

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BOOSTING THE LOCAL INVARIANCE FOR BETTER ADVERSARIAL TRANSFERABILITY

Anonymous authors

Paper under double-blind review

ABSTRACT

Transfer-based attacks pose a significant threat to real-world applications by directly targeting victim models with adversarial examples generated on surrogate models. While numerous approaches have been proposed to enhance adversarial transferability, existing works often overlook the intrinsic relationship between adversarial perturbations and input images. In this work, we find that adversarial perturbation often exhibits poor translation invariance for a given clean image and model, which is attributed to local invariance. Through empirical analysis, we demonstrate that there is a positive correlation between the local invariance of adversarial perturbations w.r.t the input image and their transferability across different models. Based on this finding, we propose a general adversarial transferability boosting technique called Local Invariance Boosting approach (LI-Boost). Extensive experiments on the standard ImageNet dataset demonstrate that LI-Boost could significantly boost various types of transfer-based attacks (e.g., gradient-based, input transformation-based, model-related, advanced objective function, ensemble, etc.) on CNNs, ViTs, and defense mechanisms. Our approach presents a promising direction for future research in improving adversarial transferability across different models.

1 INTRODUCTION

Deep Neural Networks (DNNs)(He et al. (2016); Krizhevsky et al. (2012); Vaswani et al. (2017)) have achieved substantial success across various tasks, e.g., image recognition(Szegedy et al. (2016); Huang et al. (2017); Dosovitskiy et al. (2021)), image generation(Rombach et al. (2022); Ramesh et al. (2022)), and large language model(Brown et al. (2020); Touvron et al. (2023)), etc. However, researchers have identified that DNNs are vulnerable to adversarial examples(Szegedy et al. (2014); Goodfellow et al. (2015)), where small, often imperceptible perturbations can deceive the model into making incorrect predictions. This vulnerability poses a serious risk to real-world DNN-based applications, particularly in security-sensitive domains such as face verification(Sharif et al. (2016)) and autonomous driving(Eykholt et al. (2018)). Consequently, adversarial attack(Goodfellow et al. (2015); Moosavi-Dezfooli et al. (2016); Kurakin et al. (2017); Wang et al. (2019)) and defense(Madry et al. (2018); Shafahi et al. (2019); Cohen et al. (2019); Naseer et al. (2020)) strategies have attracted extensive research interest. One of the intriguing characteristics of adversarial examples is their transferability across different models, where adversarial examples generated on a surrogate model can deceive previously unseen victim models(Liu et al. (2017); Dong et al. (2018)). Unlike other attack strategies, transfer-based attacks do not necessitate access to the information of victim models, making them a particularly practical and serious threat to real-world DNN applications. Given these potential risks, extensive research has been conducted to enhance the transferability of adversarial attacks(Wu et al. (2020); Wang et al. (2021c); Lin et al. (2020); Wang & He (2021); Xie et al. (2019)).

Existing transfer-based attacks can be broadly categorized into five types: 1) **Gradient-based attacks**(Dong et al. (2018); Lin et al. (2020); Wang & He (2021)), which typically incorporate various momentum techniques to stabilize the optimization process and improve convergence. 2) **Input transformation-based attacks**(Xie et al. (2019); Wang et al. (2021a; 2024a)), which apply transformations to the input image to enhance the diversity of gradients for more effective optimization. 3) **Model-related attacks**(Wu et al. (2020); Guo et al. (2020); Wang et al. (2023a)), which introduce model-specific modifications during the forward or backward propagation stages. 4) **Advanced ob-**

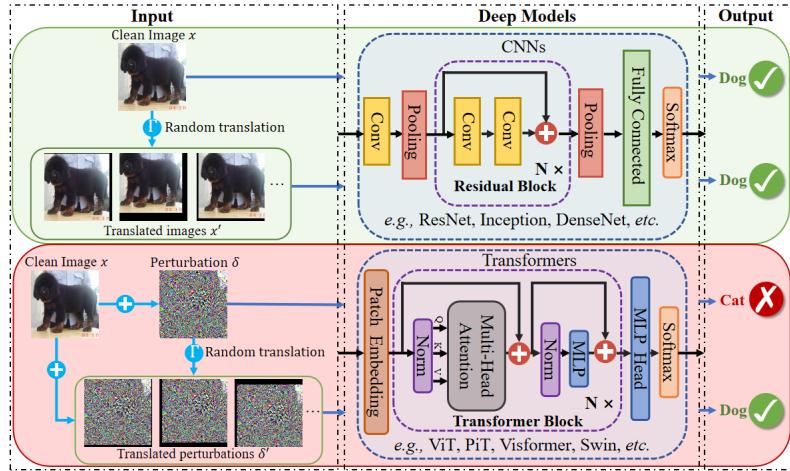


Figure 1: The impact of translation invariance of clean image and adversarial perturbation. The translated clean image can be correctly recognized by deep models (either CNNs or ViTs) while the translated adversarial perturbations cannot consistently fool the deep models.

jective functions (Wang et al. (2021c); Huang et al. (2019); Li et al. (2023)), which design novel objective functions using the mid-layer features. 5) **Ensemble attacks** (Liu et al. (2017); Dong et al. (2018); Xiong et al. (2022)), which target multiple models simultaneously to increase adversarial transferability. Notably, these approaches directly optimize the perturbation w.r.t the input image, without accounting for the inherent relationship between the perturbation and the input itself.

It is widely known that clean images are consistently and accurately classified by various deep learning models and exhibit robust translation invariance on the same model. As shown in Fig. 1, however, we find that adversarial perturbations exhibit significantly weaker translation invariance for the same clean image and model. This observation is counterintuitive, given the inherent similarity among the local regions of clean images. We hypothesize and empirically validate that the local invariance of adversarial perturbation w.r.t clean image for a given model is positively correlated to its adversarial transferability across different models. Building on this insight, we introduce a novel and generalizable framework to enhance the transferability of various transfer-based attacks. Our contributions are summarized as follows:

- We introduce local invariance for adversarial perturbations and unveil the underlying relationship between local invariance on the surrogate model and adversarial transferability across different models, which provides new insights to boost adversarial transferability across various models.
- We propose a novel and general boosting approach called LI-Boost to enhance adversarial transferability. Specifically, at each iteration, LI-Boost optimizes the adversarial perturbation using the gradient of adversarial examples with several translated perturbations to enhance the local invariance.
- Extensive experiments on the ImageNet dataset demonstrate that LI-Boost can effectively boost various types of transfer-based attacks on either CNNs or ViTs w/wo defense mechanisms, showing its generality and superiority in various scenarios.

2 RELATED WORK

In this section, we provide a brief overview of existing adversarial attack and defense approaches.

2.1 ADVERSARIAL ATTACKS

After identifying the vulnerability of DNNs against adversarial examples(Szegedy et al. (2014)), numerous adversarial attacks have emerged(Moosavi-Dezfooli et al. (2016); Madry et al. (2018); Wang et al. (2019)). White-box attacks(Goodfellow et al. (2015); Kurakin et al. (2017); Croce & Hein (2020)), which have full access to the target model (e.g., gradients, architectures, and logits, etc.), are widely used to assess the robustness of DNNs. In contrast, black-box attacks, which have limited access to the target model, pose more severe threats to real-world DNN-deployed applications. Black-box attacks can be further categorized into score-based attacks(Uesato et al. (2018);

108 Guo et al. (2019); Andriushchenko et al. (2020)), decision-based attacks(Li et al. (2020); Wang
 109 et al. (2022); Maho et al. (2021)) and transfer-based attacks(Liu et al. (2017); Wang & He (2021)).
 110 Among these, transfer-based attacks, where the adversarial examples generated on surrogate mod-
 111 els are used to attack the target model without any direct access, have garnered significant research
 112 interest(Xie et al. (2019); Gao et al. (2020); Zhang et al. (2023a); Wang et al. (2023c); Zhang et al.
 113 (2024b); Naseer et al. (2022); Li et al. (2023); Zhang et al. (2022a; 2023b; 2024a)).

114 **Gradient-based attacks** (e.g., FGSM Goodfellow et al. (2015), I-FGSM Kurakin et al. (2017)) are
 115 popular white-box attacks that exhibits superior white-box attack performance but poor transferabil-
 116 ity. To boost adversarial transferability, various approaches integrate momentum to stabilize the op-
 117 timization(Lin et al. (2020); Qin et al. (2022); Wang et al. (2021b)). For instance, MI-FGSM(Dong
 118 et al. (2018)) first integrates the momentum into I-FGSM and achieves much higher transferability.
 119 VMI-FGSM(Wang & He (2021)) further refines gradient variance to stabilize the update direc-
 120 tion. PGN(Ge et al. (2023)) introduces a penalized gradient norm to the original loss function,
 121 producing adversarial examples in flatter local regions with improved transferability across models.
 122 MUMODIG(Ren et al. (2025b)) improves transferability through generating integration paths using
 123 diverse baseline samples and enforcing the monotonicity of each path.

124 Numerous **input transformation-based attacks** have been proposed to boost adversarial transfer-
 125 ability(Zou et al. (2020); Dong et al. (2019); Wang et al. (2024a)). DIM(Xie et al. (2019)) improves
 126 transferability by randomly resizing and padding the input image before the gradient calculation. *Ad-*
 127 *mix*(Wang et al. (2021a)) enhances diversity by combining the original image with a second image
 128 from a distinct category to generate more diverse perturbations. SIA(Wang et al. (2023b)) applies
 129 various transformations to the blocks of the input image to increase diversity while maintaining
 130 its structural integrity. BSR(Wang et al. (2024a)) splits the image into blocks then shuffles and
 131 randomly rotates them to enhance transferability.

132 Additionally, **model-related attacks** often modify the architecture of surrogate model for enhanced
 133 transferability. For example, Linbp (Guo et al. (2020)) modifies the backward propagation process
 134 by setting the gradient of the ReLU activation function to a constant value of 1 and scaling the
 135 gradients of residual blocks. SGM (Wu et al. (2020)) prioritizes the gradients from skip connections
 136 over those from residual modules to improve transferability. BPA (Wang et al. (2023a)) introduces a
 137 non-monotonic function as the derivative of ReLU and integrates a temperature-controlled softmax
 138 function to activate the truncated gradient for better transferability. VDC (Zhang et al. (2024a))
 139 imports virtual dense connections for dense gradient back-propagation in attention maps and MLP
 140 blocks based on the forward propagation for vision transformers. FPR (Ren et al. (2025a)) refines
 141 the forward propagation through diversifying the attention map and accumulating the output token
 142 embedding using momentum mechanism.

143 **Advanced objective functions** often perturb mid-layer features to improve transferability(Wang
 144 et al. (2023c); Zhang et al. (2022a,b)). For instance, ILA (Huang et al. (2019)) enhances the
 145 similarity of feature differences between an adversarial example and its benign counterpart on a
 146 pre-specified layer of the source model. FIA (Wang et al. (2021c)) disrupts object-aware features
 147 that significantly influence model decisions to calculate the aggregated gradients for updating the
 148 perturbation. ILPD (Li et al. (2023)) amplifies the magnitude of perturbations in the adversarial
 149 direction within intermediate layers by incorporating perturbation decay in a single-stage optimiza-
 150 tion framework. BFA (Wang et al. (2024b)) employs fitted gradients and feature maps to destroy
 the black-box features.

151 **Ensemble attacks** simultaneously generate adversarial examples on multiple surrogate models to
 152 enhance adversarial transferability. Dong et al. (2018) aggregate the logits from all surrogate models
 153 to generate adversarial examples. SVRE (Xiong et al. (2022)) adopts the stochastic variance to
 154 reduce gradient variance between various models and escape poor local optima during the update
 155 process. CWA (Chen et al. (2024)) identifies shared vulnerabilities across an ensemble of models
 156 to improve transferability.

157 2.2 ADVERSARIAL DEFENSE

158 Numerous defenses have been proposed to mitigate the threat of adversarial examples. Adversarial
 159 training (Goodfellow et al. (2015); Tramèr et al. (2018); Madry et al. (2018); Shafahi et al. (2019))
 160 adopts the adversarial examples during the training process, which has been one of the most ef-
 161 fective methods to improve the model’s robustness. Fast-AT (Wong et al. (2020)) adopts a single

iteration to generate adversarial examples for training, which can significantly boost adversarial robustness. Guo et al. (2018) employed various image transformations (e.g., JPEG compression, etc.) to preprocess inputs before feeding them into the models. Liao et al. (2018) propose the high-level representation guided denoiser (HGD) by minimizing the difference between the model’s outputs on clean and denoised images. Naseer et al. (2020) developed a Neural Representation Purifier (NRP) trained using a self-supervised adversarial training method to purify input images. Several certified defense methods offer verifiable defense capabilities, such as randomized smoothing (RS) (Cohen et al. (2019)). Besides, diffusion models for purification (DiffPure) (Nie et al. (2022)) exhibit an excellent potential for adversarial defense.

3 METHODOLOGY

3.1 PRELIMINARIES

Given a victim model f with parameters θ and a clean image $x \in \mathcal{X}$ with ground-truth label y , where x is in d dimensions and \mathcal{X} denotes all the legitimate images, adversarial attacks seek to identify an adversarial example $x + \delta \in \mathcal{X}$ such that:

$$f(x; \theta) \neq f(x + \delta; \theta) \quad \text{s.t.} \quad \|\delta\|_p \leq \epsilon. \quad (1)$$

Here ϵ represents the perturbation budget, δ is the perturbation of x , and $\|\cdot\|_p$ is the ℓ_p -norm distance. In this work, we adopt ℓ_∞ distance to align with existing works. To generate such a perturbation, the adversary typically maximizes the loss function J (e.g., cross-entropy loss) of the target model, which can be formalized as:

$$\delta = \arg \max_{\|\delta\|_p \leq \epsilon} J(x + \delta, y; \theta). \quad (2)$$

The transferability of adversarial examples generated on the surrogate model when applied to the victim model f can be evaluated by the attack success rates (ASR) as follows:

$$ASR = \frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} \mathbb{I}[f(x) \neq f(x + \delta)], \quad (3)$$

where δ is generated on surrogate model f_s w.r.t the input image x and $\mathbb{I}(\cdot)$ is the indicator function.

3.2 MOTIVATION

Deep neural networks (DNNs) with different architectures often exhibit the ability to consistently recognize the same image, demonstrating the model-independent semantic consistency of clean images. In addition, DNNs are known for their strong translation invariance (Jaderberg et al. (2015); Kauderer-Abrams (2018)), wherein they reliably produce accurate predictions across translated versions of an image. This behavior mirrors the human visual system that the translated images can be correctly recognized, as translation does not fundamentally alter the images’ semantic content.

Adversarial transferability refers to the ability of adversarial examples generated on the surrogate model to successfully deceive other models. This concept parallels the observation that clean images are often classified correctly by various models. However, existing adversarial examples often exhibit weak transferability across different models, particularly between CNNs and ViTs. Besides, as shown in Fig. 1, we observe that adversarial perturbations also exhibit poor translation invariance for a given clean image and DNN. This observation contradicts human intuition, which suggests that local regions of an image should retain consistent semantic features. In contrast, the corresponding adversarial perturbations vary significantly. For example, while the pixels of a dog’s ear are visually similar, the associated perturbations vary substantially. This indicates that the perturbations not only overfit the victim model but also become highly sensitive to pixel positions within the image.

This finding inspires us that translation invariance may be beneficial for enhancing adversarial transferability. To validate this assumption, we first define the local invariance of adversarial perturbation δ to quantify translation invariance as follows:

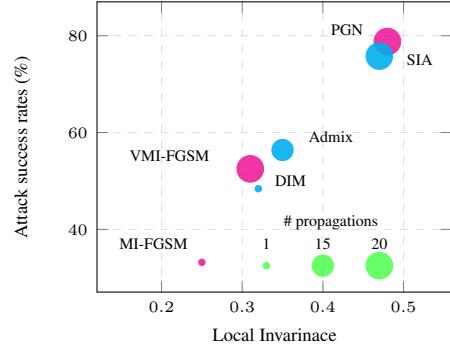


Figure 2: The local invariance ($k = 5$) on RN-50 and average attack success rates (%) on nine models of various transfer-based attacks.

216 **Definition 1** (Local Invariance). *Given an adversarial perturbation δ for the input image $x \in \mathcal{X}$ and surrogate model f_s , the local invariance of perturbation is quantified as:*

$$219 \quad 220 \quad 221 \quad 222 \quad 223 \quad 224 \quad 225 \quad 226 \quad 227 \quad 228 \quad 229 \quad 230 \quad 231 \quad 232 \quad 233 \quad 234 \quad 235 \quad 236 \quad 237 \quad 238 \quad 239 \quad 240 \quad 241 \quad 242 \quad 243 \quad 244 \quad 245 \quad 246 \quad 247 \quad 248 \quad 249 \quad 250 \quad 251 \quad 252 \quad 253 \quad 254 \quad 255 \quad 256 \quad 257 \quad 258 \quad 259 \quad 260 \quad 261 \quad 262 \quad 263 \quad 264 \quad 265 \quad 266 \quad 267 \quad 268 \quad 269$$

$$\mathcal{I}(x, \delta, k) = \frac{\sum_{-k \leq i, j \leq k} \mathbb{I}[f_s(x) \neq f_s(x + \Gamma(\delta, i, j))]}{(2k + 1)^2},$$

where $\Gamma(\delta, i, j)$ denotes the translation operator that translates δ by i pixels horizontally and j pixels vertically, and k represents the upper bound of translated pixels.

We have calculated the average local invariance of adversarial perturbations generated by various transfer-based attacks. As shown in Fig. 2, we observe that improved adversarial transferability is often associated with better local invariance. Based on this observation, we conclude that the local invariance of adversarial perturbations serves as an indicator of their transferability across different models. Furthermore, enhancing local invariance appears to positively influence the transferability of these adversarial perturbations.

3.3 LOCAL INVARIANCE BOOSTING APPROACH

Building on the above analysis, we propose a novel attack approach called Local Invariance Boosting approach (LI-Boost), which enhances the local invariance of adversarial perturbations w.r.t the clean image to improve transferability across various models. Specifically, we can formulate the problem as follows:

$$\delta = \arg \max_{\|\delta\|_p \leq \epsilon} \left[\min_{\delta' \in \{\Gamma(\delta, i, j) \mid -k \leq i, j \leq k\}} J(x + \delta', y; \theta) \right], \quad (4)$$

where k represents the maximum number of pixels by which the perturbation is translated. To assess the effectiveness of this approach, we employ MI-FGSM to solve Eq. equation 4 using various k . We choose ResNet-50 as the white-box setting and other 8 models illustrated in Sec. 4.1 as the black-box settings. As shown in Fig. 2, adversarial transferability consistently improves when enhancing the local invariance. However, it is important to note that this enhancement comes at a cost: the performance of white-box attacks deteriorates since generating such perturbation is hard. Also, the computational complexity escalates significantly. Specifically, the number of forward and backward propagations required for each update scales quadratically with k , resulting in a significant increase in computational time as k grows. For instance, $3 \times 3 = 9$ forward and backward propagations are needed for $k = 1$ whereas $5 \times 5 = 25$ are required for $k = 2$. This results in progressively less efficient attack computations as k increases. To enhance computational efficiency without sacrificing the attack effectiveness, we randomly sample multiple translated perturbations for each update. Specifically, the gradient is computed as follows:

$$\bar{g} = \frac{1}{N} \sum_{n=1}^N \nabla_{\delta} J(x + \Gamma(\delta, i, j), y; \theta), \quad (5)$$

where i, j are randomly sampled from $[-k, k]$ with k is a predefined parameter of the upper bound of translated pixels, and N denotes the total number of sampled perturbations. The selection of an appropriate N is crucial for balancing the trade-off between attack efficiency and effectiveness. It is important to note that LI-Boost is a general boosting technique applicable to a variety of attacks. As an example, we incorporate LI-Boost into the MI-FGSM, denoted as LI-Boost-MI. The details are summarized in Algorithm 1.

4 EXPERIMENTS

Here we conduct extensive evaluations on ImageNet dataset to validate the effectiveness of LI-Boost. We first specify our experiment setup, then we conduct a series of experiments on five categories of transfer-based attacks. Finally, we provide ablation studies to investigate the behavior of LI-Boost.

4.1 EXPERIMENTAL SETUP

Dataset. We evaluate the proposed LI-Boost using 5,000 images from the validation set of the ImageNet dataset (Russakovsky et al. (2015)), covering 1,000 categories.

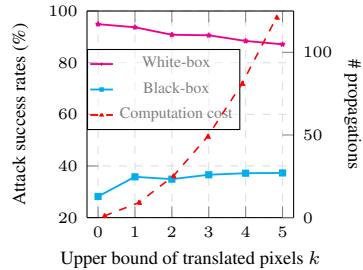


Figure 3: Attack success rates (%) and number of forward and backward propagations of MI-FGSM with Eq. equation 4 using various k .

270 **Algorithm 1** LI-Boost-MI
271 **Input:** Victim model f with the loss function J ; a raw image x with ground-truth label y ; pertur-
272 bation budget ϵ ; decay factor μ ; number of iterations T ; number of sampled perturbations N ; upper
273 bound of translated pixels k
274 **Parameter:** $\alpha = \epsilon/T$, $g_0 = 0$, $\delta_0 = 0$
275 **Output:** Perturbation δ
276 1: **for** $t = 1$ to T **do**
277 2: Calculate the gradient \bar{g}_t w.r.t δ_t using Eq. 5
278 3: Update the momentum:
279
$$g_t = \mu \cdot g_{t-1} + \frac{\bar{g}_t}{\|\bar{g}_t\|_\infty}$$

280 4: Update the adversarial perturbation:
281
$$\delta_t = \text{clamp}(\delta_{t-1} + \alpha \cdot \text{sign}(g_t), -\epsilon, \epsilon)$$

282 5: **end for**
283 6: **return** $\delta = \delta_T$

284 Table 1: Attack success rates (%) on nine models and five defense approaches of various **gradient-
285 based attacks** w/wo LI-Boost. The adversarial examples are crafted on ResNet-50. * indicates the
286 white-box model.

Gradient-based Attacks	CNNs					ViTs				Defenses				
	RN-50	Inc-v3	MN-v3	DN-121	FSNet	ViT	PiT	Visformer	Swin	AT	HGD	RS	NRP	DiffPure
MI-FGSM	94.9*	34.5	40.6	45.9	25.2	10.5	18.0	23.1	27.8	33.7	19.2	21.9	25.1	13.8
LI-Boost-MI	97.0*	45.3	55.2	62.0	41.8	19.1	29.1	38.7	41.9	34.3	33.3	23.8	32.2	21.4
VMI-FGSM	97.5*	54.4	58.0	66.0	51.2	28.6	40.5	46.5	49.4	36.0	44.4	25.3	44.1	21.9
LI-Boost-VMI	99.3*	67.0	71.4	79.3	65.9	39.7	53.7	61.4	62.6	37.9	59.1	30.4	60.4	36.8
PGN	99.1*	84.2	86.4	91.6	81.5	54.8	69.7	77.0	78.8	46.2	78.3	41.4	79.7	48.6
LI-Boost-PGN	98.7*	86.4	87.8	92.1	83.9	62.1	74.3	80.2	81.3	50.4	82.3	50.8	84.8	65.4
MUMODIG	97.1*	72.8	78.4	84.7	72.1	42.9	58.6	67.7	66.4	37.6	68.2	26.4	52.2	26.7
LI-Boost-MUMODIG	98.6*	83.4	85.6	90.9	81.8	60.0	72.8	80.0	77.7	41.3	78.7	33.4	90.2	45.8

295 **Models.** To validate its effectiveness, we adopt various architectures as the victim models, in-
296 cluding five CNNs, i.e., ResNet-50 ((RN-50) He et al. (2016)), Inception-v3 ((Inc-v3) Szegedy
297 et al. (2016)), MobileNet-v3((MN-v3) Howard et al. (2019)), DenseNet-121 ((DN-121) Huang et al.
298 (2017)), FasterNet ((FSNet) Chen et al. (2023)) and four ViTs, i.e., ViT(Dosovitskiy et al. (2021)),
299 PiT(Heo et al. (2021)), Visformer(Chen et al. (2021)), Swin(Liu et al. (2021)). To further sub-
300 stantiate the effectiveness of LI-Boost, we also consider five state-of-the-art defense mechanisms,
301 namely AT(Wong et al. (2020)), HGD(Liao et al. (2018)), RS(Cohen et al. (2019)), NRP(Naseer
302 et al. (2020)) and DiffPure(Nie et al. (2022)).

303 **Baselines.** To comprehensively assess the generality of LI-Boost, we establish several baselines
304 encompassing multiple categories of transfer-based attacks, including **gradient-based attacks** (MI-
305 FGSM Dong et al. (2018), VMI-FGSM Wang & He (2021), PGN Ge et al. (2023)), MUMODIG Ren
306 et al. (2025b), **input transformation-based attacks** (DIM Xie et al. (2019), Admix Wang et al.
307 (2021a), SIA Wang et al. (2023b), BSR Wang et al. (2024a)), **model-related attacks** (SGM Wu et al.
308 (2020), Linbp Guo et al. (2020), BPA Wang et al. (2023a), VDC Zhang et al. (2024a)), FPR Ren
309 et al. (2025a), **advanced objective functions** (ILA Huang et al. (2019), FIA Wang et al. (2021c),
310 ILPD Li et al. (2023), BFA Wang et al. (2024b)) and **ensemble attack** Dong et al. (2018). For
311 consistency, MI-FGSM is adopted as the default backbone baseline across all experiments.

312 **Evaluation.** We employ the attack success rates to assess the efficacy of adversarial attacks. To
313 ensure a fair and consistent comparison across different attacks, we adopt a common attack setting
314 with the perturbation budget $\epsilon = 16/255$, number of iterations $T = 10$, step size $\alpha = \epsilon/T$ and
315 the decay factor $\mu = 1.0$. We adopt $k = 6$, $N = 30$, and Logarithmic distribution to sample
316 the translated perturbations for LI-Boost. All the baselines adopt the default parameters as in their
317 original papers, which are detailed in the Appendix Material A.6 and all experiments are conducted
318 on a single RTX4090 GPU with 24 GB of VRAM.

319 4.2 EVALUATION ON GRADIENT-BASED ATTACKS

320 To validate the effectiveness of our proposed LI-Boost, we first integrate it into various gradient-
321 based attacks, i.e., MI-FGSM, VMI-FGSM, PGN and MUMODIG. We generate the adversarial
322 examples on ResNet-50 and evaluate the transferability on the other CNNs, ViTs and defense meth-
323 ods. The results are summarized in Tab. 1, and the results on other models are summarized in the
Appendix Tab. 8. As we can observe, LI-Boost significantly improves the white-box attack per-

324 Table 2: Attack success rates (%) on nine models and five defense approaches of various **input**
 325 **transformation-based attacks** w/wo LI-Boost. The adversarial examples are crafted on ResNet-
 326 50. * indicates the white-box model.

Input Transformation-based Attacks	CNNs					ViTs				Defenses				
	RN-50	Inc-v3	MN-v3	DN-121	FSNet	ViT	PiT	Visformer	Swin	AT	HGD	RS	NRP	DiffPure
DIM	92.7*	52.4	56.7	64.4	46.9	23.9	35.0	42.1	43.6	34.9	40.3	23.6	33.6	19.2
LI-Boost-DIM	98.1*	61.0	68.3	75.8	61.1	36.0	47.7	57.2	56.4	36.3	54.9	26.9	42.2	30.4
<i>Admix</i>	99.3*	59.4	67.4	77.6	54.6	27.7	41.8	52.5	53.3	35.7	47.9	24.6	44.4	20.8
LI-Boost- <i>Admix</i>	99.5*	71.7	80.5	86.5	73.9	44.8	58.5	70.5	69.2	38.4	66.9	30.9	57.7	38.4
SIA	99.3*	76.2	89.1	92.9	81.3	43.5	66.8	78.4	76.6	38.0	71.0	27.2	57.0	25.4
LI-Boost-SIA	99.8*	87.0	95.1	96.8	91.8	64.0	81.2	90.3	88.1	42.2	86.8	36.0	71.2	45.4
BSR	98.6*	84.6	92.8	95.7	87.5	53.1	75.5	84.7	81.4	39.2	81.4	28.7	58.2	31.3
LI-Boost-BSR	99.2*	91.3	96.4	97.8	94.5	70.6	85.1	93.6	90.6	43.2	91.6	38.1	71.7	51.0

334 Table 3: Attack success rates (%) on nine models and five defense approaches of various **model-
 335 related attacks** w/wo LI-Boost. The adversarial examples are crafted on ResNet-50, except for
 336 VDC and FPR, which are based on ViT. * indicates the white-box model.

Model-related Attacks	CNNs					ViTs				Defenses				
	RN-50	Inc-v3	MN-v3	DN-121	FSNet	ViT	PiT	Visformer	Swin	AT	HGD	RS	NRP	DiffPure
SGM	99.5*	44.8	57.2	61.3	31.8	15.0	27.7	33.4	38.8	35.0	22.8	23.3	29.3	14.2
LI-Boost-SGM	100.0*	61.5	78.4	82.0	46.7	29.1	46.4	57.6	61.0	36.8	48.0	27.1	41.3	25.4
Linbp	89.2*	44.4	55.8	62.3	29.0	9.6	17.2	28.6	31.8	34.5	24.2	22.7	27.7	22.0
LI-Boost-Linbp	99.2*	60.1	76.9	85.4	52.4	15.2	25.5	49.9	44.9	34.6	43.7	24.1	32.8	23.0
BPA	89.9*	79.6	88.1	96.4	66.9	30.4	46.0	64.4	65.7	37.5	69.2	27.9	47.9	28.1
LI-Boost-BPA	93.0*	86.1	92.1	98.4	77.3	39.4	53.7	73.8	75.0	40.6	81.4	34.7	57.1	43.3
VDC	51.7	58.6	67.0	65.6	52.1	97.5*	55.2	59.3	71.5	38.2	41.8	28.8	35.8	28.4
LI-Boost-VDC	61.3	65.8	73.4	72.9	62.0	96.7*	66.7	68.9	76.8	39.4	52.0	33.9	41.9	38.9
FPR	43.2	51.8	57.0	57.4	43.5	98.2*	45.8	49.7	61.3	35.4	33.7	24.8	30.4	22.0
LI-Boost-FPR	53.5	57.8	63.7	63.5	54.6	96.8*	58.1	60.4	68.3	36.7	43.3	27.9	34.8	29.9

345 performance on ResNet-50, underscoring the advantage of increasing local invariance to strengthen
 346 adversarial perturbations. Regarding black-box performance, MI-FGSM exhibits the lowest trans-
 347 ferability among the baseline methods, whereas VMI-FGSM, PGN and MUMODIG demonstrate
 348 considerably stronger attack capabilities. Notably, LI-Boost consistently boosts the performance
 349 of these attacks across both CNNs and emerging ViT architectures. On average, the attack suc-
 350 cess rates show significant improvement, with the increases of 12.2%, 12.0%, 2.6% and 10.0%
 351 for MI-FGSM, VMI-FGSM, PGN and MUMODIG, respectively. These consistent and substantial
 352 performance gains highlight the effectiveness and generalizability of LI-Boost across diverse model
 353 architectures and defense strategies. Furthermore, even when facing robust defense mechanisms, LI-
 354 Boost significantly enhances the attack performance, revealing the limitations of existing defenses
 355 and raising new concerns about the robustness of models.

4.3 EVALUATION ON INPUT TRANSFORMATION-BASED ATTACKS

356 To assess the generality of LI-Boost, we integrate it with four prominent input transformation-based
 357 attacks, i.e., DIM, *Admix*, SIA and BSR. As shown in Tab. 2, LI-Boost significantly enhances the
 358 performance of white-box attacks, achieving near-perfect success rates of approximately 100.0%.
 359 This further corroborates the hypothesis that increasing local invariance strengthens adversarial at-
 360 tacks. Under black-box settings, LI-Boost consistently boosts the performance of various input
 361 transformation-based attacks. Overall, the integration of LI-Boost results in substantial performance
 362 gains over the baseline methods: an improvement of 5.4% ~ 15.1% for DIM, 8.9% ~ 19.3% for
 363 *Admix*, and 3.9% ~ 20.5% for SIA and 2.1% ~ 17.5% for BSR. Furthermore, attacks augmented
 364 with LI-Boost demonstrate superior robustness under various defense mechanisms. These signifi-
 365 cant improvements underscore the effectiveness of LI-Boost in enhancing adversarial transferability
 366 across diverse attack scenarios. Please refer to Appendix Tab. 9 for the results on other models.

4.4 EVALUATION ON MODEL-RELATED ATTACKS

369 To evaluate the efficacy of LI-Boost in model-related attacks, we integrate it with five prominent
 370 model-related attack methods, i.e., SGM, Linbp, BPA for CNNs and VDC, FPR for ViTs. The
 371 experimental results, presented in Tab. 3, demonstrate that attacks augmented with LI-Boost not
 372 only maintain high success rates in white-box settings but also achieve substantial improvements
 373 over the baseline methods in black-box scenarios: 14.1% ~ 24.2% for SGM, 5.6% ~ 23.4% for
 374 Linbp, 2.0% ~ 10.4% for BPA, 5.3% ~ 11.5% for VDC and 6.0% ~ 12.3% for FPR. These
 375 results highlight that LI-Boost significantly outperforms the baseline methods by considerable mar-
 376 gins. Moreover, LI-Boost consistently enhances attack performance, achieving higher success rates
 377 across all evaluated defense strategies. These findings underscore the effectiveness of LI-Boost in
 378 augmenting adversarial attacks and suggest its potential as a robust approach for generating highly
 379 transferable adversarial examples.

Table 4: Attack success rates (%) on nine models and five defense approaches of various **advanced objective functions** w/wo LI-Boost. The adversarial examples are crafted on ResNet-50. * indicates the white-box model.

Advanced Objective Functions	CNNs				ViTs				Defenses					
	RN-50	Inc-v3	MN-v3	DN-121	FSNet	ViT	PiT	Visformer	Swin	AT	HGD	RS	NRP	DiffPure
ILA	90.0*	29.0	37.9	42.4	22.4	8.2	15.4	20.8	27.1	33.4	13.9	21.6	20.0	11.4
LI-Boost-ILA	93.2*	41.3	56.7	64.6	36.2	12.2	23.2	33.4	39.1	33.8	24.3	22.6	24.6	14.1
FIA	77.8*	37.5	45.1	53.4	23.3	8.1	15.8	20.9	29.1	35.3	16.6	23.4	24.7	12.2
LI-Boost-FIA	89.6*	53.6	65.1	76.2	42.7	13.9	25.5	37.7	45.4	36.7	32.8	25.2	30.8	15.4
ILPD	95.0*	65.6	74.1	80.6	65.0	62.0	52.7	61.4	61.9	46.8	57.0	27.5	55.3	28.5
LI-Boost-ILPD	94.3*	69.5	79.7	84.7	69.6	66.9	56.3	67.7	65.9	51.5	62.5	31.0	58.3	35.1
BFA	98.8*	82.9	90.5	94.5	84.4	46.0	67.5	79.8	79.7	39.5	77.0	29.0	68.5	27.1
LI-Boost-BFA	98.7*	86.8	92.6	96.0	87.9	53.8	72.1	84.8	83.8	42.3	83.7	36.3	74.5	44.4

Table 5: Attack success rates (%) on nine models and five defense approaches of various **ensemble attacks** w/wo LI-Boost. The adversarial examples are crafted on ResNet-50, Inc-v3, MobileNet-v3 and DenseNet-121. * indicates the white-box model.

Ensemble Attacks	CNNs				ViTs				Defenses					
	RN-50	Inc-v3	MN-v3	DN-121	FSNet	ViT	PiT	Visformer	Swin	AT	HGD	RS	NRP	DiffPure
MI-FGSM	95.4*	99.8*	99.3*	100.0*	67.8	39.3	53.7	66.6	68.5	37.2	66.6	27.1	44.7	24.6
LI-Boost-MI	97.9*	100.0*	99.6*	100.0*	85.6	58.4	71.0	83.2	83.9	39.9	85.3	34.5	58.3	40.9
VMI-FGSM	97.3*	99.9*	99.4*	100.0*	84.7	60.1	73.0	82.4	83.3	40.5	84.5	33.4	66.0	39.7
LI-Boost-VMI	99.3*	100.0*	99.7*	100.0*	93.1	73.7	84.5	91.8	92.4	45.0	94.0	42.6	83.6	58.2
PGN	98.8*	100.0*	99.6*	100.0*	94.6	81.2	88.7	94.1	94.1	54.9	95.9	58.4	90.0	71.0
LI-Boost-PGN	98.7*	99.7*	99.5*	100.0*	95.4	83.6	90.0	94.5	94.6	60.4	96.7	68.8	93.3	83.6
MUMODIG	99.6*	99.8*	99.8*	100.0*	97.2	84.2	92.3	97.1	96.3	46.4	98.0	40.4	82.4	52.8
LI-Boost-MUMODIG	99.6*	99.8*	99.8*	100.0*	98.1	89.1	95.0	98.2	97.5	51.9	98.8	51.1	90.6	72.8
DIM	97.8*	99.9*	99.6*	100.0*	86.1	61.5	74.5	84.4	84.7	39.9	87.6	31.9	60.4	38.2
LI-Boost-DIM	99.0*	99.9*	99.8*	100.0*	93.2	76.1	84.4	92.4	92.1	44.4	94.4	42.7	71.8	58.1
Admix	99.5*	100.0*	99.8*	100.0*	92.7	69.5	82.7	91.8	92.0	44.5	93.5	37.7	75.9	43.2
LI-Boost-Admix	99.4*	100.0*	100.0*	100.0*	96.1	83.1	89.6	95.6	95.4	51.0	97.5	53.3	85.5	70.2
SIA	99.8*	100.0*	100.0*	100.0*	98.0	82.3	93.6	97.9	97.3	44.6	98.6	37.5	78.7	46.1
LI-Boost-SIA	99.9*	99.9*	100.0*	100.0*	99.5	91.9	96.8	99.3	99.0	51.8	99.5	53.2	89.5	71.0
BSR	99.8*	99.6*	100.0*	100.0*	89.5	80.4	92.5	97.6	96.0	45.7	98.2	37.8	74.3	48.4
LI-Boost-BSR	99.9*	99.9*	100.0*	100.0*	99.3	90.6	95.8	99.2	98.7	52.4	99.5	53.4	86.2	74.4

4.5 EVALUATION ON ADVANCED OBJECTIVE FUNCTIONS

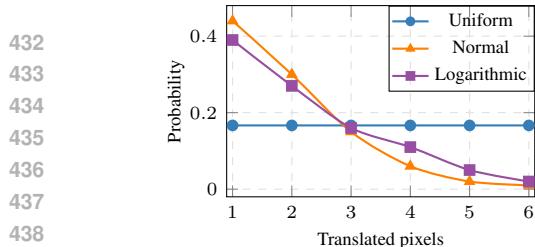
To validate the effectiveness of LI-Boost in advanced objective functions, we integrate our LI-Boost with ILA, FIA, ILPD and BFA. The results are presented in Tab. 4. As we can see from the table, under white-box setting, LI-Boost significantly improves the success rates of ILA and FIA by 3.2% and 11.8%, respectively, while maintaining performance of ILPD and BFA. For black-box settings, ILA exhibits the weakest performance among the three baseline methods, whereas FIA, ILPD and BFA demonstrate superior efficacy. Notably, LI-Boost substantially enhances the attack performance across both CNNs and ViTs. In particular, the magnitudes of improvement for ILA, FIA, ILPD and BFA are 3.2% ~ 22.2%, 5.8% ~ 22.8%, 3.6% ~ 6.3% and 1.5% ~ 7.8%, respectively. Additionally, we evaluate the attack performance against five different defense mechanisms, where LI-Boost can still boost the baselines' performance. For instance, ILPD achieves an average success rate of 41.2% while LI-Boost-ILPD attains 45.0%. These performance improvements convincingly illustrate that LI-Boost can significantly boost the adversarial transferability.

4.6 EVALUATION ON ENSEMBLE ATTACK

To further validate the efficacy of our method, we adopt the ensemble attack as in MI-FGSM Dong et al. (2018), by fusing the logit outputs of diverse models. The adversarial examples are generated on RN-50, Inc-v3, MN-v3 and DN-121 using eight baselines w/wo LI-Boost and all ensemble models are assigned equal weights. As shown in Tab. 5, empirical results reveal that baseline methods consistently achieve enhanced adversarial transferability when integrated with LI-Boost. The augmented methods not only exhibit improved attack success rates in white-box scenarios but also demonstrate remarkable performance gains in black-box settings. Furthermore, comprehensive evaluations across five representative defense mechanisms highlight the robustness of our approach. These findings further highlight the effectiveness of LI-Boost in enhancing transferability.

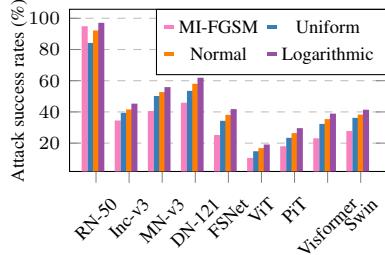
4.7 ABLATION STUDIES

To gain deeper insights into LI-Boost, we conduct a series of ablation experiments to study the impact of hyper-parameters, i.e., the random sampling distribution, the number of sampled perturbations N , and the upper bound of translated pixels k . All the adversarial examples are generated on ResNet-50. The default setting is $N = 30$, $k = 6$, and Logarithmic distribution for sampling.



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

(a) The probability distribution of adopted Uniform, Normal and Logarithmic distributions.



(b) Attack success rates (%) of MI-FGSM and LI-Boost-MI with three distributions on eight models.

Figure 4: Ablation studies of various sampling distributions.

On the sampling distribution. Intuitively, local invariance within smaller neighborhoods holds greater significance than that in larger neighborhoods. Consequently, the choice of sampling distribution plays a critical role. To explore the impact of sampling distribution, we employ three distinct distributions as illustrated in Fig. 4a. As shown in Fig. 4b, Uniform distribution yields the weakest performance, as it fails to differentiate among translated pixels.

Nevertheless, it substantially surpasses MI-FGSM, highlighting the superiority of LI-Boost. Both Normal and Logarithmic distributions achieve better attack performance since they assign various levels of importance to different translated pixels. Logarithmic distribution achieves the best attack performance as it places suitable emphasis on smaller neighborhoods, which validates our hypothesis. Hence, we adopt Logarithmic distribution in our experiments. The details of sampling strategies are illustrated in Appendix Material A.4.

On the number of sampled perturbations N . We test LI-Boost-MI with various N to analyze its impact on attack performance. As shown in Fig. 5a, the attack performance is significantly boosted with larger N but exhibits diminishing returns beyond $N = 30$. Considering the growth of computational cost from gradient computations as shown in Eq. equation 5, we empirically select $N = 30$ in our experiments.

On the upper bound of translated pixels k . We conduct LI-Boost-MI using various k to explore its impact on attack performance. Fig. 5b shows that $k = 1$ already surpasses MI-FGSM, demonstrating enhanced transferability. Performance peaks at around $k = 6$, highlighting the role of local invariance in robustness, while excessive k values degrade as generating effective perturbations becomes more challenging. Thus, we select $k = 6$ to balance the white-box and transferable attack efficacy.

5 CONCLUSIONS

In this study, we introduce *local invariance* of adversarial perturbations and empirically demonstrate a positive correlation between the local invariance of adversarial perturbations on a *surrogate model* and their transferability *across diverse victim models*. Building on this insight, we propose LI-Boost, a novel method designed to enhance the local invariance of adversarial perturbations on a single model for better adversarial transferability. Through extensive experiments conducted on the standard ImageNet validation set, we validate the effectiveness of LI-Boost across a variety of transfer-based attacks, encompassing both CNNs, ViTs and various defense mechanisms. Our findings not only underscore the efficacy of the proposed approach but also provide valuable insights into potential avenues for advancing adversarial attack. We anticipate that this work will inspire further research in this direction.

486 ETHICS STATEMENT
487488 This paper focuses on the transferability of adversarial examples. The dataset was curated following
489 ethical guidelines to ensure that no sensitive information is included and minimize bias. The
490 evaluation process aims to be transparent and reproducible, adhering to high standards of research
491 integrity and ethical conduct. No personally identifiable data was collected or processed.
492493 REPRODUCIBILITY STATEMENT
494495 To ensure the reproducibility of our results, we have made considerable efforts to provide all necessary
496 details and materials. Specifically, we have included the dataset in Section 4.1, the hardware
497 setting in Section 4.1, provided the algorithm details in Algorithm 1 and Appendix A.4.
498500 REFERENCES
501502 Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square At-
503 tack: A Query-Efficient Black-Box Adversarial Attack via Random Search. In *Proceedings of the*
504 *European Conference on Computer Vision*, pp. 484–501, 2020.505 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
506 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
507 Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
508 Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
509 Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
510 Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot Learners. In *Proceedings of*
511 *the Advances in Neural Information Processing Systems*, 2020.512 Huanran Chen, Yichi Zhang, Yinpeng Dong, Xiao Yang, Hang Su, and Jun Zhu. Rethinking Model
513 Ensemble in Transfer-based Adversarial Attacks. In *Proceedings of the International Conference*
514 *on Learning Representations*, 2024.515 Jierun Chen, Shiu-hong Kao, Hao He, Weipeng Zhuo, Song Wen, Chul-Ho Lee, and S-H Gary Chan.
516 Run, don’t walk: chasing higher flops for faster neural networks. In *Proceedings of the IEEE/CVF*
517 *conference on computer vision and pattern recognition*, pp. 12021–12031, 2023.518 Zhengsu Chen, Lingxi Xie, Jianwei Niu, Xuefeng Liu, Longhui Wei, and Qi Tian. Visformer:
519 The Vision-friendly Transformer. In *Proceedings of the IEEE/CVF International Conference on*
520 *Computer Vision*, pp. 569–578, 2021.521 Jeremy Cohen, Elan Rosenfeld, and J. Zico Kolter. Certified Adversarial Robustness via Random-
522 ized Smoothing. In *Proceedings of the International Conference on Machine Learning*, pp. 1310–
523 1320, 2019.524 Francesco Croce and Matthias Hein. Reliable Evaluation of Adversarial Robustness with an En-
525 semble of Diverse Parameter-free Attacks. In *Proceedings of the International Conference on*
526 *Machine Learning*, pp. 2206–2216, 2020.527 Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boost-
528 ing Adversarial Attacks With Momentum. In *Proceedings of the IEEE/CVF Conference on Com-*
529 *puter Vision and Pattern Recognition*, pp. 9185–9193, 2018.530 Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. Evading Defenses to Transferable Adversarial
531 Examples by Translation-Invariant Attacks. In *Proceedings of the IEEE/CVF Conference on*
532 *Computer Vision and Pattern Recognition*, pp. 4312–4321, 2019.533 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
534 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
535 reit, and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at
536 Scale. In *Proceedings of the International Conference on Learning Representations*, 2021.

540 Kevin Eykholt, Ivan Evtimov, Earlene Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul
 541 Prakash, Tadayoshi Kohno, and Dawn Song. Robust Physical-World Attacks on Deep Learn-
 542 ing Visual Classification. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 543 *Pattern Recognition*, pp. 1625–1634, 2018.

544 Lianli Gao, Qilong Zhang, Jingkuan Song, Xianglong Liu, and Heng Tao Shen. Patch-Wise Attack
 545 for Fooling Deep Neural Network. In *Proceedings of the European Conference on Computer*
 546 *Vision*, pp. 307–322, 2020.

548 Zhijin Ge, Xiaosen Wang, Hongying Liu, Fanhua Shang, and Yuanyuan Liu. Boosting Adversarial
 549 Transferability by Achieving Flat Local Maxima. In *Proceedings of the Advances in Neural*
 550 *Information Processing Systems*, 2023.

551 Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing Adversarial
 552 Examples. In *Proceedings of the International Conference on Learning Representations*, 2015.

554 Chuan Guo, Mayank Rana, Moustapha Cissé, and Laurens van der Maaten. Countering Adversarial
 555 Images Using Input Transformations. In *Proceedings of the International Conference on Learning*
 556 *Representations*, 2018.

557 Chuan Guo, Jacob R. Gardner, Yurong You, Andrew Gordon Wilson, and Kilian Q. Weinberger.
 558 Simple Black-box Adversarial Attacks. In *Proceedings of the International Conference on Ma-*
 559 *chine Learning*, pp. 2484–2493, 2019.

561 Yiwen Guo, Qizhang Li, and Hao Chen. Backpropagating Linearly Improves Transferability of
 562 Adversarial Examples. In *Proceedings of the Advances in Neural Information Processing Systems*,
 563 2020.

564 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
 565 Recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 566 *Recognition*, pp. 770–778, 2016.

568 Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, and Seong Joon
 569 Oh. Rethinking Spatial Dimensions of Vision Transformers. In *Proceedings of the IEEE/CVF*
 570 *International Conference on Computer Vision*, pp. 11916–11925, 2021.

571 Andrew Howard, Ruoming Pang, Hartwig Adam, Quoc V. Le, Mark Sandler, Bo Chen, Weijun
 572 Wang, Liang-Chieh Chen, Mingxing Tan, Grace Chu, Vijay Vasudevan, and Yukun Zhu. Search-
 573 ing for MobileNetV3. In *Proceedings of the IEEE/CVF International Conference on Computer*
 574 *Vision*, pp. 1314–1324, 2019.

576 Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely Connected
 577 Convolutional Networks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 578 *Pattern Recognition*, pp. 2261–2269, 2017.

580 Qian Huang, Isay Katsman, Zeqi Gu, Horace He, Serge J. Belongie, and Ser-Nam Lim. Enhancing
 581 Adversarial Example Transferability With an Intermediate Level Attack. In *Proceedings of the*
 582 *IEEE/CVF International Conference on Computer Vision*, pp. 4732–4741, 2019.

583 Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu. Spatial Transformer
 584 Networks. In *Proceedings of the Advances in Neural Information Processing Systems*, pp. 2017–
 585 2025, 2015.

586 Eric Kauderer-Abrams. Quantifying Translation-Invariance in Convolutional Neural Networks.
 587 *arXiv preprint arXiv:1801.01450*, 2018.

589 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classification with Deep Con-
 590 volutional Neural Networks. In *Proceedings of the Advances in Neural Information Processing*
 591 *Systems*, pp. 1106–1114, 2012.

593 Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial Examples in the Physical World.
 In *Proceedings of the International Conference on Learning Representations (Workshops)*, 2017.

594 Huichen Li, Xiaojun Xu, Xiaolu Zhang, Shuang Yang, and Bo Li. QEBA: Query-Efficient
 595 Boundary-Based Blackbox Attack. In *Proceedings of the IEEE/CVF Conference on Computer*
 596 *Vision and Pattern Recognition*, pp. 1218–1227, 2020.

597

598 Qizhang Li, Yiwen Guo, Wangmeng Zuo, and Hao Chen. Improving Adversarial Transferability
 599 via Intermediate-level Perturbation Decay. In *Proceedings of the Advances in Neural Information*
 600 *Processing Systems*, 2023.

601 Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Xiaolin Hu, and Jun Zhu. Defense
 602 Against Adversarial Attacks Using High-Level Representation Guided Denoiser. In *Proceedings*
 603 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1778–1787, 2018.

604

605 Jiadong Lin, Chuanbiao Song, Kun He, Liwei Wang, and John E. Hopcroft. Nesterov Acceler-
 606 ated Gradient and Scale Invariance for Adversarial Attacks. In *Proceedings of the International*
 607 *Conference on Learning Representations*, 2020.

608 Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into Transferable Adversarial
 609 Examples and Black-box Attacks. In *Proceedings of the International Conference on Learning*
 610 *Representations*, 2017.

611

612 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 613 Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. In *Proceedings of*
 614 *the IEEE/CVF International Conference on Computer Vision*, pp. 9992–10002, 2021.

615 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 616 Towards Deep Learning Models Resistant to Adversarial Attacks. In *Proceedings of the Interna-*
 617 *tional Conference on Learning Representations*, 2018.

618

619 Thibault Maho, Teddy Furon, and Erwan Le Merrer. SurFree: A Fast Surrogate-Free Black-Box At-
 620 tack. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 621 pp. 10430–10439, 2021.

622

623 Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. DeepFool: A Simple and
 624 Accurate Method to Fool Deep Neural Networks. In *Proceedings of the IEEE/CVF Conference*
 625 *on Computer Vision and Pattern Recognition*, pp. 2574–2582, 2016.

626

627 Muzammal Naseer, Salman H. Khan, Munawar Hayat, Fahad Shahbaz Khan, and Fatih Porikli. A
 628 Self-supervised Approach for Adversarial Robustness. In *Proceedings of the IEEE/CVF Confer-*
 629 *ence on Computer Vision and Pattern Recognition*, pp. 259–268, 2020.

630

631 Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Fahad Khan, and Fatih Porikli. On im-
 632 proving adversarial transferability of vision transformers. In *Proceedings of the International*
 633 *Conference on Learning Representations*, 2022.

634

635 Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, and Animashree Anandkumar.
 636 Diffusion Models for Adversarial Purification. In *Proceedings of the International Conference on*
 637 *Machine Learning*, pp. 16805–16827, 2022.

638

639 Zeyu Qin, Yanbo Fan, Yi Liu, Li Shen, Yong Zhang, Jue Wang, and Baoyuan Wu. Boosting the
 640 Transferability of Adversarial Attacks with Reverse Adversarial Perturbation. In *Proceedings of*
 641 *the Advances in Neural Information Processing Systems*, 2022.

642

643 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical Text-
 644 Conditional Image Generation with CLIP Latents. *arXiv preprint arXiv:2204.06125*, 2022.

645

646 Yuchen Ren, Zhengyu Zhao, Chenhao Lin, Bo Yang, Lu Zhou, Zhe Liu, and Chao Shen. Improving
 647 adversarial transferability on vision transformers via forward propagation refinement. In *Proceed-*
 648 *ings of the Computer Vision and Pattern Recognition Conference*, pp. 25071–25080, 2025a.

649

650 Yuchen Ren, Zhengyu Zhao, Chenhao Lin, Bo Yang, Lu Zhou, Zhe Liu, and Chao Shen. Improving
 651 integrated gradient-based transferable adversarial examples by refining the integration path. In
 652 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 6731–6739, 2025b.

648 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 649 Resolution Image Synthesis with Latent Diffusion Models. In *Proceedings of the IEEE/CVF*
 650 *Conference on Computer Vision and Pattern Recognition*, pp. 10674–10685, 2022.

651

652 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
 653 Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
 654 recognition challenge. *International journal of computer vision*, 115:211–252, 2015.

655 Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John P. Dickerson, Christoph Studer, Larry S.
 656 Davis, Gavin Taylor, and Tom Goldstein. Adversarial Training for Free! In *Proceedings of the*
 657 *Advances in Neural Information Processing Systems*, pp. 3353–3364, 2019.

658

659 Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter. Accessorize to a Crime:
 660 Real and Stealthy Attacks on State-of-the-Art Face Recognition. In *Proceedings of the ACM*
 661 *Conference on Computer and Communications Security*, pp. 1528–1540, 2016.

662

663 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfel-
 664 low, and Rob Fergus. Intriguing Properties of Neural Networks. In *Proceedings of the Interna-*
 665 *tional Conference on Learning Representations*, 2014.

666

667 Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Re-
 668 thinking the Inception Architecture for Computer Vision. In *Proceedings of the IEEE/CVF Con-*
 669 *ference on Computer Vision and Pattern Recognition*, pp. 2818–2826, 2016.

670

671 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 672 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Ar-
 673 mand Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and Efficient Foundation
 674 Language Models. *arXiv preprint arXiv:2302.13971*, 2023.

675

676 Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian J. Goodfellow, Dan Boneh, and Patrick D.
 677 McDaniel. Ensemble Adversarial Training: Attacks and Defenses. In *Proceedings of the Inter-*
 678 *national Conference on Learning Representations*, 2018.

679

680 Jonathan Uesato, Brendan O’Donoghue, Pushmeet Kohli, and Aäron van den Oord. Adversarial
 681 Risk and the Dangers of Evaluating Against Weak Attacks. In *Proceedings of the International*
 682 *Conference on Machine Learning*, pp. 5032–5041, 2018.

683

684 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 685 Lukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In *Proceedings of the Advances*
 686 *in Neural Information Processing Systems*, pp. 5998–6008, 2017.

687

688 Kunyu Wang, Xuanran He, Wenxuan Wang, and Xiaosen Wang. Boosting Adversarial Transferabil-
 689 ity by Block Shuffle and Rotation. In *Proceedings of the IEEE/CVF Conference on Computer*
 690 *Vision and Pattern Recognition*, pp. 24336–24346, 2024a.

691

692 Maoyuan Wang, Jinwei Wang, Bin Ma, and Xiangyang Luo. Improving the transferability of adver-
 693 sarial examples through black-box feature attacks. *Neurocomputing*, 595:127863, 2024b.

694

695 Xiaosen Wang and Kun He. Enhancing the Transferability of Adversarial Attacks Through Variance
 696 Tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 697 nition*, pp. 1924–1933, 2021.

698

699 Xiaosen Wang, Kun He, and John E. Hopcroft. AT-GAN: A Generative Attack Model for Adver-
 700 sarial Transferring on Generative Adversarial Nets. *arXiv preprint arXiv:1904.07793*, 2019.

701

702 Xiaosen Wang, Xuanran He, Jingdong Wang, and Kun He. Admix: Enhancing the Transferability
 703 of Adversarial Attacks. In *Proceedings of the IEEE/CVF International Conference on Computer*
 704 *Vision*, pp. 16138–16147, 2021a.

705

706 Xiaosen Wang, Jiadong Lin, Han Hu, Jingdong Wang, and Kun He. Boosting Adversarial Transfer-
 707 ability through Enhanced Momentum. In *Proceedings of the British Machine Vision Conference*,
 708 pp. 272, 2021b.

702 Xiaosen Wang, Zeliang Zhang, Kangheng Tong, Dihong Gong, Kun He, Zhifeng Li, and Wei Liu.
 703 Triangle Attack: A Query-Efficient Decision-Based Adversarial Attack. In *Proceedings of the*
 704 *European Conference on Computer Vision*, pp. 156–174, 2022.

705 Xiaosen Wang, Kangheng Tong, and Kun He. Rethinking the Backward Propagation for Adversarial
 706 Transferability. In *Proceedings of the Advances in Neural Information Processing Systems*, 2023a.

708 Xiaosen Wang, Zeliang Zhang, and Jianping Zhang. Structure Invariant Transformation for Bet-
 709 ter Adversarial Transferability. In *Proceedings of the IEEE/CVF International Conference on*
 710 *Computer Vision*, pp. 4584–4596, 2023b.

712 Zhibo Wang, Hengchang Guo, Zhifei Zhang, Wenxin Liu, Zhan Qin, and Kui Ren. Feature
 713 Importance-aware Transferable Adversarial Attacks. In *Proceedings of the IEEE/CVF Interna-*
 714 *tional Conference on Computer Vision*, pp. 7619–7628, 2021c.

715 Zhiyuan Wang, Zeliang Zhang, Siyuan Liang, and Xiaosen Wang. Diversifying the High-level
 716 Features for Better Adversarial Transferability. In *Proceedings of the British Machine Vision*
 717 *Conference*, pp. 70–76, 2023c.

719 Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is Better than Free: Revisiting Adversarial Training.
 720 In *Proceedings of the International Conference on Learning Representations*, 2020.

721 Dongxian Wu, Yisen Wang, Shu-Tao Xia, James Bailey, and Xingjun Ma. Skip Connections Matter:
 722 On the Transferability of Adversarial Examples Generated with ResNets. In *Proceedings of the*
 723 *International Conference on Learning Representations*, 2020.

725 Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren, and Alan L. Yuille.
 726 Improving Transferability of Adversarial Examples With Input Diversity. In *Proceedings of the*
 727 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 2730–2739, 2019.

728 Yifeng Xiong, Jiadong Lin, Min Zhang, John E. Hopcroft, and Kun He. Stochastic Variance Reduced
 729 Ensemble Adversarial Attack for Boosting the Adversarial Transferability. In *Proceedings of the*
 730 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14963–14972, 2022.

732 Jianping Zhang, Weibin Wu, Jen-tse Huang, Yizhan Huang, Wenzuan Wang, Yuxin Su, and
 733 Michael R. Lyu. Improving Adversarial Transferability via Neuron Attribution-based Attacks.
 734 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 735 14973–14982, 2022a.

736 Jianping Zhang, Jen-tse Huang, Wenzuan Wang, Yichen Li, Weibin Wu, Xiaosen Wang, Yuxin Su,
 737 and Michael R. Lyu. Improving the Transferability of Adversarial Samples by Path-Augmented
 738 Method. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-*
 739 *nition*, pp. 8173–8182, 2023a.

740 Jianping Zhang, Yizhan Huang, Weibin Wu, and Michael R. Lyu. Transferable Adversarial Attacks
 741 on Vision Transformers with Token Gradient Regularization. In *Proceedings of the IEEE/CVF*
 742 *Conference on Computer Vision and Pattern Recognition*, pp. 16415–16424, 2023b.

744 Jianping Zhang, Yizhan Huang, Zhuoer Xu, Weibin Wu, and Michael R. Lyu. Improving the Ad-
 745 versarial Transferability of Vision Transformers with Virtual Dense Connection. In *Proceedings*
 746 *of the AAAI Conference on Artificial Intelligence*, pp. 7133–7141, 2024a.

748 Yaoyuan Zhang, Yu-an Tan, Tian Chen, Xinrui Liu, Quanxin Zhang, and Yuanzhang Li. Enhancing
 749 the transferability of adversarial examples with random patch. In *Proceedings of the International*
 750 *Joint Conference on Artificial Intelligence*, pp. 1672–1678, 2022b.

751 Zeliang Zhang, Rongyi Zhu, Wei Yao, Xiaosen Wang, and Chenliang Xu. Bag of Tricks to Boost
 752 Adversarial Transferability. *arXiv preprint arXiv:2401.08734*, 2024b.

753 Junhua Zou, Zhisong Pan, Junyang Qiu, Xin Liu, Ting Rui, and Wei Li. Improving the Trans-
 754 ferability of Adversarial Examples with Resized-Diverse-Inputs, Diversity-Ensemble and Region
 755 Fitting. In *Proceedings of the European Conference on Computer Vision*, pp. 563–579, 2020.

756 A APPENDIX

758 A.1 FURTHER DISCUSSION

760 Through the above experiments, we have validated that LI-Boost can significantly boost the adver-
 761 sarial transferability of various transfer-based attacks across different models and defense mecha-
 762 nisms. To further substantiate our hypothesis that enhancing local invariance improves adversarial
 763 transferability, we quantify the local invariance of six transfer-based attacks w/wo LI-Boost, namely
 764 MI-FGSM, DIM, BSR, BPA, FPR and ILA.

765 As shown in Tab. 6, the results are consistent with that in Fig. 2 in main paper, showing that higher
 766 local invariance correlates with improved adversarial transferability. Furthermore, LI-Boost effec-
 767 tively increases the local invariance of generated adversarial perturbations, thereby concurrently
 768 improving adversarial transferability. It validates our motivation that LI-Boost can boost the local
 769 invariance to enhance the adversarial transferability.

770 Table 6: Average attack success rates of nine models (%) of various attacks and local invariance
 771 ($k = 6$) on ResNet-50 w/wo LI-Boost. The adversarial examples are generated on ResNet-50.

773 LI-Boost	774 MI-FGSM	775 DIM	776 BSR	777 BPA	778 FPR	779 ILA
774 ✗	775 33.4/0.24	776 48.9/0.31	777 83.7/0.48	778 67.0/0.70	779 56.4/0.30	30.4/0.15
775 ✓	776 45.3/0.41	777 60.5/0.51	778 91.0/0.81	779 74.2/0.88	64.1/0.42	41.7/0.34

778 A.2 LIMITATIONS

780 Although we have experimentally verified that perturbations with enhanced local invariance can
 781 improve the adversarial transferability, there is still a lack of theoretical analysis on the relationship
 782 between local invariance and adversarial transferability. In future work, we will continue exploring
 783 from a theoretical perspective to provide valuable insights into adversarial attacks.

785 A.3 THE USE OF LARGE LANGUAGE MODELS

787 In the preparation of this work, we used an Large Language Model (LLM) solely for grammatical
 788 improvement. The models are not involved in generating technical content, ideas, experimental
 789 design, or results interpretation.

790 It is important to note that all scientific contributions, including conceptualization, analysis and
 791 conclusions, are entirely the work of the authors.

793 A.4 SAMPLING DISTRIBUTIONS

795 In this section, we detail the three sampling distributions for pixel translation employed in our study:
 796 uniform, normal, and logarithmic. For the sake of simplicity, the random variable for these distribu-
 797 tions is defined as the number of translated pixels. Given the actual number of translated pixels x_p ,
 798 upperbound k , the probability mass function are as follows:

799 **Uniform:**

$$800 P_{\text{uniform}}(X = x_p; k) = \begin{cases} \frac{1}{k}, & \text{for } x_p \in \{1, 2, \dots, k\} \\ 0, & \text{otherwise} \end{cases} \quad (6)$$

803 **Normal:**

$$804 P_{\text{normal}}(X = x_p; \mu = 0, \sigma, k) = \begin{cases} \frac{\exp(-\frac{x_p^2}{2\sigma^2})}{Z_{\text{normal}}}, & \text{for } x_p \in \{1, 2, \dots, k\} \\ 0, & \text{otherwise} \end{cases} \quad (7)$$

807 where Z_{normal} is the normalization constant, given by:

$$808 Z_{\text{normal}} = \sum_{i=1}^k \exp\left(-\frac{i^2}{2\sigma^2}\right) \quad (8)$$

810 **Logarithmic:**

811
812
$$P_{\text{logarithmic}}(X = x_p; k) = \begin{cases} \frac{\ln(\frac{k+1}{x_p})}{Z_{\text{logarithmic}}}, & \text{for } x_p \in \{1, 2, \dots, k\} \\ 0, & \text{otherwise} \end{cases} \quad (9)$$
 813
814

815 where $Z_{\text{logarithmic}}$ is the normalization constant, defined as:

816
817
$$Z_{\text{logarithmic}} = \sum_{i=1}^k \ln\left(\frac{k+1}{i}\right) \quad (10)$$
 818
819

820 A.5 VISULIZATION AND APPLICATION IN PHYSICAL SCENARIO
821822 This section presents adversarial examples generated by three methods—MI-FGSM, BSR, and
823 FPR—each augmented with our LI-Boost enhancement. To evaluate their real-world efficacy, we
824 deploy these attacks against the Baidu Cloud API. As shown in Fig. 6, each pair of images consists
825 of an benign, correctly classified image (top) and its corresponding adversarial example (bottom)
826 crafted by LI-Boost-enhanced MI-FGSM, BSR, and FPR, respectively.827 A.6 PARAMETER SETTINGS
828829 In this section, we provide the detailed parameter settings for the baseline attacks employed in our
830 work. These settings are consistent with the corresponding papers to ensure fair and comprehensive
831 evaluations. Below, we delineate the hyperparameters for each category of baseline methods in
832 Tab. 7. All defense models are pre-trained on the ImageNet dataset and evaluated on a single model.833 AT and HGD adopt the official models provided in the corresponding papers. RS utilizes the defense
834 model ResNet-50 with a noise level of 0.5. For NRP and DiffPure, we choose ResNet-101 as the
835 target classifier.836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864

Sea

Fox Terriers

Airship

Car

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

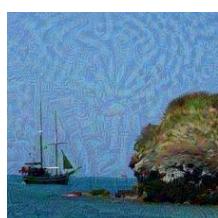
913

914

915

916

917



Tree

Bird

Oil Painting

Temple Tower

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

Belt

Main Dish

Flamingo

Rainbow Lorikeet

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

Watch

Trilobite

Drawstring bag

Flower

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

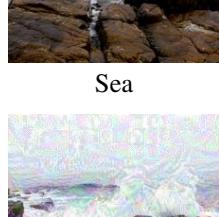
914

915

916

917

Car Seat Belt



Sea

Apple

Trash Can

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

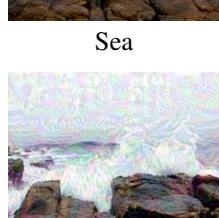
914

915

916

917

Natural Landscape



Oil Painting

Watermelon

Car Key

Figure 6: Visualization of benign images and their adversarial counterparts, along with their corresponding classifications.

918
919
920
921
922
923

	Method	Parameters
924 925 926 927 928 929 930 931 932 933 934 935	MI-FGSM(Dong et al. (2018))	perturbation budget $\epsilon = 16/255$, number of iterations $T = 10$, step size $\alpha = \epsilon/T = 1.6/255$, decay factor $\mu = 1.0$
	VMI-FGSM(Wang & He (2021))	number of sampled examples $N_s = 20$, upper bound of neighborhood $\zeta = 1.5$
	PGN(Ge et al. (2023))	number of sampled examples $N_s = 20$, balanced coefficient $c_b = 0.5$, upper bound of neighborhood $\zeta = 3.0 \times \epsilon$
	MUMODIG(Ren et al. (2025b))	position factor $\lambda_p = 0.65$, region number $= N_R = 2$, interpolation point number $N_T = 1$, number of sampled baselines $N_B = 1$, number of sampled transformations $N_T = 6$
936 937 938 939 940 941 942 943 944 945 946 947 948 949	DIM(Xie et al. (2019))	resize rate $r = 1.1$, diversity probability $p_{di} = 0.5$
	Admix(Wang et al. (2021a))	number of scaled copies $m_1 = 5$, number of admixed images $m_2 = 3$, admix strength $\eta = 0.2$
	SIA(Wang et al. (2023b))	number of blocks $s = 3$, number of transformed images $N_t = 20$
	BSR(Wang et al. (2024a))	number of blocks $s = 3$, number of shuffled images $N_u = 20$, range of rotation angles $\tau = 24^\circ$
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965	SGM(Wu et al. (2020))	residual gradient decay $\gamma = 0.5$
	Linbp(Guo et al. (2020))	number of iterations $T = 300$, the first layer to be modified is the first residual unit in the third meta block.
	BPA(Wang et al. (2023a))	temperature coefficient $c_t = 10$, the first layer to be modified is the first residual unit in the third meta block.
	VDC(Zhang et al. (2024a))	patch size $P_s = 16$, scale factor $s_f = 0.5$, residual gradient decay $\gamma = 0.5$
966 967 968 969 970 971	FPR(Ren et al. (2025a))	diversity factor $d_f = 25$, scale factor $s_f = 0.8$, attenuation factor $a_f = 0.3$, index set of diversified blocks $I = [0, 1, 4, 9, 11]$
	ILA(Huang et al. (2019))	coefficient $c = 1.0$
	FIA(Wang et al. (2021c))	drop probability $p_{dr} = 0.3$, number of aggregated gradients $N_a = 30$, the target layer to attack is the last layer of the second block.
	ILPD(Li et al. (2023))	number of iterations $T = 100$, noise size $\sigma = 0.05$, coefficient $c = 0.1$, step size $\alpha = 1/255$, the target layer to attack is the third building block of the second ResNet meta layer.
966 967 968 969 970 971	BFA(Wang et al. (2024b))	perturbation mask size $s_{mask} = 28$, number of fitting iteration steps $T = 30$, the target layer to attack is the last layer of the second block

Table 7: Hyper-parameters for various transfer-based attack baselines.

972	Surrogate Model	Attack	RN-50	Inc-v3	MN-v3	DN-121	FSNet	ViT	PiT	Visformer	Swin	
973	Inc-v3	MI-FGSM	34.1	99.0*	46.7	50.6	25.7	14.2	20.5	26.6	31.8	
974		LI-Boost-MI	43.8	99.1*	56.9	62.6	37.3	20.8	26.4	35.0	40.9	
975		VMI-FGSM	50.0	99.4*	60.3	66.3	41.6	25.5	32.7	39.7	44.8	
976		LI-Boost-VMI	52.5	99.5*	62.0	69.1	44.2	27.0	35.1	42.6	48.0	
977		PGN	63.1	100.0*	75.7	81.2	55.7	55.7	43.7	51.7	57.3	
978		LI-Boost-PGN	77.3	100.0*	83.8	89.7	70.8	47.4	57.4	66.6	70.4	
979		MUMODIG	65.1	99.5*	76.6	81.7	57.0	34.0	42.7	53.9	58.2	
980		LI-Boost-MUMODIG	89.4	99.9*	92.1	96.2	85.0	62.4	73.5	83.4	81.8	
981		MI-FGSM	41.7	50.6	100.0*	60.0	31.4	17.9	26.6	36.9	42.7	
982		LI-Boost-MI	65.6	67.6	100.0*	80.7	53.3	33.0	46.1	61.1	65.7	
983	MN-v3	VMI-FGSM	67.5	73.0	99.9*	80.7	57.6	37.2	51.6	64.2	69.7	
984		LI-Boost-VMI	75.5	79.0	99.9*	87.2	66.0	44.5	58.6	71.7	77.2	
985		PGN	80.3	86.5	100.0*	92.1	70.9	49.6	64.7	76.4	82.5	
986		LI-Boost-PGN	84.9	89.8	100.0*	94.5	78.9	59.1	71.9	82.0	86.2	
987		MUMODIG	83.5	88.7	99.9*	93.3	75.0	51.8	68.7	81.0	82.7	
988		LI-Boost-MUMODIG	90.1	92.0	100.0*	96.0	84.6	68.9	81.0	88.8	90.2	
989		MI-FGSM	67.1	61.5	71.5	100.0*	49.6	24.3	33.6	47.9	50.2	
990		LI-Boost-MI	82.2	74.9	84.8	100.0*	70.1	35.8	47.1	66.1	66.3	
991		VMI-FGSM	84.7	79.7	86.0	100.0*	72.3	42.7	54.6	69.6	70.5	
992		LI-Boost-VMI	90.9	86.5	91.1	100.0*	80.7	50.1	63.6	78.1	78.6	
993	DN-121	PGN	94.1	93.3	95.2	100.0*	86.9	60.0	72.4	84.8	85.1	
994		LI-Boost-PGN	95.0	94.1	95.2	100.0*	100.0*	88.6	64.4	75.5	86.4	86.9
995		MUMODIG	95.2	93.6	95.0	100.0*	86.7	55.7	69.0	84.5	82.2	
996		LI-Boost-MUMODIG	97.2	96.5	97.1	100.0*	92.8	70.7	80.7	92.0	89.4	
997		MI-FGSM	44.8	42.5	51.6	53.4	97.6*	20.0	31.8	39.9	47.5	
998		LI-Boost-MI	65.4	71.5	71.2	75.4	99.4*	37.8	54.8	67.2	69.6	
999		VMI-FGSM	69.7	62.8	69.3	73.0	98.6*	44.0	57.6	66.1	70.5	
1000		LI-Boost-VMI	88.4	80.5	85.8	89.6	99.8*	65.6	79.1	86.1	88.2	
1001		PGN	93.7	89.9	92.0	94.5	99.5*	78.6	88.4	92.1	93.1	
1002		LI-Boost-PGN	94.6	92.2	93.4	95.6	99.2*	83.1	90.7	93.4	93.7	
1003	FSNet	MUMODIG	88.3	81.5	86.0	89.9	99.0*	63.2	79.2	85.7	85.8	
1004		LI-Boost-MUMODIG	92.4	85.9	89.8	93.3	99.0*	74.4	85.7	90.7	90.8	
1005		MI-FGSM	43.7	51.3	57.8	57.2	43.4	98.2*	45.6	49.3	61.5	
1006		LI-Boost-MI	53.2	57.8	63.2	64.7	53.4	97.0*	58.1	60.1	68.4	
1007		VMI-FGSM	55.7	61.8	66.9	66.1	58.3	99.1*	62.1	64.0	73.3	
1008		LI-Boost-VMI	61.6	67.8	72.1	71.7	65.6	99.6*	68.7	69.5	77.5	
1009		PGN	76.3	78.9	83.7	83.1	78.5	99.2*	83.4	83.2	87.6	
1010		LI-Boost-PGN	78.2	80.8	84.6	84.9	80.7	99.1*	84.7	84.7	88.5	
1011		MUMODIG	70.9	74.9	78.2	77.1	73.1	95.8*	77.8	78.1	80.9	
1012		LI-Boost-MUMODIG	77.7	78.1	82.6	83.0	79.5	98.1*	83.7	84.0	86.3	
1013	ViT	MI-FGSM	44.3	48.5	57.0	54.4	41.3	30.6	97.9*	50.0	53.5	
1014		LI-Boost-MI	56.8	56.1	67.0	64.5	54.4	45.0	98.0*	64.6	67.6	
1015		VMI-FGSM	61.6	62.1	69.9	67.8	61.7	52.3	97.9*	69.5	72.0	
1016		LI-Boost-VMI	69.7	70.4	76.6	75.7	70.9	60.4	99.3*	77.1	78.5	
1017		PGN	78.9	79.4	83.5	82.7	80.1	76.3	97.5*	84.5	85.3	
1018		LI-Boost-PGN	79.5	80.5	83.7	82.9	80.5	77.5	96.7*	84.6	85.2	
1019		MUMODIG	76.2	75.7	80.9	79.7	77.8	69.8	96.9*	82.8	83.7	
1020		LI-Boost-MUMODIG	81.7	79.9	85.3	84.7	83.0	78.6	98.3*	88.2	88.2	
1021		MI-FGSM	52.4	52.5	65.6	63.5	53.6	32.8	52.0	98.6*	64.0	
1022		LI-Boost-MI	68.4	64.0	77.7	77.4	71.3	51.1	69.8	98.0*	78.4	
1023	PiT	VMI-FGSM	73.7	71.0	80.6	80.3	76.7	59.8	76.7	98.8*	82.8	
1024		LI-Boost-VMI	77.8	75.3	82.9	82.7	80.1	66.2	80.4	98.7*	85.5	
1025		PGN	88.6	87.5	91.5	92.4	90.0	83.3	90.9	98.7*	92.7	
1026		LI-Boost-PGN	89.1	88.3	91.3	92.7	89.5	84.3	90.9	98.6*	92.5	
1027		MUMODIG	88.8	85.8	91.8	91.8	89.9	76.2	90.5	99.1*	92.4	
1028		LI-Boost-MUMODIG	90.9	88.7	92.3	93.3	92.0	82.6	92.8	99.3*	93.9	
1029		MI-FGSM	32.8	36.9	50.0	44.2	33.0	22.2	30.5	38.9	98.1*	
1030		LI-Boost-MI	59.0	55.0	73.6	68.7	59.8	44.5	59.2	69.3	99.4*	
1031		VMI-FGSM	57.4	58.5	71.6	66.6	69.1	51.0	61.9	68.9	98.7*	
1032		LI-Boost-VMI	76.3	76.7	87.8	84.4	81.4	71.3	81.4	87.3	100.0*	
1033	Swin	PGN	85.5	86.9	93.5	91.3	89.0	85.7	90.0	92.7	99.7*	
1034		LI-Boost-PGN	87.4	88.4	93.5	92.6	90.1	87.0	91.3	93.3	99.6*	
1035		MUMODIG	80.8	80.3	88.9	86.7	84.0	69.5	84.5	87.9	99.2*	
1036		LI-Boost-MUMODIG	87.4	86.0	92.9	91.7	89.9	81.9	90.6	93.2	99.8*	

Table 8: Attack success rates (%) of **gradient-based attacks** w/o LI-Boost on nine models. The adversarial examples are crafted on Inc-v3, MN-v3, DN-121, FSNet, ViT, PiT, Visformer, and Swin respectively. * indicates white-box model.

1026	Surrogate Model	Attack	RN-50	Inc-v3	MN-v3	DN-121	FSNet	ViT	PiT	Visformer	Swin
1027	Inc-v3	DIM	46.0	99.0*	58.6	65.0	39.2	22.0	29.3	36.3	41.6
1028		LI-Boost-DIM	55.6	99.6*	67.1	74.1	50.0	29.5	35.6	46.3	51.8
1029		<i>Admix</i>	56.3	99.9*	68.3	75.4	45.5	25.3	33.8	43.6	48.7
1030		LI-Boost- <i>Admix</i>	79.8	99.8*	84.9	91.7	62.7	49.0	52.6	67.0	70.0
1031		SIA	77.5	99.8*	88.0	90.6	66.9	39.3	52.9	66.0	68.7
1032		LI-Boost-SIA	91.3	99.9*	96.4	97.9	85.8	61.7	72.3	84.5	85.9
1033		BSR	78.7	99.8*	88.8	92.3	69.5	43.2	54.9	68.5	70.6
1034		LI-Boost-BSR	90.7	100.0*	96.0	98.3	86.2	61.8	70.1	84.7	85.5
1035		DIM	64.7	74.1	100.0*	81.9	54.4	36.4	50.0	62.0	66.8
1036		LI-Boost-DIM	80.2	83.0	100.0*	91.0	71.4	51.7	63.3	77.2	80.4
1037	MN-v3	<i>Admix</i>	70.9	75.8	100.0*	85.3	58.1	36.5	53.0	66.8	71.9
1038		LI-Boost- <i>Admix</i>	85.9	88.6	100.0*	94.3	76.5	59.1	70.5	83.4	85.2
1039		SIA	82.2	82.6	100.0*	92.6	71.3	46.0	65.5	79.4	83.1
1040		LI-Boost-SIA	92.7	90.4	100.0*	97.4	84.8	63.6	79.4	90.5	91.9
1041		BSR	88.7	89.2	100.0*	96.0	79.5	57.2	76.5	85.7	87.3
1042		LI-Boost-BSR	93.8	92.8	100.0*	98.3	87.1	69.2	81.7	91.6	92.0
1043		DIM	82.5	80.7	84.6	100.0*	69.0	38.6	49.7	65.5	65.2
1044		LI-Boost-DIM	90.9	87.6	92.0	100.0*	81.4	50.8	60.3	79.0	77.0
1045		<i>Admix</i>	91.3	87.5	91.3	100.0*	77.8	45.2	58.7	75.9	74.5
1046		LI-Boost- <i>Admix</i>	95.8	94.7	96.7	100.0*	88.8	67.0	71.0	87.8	86.3
1047	DN-121	SIA	98.2	93.9	98.5	100.0*	90.7	58.0	74.8	90.3	87.6
1048		LI-Boost-SIA	99.2	97.0	99.3	100.0*	97.0	71.9	83.5	95.6	93.5
1049		BSR	97.4	94.6	97.7	100.0*	90.1	60.9	75.7	89.5	86.3
1050		LI-Boost-BSR	98.5	96.5	98.7	100.0*	94.2	68.1	78.1	93.5	90.8
1051		DIM	44.1	38.5	52.0	53.4	97.7*	19.5	31.4	39.8	47.1
1052		LI-Boost-DIM	71.3	56.9	71.3	75.3	99.4*	37.8	54.8	67.6	70.1
1053		<i>Admix</i>	82.0	72.1	79.6	84.5	99.9*	52.7	69.0	79.5	81.9
1054		LI-Boost- <i>Admix</i>	90.8	82.0	88.9	92.0	99.8*	69.3	81.0	88.6	89.5
1055		SIA	93.9	82.5	92.3	93.5	99.7*	61.6	83.7	90.5	92.2
1056		LI-Boost-SIA	97.9	88.1	97.1	97.6	99.8*	78.8	92.3	96.4	96.7
1057	FSNet	BSR	95.9	87.1	95.0	96.2	99.4*	69.1	88.7	93.5	92.7
1058		LI-Boost-BSR	98.1	92.1	97.7	98.4	99.6*	80.3	92.8	96.6	96.4
1059		DIM	55.4	61.9	64.7	65.4	58.6	93.2*	62.3	62.7	68.3
1060		LI-Boost-DIM	64.0	66.7	71.8	72.0	70.8	96.8*	72.1	72.4	76.2
1061		<i>Admix</i>	61.2	66.9	72.2	71.9	63.2	99.3*	67.5	69.7	80.7
1062		LI-Boost- <i>Admix</i>	72.4	73.3	81.4	81.2	73.7	99.2*	77.5	80.3	85.5
1063		SIA	82.3	80.2	88.4	86.7	82.9	99.2*	88.3	87.7	90.8
1064		LI-Boost-SIA	88.8	84.8	92.7	91.7	89.6	99.7*	93.1	93.3	94.7
1065		BSR	85.9	85.1	89.8	89.1	86.6	96.1*	90.6	89.9	90.4
1066		LI-Boost-BSR	89.7	87.4	93.0	92.2	90.5	97.5*	93.4	93.3	93.1
1067	ViT	DIM	60.1	63.0	69.5	68.1	62.2	52.6	95.5*	69.8	71.9
1068		LI-Boost-DIM	69.1	68.4	76.2	74.8	73.8	65.2	98.4*	78.4	79.2
1069		<i>Admix</i>	60.4	57.7	69.1	66.8	61.3	45.6	98.4*	67.9	71.2
1070		LI-Boost- <i>Admix</i>	71.6	65.0	78.2	76.0	73.8	61.3	98.6*	79.1	81.0
1071		SIA	87.7	79.2	91.1	89.0	87.6	78.7	99.8*	93.1	93.7
1072		LI-Boost-SIA	92.8	85.6	95.1	93.6	93.5	89.6	99.9*	97.0	97.0
1073		BSR	88.4	84.5	92.4	90.8	89.9	81.2	99.2*	93.8	94.1
1074		LI-Boost-BSR	91.0	86.9	94.1	93.3	92.3	88.1	99.4*	95.5	95.9
1075	PiT	DIM	73.3	71.8	80.9	81.1	75.4	58.9	76.4	97.9*	80.9
1076		LI-Boost-DIM	79.5	76.5	85.1	86.2	84.5	68.6	83.2	98.6*	86.7
1077		<i>Admix</i>	77.4	73.5	84.3	83.2	78.9	58.6	80.3	99.0*	86.3
1078		LI-Boost- <i>Admix</i>	84.4	79.7	89.2	89.1	86.2	72.2	86.9	98.8*	90.4
1079		SIA	92.6	83.5	94.8	94.2	92.9	75.9	93.4	99.8*	96.0
1080		LI-Boost-SIA	95.3	88.2	96.9	96.9	96.8	85.5	96.1	99.9*	97.9
1081		BSR	95.1	90.7	96.5	97.0	95.4	81.1	95.5	99.8*	96.8
1082		LI-Boost-BSR	96.4	92.3	97.5	98.0	96.9	87.4	96.9	99.8*	97.9
1083		DIM	67.2	69.2	79.3	76.1	71.4	56.7	72.7	77.1	98.6*
1084		LI-Boost-DIM	79.4	77.0	87.5	85.2	84.5	70.8	83.8	87.9	99.6*
1085	Swin	<i>Admix</i>	47.5	42.3	63.7	57.3	47.7	33.6	45.6	56.5	99.3*
1086		LI-Boost- <i>Admix</i>	72.8	61.8	84.1	80.2	74.3	57.6	74.4	81.9	99.4*
1087		SIA	83.2	73.9	92.7	87.3	84.8	66.5	85.0	90.8	99.9*
1088		LI-Boost-SIA	92.8	84.1	97.6	95.2	95.5	82.6	94.6	96.9	99.9*
1089		BSR	92.4	87.5	96.8	95.2	93.7	77.7	94.9	95.9	99.4*
1090		LI-Boost-BSR	96.1	91.5	98.3	97.6	97.0	87.4	97.5	98.0	99.7*

Table 9: Attack success rates (%) of **input transformation-based attacks** w/wo LI-Boost on nine models. The adversarial examples are crafted on Inc-v3, MN-v3, DN-121, FSNet, ViT, PiT, Visformer, and Swin respectively. * indicates white-box model.