidating the design space of diffusion models is that the selection of
model architectures is more intuitive. The denoiser (as an estimator of the score function used for
inference) has a job independent from the forecasting task (see Fig. 1a). This separation makes
it ideal for generalization, and gives more flexibility when designing architectures aimed at better
denoising outcomes. We considered several architectures, ranging from the simplest Linear network,
with O(T d) space complexity, to the most complex UNet architecture. These architectures optionally
accept a condition on past data, to support conditional denoising (Batzolis et al. (2021)). For more
details on these architectures, see Appendix C.3.

5.6 MAIN RESULTS

Table 2 shows that TEDM delivers state-of-the-art accuracy across the majority of datasets, achieving
the best MSE and MAE on ETTh2 (0.214 / 0.319), ETTm2 (0.135 / 0.253), and Exchange (0.069 /
0.183). On ETTm1, TEDM ranks second (MSE 0.419, MAE 0.421) behind ARMD, and on Weather,
TEDM is also second (MSE 0.223, MAE 0.261), close to the strongest baseline on that dataset.
The only dataset where TEDM trails the simpler TimeDiff/ARMD pairing is ETTh1 (MSE 0.595,
MAE 0.524), which we attribute to typical large-amplitude changes (see Fig. 2) that stress TEDM’s
assumption of smooth flows (see Assumption A.1).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: MSE and MAE scores (prediction horizon H = 96) for diffusion-based forecasting methods.
Best scores per dataset are in bold; second best are underlined. Lower is better.

Methods Metric ETTh1 ETTh2 ETTm1 ETTm2 Exchange Weather

TimeDiff MSE 0.417 0.364 0.548 0.209 0.208 0.228
MAE 0.456 0.393 0.485 0.296 0.331 0.305

DiffusionTS MSE 1.032 3.017 0.976 3.517 3.302 0.625
MAE 0.757 1.340 0.726 1.472 1.493 0.609

TMDM MSE 0.534 0.564 0.421 0.313 0.212 0.180
MAE 0.514 0.517 0.408 0.350 0.338 0.241

ARMD MSE 0.445 0.311 0.337 0.181 0.093 0.232
MAE 0.459 0.338 0.376 0.255 0.203 0.291

NsDiff MSE 0.552 0.460 0.450 0.250 0.146 0.223
MAE 0.506 0.452 0.434 0.328 0.280 0.276

TEDM MSE 0.595 0.214 0.419 0.135 0.069 0.223
MAE 0.524 0.319 0.421 0.253 0.183 0.261

0 100 200

TEDM

0 100 200

NsDiff

0 100 200

TMDM

0 100 200

DiffusionTS

0 100 200

TimeDiff

ET
Tm

2

context target prediction

Figure 3: Models evaluated on a sample from the ETTm2 test set.

Table 3: MSE and MAE scores (prediction horizon H = 96) for non diffusion-based forecasting
methods. Best scores per dataset are in bold. Lower is better. Results taken from Gao et al. (2025).

Methods Metric ETTh1 ETTh2 ETTm1 ETTm2 Exchange Solar Stock

iTransformer MSE 0.386 0.297 0.334 0.180 0.086 0.203 0.342
MAE 0.405 0.349 0.368 0.264 0.206 0.413 0.413

TimesNet MSE 0.384 0.340 0.338 0.187 0.107 0.427 0.427
MAE 0.402 0.347 0.375 0.267 0.234 0.499 0.499

DLinear MSE 0.386 0.333 0.345 0.193 0.088 0.286 0.286
MAE 0.400 0.387 0.372 0.292 0.218 0.325 0.325

PatchTST MSE 0.414 0.302 0.329 0.175 0.088 0.516 0.516
MAE 0.419 0.348 0.367 0.259 0.205 0.524 0.524

Client MSE 0.392 0.305 0.336 0.184 0.086 0.352 0.352
MAE 0.409 0.353 0.369 0.267 0.206 0.433 0.433

TEDM MSE 0.595 0.214 0.419 0.135 0.069 1.061 0.056
MAE 0.524 0.319 0.421 0.253 0.183 0.662 0.182

These quantitative gains are mirrored by the qualitative behavior in Fig. 3 (more in appendix G):
TEDM tracks target trends more faithfully, with better phase alignment and amplitude calibration, and
fewer spurious oscillations than competing diffusion models. We also compare with state-of-the-art
non-diffusion methods (see Table 3), confirming the superiority of TEDM for several datasets.

These results indicate that elucidating the design space—decoupling the denoiser from the sampler
while carefully selecting the schedule and integration strategy—confers consistent advantages in
performance across diverse temporal patterns.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Ablation study of elucidated models. Lower is better. Percentage gains (in parentheses)
indicate improvement of TEDM over EDM.

Methods Metric ETTh2 ETTm2 Exchange

iDDPM+DDIM MSE 0.730 0.756 1.276
MAE 0.657 0.664 0.963

EDM MSE 0.419 0.293 0.448
MAE 0.495 0.405 0.532

TEDM (cumulative Σt, st = 1) MSE 0.303 (28%) 0.137 (53%) 0.110 (75%)
MAE 0.377 (24%) 0.249 (39%) 0.241 (55%)

TEDM (cumulative Σt, empirical st)
MSE 0.242 (42%) 0.135 (54%) 0.068 (85%)
MAE 0.337 (32%) 0.250 (38%) 0.181 (66%)

TEDM (sliding Σt, empirical st)
MSE 0.216 (49%) 0.142 (52%) 0.075 (83%)
MAE 0.259 (48%) 0.249 (39%) 0.195 (63%)

0 50 100 150 200

-2.0

-1.0

0.0

1.0

100 125 150 175 200

-0.2

0.0

0.2

0 50 100 150 200

-1.6

-0.8

0.0

100 125 150 175 200

-2.0

-1.0

0.0

EDM iDDPM Observed TEDM

Figure 4: Forecasts generated by EDM, iDDPM+DDIM, and TEDM on four randomly selected
subsequences from the ETTm2 dataset. Only a section of the initial subsequences for the right panels
is observed for better comparison of the forecasts.

5.7 ABLATION STUDIES

We adapt the EDM work of Karras et al. (2022) from images to time series. The inherited modularity
allows us to try different noise schedules, time discretization and sampling strategists. For instance,
EDM, iDDPM+DDIM, and TEDM, all in a unified codebase. We refer to these as “Elucidated”
models, since they fit into a general, modularized diffusion framework, mirroring the terminology
from Karras et al. (2022).

Our extension of the EDM framework to time series gives results consistent with those in the vision
domain. That is, EDM is consistently better than iDDPM+DDIM, by harnessing optimization of
the design space. For time series, this is a result already leveraged by the best weather forecasting
framework to date (Price et al. (2025)). Our contribution goes further in two main dimensions:

1. By considering empirical, rather than preset, noise (Σt) and scale (st) schedules, we get
performance gains (see Table 4) of up to 85% in MSE (66% in MAE) with respect to EDM.
Fig. 4 shows qualitative results.

2. By aligning the diffusion and physical time axes, we significantly reduce the time complexity
of sampling, getting resource benefits comparable to ARMD (see Table 5). The latter does
not harness the optimization of the design space though, as shown in the main results.

We also evaluated the loss of skill when considering different forecast horizons. This is shown in
Table 6 and compared against the classical skill (Hyndman & Athanasopoulos (2018)) of a forecast
that extrapolate the mean of the context window (see appendix B). This is the minimal-skill forecast
(yet better than random). TEDM is still able to leverage pattern-wise information to forecast much
better than the latest observed average. For a comparison with other methods, see appendix E.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 5: Average per-batch training and inference time (seconds), memory (MB), and test MSE on
ETTm2. Lower is better.

Method Train Time (s) Train Mem (MB) Test Time (s) Test Mem (MB) MSE
TimeDiff 0.022 759 21.38 125 0.209
DiffusionTS 0.098 3112 634.96 14595 3.517
TMDM 0.207 15600 26.83 193 0.313
NsDiff 0.107 2682 9.80 1125 0.250
ARMD 0.009 20.7 0.02 21.3 0.181
TEDM 0.004 21.3 0.11 23.9 0.135

Table 6: MSE and MAE scores for TEDM on ETTh2, ETTm2, and Exchange for longer forecasting
horizons, with baseline (mean) forecast errors. Lower is better.

Horizon Metric ETTh2 ETTm2 Exchange Baselinemean

96 MSE 0.216 0.132 0.068 1.010
MAE 0.321 0.251 0.182 0.801

192 MSE 0.260 0.163 0.153 1.005
MAE 0.354 0.282 0.276 0.800

336 MSE 0.326 0.248 0.283 1.003
MAE 0.396 0.351 0.382 0.799

720 MSE 0.528 0.298 0.602 1.001
MAE 0.510 0.386 0.571 0.798

6 LIMITATIONS OF THIS WORK

Although the theoretical foundations of TEDM have a general scope within the diffusion framework,
not all time series can be represented as the Itô processes underlying such framework. For instance, our
formulation cannot capture long-memory dynamics such as those exhibited by fractional Brownian
motion (Mandelbrot & Van Ness (1968)). Similarly, our framework cannot represent heavy-tailed
or power-law noise (e.g., α-stable processes; Samorodnitsky & Taqqu (1994)), nor the jump-driven
behaviors (Applebaum (2009)), all of which violate the diffusion regularity assumptions. Furthermore,
its effectiveness was shown in the diagonal approximation of the data covariance, which most likely
breaks down for datasets with high-dimensional feature space (e.g. Solar in Table 3).

7 CONCLUSION AND FUTURE WORK

We present TEDM, the first time series forecasting framework that fully elucidates its design space,
grounded on a solid theoretical background. This allows TEDM to reduce the computational
complexity to levels suitable for online deployment. We plan to extend our work with a more
detailed analysis of the skill in probabilistic forecasting, including a method to sample prediction
intervals without ensembling. Aditionally, we foresee the usage of TEDM for anomaly detection,
data compression and imputation tasks.

8 USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) only to polish the writing and to help search and organize
related work. No modeling ideas, algorithmic designs, experiments, analyses, or reported results
were produced by LLMs; all technical content and empirical results were created and verified by the
authors.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Md Manjurul Ahsan, Shivakumar Raman, Yingtao Liu, and Zahed Siddique. A comprehensive survey
on diffusion models and their applications. Applied Soft Computing, pp. 113470, 2025.

Md Fahim Anjum. Advancing diffusion models: Alias-free resampling and enhanced rotational
equivariance. arXiv preprint arXiv:2411.09174, 2024.

Mehrnaz Anvari, M Reza Rahimi Tabar, Joachim Peinke, and Klaus Lehnertz. Disentangling the
stochastic behavior of complex time series. Scientific reports, 6(1):35435, 2016.

David Applebaum. Lévy Processes and Stochastic Calculus. Cambridge University Press, 2 edition,
2009.

Georgios Batzolis, Jan Stanczuk, Carola-Bibiane Schönlieb, and Christian Etmann. Conditional
image generation with score-based diffusion models. arXiv preprint arXiv:2111.13606, 2021.

G.E.P. Box, G.M. Jenkins, G.C. Reinsel, and G.M. Ljung. Time Series Analysis: Forecasting
and Control. Wiley Series in Probability and Statistics. Wiley, 2015. URL https://books.
google.de/books?id=rNt5CgAAQBAJ.

Yitian Chen, Yanfei Kang, Yixiong Chen, and Zizhuo Wang. Probabilistic forecasting with temporal
convolutional neural network, 2020. URL https://arxiv.org/abs/1906.04397.

Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis, 2021. URL
https://arxiv.org/abs/2105.05233.

David F. Findley and Brian C. Monsell. Recent developments in x-13arima-seats and related seasonal
adjustment methods. Journal of Official Statistics, 2019. URL https://www.census.gov/
topics/research/seasonal-adjustment.html.

Jiaxin Gao, Qinglong Cao, and Yuntian Chen. Auto-regressive moving diffusion models for time series
forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, pp. 16727–16735,
2025. URL https://ojs.aaai.org/index.php/AAAI/article/view/33838.

Xizewen Han, Huangjie Zheng, and Mingyuan Zhou. Card: Classification and regression diffusion
models. Advances in Neural Information Processing Systems, 35:18100–18115, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015. URL https://arxiv.org/abs/1512.03385.

Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. Recurrent neural networks for
time series forecasting: Current status and future directions. International Journal of Forecasting,
37(1):388–427, January 2021. ISSN 0169-2070. doi: 10.1016/j.ijforecast.2020.06.008. URL
http://dx.doi.org/10.1016/j.ijforecast.2020.06.008.

Nicholas J Higham. Functions of matrices: theory and computation. SIAM, 2008.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. URL
https://arxiv.org/abs/2006.11239.

Rob J Hyndman and George Athanasopoulos. Forecasting: principles and practice. OTexts, 2018.

Harshavardhan Kamarthi, Aditya B. Sasanur, Xinjie Tong, Xingyu Zhou, James Peters, Joe Czyzyk,
and B. Aditya Prakash. Large scale hierarchical industrial demand time-series forecasting incorpo-
rating sparsity, 2024. URL https://arxiv.org/abs/2407.02657.

Tero Karras, Miika Aittala, Samuli Laine, and Timo Aila. Elucidating the design space of diffusion-
based generative models. In Advances in Neural Information Processing Systems, 2022.

Dongbin Kim, Jinseong Park, Jaewook Lee, and Hoki Kim. Are self-attentions effective for time
series forecasting? Advances in Neural Information Processing Systems, 37:114180–114209,
2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Marcel Kollovieh, Abdul Fatir Ansari, Michael Bohlke-Schneider, Jasper Zschiegner, Hao Wang, and
Yuyang Wang. Predict, refine, synthesize: Self-guiding diffusion models for probabilistic time
series forecasting. In NeurIPS, 2023.

Xiangjie Kong, Zhenghao Chen, Weiyao Liu, Kaili Ning, Lechao Zhang, Syauqie Muhammad Marier,
Yichen Liu, Yuhao Chen, and Feng Xia. Deep learning for time series forecasting: a sur-
vey. International Journal of Machine Learning and Cybernetics, February 2025. ISSN
1868-808X. doi: 10.1007/s13042-025-02560-w. URL http://dx.doi.org/10.1007/
s13042-025-02560-w.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-term
temporal patterns with deep neural networks. In The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval, pp. 95–104, 2018.

Han Li, Haoyi Wu, Fei Wang, et al. Timemixer++: A general time series pattern machine for
universal multivariate time series analysis. arXiv preprint arXiv:2410.16032, 2024a. URL
https://arxiv.org/abs/2410.16032.

Yuxin Li, Wenchao Chen, Xinyue Hu, Bo Chen, Mingyuan Zhou, et al. Transformer-modulated
diffusion models for probabilistic multivariate time series forecasting. In The Twelfth International
Conference on Learning Representations, 2024b.

Yanyun Liu, Ying Zhang, Xinyu Li, Yu Zhang, Jingyuan Wang, Defu Lian, Weinan Zhang, Yong
Yu, and Xing Xie. Non-stationary transformers: Exploring the stationarity in time series
forecasting. In International Conference on Learning Representations (ICLR), 2022. URL
https://openreview.net/forum?id=ucNDIDRNjjv.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting, 2024. URL https:
//arxiv.org/abs/2310.06625.

Zhiyuan Ma, Yuzhu Zhang, Guoli Jia, Liangliang Zhao, Yichao Ma, Mingjie Ma, Gaofeng Liu,
Kaiyan Zhang, Ning Ding, Jianjun Li, et al. Efficient diffusion models: A comprehensive survey
from principles to practices. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2025.

Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The m4 competition: 100,000
time series and 61 forecasting methods. International Journal of Forecasting, 36(1):54–74, 2020.

Benoit B Mandelbrot and John W Van Ness. Fractional brownian motions, fractional noises and
applications. SIAM Review, 10(4):422–437, 1968.

James E Matheson and Robert L Winkler. Scoring rules for continuous probability distributions.
Management science, 22(10):1087–1096, 1976.

Joel Oskarsson, Tomas Landelius, Marc Peter Deisenroth, and Fredrik Lindsten. Probabilistic weather
forecasting with hierarchical graph neural networks, 2024. URL https://arxiv.org/abs/
2406.04759.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer, 2017. URL https://arxiv.org/abs/1709.
07871.

Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Tom R Andersson, Andrew El-Kadi, Dominic
Masters, Timo Ewalds, Jacklynn Stott, Shakir Mohamed, Peter Battaglia, et al. Probabilistic
weather forecasting with machine learning. Nature, 637(8044):84–90, 2025.

Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Autoregressive denoising
diffusion models for multivariate probabilistic time series forecasting. In International conference
on machine learning, pp. 8857–8868. PMLR, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Gennady Samorodnitsky and Murad S Taqqu. Stable Non-Gaussian Random Processes: Stochastic
Models with Infinite Variance. CRC Press, 1994.

Lifeng Shen and James T. Kwok. Non-autoregressive conditional diffusion models for time series
prediction. In Proceedings of Machine Learning Research, 2023.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution,
2020. URL https://arxiv.org/abs/1907.05600.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations (ICLR), 2021. URL https://arxiv.org/abs/
2011.13456. Oral.

Chen Su, Zhengzhou Cai, Yuanhe Tian, Zihong Zheng, and Yan Song. Diffusion models for time
series forecasting: A survey. arXiv preprint arXiv:2507.14507, 2025.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/2104.
09864.

Charalampos Symeonidis and Nikos Nikolaidis. Efficient deterministic renewable energy fore-
casting guided by multiple-location weather data. Neural Computing and Applications, 37
(17):10647–10674, January 2025. ISSN 1433-3058. doi: 10.1007/s00521-024-10607-2. URL
http://dx.doi.org/10.1007/s00521-024-10607-2.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.org/
abs/1706.03762.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: decomposition transformers
with auto-correlation for long-term series forecasting. In Proceedings of the 35th International
Conference on Neural Information Processing Systems, NIPS ’21, Red Hook, NY, USA, 2021.
Curran Associates Inc. ISBN 9781713845393.

Zhen Xing, Qijun Feng, Haoran Chen, Qi Dai, Han Hu, Hang Xu, Zuxuan Wu, and Yu-Gang Jiang.
A survey on video diffusion models. ACM Computing Surveys, 57(2):1–42, 2024.

Yiyuan Yang, Ming Jin, Haomin Wen, Chaoli Zhang, Yuxuan Liang, Lintao Ma, Yi Wang, Chenghao
Liu, Bin Yang, Zenglin Xu, et al. A survey on diffusion models for time series and spatio-temporal
data. arXiv preprint arXiv:2404.18886, 2024.

Weiwei Ye, Zhuopeng Xu, and Ning Gui. Non-stationary diffusion for probabilistic time series
forecasting. arXiv preprint arXiv:2505.04278, 2025.

Jinsung Yoon, Daniel Jarrett, and Mihaela Van der Schaar. Time-series generative adversarial
networks. Advances in neural information processing systems, 32, 2019.

Xinyu Yuan and Yan Qiao. Diffusion-ts: Interpretable diffusion for general time series generation.
arXiv preprint arXiv:2403.01742, 2024.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wulong
Liu. Informer: Beyond efficient transformer for long sequence time-series forecasting. In AAAI
Conference on Artificial Intelligence, 2021.

Jinan Zou, Qingying Zhao, Yang Jiao, Haiyao Cao, Yanxi Liu, Qingsen Yan, Ehsan Abbasnejad,
Lingqiao Liu, and Javen Qinfeng Shi. Stock market prediction via deep learning techniques: A
survey, 2023. URL https://arxiv.org/abs/2212.12717.

APPENDICES

In the following, we provide theoretical derivations and experimental details of the main results in
the paper.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A THEORETICAL FOUNDATIONS OF TEDM

A.1 PRELIMINARY

Following Song et al. (2021), we consider diffusion processes as solutions to an Itô SDE
dxt = f(xt, t) dt+G(xt, t) dωt, (A.1)

where f(·, t) : Rd → Rd and G(·, t) : Rd → Rd×d. Here, ωt is a Wiener process, with changes
having zero-mean, E(dωt) = 0, and being uncorrelated: E(dωtdω

T
t) = Idt.

To simplify notation, we label functions of time with a subscript, e.g. the drift term is written as
f(xt, t) = ft(xt). Also, we explicitly keep the time dependence of xt when important from the
context, otherwise we just use x.

We consider the diffusion term, G(xt, t) = Gt, to be independent of x (or slowly varying with x).
See Assumption A.1 for a more concrete statement about this condition. The SDE then becomes

dxt = ft(xt) dt+Gt dωt. (A.2)
In the following, we consider the case of affine drift term, for which the perturbation kernel is
Gaussian.

A.2 PERTURBATION KERNEL

The transition probability density for drift terms of the form ft(x) = ftx, with ft : R → R, is
Gaussian (Eq. 29 in Song et al. (2021)):

p0t(xt|x0) = N (xt;µt,Vt), (A.3)
with mean µt and covariance Vt. To find these moments, we express (A.2) in the form

dxt = ftxt dt+Gt dωt. (A.4)
Taking expectation value

dE(xt) = ftE(xt) dt+Gt E(dωt)

= ftE(xt) dt

dµt = ftµtdt

dµt

dt
= ftµt

µt = e
∫ t
0
fτdτµ0 := stx0,

where the scale process is defined as

E(xt) = st E(x0), st = e
∫ t
0
fτdτ . (A.5)

Using this, and the integral form

xt = stx0 + st

∫ t

0

s−1
τ Gτdωτ , (A.6)

of the Itô process (A.2), we can find the covariance as
Vt = Cov(xt)

= Cov

(
st

∫ t

0

s−1
τ Gτdωτ

)
= s2t

∫ t

0

s−2
τ Cov(Gτdωτ)

= s2t

∫ t

0

s−2
τ GτG

T
τ Cov(dωτ)

= s2t

∫ t

0

s−2
τ GτG

T
τ Idτ

= s2tΣt, (A.7)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where we have defined

Σt :=

∫ t

0

s−2
τ GτG

T
τ dτ (A.8)

s2t Σ̇t = GtG
T
t . (A.9)

The perturbation kernel (A.3) can then be written as

p0t(xt|x0) = N (xt; stx0, s
2
tΣt). (A.10)

A.3 SCORE FUNCTION AND DENOISER

The score function is defined as ∇x log pt(x), where pt(x) is the marginal distribution. The latter is
obtained by integrating (A.10) over all initial conditions:

pt(x) =

∫
Rd

p0t(x|x0) pdata(x0)dx0

=

∫
Rd

N (x; stx0, s
2
tΣt) pdata(x0)dx0

= s−d
t

∫
Rd

N (x/st;x0,Σt) pdata(x0)dx0

= s−d
t p(x/st,Σt), (A.11)

where we have used the fact that

N (x;y,Σ) =
1

(2π)d/2|Σ|1/2
e−

1
2 (x−y)TΣ−1(x−y), (A.12)

and therefore we can express

N (xt; stx0, s
2
tΣt) = s−d

t N (xt/st;x0,Σt). (A.13)

Following Eq. 19 in Karras et al. (2022), we have defined the mollified version of the data distribution

p(x,Σ) = pdata(x) ∗ N (0;Σ), (A.14)

as a convolution that effectively corrupts data samples with Gaussian noise.

Score function. The score function is calculated from (A.11)

∇x log pt(x) = ∇x log
[
s−d
t p(x/st,Σt)

]
= ∇x log p(x/st,Σt)

=
∇x p(x/st,Σt)

p(x/st,Σt)

= s−1
t

∇x̂ p(x̂,Σt)

p(x̂,Σt)
, x̂ = x/st. (A.15)

To evaluate this, we need an analytical expression for the probability density of the data.

Consider a dataset with a finite number of samples {y1, · · · ,yN}. Assume that these arise from
transforming the dataset {x1, · · · ,xN} using a continuously differentiable mapping g, so Y = g(X).
The discrete dataset has density fX(x) =

∑N
i=1 pxi

δ(x− xi), where pxi
is the probability mass of

xi. The density of Y is known to be

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

fY (y) =

∫
Rd

fX(x)δ(y − g(x)) dx (A.16)

=

∫
Rd

[
N∑
i=1

pxi
δ(x− xi)

]
δ(y − g(x)) dx (A.17)

=

N∑
i=1

pxi

∫
Rd

δ(x− xi)δ(y − g(x)) dx (A.18)

=

N∑
i=1

pxi
δ(y − g(xi)) (A.19)

=

N∑
i=1

pxi
δ(y − yi). (A.20)

In the case of images, g is the identity mapping and pxi = 1/N is the uniform density. For time-
series, one can think of a propagator g that takes each xi into the corresponding yi after a number of
physical time steps. One can then write the data distribution as

pdata(x0) =

N∑
i=1

pxi
δ(x0 − yi). (A.21)

With this, we can evaluate (A.11) as

p(x̂,Σt) =

∫
Rd

N (x̂;x0,Σt) pdata(x0)dx0

=

∫
Rd

N (x̂;x0,Σt)

[
N∑
i=1

pxi
δ(x0 − yi)

]
dx0

=

N∑
i=1

pxi
N (x̂;yi,Σt) (A.22)

∇x̂ p(x̂,Σt) =

N∑
i=1

pxi
∇x̂ N (x̂;yi,Σt) (A.23)

From (A.12) we have

∇x̂ N (x̂;y,Σt) = N (x̂;y,Σt)∇x̂ log N (x̂;y,Σt)

= N (x̂;y,Σt)∇x̂

[
− 1

2 (x̂− y)TΣ−1
t (x̂− y)

]
= N (x̂;y,Σt)

[
−Σ−1

t (x̂− y)
]
,

Substituting in (A.23)

∇x̂ p(x̂,Σt) =

N∑
i=1

pxi
N (x̂;yi,Σt)

[
−Σ−1

t (x̂− yi)
]

(A.22)
= Σ−1

t [p(x̂,Σt)D(x̂,Σt)− x̂ p(x̂,Σt)]

= p(x̂,Σt)Σ
−1
t [D(x̂,Σt)− x̂]

where we have defined

D(x̂,Σt) =

∑N
i=1 pxi

N (x̂;yi,Σt)yi∑N
i=1 pxi

N (x̂;yi,Σt)
. (A.24)

Substituting in (A.15)

∇x log pt(x) = s−1
t Σ−1

t [D(x/st,Σt)− x/st] . (A.25)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Denoiser. We want to show that (A.25) links the score function to the denoiser. That is, (A.24) is
the optimal solution of the denoising objective

L(D;Σ) = Ey∼pdataEn∼N (0,Σ)∥D(y + n,Σ)− y∥2

= Ey∼pdataEx∼N (y,Σ)∥D(x,Σ)− y∥2

= Ey∼pdata

∫
Rd

N (x;y,Σ)∥D(x,Σ)− y∥2dx

=

∫
Rd

N∑
i=1

pxiN (x;yi,Σ)∥D(x,Σ)− yi∥2dx

=

∫
Rd

L(D;x,Σ) dx.

Since the integrand is positive everywhere, the optimal solution D⋆ satisfies
D⋆(x,Σ) = arg min

D(x,Σ)
L(D;x,Σ).

Since this is a convex optimization problem, the unique solution is found as

0 = ∇D(x,Σ) L(D;x,Σ)

= ∇D(x,Σ)

N∑
i=1

pxiN (x;yi,Σ)∥D(x,Σ)− yi∥2

=

N∑
i=1

pxiN (x;yi,Σ)∇D(x,Σ)∥D(x,Σ)− yi∥2

=

N∑
i=1

pxiN (x;yi,Σ) 2
[
D⋆(x,Σ)− yi

]
D⋆(x,Σ) =

∑N
i=1 pxi

N (x;yi,Σ)yi∑N
i=1 pxi

N (x;yi,Σ)
.

This optimal solution agrees with (A.24).

A.4 TRAINING WITH PRECONDITIONING

Motivated by Karras et al. (2022), we train the denoiser Dθ(x,Σ) by minimizing a weighted version
of the denoising objective

L(Dθ) = EΣ∼PΣ
λ(Σ)L(Dθ;Σ),

= EΣ∼PΣ
Ey∼pdataEn∼N (0,Σ) λ(Σ)∥Dθ(y + n,Σ)− y∥2, (A.26)

where PΣ is a distribution over noise covariances, and λ(Σ) is a weighting function. For simplicity,
we write single functions of Σ in terms of subscripts, e.g. λ(Σ) = λΣ.

We extend the EDM preconditioning strategy as
Dθ(x,Σ) = CΣ;skip x+ cΣ;out Fθ(CΣ;in x;CΣ;noise), (A.27)

where Fθ(·; ·) is a neural network with parameters θ; CΣ;skip, CΣ;in, and CΣ;noise are preconditioning
matrices that depend on the noise covariance Σ, and cΣ;out is a scalar. Substituting in (A.26)

L(θ) = EΣ,y,n λΣ∥CΣ;skip(y + n) + cΣ;outFθ(CΣ;in(y + n);CΣ;noise)− y∥2,
= EΣ,y,n λΣc

2
Σ;out∥Fθ(CΣ;in(y + n);CΣ;noise)− 1

cΣ;out
(y −CΣ;skip(y + n))∥2,

= EΣ,y,n λΣc
2
Σ;out∥Fθ(CΣ;in(y + n);CΣ;noise)− Ftarget(y,n,Σ)∥2, (A.28)

which is just the l2-supervision of the neural network Fθ(·; ·) to match the target function. While
doing this, it is required that:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• Fθ sees unit-variance inputs. This is achieved by choosing CΣ;in such that

Cov(CΣ;in(y + n)) = I,

CΣ;in Cov(y + n)CT
Σ;in = I,

CΣ;in (Cov(y) +Σ)CT
Σ;in = I,

CΣ;in = (Cov(y) +Σ)−1/2. (A.29)

Note that this holds even when Σ is estimated from the data y, as long as the estimator is
unbiased. This is because, in general, from the law of total covariance,

Cov(y + n) = E[Cov(y + n|y)] + Cov(E[y + n|y]) = Cov(y) + E[Σ̂],

since Cov(y|y) = 0, Cov(n|y) = Σ̂, and E[y + n|y] = y.
• Ftarget gives unit-variance outputs. This is achieved by choosing cΣ;out such that

Cov(Ftarget(y,n,Σ)) = I,

Cov
(

1
cΣ;out

(y −CΣ;skip(y + n))
)
= I,

1

c2Σ;out
Cov ((I −CΣ;skip)y −CΣ;skipn) = I,

(I −CΣ;skip) Cov(y) (I −CΣ;skip)
T +CΣ;skip ΣCT

Σ;skip = c2Σ;outI. (A.30)

• Errors in Fθ are amplified as little as possible. This is achieved by choosing CΣ;skip
above to minimize cΣ;out. For this, we can set up the optimization problem

min
CΣ;skip

c2Σ;out

s.t. (I −CΣ;skip) Cov(y) (I −CΣ;skip)
T +CΣ;skip ΣCT

Σ;skip = c2Σ;outI.

This is a constrained matrix optimization problem that can be solved with Lagrange multi-
pliers. That is, we define the Lagrangian

L(CΣ;skip, cΣ;out,Λ) = c2Σ;out

+Tr
[
Λ
(
(I −CΣ;skip) Cov(y) (I −CΣ;skip)

T

+CΣ;skip ΣCT
Σ;skip − c2Σ;outI

)]
.

where Λ is a symmetric matrix of Lagrange multipliers. Setting the gradients to zero gives
the optimality conditions

∇CΣ;skip L = −2Λ(I −CΣ;skip) Cov(y) + 2ΛCΣ;skip Σ = 0,

∇cΣ;out L = 2cΣ;out − 2cΣ;out Tr(Λ) = 0,

∇Λ L = (I −CΣ;skip) Cov(y) (I −CΣ;skip)
T +CΣ;skip ΣCT

Σ;skip − c2Σ;outI
(A.30)
= 0.

From the second condition, we have that either cΣ;out = 0 or Tr(Λ) = 1. The former is not
acceptable, since it would lead to a trivial solution. The latter implies that Λ ̸= 0. Therefore,
the first condition can be written as

−2(I −CΣ;skip) Cov(y) + 2CΣ;skip Σ = 0,

(I −CΣ;skip) Cov(y) = CΣ;skip Σ, (A.31)
CΣ;skip(Cov(y) +Σ) = Cov(y),

CΣ;skip = Cov(y)(Cov(y) +Σ)−1. (A.32)

Substituting (A.31) back in the constraint equation (A.30), we find

(I −CΣ;skip) Cov(y) (I −CΣ;skip)
T +CΣ;skip ΣCT

Σ;skip = c2Σ;outI,

CΣ;skip Σ (I −CΣ;skip)
T +CΣ;skip ΣCT

Σ;skip = c2Σ;outI,

CΣ;skip Σ = c2Σ;outI,

Cov(y)(Cov(y) +Σ)−1 Σ
(A.32)
= c2Σ;outI. (A.33)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

With AΣ = Cov(y)(Cov(y) + Σ)−1 Σ, we see that AΣ e = c2Σ;oute, so c2Σ;out is the
eigenvalue of AΣ with eigenvector e. To minimize cΣ;out, it must be chosen as the smallest
eigenvalue of AΣ.

• The loss weighing is uniform. This is achieved by choosing λΣ such that

λΣc
2
Σ;out = 1, (A.34)

so λΣ is the inverse of the smallest eigenvalue of AΣ.

The preconditioning then ensures that the neural network Fθ is trained on unit-variance inputs and
targets, while minimizing the amplification of errors and ensuring uniform loss weighting.

Preconditioning summary. The preconditioning matrices and scalars are

CΣ;in = (Cov(y) +Σ)−1/2, (A.35)

CΣ;skip = Cov(y)(Cov(y) +Σ)−1, (A.36)

c2Σ;outI = Cov(y)(Cov(y) +Σ)−1 Σ, (A.37)

λΣ = 1/c2Σ;out. (A.38)

The remaining CΣ;noise is chosen empirically, as in EDM.

A.4.1 SIMPLEST CASE: DIAGONAL Σ

In the isotropic case, Σ = σ2I , the preconditioning reduces to the EDM case, only if the data is
assumed identically and independently distributed (i.i.d.), so that Cov(y) = σ2

dataI . In this case, each
preconditioning component simplifies to

Cσ;in =
1√

σ2
data + σ2

,

Cσ;skip =
σ2

data

σ2
data + σ2

c2σ;out =
σ2

data σ
2

σ2
data + σ2

,

λσ =
σ2

data + σ2

σ2
data σ

2
.

For images, Karras et al. (2022) use σdata = 0.5. For standardized time series with unit variance,
Price et al. (2025) use σdata = 1 for weather forecasting.

In the anisotropic but diagonal case, Σ = diag(σ2
1 , σ

2
2 , . . . , σ

2
d), and assuming i.i.d. data, Cov(y) =

σ2
dataI , the preconditioning components become

CΣ;in = diag

(
1√

σ2
data + σ2

1

,
1√

σ2
data + σ2

2

, . . . ,
1√

σ2
data + σ2

d

)
,

CΣ;skip = diag

(
σ2

data

σ2
data + σ2

1

,
σ2

data

σ2
data + σ2

2

, . . . ,
σ2

data

σ2
data + σ2

d

)
,

c2Σ;out = min
j=1,...,d

(
σ2

data σ
2
j

σ2
data + σ2

j

)
,

λΣ =
1

c2Σ;out
.

This is the next level of complexity, allowing different noise levels per dimension, but still assuming
uncorrelated data. This is the case that is used in our experiments, where we set σdata = 1, following
Price et al. (2025).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.4.2 GENERAL CASE: FULL Σ

In this case, we first notice that the sampled noise n = Σ1/2ε, with ε ∼ N (0,Σ) is fully structured.
But the square root of Σ1/2 is no longer computed as the element-wise square root of the diagonal
elements. For noise sampling, it is sufficient to decompose Σ via Cholesky, Σ = LLT , where L is
a lower-triangular matrix. Then, noise samples are obtained as n = Lε, with ε ∼ N (0, I). Such
noise samples will have covariance Σ, since Cov(n) = L Cov(ε)LT = LLT = Σ.

The preconditioning matrices and scalars can be written, just in terms of Σ, by using (A.7), so that
Cov(y) = s2Σ. This gives

CΣ;in = (s2Σ+Σ)−1/2 =
1√

1 + s2
Σ−1/2, (A.39)

CΣ;skip = s2Σ(s2Σ+Σ)−1 =
s2

1 + s2
I, (A.40)

c2Σ;out = smallest eigenvalue of
s2

1 + s2
Σ, (A.41)

λΣ =
1 + s2

s2
· 1

smallest eigenvalue of Σ
. (A.42)

Note that CΣ;in can be efficiently applied to vectors v only in terms of L−1v (up to an orthogonal
rotation). This is due to the known relation Σ−1/2v = QL−1v, for some orthogonal matrix Q. Thus,
we only need to solve linear systems with L, which is efficient since L is lower-triangular.

A.5 SAMPLING DURING INFERENCE

The general forward SDE (A.1)

dx = ft(x) dt+Gt(x) dωt, (A.43)

has no infomation about the data distribution pdata(x). Such information is learned through the score
function ∇x log pt(x), where pt(x) is the marginal density of xt at time t. There are two main ways
of incorporating this information into the sampling process:

1. Deterministic (ODE): by removing the noise term from the SDE, and adjusting the drift
term to include the score function.

2. Stochastic (SDE): by going backwards in time with a backward SDE that includes the score
function in the drift term.

Both ways start from the forward Kolmogorov (or Fokker-Planck) equation, which describes how
the marginal density pt(x) evolves with time. We write it as a continuity equation, by defining the
probability flux

Jt(x) = ft(x) pt(x)− 1
2∇x ·

[
Gt(x)G

T
t (x)pt(x)

]
. (A.44)

With this, density changes occur by flux transport

∂pt(x)

∂t
= −∇x · Jt(x). (A.45)

Assumption A.1 (Smooth flows). The changes ∇x ·
[
Gt(x)G

T
t (x)

]
are negligible. That is, there

exist c > 0 such that ∥∇x ·
[
Gt(x)G

T
t (x)

]
∥ ≪ c ∥Gt(x)G

T
t (x)∥. This allows to drop the

x-dependence of Gt(x)G
T
t (x) and, from (A.9), just write GtG

T
t = s2t Σ̇t

Intuitively, the temporal rate of Σt does not vary considerably from sample x to sample. This leaves
jump processes out of scope. For these, Itô processes have to be generalized to jump-diffusion
stochastic dynamics Anvari et al. (2016).

Using assumption A.1, we can write the flux (A.44) as

Jt(x) = ft(x) pt(x)− 1
2GtG

T
t ∇xpt(x),

= ft(x) pt(x)− 1
2s

2
t Σ̇t∇xpt(x). (A.46)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.5.1 DETERMINISTIC SAMPLING

This is achieved by obtaining values of xt without the noise term in the SDE, but still distributed
according to pt(x). We see from (A.43) that making the diffusion term Gt(x) = 0 removes the
noise from the SDE. This manifests, from (A.44), as the probability flux being proportional to the
drift term ft(x). This gives a general recipe for obtaining the desired ODE: find a new process

dx = f∗
t (x) dt, (A.47)

that has the same probability flux (A.46) as the original, but proportional to the drift term f∗
t (x). We

can rewrite (A.46) as

Jt(x) = ft(x) pt(x)− 1
2s

2
t Σ̇t∇xpt(x)

= ft(x) pt(x)− 1
2s

2
t Σ̇t pt(x)∇x log pt(x)

=
[
ft(x)− 1

2s
2
t Σ̇t ∇x log pt(x)

]
pt(x)

= f∗
t (x) pt(x),

from which the new drift term f∗
t (x) is readily obtained. The ODE running backward in time is

obtained, from (A.47), by changing the sign of f∗
t (x). This is the one used for deterministic sampling,

in which backward evolution is linked to denoising:

dx

dt
= −ft(x) +

1
2s

2
t Σ̇t ∇x log pt(x). (A.48)

Bringing back the affine drift ft(x) = ftx
(A.5)
= (ṡt/st)x, and the score from (A.25), we have that

dx

dt
= − ṡt

st
x+ 1

2s
2
t Σ̇t s

−1
t Σ−1

t [D(x/st,Σt)− x/st] ,

= −d log st
dt

x+ 1
2stΣ̇t Σ

−1
t [D(x/st,Σt)− x/st] (A.49)

Simplest cases: Σt commutes with Σ̇t. We want to find the conditions under which the ODE
(A.49) can be expressed in terms of logarithmic differentials of both st and Σt.

Lemma A.1. If Σt commutes with Σ̇t, then

d logΣt

dt
= Σ̇t Σ

−1
t . (A.50)

Proof. The Daleckii-Krein formula Higham (2008), for Γt = logΣt, reads

Γ̇t =

∫ ∞

0

(Σt + ηI)
−1

Σ̇t (Σt + ηI)
−1

dη. (A.51)

If Σt commutes with Σ̇t (i.e. [Σt, Σ̇t] = 0), then they can be diagonalized simultaneously, so that

Γ̇t =

∫ ∞

0

(
UΛtU

T + ηI
)−1

UΛ̇tU
T
(
UΛtU

T + ηI
)−1

dη,

= U

(∫ ∞

0

(Λt + ηI)
−1

Λ̇t (Λt + ηI)
−1

dη

)
UT ,

= U

(∫ ∞

0

diag

(
λ̇t,1

(λt,1 + η)2
,

λ̇t,2

(λt,2 + η)2
, . . . ,

λ̇t,d

(λt,d + η)2

)
dη

)
UT ,

= U diag

(
λ̇t,1

λt,1
,
λ̇t,2

λt,2
, . . . ,

λ̇t,d

λt,d

)
UT ,

= UΛ̇t Λ
−1
t UT ,

= Σ̇t Σ
−1
t ,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

where the η-integrals were computed element-wise, as
∫∞
0

(λ+ η)−2dη = 1/λ. ■

Under such a commutation condition, we can rewrite (A.49) as

dx

dt
= −d log st

dt
x+ 1

2st
d logΣt

dt
[D(x/st,Σt)− x/st]

dx = −
[
d log st +

1
2d logΣt

]
x+ 1

2st [d logΣt]D(x/st,Σt)

= −
[
d log(stΣ

1/2
t)

]
x+ st

[
d logΣ

1/2
t

]
D(x/st,Σt),

where we have used the property logΣk = k logΣ, always valid for symmetric positive definite
matrices, and log(aΣ) = log(a)I + logΣ, for scalar a. The latter is valid for any matrix Σ.

This gives the deterministic ODE:

dxt = −
[
d log(stΣ

1/2
t)

]
xt + st

[
d logΣ

1/2
t

]
D(xt/st,Σt). (A.52)

Now, in an Euler step, we can approximate [Σt, Σ̇t] = 0 = [Σt,Σt − Σt−1] = −[Σt,Σt−1].
Therefore, given functions f and g, log[f(Σt)g(Σt−1)] = log f(Σt) + log g(Σt−1). This can be
used to write an Euler step of (A.52) as

xt+1 − xt = −
[
log(stΣ

1/2
t)− log(st−1Σ

1/2
t−1)

]
xt + st

[
logΣ

1/2
t − logΣ

1/2
t−1

]
D(xt/st,Σt)

= −
[
I log

st
st−1

+
(
logΣ

1/2
t − logΣ

1/2
t−1

)]
xt + st

[
logΣ

1/2
t − logΣ

1/2
t−1

]
D(xt/st,Σt)

= −
[
log

st
st−1

Σ
1/2
t Σ

−1/2
t−1

]
xt + st

[
logΣ

1/2
t Σ

−1/2
t−1

]
D(xt/st,Σt)

xt+1 =
[
I − log

st
st−1

Σ
1/2
t Σ

−1/2
t−1

]
xt + st

[
logΣ

1/2
t Σ

−1/2
t−1

]
D(xt/st,Σt), (A.53)

where we have approximated the differentials of the logarithms as backward differences that exploit
the current and previous steps.
Remark A.1. The case of Σt being diagonal (considered in the main text) is included in the com-
mutation condition, since diagonal matrices always commute. However, the inference formula of
this section applies more generally to processes for which the principal axes of Σt remain fixed in
time, while only the eigenvalues change. This was assumed when writing Σt = UΛtU

T , with fixed
orthogonal U and time-varying diagonal Λt.

General case: unconstrained Σt. We can have processes respecting assumption A.1, with the
principal axes of Σt allowed to change with time. Deterministic sampling in this case, can be obtained
from (A.49), which can be written as

dxt

dt
= −d log st

dt
xt +

1
2stΣ̇t Σ

−1
t [D(xt/st,Σt)− xt/st] ,

= −d log st
dt

xt +
1
2stΣ̇t Σ

−1
t [D(xt/st,Σt)− xt/st] ,

dxt = −d log st xt +
1
2stdΣt Σ

−1
t [D(xt/st,Σt)− xt/st] . (A.54)

An Euler step of this reads,

xt+1 − xt = − (log st − log st−1)xt +
1
2st (Σt −Σt−1)+ Σ−1

t [D(xt/st,Σt)− xt/st] ,

xt+1 =

[
I − log

st
st−1

I

]
xt +

1
2st (Σt −Σt−1)+ Σ−1

t [D(xt/st,Σt)− xt/st] , (A.55)

where (·)+ denotes the projection onto the cone of positive semi-definite matrices—since Σ̇t ≻ 0 for
the Itô diffusion to be well defined, dΣt ≻ 0 as well, and hence its finite-difference approximations.
Again, as in the general preconditioning case, the matrix Σ−1

t has to be applied to vectors via L−1
t ,

where Σt = LtL
T
t is the Cholesky decomposition of Σt.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

A.5.2 STOCHASTIC SAMPLING

We could also sample from the data distribution by going backwards in time with a backward SDE.
We anticipated how to do this with the ODE, by reversing the sign of the flux term. This manifested
itself in the sign change of the drift term in (A.47).

In general, the time reversal entails a new Itô SDE of the form

dx = f̃t(x) dt+Gt(x) dω̃t, (A.56)

where the probability flux is reversed

J̃t(x) = −Jt(x). (A.57)

Writing (A.46) in a form proportional to pt(x), we have Jt =
[
ft(x)− 1

2s
2
t Σ̇t ∇x log pt(x)

]
pt(x).

Therefore, from (A.57), we get[
f̃t(x)− 1

2s
2
t Σ̇t ∇x log pt(x)

]
pt(x) = −

[
ft(x)− 1

2s
2
t Σ̇t ∇x log pt(x)

]
pt(x)

f̃t(x)− 1
2s

2
t Σ̇t ∇x log pt(x) = −

[
ft(x)− 1

2s
2
t Σ̇t ∇x log pt(x)

]
f̃t(x) = −ft(x) + s2t Σ̇t ∇x log pt(x)

The backward SDE (A.56) thus acquires the form

dx =
[
−ft(x) + s2t Σ̇t ∇x log pt(x)

]
dt+Gt dω̃t, (A.58)

containing the score function in the new drift term.

Karras et al. (2022) derived a SDE sampler for isotropic diffusion. Here, we extend their derivation
to the anisotropic but diagonal case.

Simplest case: Diagonal Σt. We consider the anisotropic heat equation

∂qt(x)

∂t
= ∇x ·Kt∇xqt(x), (A.59)

whose solution, with initial value q0(x) := pdata(x), is the marginal density qt(x) = pt(x). The
matrix Kt is considered diagonal, with different elements along the diagonal implying anisotropy.
Taking Fourier transform along the x-dimension, we get

∂q̂t(ν)

∂t
= −

(
νTKt ν

)
q̂t(ν), (A.60)

The target solution qt(x) = pt(x) and its Fourier transform q̂t(ν) are given by (A.11) and (A.14)

qt(x) = s−d
t pdata(x/st) ∗ N (0;Σt) (A.61)

q̂t(ν) = p̂data(ν) exp
[
− 1

2ν
TΣt ν

]
. (A.62)

Differentiating (A.62) along the time axis, we have

∂q̂t(ν)

∂t
= −

(
1
2ν

T Σ̇t ν
)
q̂t(ν). (A.63)

Equating with the right-hand side of (A.60), we get

νTKt ν = 1
2ν

T Σ̇t ν

Kt =
1
2Σ̇t,

the second equality resulting from assuming Σt diagonal. Substituting in (A.59) we have

∂pt(x)

∂t
= 1

2∇x · Σ̇t∇xpt(x), (A.64)

(A.45)
= −∇x · Jt(x).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Equating the right-hand sides of (A.64) and (A.45), we get

−Jt(x) =
1
2Σ̇t∇xpt(x)

−ft(x) pt(x) +
1
2s

2
t Σ̇t∇xpt(x) =

1
2Σ̇t∇xpt(x)

−ft(x) pt(x) =
1
2 (1− s2t)Σ̇t∇xpt(x)

ft(x) =
1
2 (s

2
t − 1)Σ̇t

∇xpt(x)

pt(x)

ft(x) =
1
2 (s

2
t − 1)Σ̇t∇x log pt(x).

Substituting in the forward (A.2) and backward (A.58) SDE we get, respectively,

dx+ = 1
2 (s

2
t − 1)Σ̇t∇x log pt(x) dt+Gt dωt, (A.65)

dx− = (s2t +
1
2)Σ̇t∇x log pt(x) dt+Gt dω̃t. (A.66)

Since, from (A.9), s2t Σ̇t = GtG
T
t is an equation involving diagonal matrices, we can safely write

Gt = stΣ̇
1/2
t . This leads to the SDE for diagonal Σt, after the score function is written in terms of

the denoiser and (A.50) is used.

General case: full Σt. Bringing back the drift term ft(x) = (ṡt/st)x = (d
dt log st)x into (A.58),

we have

dxt =
[
− d

dt log st xt + s2t Σ̇t ∇x log pt(xt)
]
dt+Gt dω̃t,

=
[
− d

dt log st xt + s2t Σ̇t s
−1
t Σ−1

t [D(xt/st,Σt)− xt/st]
]
dt+Gt dω̃t,

=
[
− d

dt log st xt + stΣ̇t Σ
−1
t [D(xt/st,Σt)− xt/st]

]
dt+Gt dω̃t,

= −(d log st)xt + st(dΣt)Σ
−1
t [D(xt/st,Σt)− xt/st] +Gt dω̃t.

Now, for the Itô diffusion to be well defined, we need GtG
T
t = s2t Σ̇t to be positive semi-definite.

We can then still write Gt = stΣ̇
1/2
t , and take into account that finite difference approximations of

dΣt have to be projected back to the positive semi-definite cone if needed.

B BASELINE MEAN FORECAST

In this appendix we derive the theoretical MSE and MAE of the mean forecast baseline used in our
experiments. The derivation follows the classical normality assumption for forecasting errors (see,
e.g., Hyndman & Athanasopoulos (2018)).

B.1 SETUP

Let (yt)Tt=1 be a univariate time series generated as

yt = µ+ εt, εt
iid∼ N (0, σ2), (A.67)

with unknown mean µ and variance σ2. We observe T past values y1, . . . , yT and consider forecasting
a future value yT+H , where H ≥ 1.

The baseline forecast we use is the sample mean

ŷT+H|T = ȳT :=
1

T

T∑
t=1

yt, (A.68)

which is constant across horizons H .

Throughout, expectations and variances are taken with respect to the joint distribution of
(y1, . . . , yT , yT+H) under the model (A.67). We first derive the distribution of the forecast error
eT+H , and then obtain closed-form expressions for MSE and MAE.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

B.2 DISTRIBUTION OF THE FORECAST ERROR

The forecast error at horizon H is

eT+H := yT+H − ŷT+H|T = yT+H − ȳT . (A.69)

Using (A.67) and (A.68), we can write

yT+H = µ+ εT+H , (A.70)
ȳT = µ+ ε̄T , (A.71)

where

ε̄T :=
1

T

T∑
t=1

εt ∼ N
(
0,

σ2

T

)
. (A.72)

By independence of the innovations,

εT+H ∼ N (0, σ2), εT+H ⊥ ε̄T . (A.73)

Hence,
eT+H = εT+H − ε̄T . (A.74)

Since eT+H is a linear combination of independent Gaussian random variables,

eT+H ∼ N
(
0, σ2

(
1 +

1

T

))
. (A.75)

Note that this distribution does not depend on the horizon H .

B.3 MEAN SQUARED ERROR (MSE)

The MSE of the baseline forecast at horizon H is

MSEmean(T) := E
[
e2T+H

]
. (A.76)

Using (A.75),

MSEmean(T) = Var(eT+H) = σ2

(
1 +

1

T

)
. (A.77)

In particular, if the time series is standardized so that σ2 = 1, we obtain

MSEmean(T) = 1 +
1

T
. (A.78)

B.4 MEAN ABSOLUTE ERROR (MAE)

The MAE of the baseline forecast at horizon H is

MAEmean(T) := E
[
|eT+H |

]
. (A.79)

From (A.75), we have

eT+H ∼ N (0, τ2), τ2 := σ2

(
1 +

1

T

)
. (A.80)

Let Z ∼ N (0, 1) and write eT+H = τZ. Then

E
[
|eT+H |

]
= τ E

[
|Z|
]
. (A.81)

It is a standard result that for a standard normal random variable,

E
[
|Z|
]
=

√
2

π
. (A.82)

Therefore,

MAEmean(T) =

√
2

π
τ =

√
2

π
σ

√
1 +

1

T
. (A.83)

In the standardized case σ2 = 1, this simplifies to

MAEmean(T) =

√
2

π

√
1 +

1

T
. (A.84)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 7: TEDM hyperparameters selected per dataset: context backward shift kctx, variance clamping
interval [vmin, vmax], and scale clamping interval [smin, smax].

Dataset kctx vmin vmax smin smax

ETTh1 0 5.9× 10−6 1.91 1.25 9.38
ETTh2 1 9.8× 10−6 6.38 0.47 1.74
ETTm1 4 5.7× 10−7 2.33 1.24 2.68
ETTm2 0 7.6× 10−3 7.17 0.74 5.14
Exchange 9 6.9× 10−7 7.72 0.87 4.58
Stock 1 4.6× 10−5 7.69 0.11 2.17
Weather 1 4.6× 10−5 7.69 0.11 2.17

B.5 SUMMARY

Under the Gaussian error model (A.67) and the mean baseline forecast (A.68), the theoretical error
measures—for standardized datasets with unit variance (σ2 = 1)—are

MSEmean(T) = 1 +
1

T
, (A.85)

MAEmean(T) =

√
2

π

√
1 +

1

T
. (A.86)

These expressions are used to compute the Baseline column in Table 6, where T = H .

C EXPERIMENTS

C.1 DATASETS

The ETT, Exchange, Weather, and Solar datasets are available from https://github.
com/thuml/iTransformer, and the Stock dataset from https://github.com/
Y-debug-sys/Diffusion-TS.

C.2 HYPERPARAMETERS

For each dataset we tune a small set of hyperparameters on the validation split and then keep the
selected configuration fixed for all reported test results. Concretely, we vary (a) the context backward
shift kctx used for conditional denoising (i.e. the context window is shifted to the past by kctx to act
like a conditioning window), (b) the clamping range (smin, smax) of the scale schedule st, (c) the
clamping range (vmin, vmax) of the variance schedule Σt, and (d) the choice of denoising network
architecture. The best intervals are tuned via small discrete grids on the validation set, and chosen
to minimize validation MSE. We also compare two noise schedule variants—cumulative vs. sliding
Σt—and, for each dataset, and report results using the better-performing variant. The final per-dataset
hyperparameters used in all experiments are summarized in Table 7.

C.3 DENOISER NETWORK ARCHITECTURES

We evaluate several denoising backbones of varying complexity.

LinearNet. LinearNet is a simple fully connected layer that applies a linear transformation
Linear(seq len,seq len) along the temporal dimension of the noised input. It does not in-
corporate any temporal inductive bias (e.g., recurrence or attention) and serves as a minimalist
baseline to assess the impact of architectural complexity.

UNet. Our UNet adapts the ADM architecture from “Diffusion Models Beat GANs on Image
Synthesis” (Dhariwal & Nichol, 2021) to sequential data, leveraging alias-free resampling (Anjum,
2024) and rotary embeddings (Su et al., 2023) for time series. Noise levels are embedded (via

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

learned or sinusoidal embeddings) and mapped into a high-dimensional space through two linear
layers. The encoder stacks residual 1D convolutional blocks with downsampling between resolutions
and applies self-attention at selected scales. Unless otherwise specified, the UNet uses feature
size d = feat size equal to the number of dataset features, Kaiser kernel size 64, and Kaiser
β = 14.77, which are kept fixed across all datasets.

ConvLSTMNet. ConvLSTMNet combines convolutional filtering with a bidirectional LSTM to
capture both local and long-range temporal dependencies. Diffusion noise is embedded via positional
or learned sinusoidal mappings, and the noised signal is adapted through shift-and-scale convolutions.
A lightweight pre-LSTM 1D convolution refines these features, which are then processed by a
bidirectional LSTM layer.

AttnNet. AttnNet employs a single cross-attention layer (Vaswani et al., 2023) to enable the
denoiser to leverage mutual information between the noised sequence and the conditioning context at
each time step. Concretely, it uses a single multi-head attention block

nn.MultiheadAttention(embed dim = d, num heads = d),

with the same configuration shared across all datasets.

AttnNetSigma. AttnNetSigma extends AttnNet by stacking two cross-attention modules: one
attends from the noised input to its context, and the other attends to the noise level. Each attention
block is followed by a residual connection and LayerNorm (He et al., 2015).

AttnPosEmbNet. AttnPosEmbNet augments cross-attention with learned time-step embeddings
and Feature-wise Linear Modulation (FiLM) conditioning on the noise level (Perez et al., 2017). This
design allows the denoiser to modulate its representations explicitly as a function of diffusion time.

C.4 TRAINING

We train all models with a batch size of 128 and select hyperparameters via validation tuning
separately for each dataset. Optimization is performed with Adam (Kingma & Ba, 2017), using a
linear learning-rate warmup over the first 15% of epochs, followed by a reduce-on-plateau schedule.
Models are trained without early stopping, and we report results from the final checkpoint evaluated
on the held-out test set. All experiments are run on a single machine equipped with 8 NVIDIA Tesla
A100 GPUs (40 GiB each). To facilitate exact reproducibility, we fix random seeds for data shuffling
and parameter initialization.

C.5 OTHER ABLATION STUDIES

To identify the most influential hyperparameters within our diffusion framework, we conducted
systematic ablations over various parameters and architectures. In our ablation study, for each
parameter, we measured validation MSE across a grid of candidate values. Parameters exhibiting
the strongest correlation with forecasting accuracy were selected for further processing. Using such
parameters, we did fine-grained tuning to obtain our best results in Table 2. These results were
obtained with the UNet, with the lightweight architectures (e.g. AttnNet or LinearNet) still delivering
SOTA performance with minimal compute—in the datasets in which we outperform.

We designed multiple ablation studies to get more insight about TEDM. The most significant studies
are shown in Fig. 5. For conditionally denoising, we use a conditioning window obtained from the
given window by striding backwards by a predefined number of steps kctx. We notice in Fig. 5(a) that
this may hinder performance.

We also studied clamping of values in the scaled schedule st. Since we compute it from E(xt) = stx0,
in the cumulative evaluation—element-division of the starting point from the cumulative average—the
division can blow up for data close to zero. Figs. 5 (b) & (c) show that there is more sensitivity to the
minimum values than to the maximum used for clamping.

Finally, we considered several denoiser architectures of varying space complexity (discussed in the
SM). Most remarkably, using just a Linear layer with space complexity O(T d) gives results (V in

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0 1 2 3

0.004

0.008

0.012

Va
lid

at
io

n
M

SE

a)

0.001 0.01 0.1 0.5 1.0 1.5

0.000

0.300

0.600

0.900
b)

1.5 2 2.5 3 5 10

0.005

0.010

0.015

c)

I II III IV V VI

0.000

0.005

0.010

0.015

d)
etth1
etth2
ettm1
ettm2
exchange
stock

Figure 5: Ablation study on min-max normalized validation MSE across different experimental con-
figurations and datasets. Subplots (a)–(d) correspond to: (a) context backward shift for conditionally
denoising, (b) minimum value for clamping st, (c) maximum value for clamping st, and (d) different
network architectures (see SM): Roman numerals I–VI denote, in the respective order, the following
architectures: AttnNet, AttnSigmaNet, AttnPosEmbNet, ConvLSTMNet, LinearNet and UNet.

Table 8: CRPS and QICE for probabilistic forecasts with the SDE in section A.5.2 (prediction horizon
H = 96). Datasets: ETTh2, Exchange. Lower is better.

Methods Metric ETTh2 Exchange

TimeDiff CRPS 0.380 0.287
QICE 0.142 0.099

DiffusionTS CRPS 1.122 1.232
QICE 0.095 0.087

TMDM CRPS 0.393 0.258
QICE 0.038 0.049

NsDiff CRPS 0.349 0.222
QICE 0.025 0.038

TEDM CRPS 0.589 0.775
QICE 0.093 0.111

Fig. 5), in several datasets, comparable to the best network using self-attention between the given
and context window (I in Fig. 5).

D PROBABILISTIC FORECASTS

Karras et al. (2022) derived their SDE for stochastic sampling from the isotropic heat equation.
Our analogous SDE derivation, in section A.5.2 (for the anisotropic case), theoretically relies on
the assumption of diagonal Σt. Examples of the skill when sampling from that SDE is shown
quantitatively in Table 8 and qualitatively in Fig. 6. As seen, TEDM’s probabilistic calibration
(CRPS/QICE) lags behind most of the other methods.

Table 9: Probabilistic skill by sampling quantiles
using ODE (prediction horizon H = 96). Datasets:
ETTh2, Exchange. Lower is better.

Methods Metric ETTh2 Exchange

NsDiff CRPS 0.349 0.222
QICE 0.025 0.038

TEDM CRPS 0.294 0.186
QICE 0.040 0.093

The fact that deterministic sampling outper-
forms other methods in point-forecast skill,
while probabilistic sampling underperforms is
intriguing. Our hypothesis is that the inference
rule for deterministic sampling (derived in sec-
tion A.5.1) is more general and hence the di-
agonal approximation of Σt better represents
cases with weakly correlated features. To test
this hypothesis, we introduce a novel method to
sample quantiles of the predictive distribution
by only using TEDM’s deterministic inference rule. Preliminary results of this method (explained
in detail in a future publication) are shown in Table 9. It shows promising results in probabilistic
forecast, being competitive with NsDiff.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0 25 50 75 100 125 150 175 200

0.0

0.2

0.4

0 25 50 75 100 125 150 175 200

-2.0

-1.6

-1.2

-0.8

Mean Forecast Uncertainty Observed

Figure 6: Probabilistic forecasts on the ETTm2 dataset, using the SDE of section A.5.2. The plots
show the predicted mean, uncertainty bounds (95% prediction intervals), and ground-truth values for
two representative time series.

Table 10: MSE and MAE scores for diffusion-based forecasting methods with horizon H = 192.
TEDM uses the best of the noise schedule variant (cumulative/sliding Σt) per dataset. Lower is
better.

Methods Metric ETTh2 ETTm2 Exchange

TimeDiff MSE 0.364 0.209 0.208
MAE 0.393 0.296 0.331

DiffusionTS MSE 3.017 3.517 3.302
MAE 1.340 1.472 1.493

TMDM MSE 0.564 0.313 0.212
MAE 0.517 0.350 0.338

ARMD MSE 0.311 0.181 0.093
MAE 0.338 0.255 0.203

NsDiff MSE 0.460 0.250 0.146
MAE 0.452 0.328 0.280

TEDM MSE 0.260 0.163 0.153
MAE 0.354 0.282 0.276

E LONGER HORIZONS

We reproduce the primary diffusion baselines table for a subset of datasets (ETTh2, ETTm2, Ex-
change) and update TEDM with the best of the two noise schedule variant (cumulative/sliding Σt)
provided; other methods follow the same evaluation protocol as in the main text.

On ETTh2 and ETTm2, TEDM achieves the best MSE among the compared diffusion methods,
improving over ARMD while also delivering strong MAE (second-best behind ARMD). On Exchange,
ARMD remains the most accurate on both MSE and MAE, with NsDiff second on MSE and TEDM
a close third. Overall, these results indicate that TEDM remains competitive for longer forecast
horizons.

To characterize computational scaling over longer horizons, Fig. 7 reports relative per-batch training
and inference time/memory for TEDM as a function of forecast horizon (normalized to the cost at
horizon 96). We observe only moderate growth with horizon on different dataset. This indicates that
TEDM remains practical for long-horizon forecasting.

F ROBUSTNESS

All TEDM results are averaged over 4 random seeds (different data shuffles and parameter initializa-
tions); we report mean values in the main tables, and mean ± standard deviation in Table 11. Our
method shows low variance across seeds, indicating stable training and inference.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

96 192 336 720
Horizon

0.0

1.5

3.0

4.5
R

el
at

iv
e

fa
ct

or
(w

.r.
t.

ho
ri

zo
n

96
)

Train memory (rel.)

96 192 336 720
Horizon

Train time (rel.)

96 192 336 720
Horizon

Test memory (rel.)

96 192 336 720
Horizon

Test time (rel.)

ETTh2 ETTm2 Exchange

Figure 7: Relative per-batch training and inference memory (MB) and time (s) for TEDM across
datasets and forecast horizons, normalized by the cost at horizon H = 96. All measurements are
obtained on the same hardware and with a fixed batch size. Apparent drops in cost at larger horizons
compared to the preceding horizon are due to dropping incomplete batches, which slightly changes
the number of processed batches and thus the reported averages.

Table 11: TEDM robustness over 4 random seeds at horizon 96. Reported are mean ± std over seeds.
Dataset MSE MAE
ETTh1 0.598 ± 0.002 0.526 ± 0.001
ETTh2 0.216 ± 0.001 0.320 ± 0.001
ETTm1 0.419 ± 0.003 0.442 ± 0.002
ETTm2 0.137 ± 0.001 0.254 ± 0.000
Exchange 0.069 ± 0.000 0.184 ± 0.001
Solar 1.108 ± 0.034 0.721 ± 0.042
Stock 0.055 ± 0.001 0.180 ± 0.002
Weather 0.225 ± 0.005 0.268 ± 0.008

G MORE FORECAST SAMPLES AND FAILURE CASES

Figure 8 shows TEDM forecasts on eight benchmark datasets. Each row corresponds to a dataset and
each column to a randomly selected test window and feature. Across smoother series (ETTh1, ETTh2,
ETTm2), TEDM tracks level, trend, and seasonality, while on more volatile datasets (Exchange,
Solar-Energy, Stock) it still captures the overall direction and scale of movements. These examples
qualitatively support the quantitative gains reported in our main results.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

-3.0
-1.5
0.0
1.5

-1.0
0.0
1.0
2.0

-1.0
0.0
1.0
2.0

Etth1

-1.5
0.0
1.5

-3.0
-1.5
0.0
1.5

-1.8
-1.5
-1.2
-1.0

0.0
0.6
1.2
1.8

-1.5
-1.2
-1.0

Etth2

-1.6
-0.8
0.0

-2.4
-1.6
-0.8
0.0

-3.0
-1.5
0.0

-2.0
-1.0
0.0
1.0

0.0
0.8
1.6
2.4

Ettm1

-3.0
-1.5
0.0

0.5
1.0
1.5

-1.0
-0.5
0.0

0.0

0.2

-0.4
0.0
0.4
0.8

Ettm2

0.0
0.5
1.0
1.5

-2.4
-1.8
-1.2
-0.6

1.4
1.5
1.6

-0.2
0.0
0.2
0.4

1.0
2.0
3.0
4.0

Exchange

-2.5
-2.0
-1.5
-1.0

0.8
0.9
1.1
1.2

-0.6
-0.4
-0.2
0.0

-0.8
0.0
0.8
1.6

-0.8
0.0
0.8
1.6

Solar

-0.8
0.0
0.8
1.6

-0.5
0.0
0.5
1.0

0.6
0.8
1.0

1.8
2.1
2.4
2.7

1.5
1.8
2.0
2.2

Stock

0.6
0.8
0.9
1.1

1.0
1.2
1.4
1.6

0 100 200

-1.8
-1.5
-1.2
-1.0

0 100 200
-0.0
0.0
0.0
0.0

0 100 200
Time step

-1.0
-0.8
-0.6
-0.4

Weather

0 100 200

-1.0
-0.8
-0.5
-0.2

0 100 200

-1.1
-0.9
-0.8
-0.6

Context Target Prediction

Figure 8: Qualitative TEDM forecasts across eight benchmark datasets. Each panel shows a randomly
sampled test window and feature: black solid lines are input histories, black dashed lines are ground-
truth futures, and orange lines are TEDM forecasts. Time is shown as input followed by forecast
steps.

31

