

000 TEDM: TIME SERIES FORECASTING WITH ELUCI- 001 002 DATED DIFFUSION MODELS 003

004
005 **Anonymous authors**
006 Paper under double-blind review
007
008

009 ABSTRACT 010

011 Score-based generative modeling through differential equations has driven break-
012 throughs in high-fidelity image synthesis, offering modular model design and
013 efficient sampling. However, this success has not been widely translated to time-
014 series forecasting yet. This gap stems from the sequential nature of time series,
015 in contrast to the unordered structure of images. Here, we extend the theoretical
016 formulation used for images to explicitly address sequential structures. We propose
017 a diffusion-based forecasting framework (TEDM) that adapts score estimation to
018 temporal settings and elucidates its design space. Such a design allows empiri-
019 cal computation of noise and signal scaling directly from data, avoiding external
020 schedules. Notably, this reduces sampling complexity to linear in the forecast
021 horizon. Without elaborate preprocessing, TEDM sets new state-of-the-art results
022 on multiple forecasting benchmarks. These results illustrate the growing potential
023 of diffusion models beyond vision. TEDM generates low-latency forecasts using a
024 lightweight architecture, making it ideal for real-time deployment.
025
026

027 1 INTRODUCTION 028

029 Multivariate time-series forecasting drives critical decision-making across domains as varied as
030 demand planning (Kamarthi et al. (2024)), financial risk assessment, weather prediction (Oskarsson
031 et al. (2024)), stock market analysis (Zou et al. (2023)), and energy load forecasting (Symeonidis
032 & Nikolaidis (2025)). Unlike classical regression tasks, time-series data exhibit unique characteris-
033 tics—trend, seasonality, and autocorrelation—that demand models capable of capturing temporal
034 dependencies and quantifying predictive uncertainty, particularly in high-stakes settings such as
035 meteorology and finance (Box et al. (2015)).

036 Recent advances in deep learning have dramatically improved forecasting accuracy by leveraging se-
037 quence models. Transformer-based architectures in particular—such as Informer (Zhou et al. (2021))
038 and Autoformer (Wu et al. (2021))—have consistently topped benchmark leaderboards. However,
039 these approaches exhibit high computational complexity (quadratic time and memory requirements)
040 (Kim et al. (2024); Kong et al. (2025)), and have poor long-term forecasting performance.

041 Diffusion models have emerged as a powerful generative paradigm across modalities, achieving
042 state-of-the-art results in image, speech, and video synthesis (Xing et al. (2024); Ahsan et al. (2025)).
043 Early attempts to adapt diffusion modeling to time series, like TimeGrad (Rasul et al. (2021)), showed
044 promise in computational complexity, by processing sequences using recurrent networks instead of
045 transformers. Nevertheless, they fall short in forecasting long horizons. Other approaches followed
046 (Yang et al. (2024); Su et al. (2025)), demonstrating that longer horizons are possible at the expense
047 of more preprocessing and model complexity, additional to the inherent sampling inefficiency of
048 diffusion models (Ma et al. (2025)).

049 To strike a balance between long-term forecasting performance and computational complexity, a
050 deeper understanding of the design space of diffusion models is needed. In the vision domain, this was
051 elucidated by the EDM framework of (Karras et al. (2022)) and imported to time series forecasting in
052 climate applications (Price et al. (2025)). This allows optimization of noise and scale schedules, as
053 well as time-discretization strategies and solvers for the diffusion process. However, the sampling
inefficiency remains, scaling as $O(SH)$ for S diffusion steps and H forecasting steps.

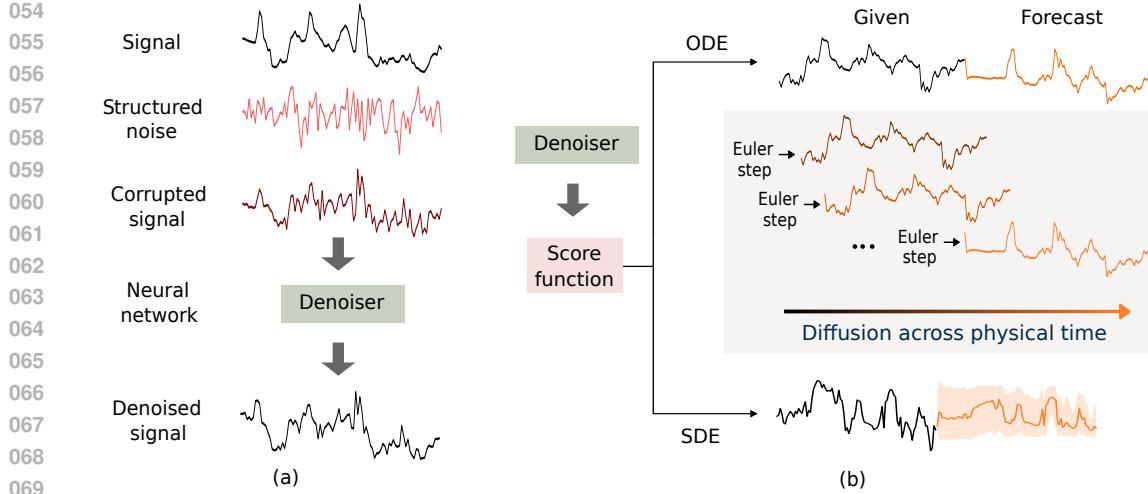


Figure 1: (a) Denoising signals corrupted with structured noise. (b) TEDM uses score-based generative modeling to forecast time series by numerical integration of an ordinary (ODE) or stochastic (SDE) differential equation. The main characteristic of TEDM is reducing the physical time and the diffusion time to the same axis, as we support by theory.

To address these limitations, we propose TEDM (Time Series Forecasting with Elucidated Diffusion Models), an autoregressive diffusion framework tailored for multivariate probabilistic forecasting. We extend the theoretical background of EDM for time series forecasting. Optimization of the design space thus leads to significant reduction in complexity and increase in accuracy by:

- Treating the diffusion and physical time axes as the same (see Fig. 1b). This reduces sampling complexity from $O(SH)$ to $O(H)$.
- Using, for the first time, noise and scale schedules estimated empirically from the data. This avoids inductive biases from guiding the diffusion with artificially imposed schedules.

This allows TEDM to achieve state-of-the-art results on several long-sequence forecasting benchmarks at a fraction of the cost of traditional methods. We find that the best case for space complexity is $O(Td)$ for a given sequence of T timesteps and d features—still giving promising results and then making our approach suitable for online settings.

2 RELATED WORK

Sequence Models. RNNs (Hewamalage et al. (2021)) and TCNs (Chen et al. (2020)) have been applied to capture nonlinear, temporal dependencies. Recently, Transformer-based variants—Informer (Zhou et al. (2021)), Autoformer (Wu et al. (2021)), DLinear, and iTransformer (Liu et al. (2024))—tackle long-range interactions via attention mechanisms and are dominating leaderboards. However, attention on sparse or irregularly-sampled timestamps can degrade, and preserving temporal ordering remains challenging (Wu et al. (2021)). Additionally, most Transformer-based forecasters produce only point estimates, limiting uncertainty quantification.

Diffusion models. Popularized by Score Matching with Langevin Dynamics (SMLD) (Song & Ermon (2020)) and Denoising Diffusion Probabilistic Models (DDPM) (Ho et al. (2020)), they are promising for probabilistic time series forecasting due to their generative nature. TimeGrad (Rasul et al. (2021)) pioneered autoregressive score-based forecasting by combining RNN encoders with per-step diffusion sampling, though it inherits RNNs’ inefficiencies over long horizons. Non-autoregressive variants—such as TimeDiff (Shen & Kwok (2023)) and TSDiff (Kollovief et al. (2023)) generate the prediction horizon in one step—bypassing error accumulation and enabling parallel forecasting. ARMD (Gao et al. (2025)) improves autoregression and sampling complexity by supervising a devolution network that effectively learns to “jump” the S diffusion steps.

108 Despite substantial advances, most of the existing diffusion-based forecasters are merely adaptations
 109 of image-domain DDPMs that do not completely harness the multivariate and temporal structures
 110 of time-series data. This is due to an incomplete knowledge of the full design space of diffusion
 111 models that EDM helps to elucidate. In the following, we describe this background and introduce the
 112 changes needed for time series forecasting ultimately leading to TEDM.

114 3 BACKGROUND

116 3.1 EDM: UNIFIED DESIGN SPACE FOR DIFFUSION MODELS

118 Karras et al. (2022) present a unified framework for analyzing and improving diffusion-based
 119 generative models for image synthesis. Their core contribution is the disentanglement of architectural,
 120 training, and sampling components into a modular design space, enabling independent optimization
 121 of each element. This allowed them to find optimal choices for each component and push the state of
 122 the art for image synthesis.

123 **Deterministic sampling.** In their formulation, sampling is grounded on the probability flow ordinary
 124 differential equation (ODE)

$$125 \quad \frac{d\mathbf{x}_t}{dt} = \frac{\dot{s}_t}{s_t} \mathbf{x}_t - s_t^2 \dot{\sigma}_t \sigma_t \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t). \quad (1)$$

126 Here, $\mathbf{x}_t \in \mathbb{R}^d$ is the sample, σ_t is a time-dependent noise schedule, s_t is a time-dependent scale
 127 schedule, and $p_t(\mathbf{x}_t) = s_t^{-d} p(\mathbf{x}_t/s_t; \sigma_t)$ is the marginal distribution of the diffusion process. The
 128 latter is expressed in terms of a mollified version of the data distribution obtained by adding i.i.d
 129 Gaussian noise—of standard deviation σ_t —to the samples. The term $\nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t)$ is called the
 130 *score function* (Song et al. (2021)).

131 Deterministic sampling is achieved by integrating the ODE backwards, from time T where \mathbf{x}_T is
 132 completely noisy (σ_T maximum), to time 0 where \mathbf{x}_0 is the prediction ($\sigma_0 \sim 0$). A related stochastic
 133 differential equation (SDE) adds noise during sampling for improved robustness. The authors Karras
 134 et al. (2022) propose using a second-order Heun’s method with a linear schedule $\sigma_t = t$ and constant
 135 scaling $s_t = 1$, which leads to smoother sampling trajectories.

136 **Denoising score matching.** Training is based on denoising score matching: given clean data
 137 $\mathbf{y} \sim p_{\text{data}}$ and Gaussian noise $\varepsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, the data is corrupted with *unstructured* noise $\mathbf{n} = \sigma_t \varepsilon$.
 138 The training objective then minimizes the expected value:

$$139 \quad \mathbb{E}_{\mathbf{y} \sim p_{\text{data}}, \varepsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} [\|D(\mathbf{y} + \mathbf{n}; \sigma_t) - \mathbf{y}\|^2]. \quad (2)$$

140 This loss encourages the denoiser $D(\mathbf{x}; \sigma_t)$ to estimate the conditional expectation of the clean signal
 141 given the noisy input $\mathbf{y} + \mathbf{n}$ as well as the noise level σ_t . It is related to the score function (see Eq.
 142 (3) of Karras et al. (2022)) by:

$$143 \quad \nabla_{\mathbf{x}} \log p(\mathbf{x}; \sigma_t) = \frac{D(\mathbf{x}; \sigma_t) - \mathbf{x}}{\sigma_t^2}. \quad (3)$$

144 **Preconditioning.** To improve stability and expressiveness, the authors propose a preconditioned
 145 architecture for the denoiser D_θ :

$$146 \quad D_\theta(\mathbf{x}; \sigma) = c_{\text{skip}}(\sigma) \mathbf{x} + c_{\text{out}}(\sigma) F_\theta(c_{\text{in}}(\sigma) \mathbf{x}; c_{\text{noise}}(\sigma)).$$

147 Here, F_θ is the core neural network to be trained, and $c_{\text{skip}}, c_{\text{in}}, c_{\text{out}}, c_{\text{noise}}$ are scalar functions of σ
 148 that control signal scaling and conditioning. These are derived analytically by requiring the network
 149 inputs and training targets to have unit variance ($c_{\text{in}}, c_{\text{out}}$), and amplifying errors in F_θ as little as
 150 possible (c_{skip}). Except for c_{noise} (which is chosen empirically), these functions are expressed in terms
 151 of $\sigma_{\text{data}}^2 = \text{Var}(\mathbf{y})$, which is uniformly set in image datasets. The authors also propose a log-normal
 152 distribution for sampling noise levels σ_t during training, along with loss weighting $\lambda(\sigma) = 1/c_{\text{out}}^2(\sigma)$.
 153 This modular reformulation facilitates targeted improvements and enhances compatibility with a
 154 range of generative architectures.

155 Importantly, this unified framework subsumes earlier methods like DDPM, DDIM, and SMLD
 156 (Song et al. (2021)). These differ mainly in their σ_t and s_t schedules, time discretizations, and

162 preconditioning schemes. For instance, DDPM uses $\sigma_t = t$, $s_t = 1$ (as EDM), and stochastic
 163 sampling. DDIM replaces the stochastic reverse process with Euler integration of the same ODE and
 164 time steps as DDPM. SMLD instead models the score function directly with a variance-exploding
 165 SDE. This modular view reveals that improvements in training or sampling can often be transferred
 166 across models without retraining the network.

168 3.2 EXTENDING EDM TO MULTIVARIATE SERIES

170 Adapting EDM to multivariate time-series introduces unique challenges not present in image domains.
 171 First, applying a shared noise schedule across all features assumes uniform scale and dynamics. In
 172 practice, features may differ in variance or predictive importance, making uniform noise injection
 173 suboptimal. Feature-specific noise scaling is needed. Second, time-series exhibit strong temporal
 174 dependencies. EDM's i.i.d. Gaussian noise assumption can disrupt autocorrelated patterns, especially
 175 when noise is added independently at each time step. Structured noise or causal conditioning
 176 mechanisms may be required to preserve temporal coherence. Finally, architectural design must
 177 respect the sequential nature of time. Preconditioning schemes should account for temporal scale and
 178 position. Temporal encodings, autoregressive models, or attention-based architectures may be better
 179 suited than standard convolutional backbones. We discuss next how these challenges are theoretically
 180 and experimentally addressed by TEDM.

181 4 TEDM METHODOLOGY

182 4.1 PROBLEM DEFINITION

185 Given a multivariate series $\mathbf{y}_{1:T} \in \mathbb{R}^{C \times T}$, with C features and T time steps, the problem is to forecast
 186 the next H steps. The forecast is done through a mapping $f_\theta : \mathbf{y}_{1:T} \mapsto \hat{\mathbf{y}}_{T+1:T+H}$, consisting of a
 187 learned estimator of the score function and its autoregressive use in an ODE (or SDE) solver. Unless
 188 otherwise necessary, we omit the subscript from the respective variables. The theoretical results in
 189 the following are derived in appendix A.

191 4.2 DATA-DRIVEN NOISE AND SCALE SCHEDULES

193 We extend the EDM formulation to multivariate noise schedules. With $\Sigma_t := s_t^{-2} \text{Cov}(\mathbf{x}_t)$, the
 194 forward ODE in (1) takes now the more general form

$$195 \quad \frac{d\mathbf{x}_t}{dt} = \frac{\dot{s}_t}{s_t} \mathbf{x}_t - \frac{1}{2} s_t^2 \dot{\Sigma}_t \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t). \quad (4)$$

198 We restrict to deterministic sampling in the following and leave probabilistic forecasts (based on our
 199 SDE (A.65)) for Appendix D. In our formulation, the score function becomes (Eq. (A.25))

$$201 \quad \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t) = s_t^{-1} \Sigma_t^{-1} [D(\mathbf{x}_t/s_t; \Sigma_t) - \mathbf{x}_t/s_t], \quad (5)$$

202 and allows the backward ODE associated to Eq. (4) to be written as (Eq. (A.54))

$$204 \quad d\mathbf{x}_t = -(d \log s_t) \mathbf{x}_t + \frac{1}{2} s_t (d\Sigma_t) \Sigma_t^{-1} [D(\mathbf{x}_t/s_t, \Sigma_t) - \mathbf{x}_t/s_t]. \quad (6)$$

206 This expression suggests our proposed contributions:

- 208 • Since dt does not appear in the difference equation, we do not need any strategy to quantify
 209 time increments, as needed by all previous approaches. As a consequence, we take the
 210 physical time-axis of the time series as the time-axis of the diffusion process.
- 211 • Diffusing across the time-series horizon implies that the noise Σ_t and scale s_t schedules
 212 acquire physical meanings. Unlike any other diffusion model so far, we empirically estimate
 213 these from the data.

215 The way to estimate these schedules is suggested from their definition. We can show (Eq. (A.5))
 that the scale s_t obeys $\mathbb{E}(\mathbf{x}_t) = s_t \mathbb{E}(\mathbf{x}_0)$. Furthermore, we show (Eq. (A.7)) that $\text{Cov}(\mathbf{x}_t) = s_t^2 \Sigma_t$.

216 Therefore, we estimate s_t and Σ_t from the input data window $\mathbf{y}_{1:T}$, by empirical estimations of the
 217 above relations. We follow two approaches:
 218

219 **Cumulative estimation.** We estimate s_t and Σ_t from the cumulative mean and covariance of the
 220 data, respectively. That is,
 221

$$\mathbb{E}(\mathbf{x}_t) \sim \text{Mean}(\mathbf{y}_{1:t}), \quad \mathbb{E}(\mathbf{x}_0) \sim \mathbf{y}_{1:1}, \quad \Rightarrow \quad \hat{s}_t = \text{Mean}(\mathbf{y}_{1:t}) \odot \mathbf{y}_{1:1}^{-1}, \quad (7)$$

223 where the division is element-wise and the reduction is along the sequence axis. Similarly, we
 224 estimate Σ_t from the cumulative covariance of the data,
 225

$$\text{Cov}(\mathbf{x}_t) \sim \text{Cov}(\mathbf{y}_{1:t}), \quad \Rightarrow \quad \hat{\Sigma}_t = \hat{S}_t \text{Cov}(\mathbf{y}_{1:t}) \hat{S}_t^T, \quad (8)$$

227 where $\hat{S}_t = \text{diag}(\hat{s}_{t,1}^{-1}, \dots, \hat{s}_{t,C}^{-1})$ is a matrix, build from (7), that applies a congruent scaling to the
 228 covariance matrix, preserving its positive definiteness.
 229

230 **Sliding window estimation.** We estimate s_t and Σ_t from the mean and covariance of a sliding
 231 window over the input $\mathbf{y}_{1:T}$. This allows more flexibility to adapt to local changes in the data statistics.
 232 It also avoids the problem of defining the variance for the first data point of a window—technically
 233 zero, so interpolated in the cumulative estimation above. Additionally, it helps mitigate issues with
 234 data values ($\mathbf{y}_{1:1}$ in Eq. (7)) close to zero that may blow up the cumulative scale estimate.
 235

4.3 TRAINING

237 As with EDM, we train using denoising score matching. Given subsequences of clean data $\mathbf{y} \sim p_{\text{data}}$,
 238 we compute the associated subsequences of empirical Σ . Gaussian noise $\varepsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ is drawn
 239 and *structured* with this schedule: $\mathbf{n} = \Sigma^{1/2}\varepsilon$. Since every time step (and feature) in the data
 240 subsequence is corrupted with a different noise level, the noise is no longer i.i.d. as in EDM. The
 241 denoiser learns to remove this noise (see Fig. 1a), by minimizing
 242

$$\mathbb{E}_{\mathbf{y} \sim p_{\text{data}}, \varepsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} [\|D_\theta(\mathbf{y} + \mathbf{n}; \Sigma) - \mathbf{y}\|^2]. \quad (9)$$

244 We evaluate different architectures for the denoiser. They differ in the way the temporal structure is
 245 leveraged and whether conditioning on past data is done. We extend the preconditioning scheme of
 246 EDM to matrix-valued Σ . For this, the denoiser is expressed as (Eq. (A.27)):
 247

$$D_\theta(\mathbf{x}, \Sigma) = \mathbf{C}_{\Sigma; \text{skip}} \mathbf{x} + c_{\Sigma; \text{out}} F_\theta(\mathbf{C}_{\Sigma; \text{in}} \mathbf{x}; \mathbf{C}_{\Sigma; \text{noise}}).$$

249 By imposing that the inputs and training targets of F_θ have unit variance, and that its errors are
 250 amplified as little as possible, we have (Eqs. (A.35)):
 251

$$\begin{aligned} \mathbf{C}_{\Sigma; \text{in}} &= (\text{Cov}(\mathbf{y}) + \Sigma)^{-1/2}, \\ \mathbf{C}_{\Sigma; \text{skip}} &= \text{Cov}(\mathbf{y})(\text{Cov}(\mathbf{y}) + \Sigma)^{-1}, \\ c_{\Sigma; \text{out}}^2 \mathbf{I} &= \text{Cov}(\mathbf{y})(\text{Cov}(\mathbf{y}) + \Sigma)^{-1} \Sigma, \\ \lambda_\Sigma &= 1/c_{\Sigma; \text{out}}^2. \end{aligned}$$

257 The matrix $\mathbf{C}_{\Sigma; \text{noise}}$ is chosen empirically, as in EDM, and λ_Σ weighs the loss function in Eq. (9).
 258 Note that these expressions reduce to those of EDM when $\Sigma = \sigma^2 \mathbf{I}$. Furthermore, they hold even
 259 when Σ is estimated from \mathbf{y} , provided that the estimator is unbiased.
 260

4.4 INFERENCE

263 Once the denoiser is trained, the score function is estimated by (5). Knowing the score function
 264 provides the mechanism for sampling by ODE (or SDE) integration. Since the diffusion and physical
 265 time axes are the same, this allows forecasting the next time step by an Euler step of (6) (Eq. (A.55)):
 266

$$\hat{\mathbf{y}}_{t+1} = \left[\mathbf{I} - \log \frac{s_t}{s_{t-1}} \mathbf{I} \right] \hat{\mathbf{y}}_t + \frac{1}{2} s_t (\Sigma_t - \Sigma_{t-1})_+ \Sigma_t^{-1} [D_\theta(\hat{\mathbf{y}}_t/s_t, \Sigma_t) - \hat{\mathbf{y}}_t/s_t],$$

268 where $(\cdot)_+$ denotes the projection onto the cone of positive semi-definite matrices. Here, s_t and Σ_t
 269 are replaced by their estimates in (7) and (8) (or their sliding window counterparts). This inference
 270

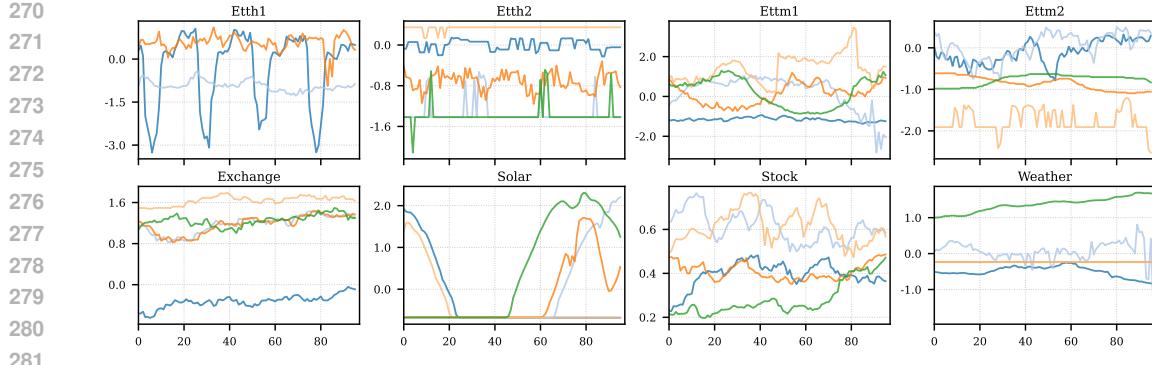


Figure 2: Random test windows from all datasets. Each subplot corresponds to one dataset and shows 5 windows from randomly selected time indices and feature dimensions.

rule is general, and can be implemented by a Cholesky factorization of Σ_t that allows applying Σ_t^{-1} to vectors. The projection to the positive semi-definite cone requires diagonalization of $\Sigma_t - \Sigma_{t-1}$, which may be costly for large feature size d .

An efficient approximation is obtained when the noise covariance is considered diagonal, i.e. $\Sigma_t = \text{diag}(\sigma_{t,1}^2, \dots, \sigma_{t,C}^2)$. In this case, the inference rule simplifies considerably, since all matrix operations reduce to element-wise operations on the feature dimensions. The Euler step in this case becomes (Eq. (A.53))

$$\hat{y}_{t+1} = \left[\mathbf{I} - \log \frac{s_t}{s_{t-1}} \Sigma_t^{1/2} \Sigma_{t-1}^{-1/2} \right] \hat{y}_t + s_t \left[\log \Sigma_t^{1/2} \Sigma_{t-1}^{-1/2} \right] D_\theta(\hat{y}_t / s_t; \Sigma_t). \quad (10)$$

Remarkably, this inference rule holds exactly beyond the diagonal approximation (see Remark A.1), as long as the principal axes of Σ_t do not change with time (only its eigenvalues do). This applies to systems with stable directions of variability but evolving intensities along those directions—e.g. spatial climate patterns, brain signals with stable spatial modes, etc. Due to its simplicity and efficiency, we consider the diagonal approximation for the rest of this work.

Starting from the given data window $\hat{y}_1 := \mathbf{y}_{1:T}$, an Euler step then transforms this window to predict $\hat{y}_2 := \mathbf{y}_{2:T+1}$. Assuming $T = H$ (the horizon length), after H Euler steps (see Fig. 1b), we get the predicted window $\hat{y}_{1+H} := \mathbf{y}_{T+1:T+H}$. Thus inference time is $O(H)$ instead of $O(HS)$ for S diffusion steps, since one Euler step replaces one diffusion step.

Intuitively, every data point in the given window (a single \mathbf{x}_t or \mathbf{y}_t in our description) may be imagined to be a particle “propagated by diffusion” to a corresponding data point in the predicted window. All these particles in the window are processed in parallel by the network that learned to denoise the signals.

5 EXPERIMENTS

5.1 DATASETS

We evaluate our approach on eight widely used multivariate datasets: ETTh1, ETTh2, ETTm1, ETTm2, Exchange, Solar, Stock, and Weather. The Electricity-Transformer-Temperature (ETT) datasets (Zhou et al. (2021)) are standard long-sequence forecasting benchmarks, sampled hourly (ETTh) and every 15 minutes (ETTm) from two power-transformer stations. The Exchange dataset (Zhou et al. (2021)) contains daily exchange rates across major currency pairs.

The Solar dataset (Lai et al. (2018)) consists of 10-minute solar power measurements from 137 stations, and the Stock dataset provides daily Google stock prices from 2004–2019 (Yoon et al. (2019);

Table 1: Comparison of benchmark time series datasets: data size and feature count.

Dataset	Timesteps	Dim (d)
ETTh1/ETTh2	17,420	7
ETTm1/ETTm2	69,680	7
Exchange	7,588	8
Weather	52,695	21
Solar	52,560	137
Stock	4,431	6

324 Yuan & Qiao (2024)). Dataset sizes and feature counts are reported in Table 1. Randomly selected
 325 test samples are shown in Fig. 2. Further dataset details are provided in Appendix C.1.
 326

327 5.2 DATA PREPROCESSING

329 It is known that time series forecasting methods requiring extensive preprocessing typically underperform simpler methods (Makridakis et al. (2020)). Such preprocessing include stationarity
 330 transformations (Liu et al. (2022)), seasonal adjustments (Findley & Monsell (2019)), multi-resolution
 331 analysis (Li et al. (2024a)), etc. These steps often make the approaches cumbersome and introduce
 332 inductive biases.
 333

334 Our method does not require complicated preprocessing. The datasets are partitioned into train (70%),
 335 validation (10%), and test (20%) sets, according to the standard practice for these benchmarks (Liu
 336 et al. (2024)). Following Gao et al. (2025), we apply z-score normalization to the data. We further
 337 partition the sets into subsequences $y_{1:T}$ (windows). For training, each window has $T = H$ (horizon
 338 length) time steps, consumed by the denoiser network in batches. For validation and testing, padding
 339 is added for TEDM to compute time shifts as appearing in Eq. (10). Each window has $2H$ time steps
 340 (plus padding and additional context for conditional denoising). The first T time steps are given to the
 341 models for forecasting, the last H steps are the ground truths to contrast with the model predictions.
 342 We fix $H = 96$ timesteps for all datasets, as in Gao et al. (2025), and refer to Appendix E for longer
 343 horizons.
 344

345 5.3 BASELINES

346 We are inspired by ARMD (Gao et al. (2025)) and follow their experimental setup closely. However,
 347 we include newer diffusion baselines that were not available at the time of their publication. In
 348 particular, NsDiff Ye et al. (2025) is a recent approach that extends diffusion models to non-stationary
 349 time series, providing a strong baseline for our experiments. They provide a codebase to evaluate
 350 TMDM Li et al. (2024b), DiffusionTS Yuan & Qiao (2024), TimeDiff Shen & Kwok (2023), among
 351 others. We use their codebase and experimental setup to evaluate these methods for $H = T = 96$.
 352

353 5.4 METRICS

354 We follow the evaluation methodology of Zhou et al. (2021) and use the mean square error (MSE)
 355 and mean absolute error (MAE) to measure performance when comparing z-score normalized data.
 356 This has become standard practice in time series forecasting (Gao et al. (2025)). For probabilistic
 357 forecasts in Appendix D, we use the standard continuous ranked probability score (CRPS) (Matheson
 358 & Winkler (1976)) and quantile interval coverage error (QICE) (Han et al. (2022)).
 359

360 5.5 NETWORK ARCHITECTURES

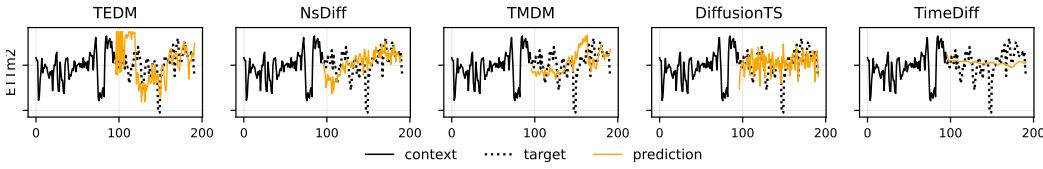
362 One of the advantages of elucidating the design space of diffusion models is that the selection of
 363 model architectures is more intuitive. The denoiser (as an estimator of the score function used for
 364 inference) has a job independent from the forecasting task (see Fig. 1a). This separation makes
 365 it ideal for generalization, and gives more flexibility when designing architectures aimed at better
 366 denoising outcomes. We considered several architectures, ranging from the simplest Linear network,
 367 with $O(Td)$ space complexity, to the most complex UNet architecture. These architectures optionally
 368 accept a condition on past data, to support conditional denoising (Batzolis et al. (2021)). For more
 369 details on these architectures, see Appendix C.3.
 370

371 5.6 MAIN RESULTS

372 Table 2 shows that TEDM delivers state-of-the-art accuracy across the majority of datasets, achieving
 373 the best MSE and MAE on ETTh2 (0.214 / 0.319), ETTm2 (0.135 / 0.253), and Exchange (0.069 /
 374 0.183). On ETTm1, TEDM ranks second (MSE 0.419, MAE 0.421) behind ARMD, and on Weather,
 375 TEDM is also second (MSE 0.223, MAE 0.261), close to the strongest baseline on that dataset.
 376 The only dataset where TEDM trails the simpler TimeDiff/ARMD pairing is ETTh1 (MSE 0.595,
 377 MAE 0.524), which we attribute to typical large-amplitude changes (see Fig. 2) that stress TEDM’s
 378 assumption of smooth flows (see Assumption A.1).
 379

378
 379 Table 2: MSE and MAE scores (prediction horizon $H = 96$) for diffusion-based forecasting methods.
 380 Best scores per dataset are in **bold**; second best are underlined. Lower is better.

Methods	Metric	ETTh1	ETTh2	ETTm1	ETTm2	Exchange	Weather
TimeDiff	MSE	0.417	0.364	0.548	0.209	0.208	0.228
	MAE	0.456	0.393	0.485	0.296	0.331	0.305
DiffusionTS	MSE	1.032	3.017	0.976	3.517	3.302	0.625
	MAE	0.757	1.340	0.726	1.472	1.493	0.609
TMDM	MSE	0.534	0.564	0.421	0.313	0.212	0.180
	MAE	0.514	0.517	<u>0.408</u>	0.350	0.338	0.241
ARMD	MSE	<u>0.445</u>	<u>0.311</u>	0.337	<u>0.181</u>	<u>0.093</u>	0.232
	MAE	<u>0.459</u>	<u>0.338</u>	0.376	<u>0.255</u>	<u>0.203</u>	0.291
NsDiff	MSE	0.552	0.460	0.450	0.250	0.146	<u>0.223</u>
	MAE	0.506	0.452	0.434	0.328	0.280	0.276
TEDM	MSE	0.595	0.214	<u>0.419</u>	0.135	0.069	<u>0.223</u>
	MAE	0.524	0.319	<u>0.421</u>	0.253	0.183	<u>0.261</u>



403
 404 Figure 3: Models evaluated on a sample from the ETTm2 test set.
 405
 406

407 Table 3: MSE and MAE scores (prediction horizon $H = 96$) for non diffusion-based forecasting
 408 methods. Best scores per dataset are in **bold**. Lower is better. Results taken from Gao et al. (2025).

Methods	Metric	ETTh1	ETTh2	ETTm1	ETTm2	Exchange	Solar	Stock
iTransformer	MSE	0.386	0.297	0.334	0.180	0.086	0.203	0.342
	MAE	0.405	0.349	0.368	0.264	0.206	0.413	0.413
TimesNet	MSE	0.384	0.340	0.338	0.187	0.107	0.427	0.427
	MAE	0.402	0.347	0.375	0.267	0.234	0.499	0.499
DLinear	MSE	0.386	0.333	0.345	0.193	0.088	0.286	0.286
	MAE	0.400	0.387	0.372	0.292	0.218	0.325	0.325
PatchTST	MSE	0.414	0.302	0.329	0.175	0.088	0.516	0.516
	MAE	0.419	0.348	0.367	0.259	0.205	0.524	0.524
Client	MSE	0.392	0.305	0.336	0.184	0.086	0.352	0.352
	MAE	0.409	0.353	0.369	0.267	0.206	0.433	0.433
TEDM	MSE	0.595	0.214	0.419	0.135	0.069	1.061	0.056
	MAE	0.524	0.319	0.421	0.253	0.183	0.662	0.182

424
 425 These quantitative gains are mirrored by the qualitative behavior in Fig. 3 (more in appendix G):
 426 TEDM tracks target trends more faithfully, with better phase alignment and amplitude calibration,
 427 and fewer spurious oscillations than competing diffusion models. We also compare with state-of-the-art
 428 non-diffusion methods (see Table 3), confirming the superiority of TEDM for several datasets.
 429

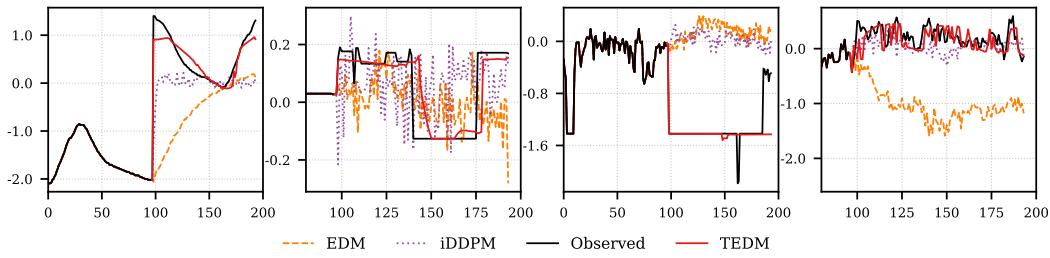
430 These results indicate that elucidating the design space—decoupling the denoiser from the sampler
 431 while carefully selecting the schedule and integration strategy—confers consistent advantages in
 432 performance across diverse temporal patterns.

432

433 Table 4: Ablation study of elucidated models. Lower is better. Percentage gains (in parentheses)
434 indicate improvement of TEDM over EDM.

435 Methods	436 Metric	437 ETTh2	438 ETTm2	439 Exchange
437 iDDPM+DDIM	MSE	0.730	0.756	1.276
	MAE	0.657	0.664	0.963
439 EDM	MSE	0.419	0.293	0.448
	MAE	0.495	0.405	0.532
441 TEDM (cumulative Σ_t , $s_t = 1$)	MSE	0.303 (28%)	0.137 (53%)	0.110 (75%)
	MAE	0.377 (24%)	0.249 (39%)	0.241 (55%)
443 TEDM (cumulative Σ_t , empirical s_t)	MSE	0.242 (42%)	0.135 (54%)	0.068 (85%)
	MAE	0.337 (32%)	0.250 (38%)	0.181 (66%)
445 TEDM (sliding Σ_t , empirical s_t)	MSE	0.216 (49%)	0.142 (52%)	0.075 (83%)
	MAE	0.259 (48%)	0.249 (39%)	0.195 (63%)

447



448

449 Figure 4: Forecasts generated by EDM, iDDPM+DDIM, and TEDM on four randomly selected
450 subsequences from the ETTm2 dataset. Only a section of the initial subsequences for the right panels
451 is observed for better comparison of the forecasts.

452

453 5.7 ABLATION STUDIES

454

455 We adapt the EDM work of Karras et al. (2022) from images to time series. The inherited modularity
456 allows us to try different noise schedules, time discretization and sampling strategists. For instance,
457 EDM, iDDPM+DDIM, and TEDM, all in a unified codebase. We refer to these as “Elucidated”
458 models, since they fit into a general, modularized diffusion framework, mirroring the terminology
459 from Karras et al. (2022).

460

461 Our extension of the EDM framework to time series gives results consistent with those in the vision
462 domain. That is, EDM is consistently better than iDDPM+DDIM, by harnessing optimization of
463 the design space. For time series, this is a result already leveraged by the best weather forecasting
464 framework to date (Price et al. (2025)). Our contribution goes further in two main dimensions:

465

- 466 1. By considering empirical, rather than preset, noise (Σ_t) and scale (s_t) schedules, we get
467 performance gains (see Table 4) of up to **85%** in MSE (**66%** in MAE) with respect to EDM.
468 Fig. 4 shows qualitative results.
- 469 2. By aligning the diffusion and physical time axes, we significantly reduce the time complexity
470 of sampling, getting resource benefits comparable to ARMD (see Table 5). The latter does
471 not harness the optimization of the design space though, as shown in the main results.

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486 We also evaluated the loss of skill when considering different forecast horizons. This is shown in
487 Table 6 and compared against the classical skill (Hyndman & Athanasopoulos (2018)) of a forecast
488 that extrapolate the mean of the context window (see appendix B). This is the minimal-skill forecast
489 (yet better than random). TEDM is still able to leverage pattern-wise information to forecast much
490 better than the latest observed average. For a comparison with other methods, see appendix E.

486
 487 Table 5: Average per-batch training and inference time (seconds), memory (MB), and test MSE on
 488 ETTm2. Lower is better.

Method	Train Time (s)	Train Mem (MB)	Test Time (s)	Test Mem (MB)	MSE
TimeDiff	0.022	759	21.38	125	0.209
DiffusionTS	0.098	3112	634.96	14595	3.517
TMDM	0.207	15600	26.83	193	0.313
NsDiff	0.107	2682	9.80	1125	0.250
ARMD	0.009	20.7	0.02	21.3	0.181
TEDM	0.004	21.3	0.11	23.9	0.135

496
 497 Table 6: MSE and MAE scores for TEDM on ETTh2, ETTm2, and Exchange for longer forecasting
 498 horizons, with baseline (mean) forecast errors. Lower is better.

Horizon	Metric	ETTh2	ETTm2	Exchange	Baseline _{mean}
96	MSE	0.216	0.132	0.068	1.010
	MAE	0.321	0.251	0.182	0.801
192	MSE	0.260	0.163	0.153	1.005
	MAE	0.354	0.282	0.276	0.800
336	MSE	0.326	0.248	0.283	1.003
	MAE	0.396	0.351	0.382	0.799
720	MSE	0.528	0.298	0.602	1.001
	MAE	0.510	0.386	0.571	0.798

513 6 LIMITATIONS OF THIS WORK

514
 515 Although the theoretical foundations of TEDM have a general scope within the diffusion framework,
 516 not all time series can be represented as the Itô processes underlying such framework. For instance, our
 517 formulation cannot capture long-memory dynamics such as those exhibited by fractional Brownian
 518 motion (Mandelbrot & Van Ness (1968)). Similarly, our framework cannot represent heavy-tailed
 519 or power-law noise (e.g., α -stable processes; Samorodnitsky & Taqqu (1994)), nor the jump-driven
 520 behaviors (Applebaum (2009)), all of which violate the diffusion regularity assumptions. Furthermore,
 521 its effectiveness was shown in the diagonal approximation of the data covariance, which most likely
 522 breaks down for datasets with high-dimensional feature space (e.g. Solar in Table 3).

523 7 CONCLUSION AND FUTURE WORK

524
 525 We present TEDM, the first time series forecasting framework that fully elucidates its design space,
 526 grounded on a solid theoretical background. This allows TEDM to reduce the computational
 527 complexity to levels suitable for online deployment. We plan to extend our work with a more
 528 detailed analysis of the skill in probabilistic forecasting, including a method to sample prediction
 529 intervals without ensembling. Additionally, we foresee the usage of TEDM for anomaly detection,
 530 data compression and imputation tasks.

531 8 USE OF LARGE LANGUAGE MODELS

532
 533 We used large language models (LLMs) only to polish the writing and to help search and organize
 534 related work. No modeling ideas, algorithmic designs, experiments, analyses, or reported results
 535 were produced by LLMs; all technical content and empirical results were created and verified by the
 536 authors.

540 REFERENCES
541

542 Md Manjurul Ahsan, Shivakumar Raman, Yingtao Liu, and Zahed Siddique. A comprehensive survey
543 on diffusion models and their applications. *Applied Soft Computing*, pp. 113470, 2025.

544 Md Fahim Anjum. Advancing diffusion models: Alias-free resampling and enhanced rotational
545 equivariance. *arXiv preprint arXiv:2411.09174*, 2024.

546 Mehrnaz Anvari, M Reza Rahimi Tabar, Joachim Peinke, and Klaus Lehnertz. Disentangling the
547 stochastic behavior of complex time series. *Scientific reports*, 6(1):35435, 2016.

548 David Applebaum. *Lévy Processes and Stochastic Calculus*. Cambridge University Press, 2 edition,
549 2009.

550 Georgios Batzolos, Jan Stanczuk, Carola-Bibiane Schönlieb, and Christian Etmann. Conditional
551 image generation with score-based diffusion models. *arXiv preprint arXiv:2111.13606*, 2021.

552 G.E.P. Box, G.M. Jenkins, G.C. Reinsel, and G.M. Ljung. *Time Series Analysis: Forecasting
553 and Control*. Wiley Series in Probability and Statistics. Wiley, 2015. URL <https://books.google.de/books?id=rNt5CgAAQBAJ>.

554 Yitian Chen, Yanfei Kang, Yixiong Chen, and Zizhuo Wang. Probabilistic forecasting with temporal
555 convolutional neural network, 2020. URL <https://arxiv.org/abs/1906.04397>.

556 Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis, 2021. URL
557 <https://arxiv.org/abs/2105.05233>.

558 David F. Findley and Brian C. Monsell. Recent developments in x-13arima-seats and related seasonal
559 adjustment methods. *Journal of Official Statistics*, 2019. URL <https://www.census.gov/topics/research/seasonal-adjustment.html>.

560 Jiaxin Gao, Qinglong Cao, and Yuntian Chen. Auto-regressive moving diffusion models for time series
561 forecasting. In *Proceedings of the AAAI Conference on Artificial Intelligence*, pp. 16727–16735,
562 2025. URL <https://ojs.aaai.org/index.php/AAAI/article/view/33838>.

563 Xizewen Han, Huangjie Zheng, and Mingyuan Zhou. Card: Classification and regression diffusion
564 models. *Advances in Neural Information Processing Systems*, 35:18100–18115, 2022.

565 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
566 recognition, 2015. URL <https://arxiv.org/abs/1512.03385>.

567 Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. Recurrent neural networks for
568 time series forecasting: Current status and future directions. *International Journal of Forecasting*,
569 37(1):388–427, January 2021. ISSN 0169-2070. doi: 10.1016/j.ijforecast.2020.06.008. URL
570 <http://dx.doi.org/10.1016/j.ijforecast.2020.06.008>.

571 Nicholas J Higham. *Functions of matrices: theory and computation*. SIAM, 2008.

572 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. URL
573 <https://arxiv.org/abs/2006.11239>.

574 Rob J Hyndman and George Athanasopoulos. *Forecasting: principles and practice*. OTexts, 2018.

575 Harshavardhan Kamarthi, Aditya B. Sasanur, Xinjie Tong, Xingyu Zhou, James Peters, Joe Czyzyk,
576 and B. Aditya Prakash. Large scale hierarchical industrial demand time-series forecasting incorpo-
577 rating sparsity, 2024. URL <https://arxiv.org/abs/2407.02657>.

578 Tero Karras, Miika Aittala, Samuli Laine, and Timo Aila. Elucidating the design space of diffusion-
579 based generative models. In *Advances in Neural Information Processing Systems*, 2022.

580 Dongbin Kim, Jinseong Park, Jaewook Lee, and Hoki Kim. Are self-attentions effective for time
581 series forecasting? *Advances in Neural Information Processing Systems*, 37:114180–114209,
582 2024.

594 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
 595 <https://arxiv.org/abs/1412.6980>.

596

597 Marcel Kolloviev, Abdul Fatir Ansari, Michael Bohlke-Schneider, Jasper Zschiegner, Hao Wang, and
 598 Yuyang Wang. Predict, refine, synthesize: Self-guiding diffusion models for probabilistic time
 599 series forecasting. In *NeurIPS*, 2023.

600 Xiangjie Kong, Zhenghao Chen, Weiyao Liu, Kaili Ning, Lechao Zhang, Syauqie Muhammad Marier,
 601 Yichen Liu, Yuhao Chen, and Feng Xia. Deep learning for time series forecasting: a sur-
 602 vey. *International Journal of Machine Learning and Cybernetics*, February 2025. ISSN
 603 1868-808X. doi: 10.1007/s13042-025-02560-w. URL <http://dx.doi.org/10.1007/s13042-025-02560-w>.

604

605 Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-term
 606 temporal patterns with deep neural networks. In *The 41st International ACM SIGIR Conference on*
 607 *Research & Development in Information Retrieval*, pp. 95–104, 2018.

608

609 Han Li, Haoyi Wu, Fei Wang, et al. Timemixer++: A general time series pattern machine for
 610 universal multivariate time series analysis. *arXiv preprint arXiv:2410.16032*, 2024a. URL
 611 <https://arxiv.org/abs/2410.16032>.

612

613 Yuxin Li, Wenchao Chen, Xinyue Hu, Bo Chen, Mingyuan Zhou, et al. Transformer-modulated
 614 diffusion models for probabilistic multivariate time series forecasting. In *The Twelfth International*
 615 *Conference on Learning Representations*, 2024b.

616

617 Yanyun Liu, Ying Zhang, Xinyu Li, Yu Zhang, Jingyuan Wang, Defu Lian, Weinan Zhang, Yong
 618 Yu, and Xing Xie. Non-stationary transformers: Exploring the stationarity in time series
 619 forecasting. In *International Conference on Learning Representations (ICLR)*, 2022. URL
<https://openreview.net/forum?id=ucNDIDRNjjv>.

620

621 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
 622 itransformer: Inverted transformers are effective for time series forecasting, 2024. URL <https://arxiv.org/abs/2310.06625>.

623

624 Zhiyuan Ma, Yuzhu Zhang, Guoli Jia, Liangliang Zhao, Yichao Ma, Mingjie Ma, Gaofeng Liu,
 625 Kaiyan Zhang, Ning Ding, Jianjun Li, et al. Efficient diffusion models: A comprehensive survey
 626 from principles to practices. *IEEE Transactions on Pattern Analysis and Machine Intelligence*,
 627 2025.

628

629 Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The m4 competition: 100,000
 630 time series and 61 forecasting methods. *International Journal of Forecasting*, 36(1):54–74, 2020.

631

632 Benoit B Mandelbrot and John W Van Ness. Fractional brownian motions, fractional noises and
 633 applications. *SIAM Review*, 10(4):422–437, 1968.

634

635 James E Matheson and Robert L Winkler. Scoring rules for continuous probability distributions.
 636 *Management science*, 22(10):1087–1096, 1976.

637

638 Joel Oskarsson, Tomas Landelius, Marc Peter Deisenroth, and Fredrik Lindsten. Probabilistic weather
 639 forecasting with hierarchical graph neural networks, 2024. URL <https://arxiv.org/abs/2406.04759>.

640

641 Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
 642 reasoning with a general conditioning layer, 2017. URL <https://arxiv.org/abs/1709.07871>.

643

644 Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Tom R Andersson, Andrew El-Kadi, Dominic
 645 Masters, Timo Ewalds, Jacklynn Stott, Shakir Mohamed, Peter Battaglia, et al. Probabilistic
 646 weather forecasting with machine learning. *Nature*, 637(8044):84–90, 2025.

647

648 Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Autoregressive denoising
 649 diffusion models for multivariate probabilistic time series forecasting. In *International conference*
 650 *on machine learning*, pp. 8857–8868. PMLR, 2021.

648 Gennady Samorodnitsky and Murad S Taqqu. *Stable Non-Gaussian Random Processes: Stochastic*
 649 *Models with Infinite Variance*. CRC Press, 1994.
 650

651 Lifeng Shen and James T. Kwok. Non-autoregressive conditional diffusion models for time series
 652 prediction. In *Proceedings of Machine Learning Research*, 2023.

653 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution,
 654 2020. URL <https://arxiv.org/abs/1907.05600>.

655 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 656 Poole. Score-based generative modeling through stochastic differential equations. In *International*
 657 *Conference on Learning Representations (ICLR)*, 2021. URL <https://arxiv.org/abs/2011.13456>. Oral.

658 Chen Su, Zhengzhou Cai, Yuanhe Tian, Zihong Zheng, and Yan Song. Diffusion models for time
 659 series forecasting: A survey. *arXiv preprint arXiv:2507.14507*, 2025.

660 Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
 661 transformer with rotary position embedding, 2023. URL <https://arxiv.org/abs/2104.09864>.

662 Charalampos Symeonidis and Nikos Nikolaidis. Efficient deterministic renewable energy fore-
 663 casting guided by multiple-location weather data. *Neural Computing and Applications*, 37
 664 (17):10647–10674, January 2025. ISSN 1433-3058. doi: 10.1007/s00521-024-10607-2. URL
 665 <http://dx.doi.org/10.1007/s00521-024-10607-2>.

666 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
 667 Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL <https://arxiv.org/abs/1706.03762>.

668 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: decomposition transformers
 669 with auto-correlation for long-term series forecasting. In *Proceedings of the 35th International*
 670 *Conference on Neural Information Processing Systems*, NIPS ’21, Red Hook, NY, USA, 2021.
 671 Curran Associates Inc. ISBN 9781713845393.

672 Zhen Xing, Qijun Feng, Haoran Chen, Qi Dai, Han Hu, Hang Xu, Zuxuan Wu, and Yu-Gang Jiang.
 673 A survey on video diffusion models. *ACM Computing Surveys*, 57(2):1–42, 2024.

674 Yiyuan Yang, Ming Jin, Haomin Wen, Chaoli Zhang, Yuxuan Liang, Lintao Ma, Yi Wang, Chenghao
 675 Liu, Bin Yang, Zenglin Xu, et al. A survey on diffusion models for time series and spatio-temporal
 676 data. *arXiv preprint arXiv:2404.18886*, 2024.

677 Weiwei Ye, Zhuopeng Xu, and Ning Gui. Non-stationary diffusion for probabilistic time series
 678 forecasting. *arXiv preprint arXiv:2505.04278*, 2025.

679 Jinsung Yoon, Daniel Jarrett, and Mihaela Van der Schaar. Time-series generative adversarial
 680 networks. *Advances in neural information processing systems*, 32, 2019.

681 Xinyu Yuan and Yan Qiao. Diffusion-ts: Interpretable diffusion for general time series generation.
 682 *arXiv preprint arXiv:2403.01742*, 2024.

683 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wulong
 684 Liu. Informer: Beyond efficient transformer for long sequence time-series forecasting. In *AAAI*
 685 *Conference on Artificial Intelligence*, 2021.

686 Jinan Zou, Qingying Zhao, Yang Jiao, Haiyao Cao, Yanxi Liu, Qingsen Yan, Ehsan Abbasnejad,
 687 Lingqiao Liu, and Javen Qinfeng Shi. Stock market prediction via deep learning techniques: A
 688 survey, 2023. URL <https://arxiv.org/abs/2212.12717>.

698 **APPENDICES**

700 In the following, we provide theoretical derivations and experimental details of the main results in
 701 the paper.

702 **A THEORETICAL FOUNDATIONS OF TEDM**
 703

704 **A.1 PRELIMINARY**
 705

706 Following Song et al. (2021), we consider diffusion processes as solutions to an Itô SDE

707
$$d\mathbf{x}_t = \mathbf{f}(\mathbf{x}_t, t) dt + \mathbf{G}(\mathbf{x}_t, t) d\omega_t, \quad (\text{A.1})$$

708 where $\mathbf{f}(\cdot, t) : \mathbb{R}^d \rightarrow \mathbb{R}^d$ and $\mathbf{G}(\cdot, t) : \mathbb{R}^d \rightarrow \mathbb{R}^{d \times d}$. Here, ω_t is a Wiener process, with changes
 709 having zero-mean, $\mathbb{E}(d\omega_t) = 0$, and being uncorrelated: $\mathbb{E}(d\omega_t d\omega_t^T) = \mathbf{I} dt$.
 710

711 To simplify notation, we label functions of time with a subscript, e.g. the drift term is written as
 712 $\mathbf{f}(\mathbf{x}_t, t) = \mathbf{f}_t(\mathbf{x}_t)$. Also, we explicitly keep the time dependence of \mathbf{x}_t when important from the
 713 context, otherwise we just use \mathbf{x} .

714 We consider the diffusion term, $\mathbf{G}(\mathbf{x}_t, t) = \mathbf{G}_t$, to be independent of \mathbf{x} (or slowly varying with \mathbf{x}).
 715 See Assumption A.1 for a more concrete statement about this condition. The SDE then becomes

716
$$d\mathbf{x}_t = \mathbf{f}_t(\mathbf{x}_t) dt + \mathbf{G}_t d\omega_t. \quad (\text{A.2})$$

717 In the following, we consider the case of affine drift term, for which the perturbation kernel is
 718 Gaussian.
 719

720 **A.2 PERTURBATION KERNEL**
 721

722 The transition probability density for drift terms of the form $\mathbf{f}_t(\mathbf{x}) = f_t \mathbf{x}$, with $f_t : \mathbb{R} \rightarrow \mathbb{R}$, is
 723 Gaussian (Eq. 29 in Song et al. (2021)):

725
$$p_{0t}(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \boldsymbol{\mu}_t, \mathbf{V}_t), \quad (\text{A.3})$$

726 with mean $\boldsymbol{\mu}_t$ and covariance \mathbf{V}_t . To find these moments, we express (A.2) in the form

727
$$d\mathbf{x}_t = f_t \mathbf{x}_t dt + \mathbf{G}_t d\omega_t. \quad (\text{A.4})$$

729 Taking expectation value

730
$$\begin{aligned} d\mathbb{E}(\mathbf{x}_t) &= f_t \mathbb{E}(\mathbf{x}_t) dt + \mathbf{G}_t \mathbb{E}(d\omega_t) \\ &= f_t \mathbb{E}(\mathbf{x}_t) dt \\ &= d\boldsymbol{\mu}_t = f_t \boldsymbol{\mu}_t dt \\ &\frac{d\boldsymbol{\mu}_t}{dt} = f_t \boldsymbol{\mu}_t \\ &\boldsymbol{\mu}_t = e^{\int_0^t f_\tau d\tau} \boldsymbol{\mu}_0 := s_t \mathbf{x}_0, \end{aligned}$$

737 where the scale process is defined as

738
$$\mathbb{E}(\mathbf{x}_t) = s_t \mathbb{E}(\mathbf{x}_0), \quad s_t = e^{\int_0^t f_\tau d\tau}. \quad (\text{A.5})$$

739 Using this, and the integral form

740
$$\mathbf{x}_t = s_t \mathbf{x}_0 + s_t \int_0^t s_\tau^{-1} \mathbf{G}_\tau d\omega_\tau, \quad (\text{A.6})$$

743 of the Itô process (A.2), we can find the covariance as

744
$$\begin{aligned} \mathbf{V}_t &= \text{Cov}(\mathbf{x}_t) \\ &= \text{Cov} \left(s_t \int_0^t s_\tau^{-1} \mathbf{G}_\tau d\omega_\tau \right) \\ &= s_t^2 \int_0^t s_\tau^{-2} \text{Cov}(\mathbf{G}_\tau d\omega_\tau) \\ &= s_t^2 \int_0^t s_\tau^{-2} \mathbf{G}_\tau \mathbf{G}_\tau^T \text{Cov}(d\omega_\tau) \\ &= s_t^2 \int_0^t s_\tau^{-2} \mathbf{G}_\tau \mathbf{G}_\tau^T \mathbf{I} dt \\ &= s_t^2 \Sigma_t, \end{aligned} \quad (\text{A.7})$$

756 where we have defined
 757

$$\Sigma_t := \int_0^t s_\tau^{-2} \mathbf{G}_\tau \mathbf{G}_\tau^T d\tau \quad (\text{A.8})$$

$$s_t^2 \dot{\Sigma}_t = \mathbf{G}_t \mathbf{G}_t^T. \quad (\text{A.9})$$

762 The perturbation kernel (A.3) can then be written as
 763

$$p_{0t}(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; s_t \mathbf{x}_0, s_t^2 \Sigma_t). \quad (\text{A.10})$$

766 A.3 SCORE FUNCTION AND DENOISER

768 The score function is defined as $\nabla_{\mathbf{x}} \log p_t(\mathbf{x})$, where $p_t(\mathbf{x})$ is the marginal distribution. The latter is
 769 obtained by integrating (A.10) over all initial conditions:
 770

$$\begin{aligned} p_t(\mathbf{x}) &= \int_{\mathbb{R}^d} p_{0t}(\mathbf{x} | \mathbf{x}_0) p_{\text{data}}(\mathbf{x}_0) d\mathbf{x}_0 \\ &= \int_{\mathbb{R}^d} \mathcal{N}(\mathbf{x}; s_t \mathbf{x}_0, s_t^2 \Sigma_t) p_{\text{data}}(\mathbf{x}_0) d\mathbf{x}_0 \\ &= s_t^{-d} \int_{\mathbb{R}^d} \mathcal{N}(\mathbf{x}/s_t; \mathbf{x}_0, \Sigma_t) p_{\text{data}}(\mathbf{x}_0) d\mathbf{x}_0 \\ &= s_t^{-d} p(\mathbf{x}/s_t, \Sigma_t), \end{aligned} \quad (\text{A.11})$$

781 where we have used the fact that
 782

$$\mathcal{N}(\mathbf{x}; \mathbf{y}, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} e^{-\frac{1}{2} (\mathbf{x}-\mathbf{y})^T \Sigma^{-1} (\mathbf{x}-\mathbf{y})}, \quad (\text{A.12})$$

785 and therefore we can express
 786

$$\mathcal{N}(\mathbf{x}_t; s_t \mathbf{x}_0, s_t^2 \Sigma_t) = s_t^{-d} \mathcal{N}(\mathbf{x}_t/s_t; \mathbf{x}_0, \Sigma_t). \quad (\text{A.13})$$

789 Following Eq. 19 in Karras et al. (2022), we have defined the mollified version of the data distribution
 790

$$p(\mathbf{x}, \Sigma) = p_{\text{data}}(\mathbf{x}) * \mathcal{N}(\mathbf{0}; \Sigma), \quad (\text{A.14})$$

793 as a convolution that effectively corrupts data samples with Gaussian noise.
 794

795 **Score function.** The score function is calculated from (A.11)

$$\begin{aligned} \nabla_{\mathbf{x}} \log p_t(\mathbf{x}) &= \nabla_{\mathbf{x}} \log [s_t^{-d} p(\mathbf{x}/s_t, \Sigma_t)] \\ &= \nabla_{\mathbf{x}} \log p(\mathbf{x}/s_t, \Sigma_t) \\ &= \frac{\nabla_{\mathbf{x}} p(\mathbf{x}/s_t, \Sigma_t)}{p(\mathbf{x}/s_t, \Sigma_t)} \\ &= s_t^{-1} \frac{\nabla_{\hat{\mathbf{x}}} p(\hat{\mathbf{x}}, \Sigma_t)}{p(\hat{\mathbf{x}}, \Sigma_t)}, \quad \hat{\mathbf{x}} = \mathbf{x}/s_t. \end{aligned} \quad (\text{A.15})$$

805 To evaluate this, we need an analytical expression for the probability density of the data.
 806

807 Consider a dataset with a finite number of samples $\{\mathbf{y}_1, \dots, \mathbf{y}_N\}$. Assume that these arise from
 808 transforming the dataset $\{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ using a continuously differentiable mapping g , so $\mathbf{Y} = g(\mathbf{X})$.
 809 The discrete dataset has density $f_X(\mathbf{x}) = \sum_{i=1}^N p_{\mathbf{x}_i} \delta(\mathbf{x} - \mathbf{x}_i)$, where $p_{\mathbf{x}_i}$ is the probability mass of
 \mathbf{x}_i . The density of \mathbf{Y} is known to be

810
 811
 812
$$f_Y(\mathbf{y}) = \int_{\mathbb{R}^d} f_X(\mathbf{x}) \delta(\mathbf{y} - g(\mathbf{x})) d\mathbf{x} \quad (\text{A.16})$$

 813
 814
 815
$$= \int_{\mathbb{R}^d} \left[\sum_{i=1}^N p_{\mathbf{x}_i} \delta(\mathbf{x} - \mathbf{x}_i) \right] \delta(\mathbf{y} - g(\mathbf{x})) d\mathbf{x} \quad (\text{A.17})$$

 816
 817
 818
$$= \sum_{i=1}^N p_{\mathbf{x}_i} \int_{\mathbb{R}^d} \delta(\mathbf{x} - \mathbf{x}_i) \delta(\mathbf{y} - g(\mathbf{x})) d\mathbf{x} \quad (\text{A.18})$$

 819
 820
 821
$$= \sum_{i=1}^N p_{\mathbf{x}_i} \delta(\mathbf{y} - g(\mathbf{x}_i)) \quad (\text{A.19})$$

 822
 823
 824
$$= \sum_{i=1}^N p_{\mathbf{x}_i} \delta(\mathbf{y} - \mathbf{y}_i). \quad (\text{A.20})$$

 825

826 In the case of images, g is the identity mapping and $p_{\mathbf{x}_i} = 1/N$ is the uniform density. For time-
 827 series, one can think of a *propagator* g that takes each \mathbf{x}_i into the corresponding \mathbf{y}_i after a number of
 828 physical time steps. One can then write the data distribution as

829
 830
$$p_{\text{data}}(\mathbf{x}_0) = \sum_{i=1}^N p_{\mathbf{x}_i} \delta(\mathbf{x}_0 - \mathbf{y}_i). \quad (\text{A.21})$$

 831
 832

833 With this, we can evaluate (A.11) as

834
$$p(\hat{\mathbf{x}}, \Sigma_t) = \int_{\mathbb{R}^d} \mathcal{N}(\hat{\mathbf{x}}; \mathbf{x}_0, \Sigma_t) p_{\text{data}}(\mathbf{x}_0) d\mathbf{x}_0$$

 835
 836
 837
$$= \int_{\mathbb{R}^d} \mathcal{N}(\hat{\mathbf{x}}; \mathbf{x}_0, \Sigma_t) \left[\sum_{i=1}^N p_{\mathbf{x}_i} \delta(\mathbf{x}_0 - \mathbf{y}_i) \right] d\mathbf{x}_0$$

 838
 839
 840
$$= \sum_{i=1}^N p_{\mathbf{x}_i} \mathcal{N}(\hat{\mathbf{x}}; \mathbf{y}_i, \Sigma_t) \quad (\text{A.22})$$

 841
 842
 843
$$\nabla_{\hat{\mathbf{x}}} p(\hat{\mathbf{x}}, \Sigma_t) = \sum_{i=1}^N p_{\mathbf{x}_i} \nabla_{\hat{\mathbf{x}}} \mathcal{N}(\hat{\mathbf{x}}; \mathbf{y}_i, \Sigma_t) \quad (\text{A.23})$$

 844

845 From (A.12) we have
 846

847
$$\begin{aligned} \nabla_{\hat{\mathbf{x}}} \mathcal{N}(\hat{\mathbf{x}}; \mathbf{y}, \Sigma_t) &= \mathcal{N}(\hat{\mathbf{x}}; \mathbf{y}, \Sigma_t) \nabla_{\hat{\mathbf{x}}} \log \mathcal{N}(\hat{\mathbf{x}}; \mathbf{y}, \Sigma_t) \\ 848 &= \mathcal{N}(\hat{\mathbf{x}}; \mathbf{y}, \Sigma_t) \nabla_{\hat{\mathbf{x}}} \left[-\frac{1}{2} (\hat{\mathbf{x}} - \mathbf{y})^T \Sigma_t^{-1} (\hat{\mathbf{x}} - \mathbf{y}) \right] \\ 849 &= \mathcal{N}(\hat{\mathbf{x}}; \mathbf{y}, \Sigma_t) \left[-\Sigma_t^{-1} (\hat{\mathbf{x}} - \mathbf{y}) \right], \end{aligned}$$

 850

851 Substituting in (A.23)

852
$$\begin{aligned} \nabla_{\hat{\mathbf{x}}} p(\hat{\mathbf{x}}, \Sigma_t) &= \sum_{i=1}^N p_{\mathbf{x}_i} \mathcal{N}(\hat{\mathbf{x}}; \mathbf{y}_i, \Sigma_t) \left[-\Sigma_t^{-1} (\hat{\mathbf{x}} - \mathbf{y}_i) \right] \\ 853 &\stackrel{(\text{A.22})}{=} \Sigma_t^{-1} [p(\hat{\mathbf{x}}, \Sigma_t) D(\hat{\mathbf{x}}, \Sigma_t) - \hat{\mathbf{x}} p(\hat{\mathbf{x}}, \Sigma_t)] \\ 854 &= p(\hat{\mathbf{x}}, \Sigma_t) \Sigma_t^{-1} [D(\hat{\mathbf{x}}, \Sigma_t) - \hat{\mathbf{x}}] \end{aligned}$$

 855
 856
 857

858 where we have defined
 859

860
$$D(\hat{\mathbf{x}}, \Sigma_t) = \frac{\sum_{i=1}^N p_{\mathbf{x}_i} \mathcal{N}(\hat{\mathbf{x}}; \mathbf{y}_i, \Sigma_t) \mathbf{y}_i}{\sum_{i=1}^N p_{\mathbf{x}_i} \mathcal{N}(\hat{\mathbf{x}}; \mathbf{y}_i, \Sigma_t)}. \quad (\text{A.24})$$

 861

862 Substituting in (A.15)
 863

864
$$\nabla_{\mathbf{x}} \log p_t(\mathbf{x}) = s_t^{-1} \Sigma_t^{-1} [D(\mathbf{x}/s_t, \Sigma_t) - \mathbf{x}/s_t]. \quad (\text{A.25})$$

864 **Denoiser.** We want to show that (A.25) links the score function to the denoiser. That is, (A.24) is
 865 the optimal solution of the denoising objective
 866

$$\begin{aligned}
 868 \quad \mathcal{L}(D; \Sigma) &= \mathbb{E}_{\mathbf{y} \sim p_{\text{data}}} \mathbb{E}_{\mathbf{n} \sim \mathcal{N}(\mathbf{0}, \Sigma)} \|D(\mathbf{y} + \mathbf{n}, \Sigma) - \mathbf{y}\|^2 \\
 869 &= \mathbb{E}_{\mathbf{y} \sim p_{\text{data}}} \mathbb{E}_{\mathbf{x} \sim \mathcal{N}(\mathbf{y}, \Sigma)} \|D(\mathbf{x}, \Sigma) - \mathbf{y}\|^2 \\
 870 &= \mathbb{E}_{\mathbf{y} \sim p_{\text{data}}} \int_{\mathbb{R}^d} \mathcal{N}(\mathbf{x}; \mathbf{y}, \Sigma) \|D(\mathbf{x}, \Sigma) - \mathbf{y}\|^2 d\mathbf{x} \\
 871 &= \int_{\mathbb{R}^d} \sum_{i=1}^N p_{\mathbf{x}_i} \mathcal{N}(\mathbf{x}; \mathbf{y}_i, \Sigma) \|D(\mathbf{x}, \Sigma) - \mathbf{y}_i\|^2 d\mathbf{x} \\
 872 &= \int_{\mathbb{R}^d} \mathcal{L}(D; \mathbf{x}, \Sigma) d\mathbf{x}.
 \end{aligned}$$

873 Since the integrand is positive everywhere, the optimal solution D_* satisfies
 874

$$D_*(\mathbf{x}, \Sigma) = \arg \min_{D(\mathbf{x}, \Sigma)} \mathcal{L}(D; \mathbf{x}, \Sigma).$$

875 Since this is a convex optimization problem, the unique solution is found as
 876

$$\begin{aligned}
 877 \quad \mathbf{0} &= \nabla_{D(\mathbf{x}, \Sigma)} \mathcal{L}(D; \mathbf{x}, \Sigma) \\
 878 &= \nabla_{D(\mathbf{x}, \Sigma)} \sum_{i=1}^N p_{\mathbf{x}_i} \mathcal{N}(\mathbf{x}; \mathbf{y}_i, \Sigma) \|D(\mathbf{x}, \Sigma) - \mathbf{y}_i\|^2 \\
 879 &= \sum_{i=1}^N p_{\mathbf{x}_i} \mathcal{N}(\mathbf{x}; \mathbf{y}_i, \Sigma) \nabla_{D(\mathbf{x}, \Sigma)} \|D(\mathbf{x}, \Sigma) - \mathbf{y}_i\|^2 \\
 880 &= \sum_{i=1}^N p_{\mathbf{x}_i} \mathcal{N}(\mathbf{x}; \mathbf{y}_i, \Sigma) 2[D_*(\mathbf{x}, \Sigma) - \mathbf{y}_i] \\
 881 &= \frac{\sum_{i=1}^N p_{\mathbf{x}_i} \mathcal{N}(\mathbf{x}; \mathbf{y}_i, \Sigma) \mathbf{y}_i}{\sum_{i=1}^N p_{\mathbf{x}_i} \mathcal{N}(\mathbf{x}; \mathbf{y}_i, \Sigma)}.
 \end{aligned}$$

882 This optimal solution agrees with (A.24).
 883

884 A.4 TRAINING WITH PRECONDITIONING

885 Motivated by Karras et al. (2022), we train the denoiser $D_\theta(\mathbf{x}, \Sigma)$ by minimizing a weighted version
 886 of the denoising objective

$$\begin{aligned}
 887 \quad \mathcal{L}(D_\theta) &= \mathbb{E}_{\Sigma \sim P_\Sigma} \lambda(\Sigma) \mathcal{L}(D_\theta; \Sigma), \\
 888 &= \mathbb{E}_{\Sigma \sim P_\Sigma} \mathbb{E}_{\mathbf{y} \sim p_{\text{data}}} \mathbb{E}_{\mathbf{n} \sim \mathcal{N}(\mathbf{0}, \Sigma)} \lambda(\Sigma) \|D_\theta(\mathbf{y} + \mathbf{n}, \Sigma) - \mathbf{y}\|^2,
 \end{aligned} \tag{A.26}$$

889 where P_Σ is a distribution over noise covariances, and $\lambda(\Sigma)$ is a weighting function. For simplicity,
 890 we write single functions of Σ in terms of subscripts, e.g. $\lambda(\Sigma) = \lambda_\Sigma$.

891 We extend the EDM preconditioning strategy as
 892

$$D_\theta(\mathbf{x}, \Sigma) = \mathbf{C}_{\Sigma; \text{skip}} \mathbf{x} + c_{\Sigma; \text{out}} F_\theta(\mathbf{C}_{\Sigma; \text{in}} \mathbf{x}; \mathbf{C}_{\Sigma; \text{noise}}), \tag{A.27}$$

893 where $F_\theta(\cdot; \cdot)$ is a neural network with parameters θ ; $\mathbf{C}_{\Sigma; \text{skip}}$, $\mathbf{C}_{\Sigma; \text{in}}$, and $\mathbf{C}_{\Sigma; \text{noise}}$ are preconditioning
 894 matrices that depend on the noise covariance Σ , and $c_{\Sigma; \text{out}}$ is a scalar. Substituting in (A.26)

$$\begin{aligned}
 895 \quad \mathcal{L}(\theta) &= \mathbb{E}_{\Sigma, \mathbf{y}, \mathbf{n}} \lambda_\Sigma \| \mathbf{C}_{\Sigma; \text{skip}}(\mathbf{y} + \mathbf{n}) + c_{\Sigma; \text{out}} F_\theta(\mathbf{C}_{\Sigma; \text{in}}(\mathbf{y} + \mathbf{n}); \mathbf{C}_{\Sigma; \text{noise}}) - \mathbf{y} \|^2, \\
 896 &= \mathbb{E}_{\Sigma, \mathbf{y}, \mathbf{n}} \lambda_\Sigma c_{\Sigma; \text{out}}^2 \| F_\theta(\mathbf{C}_{\Sigma; \text{in}}(\mathbf{y} + \mathbf{n}); \mathbf{C}_{\Sigma; \text{noise}}) - \frac{1}{c_{\Sigma; \text{out}}} (\mathbf{y} - \mathbf{C}_{\Sigma; \text{skip}}(\mathbf{y} + \mathbf{n})) \|^2, \\
 897 &= \mathbb{E}_{\Sigma, \mathbf{y}, \mathbf{n}} \lambda_\Sigma c_{\Sigma; \text{out}}^2 \| F_\theta(\mathbf{C}_{\Sigma; \text{in}}(\mathbf{y} + \mathbf{n}); \mathbf{C}_{\Sigma; \text{noise}}) - F_{\text{target}}(\mathbf{y}, \mathbf{n}, \Sigma) \|^2,
 \end{aligned} \tag{A.28}$$

898 which is just the l_2 -supervision of the neural network $F_\theta(\cdot; \cdot)$ to match the target function. While
 899 doing this, it is required that:

918 • F_θ **sees unit-variance inputs.** This is achieved by choosing $C_{\Sigma;\text{in}}$ such that

$$\begin{aligned} \text{Cov}(\mathbf{C}_{\Sigma;\text{in}}(\mathbf{y} + \mathbf{n})) &= \mathbf{I}, \\ \mathbf{C}_{\Sigma;\text{in}} \text{Cov}(\mathbf{y} + \mathbf{n}) \mathbf{C}_{\Sigma;\text{in}}^T &= \mathbf{I}, \\ \mathbf{C}_{\Sigma;\text{in}} (\text{Cov}(\mathbf{y}) + \Sigma) \mathbf{C}_{\Sigma;\text{in}}^T &= \mathbf{I}, \\ \mathbf{C}_{\Sigma;\text{in}} &= (\text{Cov}(\mathbf{y}) + \Sigma)^{-1/2}. \end{aligned} \quad (\text{A.29})$$

925 Note that this holds even when Σ is estimated from the data \mathbf{y} , as long as the estimator is
926 unbiased. This is because, in general, from the law of total covariance,

$$\begin{aligned} \text{Cov}(\mathbf{y} + \mathbf{n}) &= \mathbb{E}[\text{Cov}(\mathbf{y} + \mathbf{n}|\mathbf{y})] + \text{Cov}(\mathbb{E}[\mathbf{y} + \mathbf{n}|\mathbf{y}]) = \text{Cov}(\mathbf{y}) + \mathbb{E}[\hat{\Sigma}], \\ \text{since } \text{Cov}(\mathbf{y}|\mathbf{y}) &= 0, \text{Cov}(\mathbf{n}|\mathbf{y}) = \hat{\Sigma}, \text{ and } \mathbb{E}[\mathbf{y} + \mathbf{n}|\mathbf{y}] = \mathbf{y}. \end{aligned}$$

930 • F_{target} **gives unit-variance outputs.** This is achieved by choosing $c_{\Sigma;\text{out}}$ such that

$$\begin{aligned} \text{Cov}(F_{\text{target}}(\mathbf{y}, \mathbf{n}, \Sigma)) &= \mathbf{I}, \\ \text{Cov}\left(\frac{1}{c_{\Sigma;\text{out}}}(\mathbf{y} - \mathbf{C}_{\Sigma;\text{skip}}(\mathbf{y} + \mathbf{n}))\right) &= \mathbf{I}, \\ \frac{1}{c_{\Sigma;\text{out}}^2} \text{Cov}((\mathbf{I} - \mathbf{C}_{\Sigma;\text{skip}})\mathbf{y} - \mathbf{C}_{\Sigma;\text{skip}}\mathbf{n}) &= \mathbf{I}, \\ (\mathbf{I} - \mathbf{C}_{\Sigma;\text{skip}}) \text{Cov}(\mathbf{y}) (\mathbf{I} - \mathbf{C}_{\Sigma;\text{skip}})^T + \mathbf{C}_{\Sigma;\text{skip}} \Sigma \mathbf{C}_{\Sigma;\text{skip}}^T &= c_{\Sigma;\text{out}}^2 \mathbf{I}. \end{aligned} \quad (\text{A.30})$$

938 • **Errors in F_θ are amplified as little as possible.** This is achieved by choosing $\mathbf{C}_{\Sigma;\text{skip}}$
939 above to minimize $c_{\Sigma;\text{out}}$. For this, we can set up the optimization problem

$$\begin{aligned} \min_{\mathbf{C}_{\Sigma;\text{skip}}} \quad & c_{\Sigma;\text{out}}^2 \\ \text{s.t.} \quad & (\mathbf{I} - \mathbf{C}_{\Sigma;\text{skip}}) \text{Cov}(\mathbf{y}) (\mathbf{I} - \mathbf{C}_{\Sigma;\text{skip}})^T + \mathbf{C}_{\Sigma;\text{skip}} \Sigma \mathbf{C}_{\Sigma;\text{skip}}^T = c_{\Sigma;\text{out}}^2 \mathbf{I}. \end{aligned}$$

944 This is a constrained matrix optimization problem that can be solved with Lagrange multipliers. That is, we define the Lagrangian

$$\begin{aligned} \mathcal{L}(\mathbf{C}_{\Sigma;\text{skip}}, c_{\Sigma;\text{out}}, \Lambda) &= c_{\Sigma;\text{out}}^2 \\ &+ \text{Tr}\left[\Lambda\left((\mathbf{I} - \mathbf{C}_{\Sigma;\text{skip}}) \text{Cov}(\mathbf{y}) (\mathbf{I} - \mathbf{C}_{\Sigma;\text{skip}})^T\right.\right. \\ &\left.\left.+ \mathbf{C}_{\Sigma;\text{skip}} \Sigma \mathbf{C}_{\Sigma;\text{skip}}^T - c_{\Sigma;\text{out}}^2 \mathbf{I}\right)\right]. \end{aligned}$$

951 where Λ is a symmetric matrix of Lagrange multipliers. Setting the gradients to zero gives
952 the optimality conditions

$$\nabla_{\mathbf{C}_{\Sigma;\text{skip}}} \mathcal{L} = -2\Lambda(\mathbf{I} - \mathbf{C}_{\Sigma;\text{skip}}) \text{Cov}(\mathbf{y}) + 2\Lambda \mathbf{C}_{\Sigma;\text{skip}} \Sigma = \mathbf{0},$$

$$\nabla_{c_{\Sigma;\text{out}}} \mathcal{L} = 2c_{\Sigma;\text{out}} - 2c_{\Sigma;\text{out}} \text{Tr}(\Lambda) = 0,$$

$$\nabla_{\Lambda} \mathcal{L} = (\mathbf{I} - \mathbf{C}_{\Sigma;\text{skip}}) \text{Cov}(\mathbf{y}) (\mathbf{I} - \mathbf{C}_{\Sigma;\text{skip}})^T + \mathbf{C}_{\Sigma;\text{skip}} \Sigma \mathbf{C}_{\Sigma;\text{skip}}^T - c_{\Sigma;\text{out}}^2 \mathbf{I} \stackrel{(\text{A.30})}{=} \mathbf{0}.$$

956 From the second condition, we have that either $c_{\Sigma;\text{out}} = 0$ or $\text{Tr}(\Lambda) = 1$. The former is not
957 acceptable, since it would lead to a trivial solution. The latter implies that $\Lambda \neq \mathbf{0}$. Therefore,
958 the first condition can be written as

$$\begin{aligned} -2(\mathbf{I} - \mathbf{C}_{\Sigma;\text{skip}}) \text{Cov}(\mathbf{y}) + 2\mathbf{C}_{\Sigma;\text{skip}} \Sigma &= \mathbf{0}, \\ (\mathbf{I} - \mathbf{C}_{\Sigma;\text{skip}}) \text{Cov}(\mathbf{y}) &= \mathbf{C}_{\Sigma;\text{skip}} \Sigma, \\ \mathbf{C}_{\Sigma;\text{skip}} (\text{Cov}(\mathbf{y}) + \Sigma) &= \text{Cov}(\mathbf{y}), \end{aligned} \quad (\text{A.31})$$

$$\mathbf{C}_{\Sigma;\text{skip}} = \text{Cov}(\mathbf{y})(\text{Cov}(\mathbf{y}) + \Sigma)^{-1}. \quad (\text{A.32})$$

966 Substituting (A.31) back in the constraint equation (A.30), we find

$$\begin{aligned} (\mathbf{I} - \mathbf{C}_{\Sigma;\text{skip}}) \text{Cov}(\mathbf{y}) (\mathbf{I} - \mathbf{C}_{\Sigma;\text{skip}})^T + \mathbf{C}_{\Sigma;\text{skip}} \Sigma \mathbf{C}_{\Sigma;\text{skip}}^T &= c_{\Sigma;\text{out}}^2 \mathbf{I}, \\ \mathbf{C}_{\Sigma;\text{skip}} \Sigma (\mathbf{I} - \mathbf{C}_{\Sigma;\text{skip}})^T + \mathbf{C}_{\Sigma;\text{skip}} \Sigma \mathbf{C}_{\Sigma;\text{skip}}^T &= c_{\Sigma;\text{out}}^2 \mathbf{I}, \\ \mathbf{C}_{\Sigma;\text{skip}} \Sigma &= c_{\Sigma;\text{out}}^2 \mathbf{I}, \\ \text{Cov}(\mathbf{y})(\text{Cov}(\mathbf{y}) + \Sigma)^{-1} \Sigma &\stackrel{(\text{A.32})}{=} c_{\Sigma;\text{out}}^2 \mathbf{I}. \end{aligned} \quad (\text{A.33})$$

972 With $\mathbf{A}_\Sigma = \text{Cov}(\mathbf{y})(\text{Cov}(\mathbf{y}) + \Sigma)^{-1} \Sigma$, we see that $\mathbf{A}_\Sigma \mathbf{e} = c_{\Sigma; \text{out}}^2 \mathbf{e}$, so $c_{\Sigma; \text{out}}^2$ is the
 973 eigenvalue of \mathbf{A}_Σ with eigenvector \mathbf{e} . To minimize $c_{\Sigma; \text{out}}$, it must be chosen as the smallest
 974 eigenvalue of \mathbf{A}_Σ .
 975

- **The loss weighing is uniform.** This is achieved by choosing λ_Σ such that

$$977 \quad \lambda_\Sigma c_{\Sigma; \text{out}}^2 = 1, \quad (\text{A.34})$$

978 so λ_Σ is the inverse of the smallest eigenvalue of \mathbf{A}_Σ .
 979

980 The preconditioning then ensures that the neural network F_θ is trained on unit-variance inputs and
 981 targets, while minimizing the amplification of errors and ensuring uniform loss weighting.
 982

983 **Preconditioning summary.** The preconditioning matrices and scalars are
 984

$$985 \quad \mathbf{C}_{\Sigma; \text{in}} = (\text{Cov}(\mathbf{y}) + \Sigma)^{-1/2}, \quad (\text{A.35})$$

$$986 \quad \mathbf{C}_{\Sigma; \text{skip}} = \text{Cov}(\mathbf{y})(\text{Cov}(\mathbf{y}) + \Sigma)^{-1}, \quad (\text{A.36})$$

$$987 \quad c_{\Sigma; \text{out}}^2 \mathbf{I} = \text{Cov}(\mathbf{y})(\text{Cov}(\mathbf{y}) + \Sigma)^{-1} \Sigma, \quad (\text{A.37})$$

$$988 \quad \lambda_\Sigma = 1/c_{\Sigma; \text{out}}^2. \quad (\text{A.38})$$

991 The remaining $\mathbf{C}_{\Sigma; \text{noise}}$ is chosen empirically, as in EDM.
 992

993 A.4.1 SIMPLEST CASE: DIAGONAL Σ

995 In the isotropic case, $\Sigma = \sigma^2 \mathbf{I}$, the preconditioning reduces to the EDM case, only if the data is
 996 assumed identically and independently distributed (i.i.d.), so that $\text{Cov}(\mathbf{y}) = \sigma_{\text{data}}^2 \mathbf{I}$. In this case, each
 997 preconditioning component simplifies to

$$998 \quad \mathbf{C}_{\sigma; \text{in}} = \frac{1}{\sqrt{\sigma_{\text{data}}^2 + \sigma^2}},$$

$$999 \quad \mathbf{C}_{\sigma; \text{skip}} = \frac{\sigma_{\text{data}}^2}{\sigma_{\text{data}}^2 + \sigma^2}$$

$$1000 \quad c_{\sigma; \text{out}}^2 = \frac{\sigma_{\text{data}}^2 \sigma^2}{\sigma_{\text{data}}^2 + \sigma^2},$$

$$1001 \quad \lambda_\sigma = \frac{\sigma_{\text{data}}^2 + \sigma^2}{\sigma_{\text{data}}^2 \sigma^2}.$$

1008 For images, Karras et al. (2022) use $\sigma_{\text{data}} = 0.5$. For standardized time series with unit variance,
 1009 Price et al. (2025) use $\sigma_{\text{data}} = 1$ for weather forecasting.
 1010

1011 In the anisotropic but diagonal case, $\Sigma = \text{diag}(\sigma_1^2, \sigma_2^2, \dots, \sigma_d^2)$, and assuming i.i.d. data, $\text{Cov}(\mathbf{y}) =$
 1012 $\sigma_{\text{data}}^2 \mathbf{I}$, the preconditioning components become
 1013

$$1014 \quad \mathbf{C}_{\Sigma; \text{in}} = \text{diag} \left(\frac{1}{\sqrt{\sigma_{\text{data}}^2 + \sigma_1^2}}, \frac{1}{\sqrt{\sigma_{\text{data}}^2 + \sigma_2^2}}, \dots, \frac{1}{\sqrt{\sigma_{\text{data}}^2 + \sigma_d^2}} \right),$$

$$1015 \quad \mathbf{C}_{\Sigma; \text{skip}} = \text{diag} \left(\frac{\sigma_{\text{data}}^2}{\sigma_{\text{data}}^2 + \sigma_1^2}, \frac{\sigma_{\text{data}}^2}{\sigma_{\text{data}}^2 + \sigma_2^2}, \dots, \frac{\sigma_{\text{data}}^2}{\sigma_{\text{data}}^2 + \sigma_d^2} \right),$$

$$1016 \quad c_{\Sigma; \text{out}}^2 = \min_{j=1, \dots, d} \left(\frac{\sigma_{\text{data}}^2 \sigma_j^2}{\sigma_{\text{data}}^2 + \sigma_j^2} \right),$$

$$1017 \quad \lambda_\Sigma = \frac{1}{c_{\Sigma; \text{out}}^2}.$$

1024 This is the next level of complexity, allowing different noise levels per dimension, but still assuming
 1025 uncorrelated data. This is the case that is used in our experiments, where we set $\sigma_{\text{data}} = 1$, following
 Price et al. (2025).

1026 A.4.2 GENERAL CASE: FULL Σ
1027

1028 In this case, we first notice that the sampled noise $\mathbf{n} = \Sigma^{1/2}\boldsymbol{\varepsilon}$, with $\boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \Sigma)$ is fully structured.
1029 But the square root of $\Sigma^{1/2}$ is no longer computed as the element-wise square root of the diagonal
1030 elements. For noise sampling, it is sufficient to decompose Σ via Cholesky, $\Sigma = \mathbf{L}\mathbf{L}^T$, where \mathbf{L} is
1031 a lower-triangular matrix. Then, noise samples are obtained as $\mathbf{n} = \mathbf{L}\boldsymbol{\varepsilon}$, with $\boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. Such
1032 noise samples will have covariance Σ , since $\text{Cov}(\mathbf{n}) = \mathbf{L} \text{Cov}(\boldsymbol{\varepsilon}) \mathbf{L}^T = \mathbf{L}\mathbf{L}^T = \Sigma$.

1033 The preconditioning matrices and scalars can be written, just in terms of Σ , by using (A.7), so that
1034 $\text{Cov}(\mathbf{y}) = s^2\Sigma$. This gives

$$1036 \quad \mathbf{C}_{\Sigma;\text{in}} = (s^2\Sigma + \Sigma)^{-1/2} = \frac{1}{\sqrt{1+s^2}} \Sigma^{-1/2}, \quad (\text{A.39})$$

$$1038 \quad \mathbf{C}_{\Sigma;\text{skip}} = s^2\Sigma(s^2\Sigma + \Sigma)^{-1} = \frac{s^2}{1+s^2} \mathbf{I}, \quad (\text{A.40})$$

$$1040 \quad c_{\Sigma;\text{out}}^2 = \text{smallest eigenvalue of } \frac{s^2}{1+s^2} \Sigma, \quad (\text{A.41})$$

$$1042 \quad \lambda_{\Sigma} = \frac{1+s^2}{s^2} \cdot \frac{1}{\text{smallest eigenvalue of } \Sigma}. \quad (\text{A.42})$$

1045 Note that $\mathbf{C}_{\Sigma;\text{in}}$ can be efficiently applied to vectors \mathbf{v} only in terms of $\mathbf{L}^{-1}\mathbf{v}$ (up to an orthogonal
1046 rotation). This is due to the known relation $\Sigma^{-1/2}\mathbf{v} = \mathbf{Q}\mathbf{L}^{-1}\mathbf{v}$, for some orthogonal matrix \mathbf{Q} . Thus,
1047 we only need to solve linear systems with \mathbf{L} , which is efficient since \mathbf{L} is lower-triangular.
1048

1049 A.5 SAMPLING DURING INFERENCE
1050

1051 The general forward SDE (A.1)

$$1052 \quad d\mathbf{x} = \mathbf{f}_t(\mathbf{x}) dt + \mathbf{G}_t(\mathbf{x}) d\boldsymbol{\omega}_t, \quad (\text{A.43})$$

1054 has no information about the data distribution $p_{\text{data}}(\mathbf{x})$. Such information is learned through the score
1055 function $\nabla_{\mathbf{x}} \log p_t(\mathbf{x})$, where $p_t(\mathbf{x})$ is the marginal density of \mathbf{x}_t at time t . There are two main ways
1056 of incorporating this information into the sampling process:

- 1057 1. Deterministic (ODE): by removing the noise term from the SDE, and adjusting the drift
1058 term to include the score function.
- 1059 2. Stochastic (SDE): by going backwards in time with a backward SDE that includes the score
1060 function in the drift term.

1062 Both ways start from the forward Kolmogorov (or Fokker-Planck) equation, which describes how
1063 the marginal density $p_t(\mathbf{x})$ evolves with time. We write it as a continuity equation, by defining the
1064 probability flux

$$1065 \quad \mathbf{J}_t(\mathbf{x}) = \mathbf{f}_t(\mathbf{x}) p_t(\mathbf{x}) - \frac{1}{2} \nabla_{\mathbf{x}} \cdot [\mathbf{G}_t(\mathbf{x}) \mathbf{G}_t^T(\mathbf{x}) p_t(\mathbf{x})]. \quad (\text{A.44})$$

1066 With this, density changes occur by flux transport

$$1068 \quad \frac{\partial p_t(\mathbf{x})}{\partial t} = -\nabla_{\mathbf{x}} \cdot \mathbf{J}_t(\mathbf{x}). \quad (\text{A.45})$$

1070 **Assumption A.1** (Smooth flows). The changes $\nabla_{\mathbf{x}} \cdot [\mathbf{G}_t(\mathbf{x}) \mathbf{G}_t^T(\mathbf{x})]$ are negligible. That is, there
1071 exist $c > 0$ such that $\|\nabla_{\mathbf{x}} \cdot [\mathbf{G}_t(\mathbf{x}) \mathbf{G}_t^T(\mathbf{x})]\| \ll c \|\mathbf{G}_t(\mathbf{x}) \mathbf{G}_t^T(\mathbf{x})\|$. This allows to drop the
1072 \mathbf{x} -dependence of $\mathbf{G}_t(\mathbf{x}) \mathbf{G}_t^T(\mathbf{x})$ and, from (A.9), just write $\mathbf{G}_t \mathbf{G}_t^T = s_t^2 \dot{\Sigma}_t$

1073 Intuitively, the temporal rate of Σ_t does not vary considerably from sample \mathbf{x} to sample. This leaves
1074 jump processes out of scope. For these, Itô processes have to be generalized to jump-diffusion
1075 stochastic dynamics Anvari et al. (2016).

1077 Using assumption A.1, we can write the flux (A.44) as

$$1078 \quad \mathbf{J}_t(\mathbf{x}) = \mathbf{f}_t(\mathbf{x}) p_t(\mathbf{x}) - \frac{1}{2} \mathbf{G}_t \mathbf{G}_t^T \nabla_{\mathbf{x}} p_t(\mathbf{x}),$$

$$1079 \quad = \mathbf{f}_t(\mathbf{x}) p_t(\mathbf{x}) - \frac{1}{2} s_t^2 \dot{\Sigma}_t \nabla_{\mathbf{x}} p_t(\mathbf{x}). \quad (\text{A.46})$$

1080 A.5.1 DETERMINISTIC SAMPLING
1081

1082 This is achieved by obtaining values of \mathbf{x}_t without the noise term in the SDE, but still distributed
1083 according to $p_t(\mathbf{x})$. We see from (A.43) that making the diffusion term $\mathbf{G}_t(\mathbf{x}) = \mathbf{0}$ removes the
1084 noise from the SDE. This manifests, from (A.44), as the probability flux being proportional to the
1085 drift term $\mathbf{f}_t(\mathbf{x})$. This gives a general recipe for obtaining the desired ODE: find a new process

$$1086 \quad d\mathbf{x} = \mathbf{f}_t^*(\mathbf{x}) dt, \quad (\text{A.47})$$

1087 that has the same probability flux (A.46) as the original, but proportional to the drift term $\mathbf{f}_t^*(\mathbf{x})$. We
1088 can rewrite (A.46) as
1089

$$\begin{aligned} 1090 \quad \mathbf{J}_t(\mathbf{x}) &= \mathbf{f}_t(\mathbf{x}) p_t(\mathbf{x}) - \frac{1}{2} s_t^2 \dot{\Sigma}_t \nabla_{\mathbf{x}} p_t(\mathbf{x}) \\ 1091 &= \mathbf{f}_t(\mathbf{x}) p_t(\mathbf{x}) - \frac{1}{2} s_t^2 \dot{\Sigma}_t p_t(\mathbf{x}) \nabla_{\mathbf{x}} \log p_t(\mathbf{x}) \\ 1092 &= \left[\mathbf{f}_t(\mathbf{x}) - \frac{1}{2} s_t^2 \dot{\Sigma}_t \nabla_{\mathbf{x}} \log p_t(\mathbf{x}) \right] p_t(\mathbf{x}) \\ 1093 &= \mathbf{f}_t^*(\mathbf{x}) p_t(\mathbf{x}), \\ 1094 \\ 1095 \end{aligned}$$

1096 from which the new drift term $\mathbf{f}_t^*(\mathbf{x})$ is readily obtained. The ODE running backward in time is
1097 obtained, from (A.47), by changing the sign of $\mathbf{f}_t^*(\mathbf{x})$. This is the one used for deterministic sampling,
1098 in which backward evolution is linked to denoising:

$$1099 \quad \frac{d\mathbf{x}}{dt} = -\mathbf{f}_t(\mathbf{x}) + \frac{1}{2} s_t^2 \dot{\Sigma}_t \nabla_{\mathbf{x}} \log p_t(\mathbf{x}). \quad (\text{A.48})$$

1100 Bringing back the affine drift $\mathbf{f}_t(\mathbf{x}) = \mathbf{f}_t \mathbf{x} \stackrel{(\text{A.5})}{=} (\dot{s}_t/s_t) \mathbf{x}$, and the score from (A.25), we have that
1101

$$\begin{aligned} 1102 \quad \frac{d\mathbf{x}}{dt} &= -\frac{\dot{s}_t}{s_t} \mathbf{x} + \frac{1}{2} s_t^2 \dot{\Sigma}_t s_t^{-1} \Sigma_t^{-1} [D(\mathbf{x}/s_t, \Sigma_t) - \mathbf{x}/s_t], \\ 1103 &= -\frac{d \log s_t}{dt} \mathbf{x} + \frac{1}{2} s_t \dot{\Sigma}_t \Sigma_t^{-1} [D(\mathbf{x}/s_t, \Sigma_t) - \mathbf{x}/s_t] \\ 1104 \\ 1105 \\ 1106 \\ 1107 \\ 1108 \end{aligned} \quad (\text{A.49})$$

1109 **Simplest cases: Σ_t commutes with $\dot{\Sigma}_t$.** We want to find the conditions under which the ODE
1110 (A.49) can be expressed in terms of logarithmic differentials of both s_t and Σ_t .
1111

1112 **Lemma A.1.** If Σ_t commutes with $\dot{\Sigma}_t$, then

$$1113 \quad \frac{d \log \Sigma_t}{dt} = \dot{\Sigma}_t \Sigma_t^{-1}. \quad (\text{A.50})$$

1114 *Proof.* The Daleckii-Krein formula Higham (2008), for $\Gamma_t = \log \Sigma_t$, reads
1115

$$1116 \quad \dot{\Gamma}_t = \int_0^\infty (\Sigma_t + \eta \mathbf{I})^{-1} \dot{\Sigma}_t (\Sigma_t + \eta \mathbf{I})^{-1} d\eta. \quad (\text{A.51})$$

1117 If Σ_t commutes with $\dot{\Sigma}_t$ (i.e. $[\Sigma_t, \dot{\Sigma}_t] = \mathbf{0}$), then they can be diagonalized simultaneously, so that
1118

$$\begin{aligned} 1119 \quad \dot{\Gamma}_t &= \int_0^\infty (\mathbf{U} \Lambda_t \mathbf{U}^T + \eta \mathbf{I})^{-1} \mathbf{U} \dot{\Lambda}_t \mathbf{U}^T (\mathbf{U} \Lambda_t \mathbf{U}^T + \eta \mathbf{I})^{-1} d\eta, \\ 1120 &= \mathbf{U} \left(\int_0^\infty (\Lambda_t + \eta \mathbf{I})^{-1} \dot{\Lambda}_t (\Lambda_t + \eta \mathbf{I})^{-1} d\eta \right) \mathbf{U}^T, \\ 1121 &= \mathbf{U} \left(\int_0^\infty \text{diag} \left(\frac{\dot{\lambda}_{t,1}}{(\lambda_{t,1} + \eta)^2}, \frac{\dot{\lambda}_{t,2}}{(\lambda_{t,2} + \eta)^2}, \dots, \frac{\dot{\lambda}_{t,d}}{(\lambda_{t,d} + \eta)^2} \right) d\eta \right) \mathbf{U}^T, \\ 1122 &= \mathbf{U} \text{diag} \left(\frac{\dot{\lambda}_{t,1}}{\lambda_{t,1}}, \frac{\dot{\lambda}_{t,2}}{\lambda_{t,2}}, \dots, \frac{\dot{\lambda}_{t,d}}{\lambda_{t,d}} \right) \mathbf{U}^T, \\ 1123 &= \mathbf{U} \dot{\Lambda}_t \Lambda_t^{-1} \mathbf{U}^T, \\ 1124 &= \dot{\Sigma}_t \Sigma_t^{-1}, \\ 1125 \\ 1126 \\ 1127 \\ 1128 \\ 1129 \\ 1130 \\ 1131 \\ 1132 \\ 1133 \end{aligned}$$

1134 where the η -integrals were computed element-wise, as $\int_0^\infty (\lambda + \eta)^{-2} d\eta = 1/\lambda$. ■

1135 Under such a commutation condition, we can rewrite (A.49) as

$$\begin{aligned} 1137 \frac{d\mathbf{x}}{dt} &= -\frac{d \log s_t}{dt} \mathbf{x} + \frac{1}{2} s_t \frac{d \log \Sigma_t}{dt} [D(\mathbf{x}/s_t, \Sigma_t) - \mathbf{x}/s_t] \\ 1138 \mathbf{d}\mathbf{x} &= -[d \log s_t + \frac{1}{2} d \log \Sigma_t] \mathbf{x} + \frac{1}{2} s_t [d \log \Sigma_t] D(\mathbf{x}/s_t, \Sigma_t) \\ 1139 &= -[d \log(s_t \Sigma_t^{1/2})] \mathbf{x} + s_t [d \log \Sigma_t^{1/2}] D(\mathbf{x}/s_t, \Sigma_t), \\ 1140 \\ 1141 \\ 1142 \end{aligned}$$

1143 where we have used the property $\log \Sigma^k = k \log \Sigma$, always valid for symmetric positive definite
1144 matrices, and $\log(a\Sigma) = \log(a)\mathbf{I} + \log \Sigma$, for scalar a . The latter is valid for any matrix Σ .

1145 This gives the deterministic ODE:

$$1146 \quad 1147 \quad \mathbf{d}\mathbf{x}_t = -[d \log(s_t \Sigma_t^{1/2})] \mathbf{x}_t + s_t [d \log \Sigma_t^{1/2}] D(\mathbf{x}_t/s_t, \Sigma_t). \quad (A.52) \\ 1148$$

1149 Now, in an Euler step, we can approximate $[\Sigma_t, \dot{\Sigma}_t] = \mathbf{0} = [\Sigma_t, \Sigma_t - \Sigma_{t-1}] = -[\Sigma_t, \Sigma_{t-1}]$.
1150 Therefore, given functions f and g , $\log[f(\Sigma_t)g(\Sigma_{t-1})] = \log f(\Sigma_t) + \log g(\Sigma_{t-1})$. This can be
1151 used to write an Euler step of (A.52) as

$$\begin{aligned} 1152 \mathbf{x}_{t+1} - \mathbf{x}_t &= -[\log(s_t \Sigma_t^{1/2}) - \log(s_{t-1} \Sigma_{t-1}^{1/2})] \mathbf{x}_t + s_t [\log \Sigma_t^{1/2} - \log \Sigma_{t-1}^{1/2}] D(\mathbf{x}_t/s_t, \Sigma_t) \\ 1153 &= -[\mathbf{I} \log \frac{s_t}{s_{t-1}} + (\log \Sigma_t^{1/2} - \log \Sigma_{t-1}^{1/2})] \mathbf{x}_t + s_t [\log \Sigma_t^{1/2} - \log \Sigma_{t-1}^{1/2}] D(\mathbf{x}_t/s_t, \Sigma_t) \\ 1154 &= -[\log \frac{s_t}{s_{t-1}} \Sigma_t^{1/2} \Sigma_{t-1}^{-1/2}] \mathbf{x}_t + s_t [\log \Sigma_t^{1/2} \Sigma_{t-1}^{-1/2}] D(\mathbf{x}_t/s_t, \Sigma_t) \\ 1155 &= \mathbf{x}_{t+1} = [\mathbf{I} - \log \frac{s_t}{s_{t-1}} \Sigma_t^{1/2} \Sigma_{t-1}^{-1/2}] \mathbf{x}_t + s_t [\log \Sigma_t^{1/2} \Sigma_{t-1}^{-1/2}] D(\mathbf{x}_t/s_t, \Sigma_t), \quad (A.53) \\ 1156 \\ 1157 \\ 1158 \\ 1159 \\ 1160 \end{aligned}$$

1161 where we have approximated the differentials of the logarithms as backward differences that exploit
1162 the current and previous steps.

1163 *Remark A.1.* The case of Σ_t being diagonal (considered in the main text) is included in the com-
1164 mmutation condition, since diagonal matrices always commute. However, the inference formula of
1165 this section applies more generally to processes for which the principal axes of Σ_t remain fixed in
1166 time, while only the eigenvalues change. This was assumed when writing $\Sigma_t = \mathbf{U} \Lambda_t \mathbf{U}^T$, with fixed
1167 orthogonal \mathbf{U} and time-varying diagonal Λ_t .

1168 **General case: unconstrained Σ_t .** We can have processes respecting assumption A.1, with the
1169 principal axes of Σ_t allowed to change with time. Deterministic sampling in this case, can be obtained
1170 from (A.49), which can be written as

$$\begin{aligned} 1171 \frac{d\mathbf{x}_t}{dt} &= -\frac{d \log s_t}{dt} \mathbf{x}_t + \frac{1}{2} s_t \dot{\Sigma}_t \Sigma_t^{-1} [D(\mathbf{x}_t/s_t, \Sigma_t) - \mathbf{x}_t/s_t], \\ 1172 &= -\frac{d \log s_t}{dt} \mathbf{x}_t + \frac{1}{2} s_t \dot{\Sigma}_t \Sigma_t^{-1} [D(\mathbf{x}_t/s_t, \Sigma_t) - \mathbf{x}_t/s_t], \\ 1173 \mathbf{d}\mathbf{x}_t &= -d \log s_t \mathbf{x}_t + \frac{1}{2} s_t d\Sigma_t \Sigma_t^{-1} [D(\mathbf{x}_t/s_t, \Sigma_t) - \mathbf{x}_t/s_t]. \quad (A.54) \\ 1174 \\ 1175 \\ 1176 \\ 1177 \\ 1178 \end{aligned}$$

1179 An Euler step of this reads,

$$\begin{aligned} 1180 \mathbf{x}_{t+1} - \mathbf{x}_t &= -(\log s_t - \log s_{t-1}) \mathbf{x}_t + \frac{1}{2} s_t (\Sigma_t - \Sigma_{t-1})_+ \Sigma_t^{-1} [D(\mathbf{x}_t/s_t, \Sigma_t) - \mathbf{x}_t/s_t], \\ 1181 &= \left[\mathbf{I} - \log \frac{s_t}{s_{t-1}} \mathbf{I} \right] \mathbf{x}_t + \frac{1}{2} s_t (\Sigma_t - \Sigma_{t-1})_+ \Sigma_t^{-1} [D(\mathbf{x}_t/s_t, \Sigma_t) - \mathbf{x}_t/s_t], \quad (A.55) \\ 1182 \\ 1183 \\ 1184 \end{aligned}$$

1185 where $(\cdot)_+$ denotes the projection onto the cone of positive semi-definite matrices—since $\dot{\Sigma}_t \succ \mathbf{0}$ for
1186 the Itô diffusion to be well defined, $d\Sigma_t \succ \mathbf{0}$ as well, and hence its finite-difference approximations.
1187 Again, as in the general preconditioning case, the matrix Σ_t^{-1} has to be applied to vectors via \mathbf{L}_t^{-1} ,
1188 where $\Sigma_t = \mathbf{L}_t \mathbf{L}_t^T$ is the Cholesky decomposition of Σ_t .

1188
1189 A.5.2 STOCHASTIC SAMPLING1190 We could also sample from the data distribution by going backwards in time with a backward SDE.
1191 We anticipated how to do this with the ODE, by reversing the sign of the flux term. This manifested
1192 itself in the sign change of the drift term in (A.47).

1193 In general, the time reversal entails a new Itô SDE of the form

1194
$$dx = \tilde{f}_t(x) dt + G_t(x) d\tilde{\omega}_t, \quad (\text{A.56})$$

1195 where the probability flux is reversed

1196
$$\tilde{J}_t(x) = -J_t(x). \quad (\text{A.57})$$

1197 Writing (A.46) in a form proportional to $p_t(x)$, we have $J_t = [\tilde{f}_t(x) - \frac{1}{2}s_t^2 \dot{\Sigma}_t \nabla_x \log p_t(x)] p_t(x)$.
1198 Therefore, from (A.57), we get

1199
$$\begin{aligned} 1200 [\tilde{f}_t(x) - \frac{1}{2}s_t^2 \dot{\Sigma}_t \nabla_x \log p_t(x)] p_t(x) &= -[\tilde{f}_t(x) - \frac{1}{2}s_t^2 \dot{\Sigma}_t \nabla_x \log p_t(x)] p_t(x) \\ 1201 \tilde{f}_t(x) - \frac{1}{2}s_t^2 \dot{\Sigma}_t \nabla_x \log p_t(x) &= -[\tilde{f}_t(x) - \frac{1}{2}s_t^2 \dot{\Sigma}_t \nabla_x \log p_t(x)] \\ 1202 \tilde{f}_t(x) &= -f_t(x) + s_t^2 \dot{\Sigma}_t \nabla_x \log p_t(x) \end{aligned}$$

1203 The backward SDE (A.56) thus acquires the form

1204
$$dx = [-f_t(x) + s_t^2 \dot{\Sigma}_t \nabla_x \log p_t(x)] dt + G_t d\tilde{\omega}_t, \quad (\text{A.58})$$

1205 containing the score function in the new drift term.

1206 Karras et al. (2022) derived a SDE sampler for isotropic diffusion. Here, we extend their derivation
1207 to the anisotropic but diagonal case.1208 **Simplest case: Diagonal Σ_t .** We consider the anisotropic heat equation

1209
$$\frac{\partial q_t(x)}{\partial t} = \nabla_x \cdot K_t \nabla_x q_t(x), \quad (\text{A.59})$$

1210 whose solution, with initial value $q_0(x) := p_{\text{data}}(x)$, is the marginal density $q_t(x) = p_t(x)$. The
1211 matrix K_t is considered diagonal, with different elements along the diagonal implying anisotropy.
1212 Taking Fourier transform along the x -dimension, we get

1213
$$\frac{\partial \hat{q}_t(\nu)}{\partial t} = -(\nu^T K_t \nu) \hat{q}_t(\nu), \quad (\text{A.60})$$

1214 The target solution $q_t(x) = p_t(x)$ and its Fourier transform $\hat{q}_t(\nu)$ are given by (A.11) and (A.14)

1215
$$q_t(x) = s_t^{-d} p_{\text{data}}(x/s_t) * \mathcal{N}(\mathbf{0}; \Sigma_t) \quad (\text{A.61})$$

1216
$$\hat{q}_t(\nu) = \hat{p}_{\text{data}}(\nu) \exp\left[-\frac{1}{2}\nu^T \Sigma_t \nu\right]. \quad (\text{A.62})$$

1217 Differentiating (A.62) along the time axis, we have

1218
$$\frac{\partial \hat{q}_t(\nu)}{\partial t} = -\left(\frac{1}{2}\nu^T \dot{\Sigma}_t \nu\right) \hat{q}_t(\nu). \quad (\text{A.63})$$

1219 Equating with the right-hand side of (A.60), we get

1220
$$\begin{aligned} 1221 \nu^T K_t \nu &= \frac{1}{2}\nu^T \dot{\Sigma}_t \nu \\ 1222 K_t &= \frac{1}{2}\dot{\Sigma}_t, \end{aligned}$$

1223 the second equality resulting from assuming Σ_t diagonal. Substituting in (A.59) we have

1224
$$\begin{aligned} 1225 \frac{\partial p_t(x)}{\partial t} &= \frac{1}{2}\nabla_x \cdot \dot{\Sigma}_t \nabla_x p_t(x), \\ 1226 &\stackrel{(\text{A.45})}{=} -\nabla_x \cdot J_t(x). \end{aligned} \quad (\text{A.64})$$

1242 Equating the right-hand sides of (A.64) and (A.45), we get
 1243

$$\begin{aligned} -\mathbf{J}_t(\mathbf{x}) &= \frac{1}{2} \dot{\Sigma}_t \nabla_{\mathbf{x}} p_t(\mathbf{x}) \\ -\mathbf{f}_t(\mathbf{x}) p_t(\mathbf{x}) + \frac{1}{2} s_t^2 \dot{\Sigma}_t \nabla_{\mathbf{x}} p_t(\mathbf{x}) &= \frac{1}{2} \dot{\Sigma}_t \nabla_{\mathbf{x}} p_t(\mathbf{x}) \\ -\mathbf{f}_t(\mathbf{x}) p_t(\mathbf{x}) &= \frac{1}{2} (1 - s_t^2) \dot{\Sigma}_t \nabla_{\mathbf{x}} p_t(\mathbf{x}) \\ \mathbf{f}_t(\mathbf{x}) &= \frac{1}{2} (s_t^2 - 1) \dot{\Sigma}_t \frac{\nabla_{\mathbf{x}} p_t(\mathbf{x})}{p_t(\mathbf{x})} \\ \mathbf{f}_t(\mathbf{x}) &= \frac{1}{2} (s_t^2 - 1) \dot{\Sigma}_t \nabla_{\mathbf{x}} \log p_t(\mathbf{x}). \end{aligned}$$

1250 Substituting in the forward (A.2) and backward (A.58) SDE we get, respectively,
 1251

$$d\mathbf{x}_+ = \frac{1}{2} (s_t^2 - 1) \dot{\Sigma}_t \nabla_{\mathbf{x}} \log p_t(\mathbf{x}) dt + \mathbf{G}_t d\omega_t, \quad (\text{A.65})$$

$$d\mathbf{x}_- = (s_t^2 + \frac{1}{2}) \dot{\Sigma}_t \nabla_{\mathbf{x}} \log p_t(\mathbf{x}) dt + \mathbf{G}_t d\tilde{\omega}_t. \quad (\text{A.66})$$

1256 Since, from (A.9), $s_t^2 \dot{\Sigma}_t = \mathbf{G}_t \mathbf{G}_t^T$ is an equation involving diagonal matrices, we can safely write
 1257 $\mathbf{G}_t = s_t \dot{\Sigma}_t^{1/2}$. This leads to the SDE for diagonal Σ_t , after the score function is written in terms of
 1258 the denoiser and (A.50) is used.
 1259

1260 **General case: full Σ_t .** Bringing back the drift term $\mathbf{f}_t(\mathbf{x}) = (\dot{s}_t/s_t) \mathbf{x} = (\frac{d}{dt} \log s_t) \mathbf{x}$ into (A.58),
 1261 we have
 1262

$$\begin{aligned} d\mathbf{x}_t &= \left[-\frac{d}{dt} \log s_t \mathbf{x}_t + s_t^2 \dot{\Sigma}_t \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t) \right] dt + \mathbf{G}_t d\tilde{\omega}_t, \\ &= \left[-\frac{d}{dt} \log s_t \mathbf{x}_t + s_t^2 \dot{\Sigma}_t s_t^{-1} \Sigma_t^{-1} [D(\mathbf{x}_t/s_t, \Sigma_t) - \mathbf{x}_t/s_t] \right] dt + \mathbf{G}_t d\tilde{\omega}_t, \\ &= \left[-\frac{d}{dt} \log s_t \mathbf{x}_t + s_t \dot{\Sigma}_t \Sigma_t^{-1} [D(\mathbf{x}_t/s_t, \Sigma_t) - \mathbf{x}_t/s_t] \right] dt + \mathbf{G}_t d\tilde{\omega}_t, \\ &= -(d \log s_t) \mathbf{x}_t + s_t (d \Sigma_t) \Sigma_t^{-1} [D(\mathbf{x}_t/s_t, \Sigma_t) - \mathbf{x}_t/s_t] + \mathbf{G}_t d\tilde{\omega}_t. \end{aligned}$$

1270 Now, for the Itô diffusion to be well defined, we need $\mathbf{G}_t \mathbf{G}_t^T = s_t^2 \dot{\Sigma}_t$ to be positive semi-definite.
 1271 We can then still write $\mathbf{G}_t = s_t \dot{\Sigma}_t^{1/2}$, and take into account that finite difference approximations of
 1272 $d\Sigma_t$ have to be projected back to the positive semi-definite cone if needed.
 1273

1274 B BASELINE MEAN FORECAST

1276 In this appendix we derive the theoretical MSE and MAE of the mean forecast baseline used in our
 1277 experiments. The derivation follows the classical normality assumption for forecasting errors (see,
 1278 e.g., Hyndman & Athanasopoulos (2018)).
 1279

1280 B.1 SETUP

1282 Let $(y_t)_{t=1}^T$ be a univariate time series generated as
 1283

$$y_t = \mu + \varepsilon_t, \quad \varepsilon_t \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2), \quad (\text{A.67})$$

1285 with unknown mean μ and variance σ^2 . We observe T past values y_1, \dots, y_T and consider forecasting
 1286 a future value y_{T+H} , where $H \geq 1$.
 1287

1288 The baseline forecast we use is the sample mean

$$\hat{y}_{T+H|T} = \bar{y}_T := \frac{1}{T} \sum_{t=1}^T y_t, \quad (\text{A.68})$$

1292 which is constant across horizons H .
 1293

1294 Throughout, expectations and variances are taken with respect to the joint distribution of
 1295 $(y_1, \dots, y_T, y_{T+H})$ under the model (A.67). We first derive the distribution of the forecast error
 1296 e_{T+H} , and then obtain closed-form expressions for MSE and MAE.

1296 B.2 DISTRIBUTION OF THE FORECAST ERROR
12971298 The forecast error at horizon H is
1299

1300
$$e_{T+H} := y_{T+H} - \hat{y}_{T+H|T} = y_{T+H} - \bar{y}_T. \quad (\text{A.69})$$

1301 Using (A.67) and (A.68), we can write
1302

1303
$$y_{T+H} = \mu + \varepsilon_{T+H}, \quad (\text{A.70})$$

1304
$$\bar{y}_T = \mu + \bar{\varepsilon}_T, \quad (\text{A.71})$$

1305 where
1306

1307
$$\bar{\varepsilon}_T := \frac{1}{T} \sum_{t=1}^T \varepsilon_t \sim \mathcal{N}\left(0, \frac{\sigma^2}{T}\right). \quad (\text{A.72})$$

1308 By independence of the innovations,
1309

1310
$$\varepsilon_{T+H} \sim \mathcal{N}(0, \sigma^2), \quad \varepsilon_{T+H} \perp \bar{\varepsilon}_T. \quad (\text{A.73})$$

1311 Hence,
1312

1313
$$e_{T+H} = \varepsilon_{T+H} - \bar{\varepsilon}_T. \quad (\text{A.74})$$

1314 Since e_{T+H} is a linear combination of independent Gaussian random variables,
1315

1316
$$e_{T+H} \sim \mathcal{N}\left(0, \sigma^2 \left(1 + \frac{1}{T}\right)\right). \quad (\text{A.75})$$

1317 Note that this distribution does not depend on the horizon H .
1318

1319 B.3 MEAN SQUARED ERROR (MSE)

1320 The MSE of the baseline forecast at horizon H is
1321

1322
$$\text{MSE}_{\text{mean}}(T) := \mathbb{E}[e_{T+H}^2]. \quad (\text{A.76})$$

1323 Using (A.75),
1324

1325
$$\text{MSE}_{\text{mean}}(T) = \text{Var}(e_{T+H}) = \sigma^2 \left(1 + \frac{1}{T}\right). \quad (\text{A.77})$$

1326 In particular, if the time series is standardized so that $\sigma^2 = 1$, we obtain
1327

1328
$$\text{MSE}_{\text{mean}}(T) = 1 + \frac{1}{T}. \quad (\text{A.78})$$

1329 B.4 MEAN ABSOLUTE ERROR (MAE)

1330 The MAE of the baseline forecast at horizon H is
1331

1332
$$\text{MAE}_{\text{mean}}(T) := \mathbb{E}[|e_{T+H}|]. \quad (\text{A.79})$$

1333 From (A.75), we have
1334

1335
$$e_{T+H} \sim \mathcal{N}(0, \tau^2), \quad \tau^2 := \sigma^2 \left(1 + \frac{1}{T}\right). \quad (\text{A.80})$$

1336 Let $Z \sim \mathcal{N}(0, 1)$ and write $e_{T+H} = \tau Z$. Then
1337

1338
$$\mathbb{E}[|e_{T+H}|] = \tau \mathbb{E}[|Z|]. \quad (\text{A.81})$$

1339 It is a standard result that for a standard normal random variable,
1340

1341
$$\mathbb{E}[|Z|] = \sqrt{\frac{2}{\pi}}. \quad (\text{A.82})$$

1342 Therefore,
1343

1344
$$\text{MAE}_{\text{mean}}(T) = \sqrt{\frac{2}{\pi}} \tau = \sqrt{\frac{2}{\pi}} \sigma \sqrt{1 + \frac{1}{T}}. \quad (\text{A.83})$$

1345 In the standardized case $\sigma^2 = 1$, this simplifies to
1346

1347
$$\text{MAE}_{\text{mean}}(T) = \sqrt{\frac{2}{\pi}} \sqrt{1 + \frac{1}{T}}. \quad (\text{A.84})$$

1350

1351 Table 7: TEDM hyperparameters selected per dataset: context backward shift k_{ctx} , variance clamping
1352 interval $[v_{\text{min}}, v_{\text{max}}]$, and scale clamping interval $[s_{\text{min}}, s_{\text{max}}]$.

1353	Dataset	k_{ctx}	v_{min}	v_{max}	s_{min}	s_{max}
1354	ETTh1	0	5.9×10^{-6}	1.91	1.25	9.38
1355	ETTh2	1	9.8×10^{-6}	6.38	0.47	1.74
1356	ETTm1	4	5.7×10^{-7}	2.33	1.24	2.68
1357	ETTm2	0	7.6×10^{-3}	7.17	0.74	5.14
1358	Exchange	9	6.9×10^{-7}	7.72	0.87	4.58
1359	Stock	1	4.6×10^{-5}	7.69	0.11	2.17
1360	Weather	1	4.6×10^{-5}	7.69	0.11	2.17

1361

1362

1363 B.5 SUMMARY

1364

1365 Under the Gaussian error model (A.67) and the mean baseline forecast (A.68), the theoretical error
1366 measures—for standardized datasets with unit variance ($\sigma^2 = 1$)—are

1367
$$\text{MSE}_{\text{mean}}(T) = 1 + \frac{1}{T}, \quad (\text{A.85})$$

1368
$$\text{MAE}_{\text{mean}}(T) = \sqrt{\frac{2}{\pi}} \sqrt{1 + \frac{1}{T}}. \quad (\text{A.86})$$

1369

1370 These expressions are used to compute the Baseline column in Table 6, where $T = H$.

1371

1372

C EXPERIMENTS

1373

1374

C.1 DATASETS

1375

1376

1377

1378 The ETT, Exchange, Weather, and Solar datasets are available from <https://github.com/thuml/iTransformer>, and the Stock dataset from <https://github.com/Y-debug-sys/Diffusion-TS>.

1379

1380

1381

C.2 HYPERPARAMETERS

1382

1383

1384 For each dataset we tune a small set of hyperparameters on the validation split and then keep the
1385 selected configuration fixed for all reported test results. Concretely, we vary (a) the context backward
1386 shift k_{ctx} used for conditional denoising (i.e. the context window is shifted to the past by k_{ctx} to act
1387 like a conditioning window), (b) the clamping range $(s_{\text{min}}, s_{\text{max}})$ of the scale schedule s_t , (c) the
1388 clamping range $(v_{\text{min}}, v_{\text{max}})$ of the variance schedule Σ_t , and (d) the choice of denoising network
1389 architecture. The best intervals are tuned via small discrete grids on the validation set, and chosen
1390 to minimize validation MSE. We also compare two noise schedule variants—cumulative vs. sliding
1391 Σ_t —and, for each dataset, and report results using the better-performing variant. The final per-dataset
1392 hyperparameters used in all experiments are summarized in Table 7.

1393

1394

C.3 DENOISER NETWORK ARCHITECTURES

1395

1396

1397 We evaluate several denoising backbones of varying complexity.

1398

1399

1400

1401 **LinearNet.** LinearNet is a simple fully connected layer that applies a linear transformation
1402 $\text{Linear}(\text{seq_len}, \text{seq_len})$ along the temporal dimension of the noised input. It does not in-
1403 incorporate any temporal inductive bias (e.g., recurrence or attention) and serves as a minimalist
1404 baseline to assess the impact of architectural complexity.

1405

1406

1407

1408 **UNet.** Our UNet adapts the ADM architecture from “Diffusion Models Beat GANs on Image
1409 Synthesis” (Dhariwal & Nichol, 2021) to sequential data, leveraging alias-free resampling (Anjum,
1410 2024) and rotary embeddings (Su et al., 2023) for time series. Noise levels are embedded (via

learned or sinusoidal embeddings) and mapped into a high-dimensional space through two linear layers. The encoder stacks residual 1D convolutional blocks with downsampling between resolutions and applies self-attention at selected scales. Unless otherwise specified, the UNet uses feature size $d = \text{feat_size}$ equal to the number of dataset features, Kaiser kernel size 64, and Kaiser $\beta = 14.77$, which are kept fixed across all datasets.

ConvLSTMNet. ConvLSTMNet combines convolutional filtering with a bidirectional LSTM to capture both local and long-range temporal dependencies. Diffusion noise is embedded via positional or learned sinusoidal mappings, and the noised signal is adapted through shift-and-scale convolutions. A lightweight pre-LSTM 1D convolution refines these features, which are then processed by a bidirectional LSTM layer.

AttnNet. AttnNet employs a single cross-attention layer (Vaswani et al., 2023) to enable the denoiser to leverage mutual information between the noised sequence and the conditioning context at each time step. Concretely, it uses a single multi-head attention block

```
nn.MultiheadAttention(embed_dim = d, num_heads = d),
```

with the same configuration shared across all datasets.

AttnNetSigma. AttnNetSigma extends AttnNet by stacking two cross-attention modules: one attends from the noised input to its context, and the other attends to the noise level. Each attention block is followed by a residual connection and LayerNorm (He et al., 2015).

AttnPosEmbNet. AttnPosEmbNet augments cross-attention with learned time-step embeddings and Feature-wise Linear Modulation (FiLM) conditioning on the noise level (Perez et al., 2017). This design allows the denoiser to modulate its representations explicitly as a function of diffusion time.

C.4 TRAINING

We train all models with a batch size of 128 and select hyperparameters via validation tuning separately for each dataset. Optimization is performed with Adam (Kingma & Ba, 2017), using a linear learning-rate warmup over the first 15% of epochs, followed by a reduce-on-plateau schedule. Models are trained without early stopping, and we report results from the final checkpoint evaluated on the held-out test set. All experiments are run on a single machine equipped with 8 NVIDIA Tesla A100 GPUs (40 GiB each). To facilitate exact reproducibility, we fix random seeds for data shuffling and parameter initialization.

C.5 OTHER ABLATION STUDIES

To identify the most influential hyperparameters within our diffusion framework, we conducted systematic ablations over various parameters and architectures. In our ablation study, for each parameter, we measured validation MSE across a grid of candidate values. Parameters exhibiting the strongest correlation with forecasting accuracy were selected for further processing. Using such parameters, we did fine-grained tuning to obtain our best results in Table 2. These results were obtained with the UNet, with the lightweight architectures (e.g. AttnNet or LinearNet) still delivering SOTA performance with minimal compute—in the datasets in which we outperform.

We designed multiple ablation studies to get more insight about TEDM. The most significant studies are shown in Fig. 5. For conditionally denoising, we use a conditioning window obtained from the given window by striding backwards by a predefined number of steps k_{ctx} . We notice in Fig. 5(a) that this may hinder performance.

We also studied clamping of values in the scaled schedule s_t . Since we compute it from $\mathbb{E}(\mathbf{x}_t) = s_t \mathbf{x}_0$, in the cumulative evaluation—element-division of the starting point from the cumulative average—the division can blow up for data close to zero. Figs. 5 (b) & (c) show that there is more sensitivity to the minimum values than to the maximum used for clamping.

Finally, we considered several denoiser architectures of varying space complexity (discussed in the SM). Most remarkably, using just a Linear layer with space complexity $O(Td)$ gives results (V in

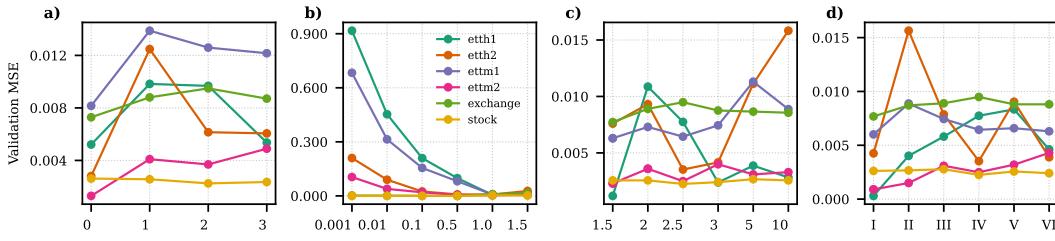


Figure 5: Ablation study on min-max normalized validation MSE across different experimental configurations and datasets. Subplots (a)–(d) correspond to: (a) context backward shift for conditionally denoising, (b) minimum value for clamping s_t , (c) maximum value for clamping s_t , and (d) different network architectures (see SM): Roman numerals I–VI denote, in the respective order, the following architectures: AttnNet, AttnSigmaNet, AttnPosEmbNet, ConvLSTMNet, LinearNet and UNet.

Table 8: CRPS and QICE for probabilistic forecasts with the SDE in section A.5.2 (prediction horizon $H = 96$). Datasets: ETTh2, Exchange. Lower is better.

Methods	Metric	ETTh2	Exchange
TimeDiff	CRPS	0.380	0.287
	QICE	0.142	0.099
DiffusionTS	CRPS	1.122	1.232
	QICE	0.095	0.087
TMDM	CRPS	0.393	0.258
	QICE	0.038	0.049
NsDiff	CRPS	0.349	0.222
	QICE	0.025	0.038
TEDM	CRPS	0.589	0.775
	QICE	0.093	0.111

Fig. 5), in several datasets, comparable to the best network using self-attention between the given and context window (I in Fig. 5).

D PROBABILISTIC FORECASTS

Karras et al. (2022) derived their SDE for stochastic sampling from the isotropic heat equation. Our analogous SDE derivation, in section A.5.2 (for the anisotropic case), theoretically relies on the assumption of diagonal Σ_t . Examples of the skill when sampling from that SDE is shown quantitatively in Table 8 and qualitatively in Fig. 6. As seen, TEDM’s probabilistic calibration (CRPS/QICE) lags behind most of the other methods.

The fact that deterministic sampling outperforms other methods in point-forecast skill, while probabilistic sampling underperforms is intriguing. Our hypothesis is that the inference rule for deterministic sampling (derived in section A.5.1) is more general and hence the diagonal approximation of Σ_t better represents cases with weakly correlated features. To test this hypothesis, we introduce a novel method to sample quantiles of the predictive distribution by only using TEDM’s *deterministic* inference rule. Preliminary results of this method (explained in detail in a future publication) are shown in Table 9. It shows promising results in probabilistic forecast, being competitive with NsDiff.

Table 9: Probabilistic skill by sampling quantiles using ODE (prediction horizon $H = 96$). Datasets: ETTh2, Exchange. Lower is better.

Methods	Metric	ETTh2	Exchange
NsDiff	CRPS	0.349	0.222
	QICE	0.025	0.038
TEDM	CRPS	0.294	0.186
	QICE	0.040	0.093

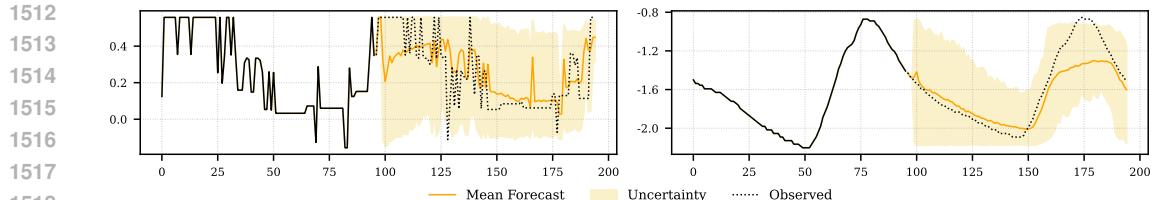


Figure 6: Probabilistic forecasts on the ETTm2 dataset, using the SDE of section A.5.2. The plots show the predicted mean, uncertainty bounds (95% prediction intervals), and ground-truth values for two representative time series.

Table 10: MSE and MAE scores for diffusion-based forecasting methods with horizon $H = 192$. TEDM uses the best of the noise schedule variant (cumulative/sliding Σ_t) per dataset. Lower is better.

Methods	Metric	ETTh2	ETTm2	Exchange
TimeDiff	MSE	0.364	0.209	0.208
	MAE	0.393	0.296	0.331
DiffusionTS	MSE	3.017	3.517	3.302
	MAE	1.340	1.472	1.493
TMDM	MSE	0.564	0.313	0.212
	MAE	0.517	0.350	0.338
ARMD	MSE	<u>0.311</u>	<u>0.181</u>	0.093
	MAE	0.338	0.255	0.203
NsDiff	MSE	0.460	0.250	<u>0.146</u>
	MAE	0.452	0.328	<u>0.280</u>
TEDM	MSE	0.260	0.163	0.153
	MAE	<u>0.354</u>	<u>0.282</u>	<u>0.276</u>

E LONGER HORIZONS

We reproduce the primary diffusion baselines table for a subset of datasets (ETTh2, ETTm2, Exchange) and update TEDM with the best of the two noise schedule variant (cumulative/sliding Σ_t) provided; other methods follow the same evaluation protocol as in the main text.

On ETTh2 and ETTm2, TEDM achieves the best MSE among the compared diffusion methods, improving over ARMD while also delivering strong MAE (second-best behind ARMD). On Exchange, ARMD remains the most accurate on both MSE and MAE, with NsDiff second on MSE and TEDM a close third. Overall, these results indicate that TEDM remains competitive for longer forecast horizons.

To characterize computational scaling over longer horizons, Fig. 7 reports relative per-batch training and inference time/memory for TEDM as a function of forecast horizon (normalized to the cost at horizon 96). We observe only moderate growth with horizon on different dataset. This indicates that TEDM remains practical for long-horizon forecasting.

F ROBUSTNESS

All TEDM results are averaged over 4 random seeds (different data shuffles and parameter initializations); we report mean values in the main tables, and mean \pm standard deviation in Table 11. Our method shows low variance across seeds, indicating stable training and inference.

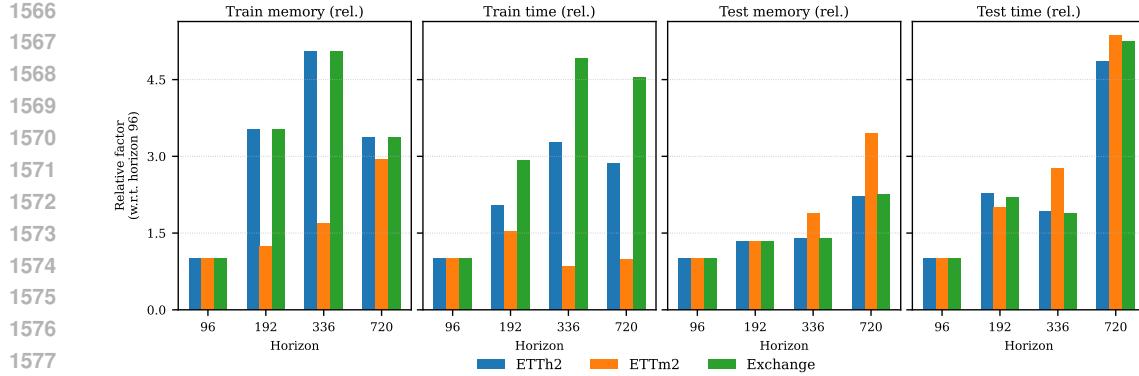


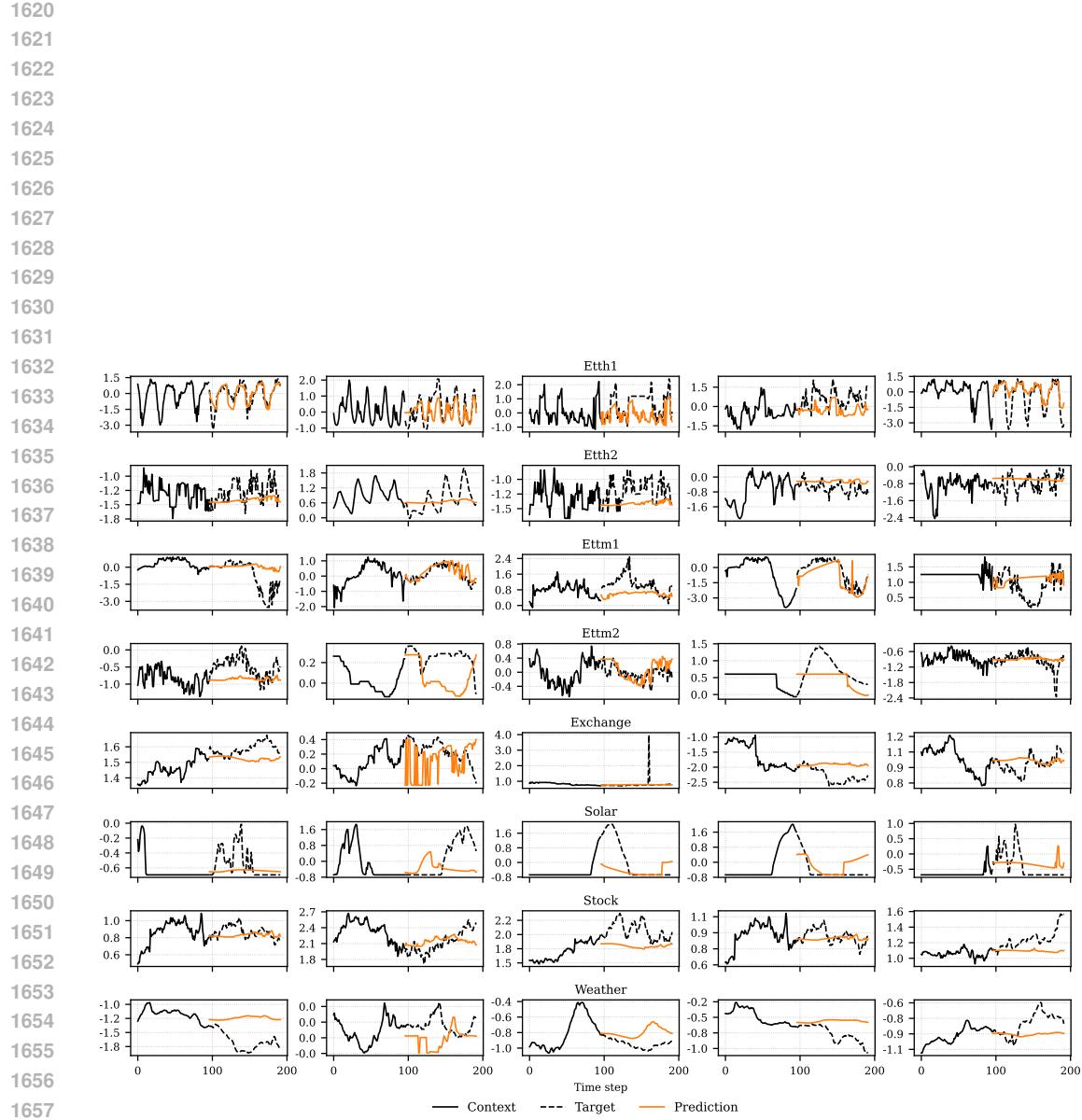
Figure 7: Relative per-batch training and inference memory (MB) and time (s) for TEDM across datasets and forecast horizons, normalized by the cost at horizon $H = 96$. All measurements are obtained on the same hardware and with a fixed batch size. Apparent drops in cost at larger horizons compared to the preceding horizon are due to dropping incomplete batches, which slightly changes the number of processed batches and thus the reported averages.

Table 11: TEDM robustness over 4 random seeds at horizon 96. Reported are mean \pm std over seeds.

Dataset	MSE	MAE
ETTh1	0.598 ± 0.002	0.526 ± 0.001
ETTh2	0.216 ± 0.001	0.320 ± 0.001
ETTm1	0.419 ± 0.003	0.442 ± 0.002
ETTm2	0.137 ± 0.001	0.254 ± 0.000
Exchange	0.069 ± 0.000	0.184 ± 0.001
Solar	1.108 ± 0.034	0.721 ± 0.042
Stock	0.055 ± 0.001	0.180 ± 0.002
Weather	0.225 ± 0.005	0.268 ± 0.008

G MORE FORECAST SAMPLES AND FAILURE CASES

Figure 8 shows TEDM forecasts on eight benchmark datasets. Each row corresponds to a dataset and each column to a randomly selected test window and feature. Across smoother series (ETTh1, ETTh2, ETTm2), TEDM tracks level, trend, and seasonality, while on more volatile datasets (Exchange, Solar-Energy, Stock) it still captures the overall direction and scale of movements. These examples qualitatively support the quantitative gains reported in our main results.



1659 Figure 8: Qualitative TEDM forecasts across eight benchmark datasets. Each panel shows a randomly
 1660 sampled test window and feature: black solid lines are input histories, black dashed lines are ground-
 1661 truth futures, and orange lines are TEDM forecasts. Time is shown as input followed by forecast
 1662 steps.

1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673