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ABSTRACT

Transfer-based attacks pose a significant threat to real-world applications by di-
rectly targeting victim models with adversarial examples generated on surrogate
models. While numerous approaches have been proposed to enhance adversar-
ial transferability, existing works often overlook the intrinsic relationship between
adversarial perturbations and input images. In this work, we find that adversarial
perturbation often exhibits poor translation invariance for a given clean image and
model, which is attributed to local invariance. Through empirical analysis, we
demonstrate that there is a positive correlation between the local invariance of ad-
versarial perturbations w.r.t the input image and their transferability across differ-
ent models. Based on this finding, we propose a general adversarial transferability
boosting technique called Local Invariance Boosting approach (LI-Boost). Ex-
tensive experiments on the standard ImageNet dataset demonstrate that LI-Boost
could significantly boost various types of transfer-based attacks (e.g., gradient-
based, input transformation-based, model-related, advanced objective function,
ensemble, etc.) on CNNs, ViTs, and defense mechanisms. Our approach presents
a promising direction for future research in improving adversarial transferability
across different models.

1 INTRODUCTION

Deep Neural Networks (DNNs)( He et al. (2016); Krizhevsky et al. (2012); Vaswani et al. (2017))
have achieved substantial success across various tasks, e.g., image recognition( Szegedy et al.
(2016); Huang et al. (2017); Dosovitskiy et al. (2021)), image generation( Rombach et al. (2022);
Ramesh et al. (2022)), and large language model( Brown et al. (2020); Touvron et al. (2023)), etc.
However, researchers have identified that DNNs are vulnerable to adversarial examples( Szegedy
et al. (2014); Goodfellow et al. (2015)), where small, often imperceptible perturbations can de-
ceive the model into making incorrect predictions. This vulnerability poses a serious risk to real-
world DNN-based applications, particularly in security-sensitive domains such as face verifica-
tion( Sharif et al. (2016)) and autonomous driving( Eykholt et al. (2018)). Consequently, adversarial
attack( Goodfellow et al. (2015); Moosavi-Dezfooli et al. (2016); Kurakin et al. (2017); Wang et al.
(2019)) and defense( Madry et al. (2018); Shafahi et al. (2019); Cohen et al. (2019); Naseer et al.
(2020)) strategies have attracted extensive research interest. One of the intriguing characteristics
of adversarial examples is their transferability across different models, where adversarial examples
generated on a surrogate model can deceive previously unseen victim models( Liu et al. (2017);
Dong et al. (2018)). Unlike other attack strategies, transfer-based attacks do not necessitate ac-
cess to the information of victim models, making them a particularly practical and serious threat to
real-world DNN applications. Given these potential risks, extensive research has been conducted to
enhance the transferability of adversarial attacks( Wu et al. (2020); Wang et al. (2021c); Lin et al.
(2020); Wang & He (2021); Xie et al. (2019)).

Existing transfer-based attacks can be broadly categorized into five types: 1) Gradient-based at-
tacks( Dong et al. (2018); Lin et al. (2020); Wang & He (2021)), which typically incorporate vari-
ous momentum techniques to stabilize the optimization process and improve convergence. 2) Input
transformation-based attacks( Xie et al. (2019); Wang et al. (2021a; 2024a)), which apply trans-
formations to the input image to enhance the diversity of gradients for more effective optimization.
3) Model-related attacks( Wu et al. (2020); Guo et al. (2020); Wang et al. (2023a)), which introduce
model-specific modifications during the forward or backward propagation stages. 4) Advanced ob-
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Figure 1: The impact of translation invariance of clean image and adversarial perturbation. The
translated clean image can be correctly recognized by deep models (either CNNs or ViTs) while the
translated adversarial perturbations cannot consistently fool the deep models.

jective functions( Wang et al. (2021c); Huang et al. (2019); Li et al. (2023)), which design novel
objective functions using the mid-layer features. 5) Ensemble attacks( Liu et al. (2017); Dong et al.
(2018); Xiong et al. (2022)), which target multiple models simultaneously to increase adversarial
transferability. Notably, these approaches directly optimize the perturbation w.r.t the input image,
without accounting for the inherent relationship between the perturbation and the input itself.

It is widely known that clean images are consistently and accurately classified by various deep
learning models and exhibit robust translation invariance on the same model. As shown in Fig. 1,
however, we find that adversarial perturbations exhibit significantly weaker translation invariance for
the same clean image and model. This observation is counterintuitive, given the inherent similarity
among the local regions of clean images. We hypothesize and empirically validate that the local
invariance of adversarial perturbation w.r.t clean image for a given model is positively correlated to
its adversarial transferability across different models. Building on this insight, we introduce a novel
and generalizable framework to enhance the transferability of various transfer-based attacks. Our
contributions are summarized as follows:

• We introduce local invariance for adversarial perturbations and unveil the underlying re-
lationship between local invariance on the surrogate model and adversarial transferability
across different models, which provides new insights to boost adversarial transferability
across various models.

• We propose a novel and general boosting approach called LI-Boost to enhance adversarial
transferability. Specifically, at each iteration, LI-Boost optimizes the adversarial pertur-
bation using the gradient of adversarial examples with several translated perturbations to
enhance the local invariance.

• Extensive experiments on the ImageNet dataset demonstrate that LI-Boost can effectively
boost various types of transfer-based attacks on either CNNs or ViTs w/wo defense mech-
anisms, showing its generality and superiority in various scenarios.

2 RELATED WORK

In this section, we provide a brief overview of existing adversarial attack and defense approaches.

2.1 ADVERSARIAL ATTACKS

After identifying the vulnerability of DNNs against adversarial examples( Szegedy et al. (2014)),
numerous adversarial attacks have emerged( Moosavi-Dezfooli et al. (2016); Madry et al. (2018);
Wang et al. (2019)). White-box attacks( Goodfellow et al. (2015); Kurakin et al. (2017); Croce &
Hein (2020)), which have full access to the target model (e.g., gradients, architectures, and logits,
etc.), are widely used to assess the robustness of DNNs. In contrast, black-box attacks, which have
limited access to the target model, pose more severe threats to real-world DNN-deployed applica-
tions. Black-box attacks can be further categorized into score-based attacks( Uesato et al. (2018);
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Guo et al. (2019); Andriushchenko et al. (2020)), decision-based attacks( Li et al. (2020); Wang
et al. (2022); Maho et al. (2021)) and transfer-based attacks( Liu et al. (2017); Wang & He (2021)).
Among these, transfer-based attacks, where the adversarial examples generated on surrogate mod-
els are used to attack the target model without any direct access, have garnered significant research
interest( Xie et al. (2019); Gao et al. (2020); Zhang et al. (2023a); Wang et al. (2023c); Zhang et al.
(2024b); Naseer et al. (2022); Li et al. (2023); Zhang et al. (2022a; 2023b; 2024a)).

Gradient-based attacks (e.g., FGSM Goodfellow et al. (2015), I-FGSM Kurakin et al. (2017)) are
popular white-box attacks that exhibits superior white-box attack performance but poor transferabil-
ity. To boost adversarial transferability, various approaches integrate momentum to stabilize the op-
timization( Lin et al. (2020); Qin et al. (2022); Wang et al. (2021b)). For instance, MI-FGSM( Dong
et al. (2018)) first integrates the momentum into I-FGSM and achieves much higher transferability.
VMI-FGSM( Wang & He (2021)) further refines gradient variance to stabilize the update direc-
tion. PGN( Ge et al. (2023)) introduces a penalized gradient norm to the original loss function,
producing adversarial examples in flatter local regions with improved transferability across models.
MUMODIG( Ren et al. (2025b)) improves transferability through generating integration paths using
diverse baseline samples and enforcing the monotonicity of each path.

Numerous input transformation-based attacks have been proposed to boost adversarial transfer-
ability( Zou et al. (2020); Dong et al. (2019); Wang et al. (2024a)). DIM( Xie et al. (2019)) improves
transferability by randomly resizing and padding the input image before the gradient calculation. Ad-
mix( Wang et al. (2021a)) enhances diversity by combining the original image with a second image
from a distinct category to generate more diverse perturbations. SIA( Wang et al. (2023b)) applies
various transformations to the blocks of the input image to increase diversity while maintaining
its structural integrity. BSR( Wang et al. (2024a)) splits the image into blocks then shuffles and
randomly rotates them to enhance transferability.

Additionally, model-related attacks often modify the architecture of surrogate model for enhanced
transferability. For example, Linbp ( Guo et al. (2020)) modifies the backward propagation process
by setting the gradient of the ReLU activation function to a constant value of 1 and scaling the
gradients of residual blocks. SGM ( Wu et al. (2020)) prioritizes the gradients from skip connections
over those from residual modules to improve transferability. BPA ( Wang et al. (2023a)) introduces a
non-monotonic function as the derivative of ReLU and integrates a temperature-controlled softmax
function to activate the truncated gradient for better transferability. VDC ( Zhang et al. (2024a))
imports virtual dense connections for dense gradient back-propagation in attention maps and MLP
blocks based on the forward propagation for vision transformers. FPR ( Ren et al. (2025a)) refines
the forward propagation through diversifing the attention map and accumulating the output token
embedding using momentum mechanism.

Advanced objective functions often perturb mid-layer features to improve transferability( Wang
et al. (2023c); Zhang et al. (2022a;b)). For instance, ILA ( Huang et al. (2019)) enhances the
similarity of feature differences between an adversarial example and its benign counterpart on a
pre-specified layer of the source model. FIA ( Wang et al. (2021c)) disrupts object-aware features
that significantly influence model decisions to calculate the aggregated gradients for updating the
perturbation. ILPD ( Li et al. (2023)) amplifies the magnitude of perturbations in the adversarial
direction within intermediate layers by incorporating perturbation decay in a single-stage optimiza-
tion framework. BFA ( Wang et al. (2024b)) employs fitted gradients and feature maps to destroy
the black-box features.

Ensemble attacks simultaneously generate adversarial examples on multiple surrogate models to
enhance adversarial transferability. Dong et al. (2018) aggregate the logits from all surrogate models
to generate adversarial examples. SVRE ( Xiong et al. (2022)) adopts the stochastic variance to
reduce gradient variance between various models and escape poor local optima during the update
process. CWA ( Chen et al. (2024)) identifies shared vulnerabilities across an ensemble of models
to improve transferability.

2.2 ADVERSARIAL DEFENSE

Numerous defenses have been proposed to mitigate the threat of adversarial examples. Adversarial
training ( Goodfellow et al. (2015); Tramèr et al. (2018); Madry et al. (2018); Shafahi et al. (2019))
adopts the adversarial examples during the training process, which has been one of the most ef-
fective methods to improve the model’s robustness. Fast-AT ( Wong et al. (2020)) adopts a single
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iteration to generate adversarial examples for training, which can significantly boost adversarial ro-
bustness. Guo et al. (2018) employed various image transformations (e.g., JPEG compression, etc.)
to preprocess inputs before feeding them into the models. Liao et al. (2018) propose the high-level
representation guided denoiser (HGD) by minimizing the difference between the model’s outputs on
clean and denoised images. Naseer et al. (2020) developed a Neural Representation Purifier (NRP)
trained using a self-supervised adversarial training method to purify input images. Several certified
defense methods offer verifiable defense capabilities, such as randomized smoothing (RS) ( Cohen
et al. (2019)). Besides, diffusion models for purification (DiffPure) ( Nie et al. (2022)) exhibit an
excellent potential for adversarial defense.

3 METHODOLOGY

3.1 PRELIMINARIES

Given a victim model f with parameters θ and a clean image x ∈ X with ground-truth label y, where
x is in d dimensions and X denotes all the legitimate images, adversarial attacks seek to identify an
adversarial example x+ δ ∈ X such that:

f(x; θ) ̸= f(x+ δ; θ) s.t. ∥δ∥p ≤ ϵ. (1)

Here ϵ represents the perturbation budget, δ is the perturbation of x, and ∥·∥p is the ℓp-norm distance.
In this work, we adopt ℓ∞ distance to align with existing works. To generate such a perturbation,
the adversary typically maximizes the loss function J (e.g., cross-entropy loss) of the target model,
which can be formalized as:

δ = argmax
∥δ∥p≤ϵ

J(x+ δ, y; θ). (2)

The transferability of adversarial examples generated on the surrogate model when applied to the
victim model f can be evaluated by the attack success rates (ASR) as follows:

ASR =
1

|X |
∑
x∈X

I[f(x) ̸= f(x+ δ)], (3)

where δ is generated on surrogate model fs w.r.t the input image x and I(·) is the indicator function.
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Figure 2: The local invariance (k = 5)
on RN-50 and average attack success rates
(%) on nine models of various transfer-
based attacks.

3.2 MOTIVATION

Deep neural networks (DNNs) with different architec-
tures often exhibit the ability to consistently recognize
the same image, demonstrating the model-independent
semantic consistency of clean images. In addition,
DNNs are known for their strong translation invariance
( Jaderberg et al. (2015); Kauderer-Abrams (2018)),
wherein they reliably produce accurate predictions
across translated versions of an image. This behav-
ior mirrors the human visual system that the translated
images can be correctly recognized, as translation does
not fundamentally alter the images’ semantic content.

Adversarial transferability refers to the ability of ad-
versarial examples generated on the surrogate model
to successfully deceive other models. This concept
parallels the observation that clean images are often
classified correctly by various models. However, existing adversarial examples often exhibit weak
transferability across different models, particularly between CNNs and ViTs. Besides, as shown
in Fig. 1, we observe that adversarial perturbations also exhibit poor translation invariance for a
given clean image and DNN. This observation contradicts human intuition, which suggests that lo-
cal regions of an image should retain consistent semantic features. In contrast, the corresponding
adversarial perturbations vary significantly. For example, while the pixels of a dog’s ear are visually
similar, the associated perturbations vary substantially. This indicates that the perturbations not only
overfit the victim model but also become highly sensitive to pixel positions within the image.

This finding inspires us that translation invariance may be beneficial for enhancing adversarial trans-
ferability. To validate this assumption, we first define the local invariance of adversarial perturbation
δ to quantify translation invariance as follows:
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Definition 1 (Local Invariance). Given an adversarial perturbation δ for the input image x ∈ X
and surrogate model fs, the local invariance of perturbation is quantified as:

I(x, δ, k) =
∑

−k≤i,j≤k I [fs(x) ̸= fs(x+ Γ(δ, i, j))]

(2k + 1)2
,

where Γ(δ, i, j) denotes the translation operator that translates δ by i pixels horizontally and j
pixels vertically, and k represents the upper bound of translated pixels.

We have calculated the average local invariance of adversarial perturbations generated by various
transfer-based attacks. As shown in Fig. 2, we observe that improved adversarial transferability is
often associated with better local invariance. Based on this observation, we conclude that the local
invariance of adversarial perturbations serves as an indicator of their transferability across different
models. Furthermore, enhancing local invariance appears to positively influence the transferability
of these adversarial perturbations.

3.3 LOCAL INVARIANCE BOOSTING APPROACH
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Figure 3: Attack success rates (%)
and number of forward and back-
ward propagations of MI-FGSM
with Eq. equation 4 using various k.

Building on the above analysis, we propose a novel attack
approach called Local Invariance Boosting approach (LI-
Boost), which enhances the local invariance of adversarial
perturbations w.r.t the clean image to improve transferabil-
ity across various models. Specifically, we can formulate the
problem as follows:

δ = argmax
∥δ∥p≤ϵ

[
min

δ′∈{Γ(δ,i,j)|−k≤i,j≤k}
J(x+ δ′, y; θ)

]
, (4)

where k represents the maximum number of pixels by which
the perturbation is translated. To assess the effectiveness of
this approach, we employ MI-FGSM to solve Eq. equation 4 using various k. We choose ResNet-50
as the white-box setting and other 8 models illustrated in Sec. 4.1 as the black-box settings. As
shown in Fig. 2, adversarial transferability consistently improves when enhancing the local invari-
ance. However, it is important to note that this enhancement comes at a cost: the performance of
white-box attacks deteriorates since generating such perturbation is hard. Also, the computational
complexity escalates significantly. Specifically, the number of forward and backward propagations
required for each update scales quadratically with k, resulting in a significant increase in computa-
tional time as k grows. For instance, 3× 3 = 9 forward and backward propagations are needed for
k = 1 whereas 5× 5 = 25 are required for k = 2. This results in progressively less efficient attack
computations as k increases. To enhance computational efficiency without sacrificing the attack ef-
fectiveness, we randomly sample multiple translated perturbations for each update. Specifically, the
gradient is computed as follows:

ḡ =
1

N

N∑
n=1

∇δJ(x+ Γ(δ, i, j), y; θ), (5)

where i, j are randomly sampled from [−k, k] with k is a predefined parameter of the upper bound
of translated pixels, and N denotes the total number of sampled perturbations. The selection of an
appropriate N is crucial for balancing the trade-off between attack efficiency and effectiveness. It is
important to note that LI-Boost is a general boosting technique applicable to a variety of attacks. As
an example, we incorporate LI-Boost into the MI-FGSM, denoted as LI-Boost-MI. The details are
summarized in Algorithm 1.

4 EXPERIMENTS

Here we conduct extensive evaluations on ImageNet dataset to validate the effectiveness of LI-Boost.
We first specify our experiment setup, then we conduct a series of experiments on five categories of
transfer-based attacks. Finally, we provide ablation studies to investigate the behavior of LI-Boost.

4.1 EXPERIMENTAL SETUP

Dataset. We evaluate the proposed LI-Boost using 5,000 images from the validation set of the
ImageNet dataset( Russakovsky et al. (2015)), covering 1,000 categories.
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Algorithm 1 LI-Boost-MI
Input: Victim model f with the loss function J ; a raw image x with ground-truth label y; pertur-
bation budget ϵ; decay factor µ; number of iterations T ; number of sampled perturbations N ; upper
bound of translated pixels k
Parameter: α = ϵ/T, g0 = 0, δ0 = 0
Output: Perturbation δ

1: for t = 1 to T do
2: Calculate the gradient ḡt w.r.t δt using Eq. 5
3: Update the momentum:

gt = µ · gt−1 +
ḡt

||ḡt||∞
4: Update the adversarial perturbation:

δt = clamp(δt−1 + α · sign(gt),−ϵ, ϵ)
5: end for
6: return δ = δT

Table 1: Attack success rates (%) on nine models and five defense approaches of various gradient-
based attacks w/wo LI-Boost. The adversarial examples are crafted on ResNet-50. * indicates the
white-box model.

Gradient-based
Attacks

CNNs ViTs Defenses
RN-50 Inc-v3 MN-v3 DN-121 FSNet ViT PiT Visformer Swin AT HGD RS NRP DiffPure

MI-FGSM 94.9* 34.5 40.6 45.9 25.2 10.5 18.0 23.1 27.8 33.7 19.2 21.9 25.1 13.8
LI-Boost-MI 97.0* 45.3 55.2 62.0 41.8 19.1 29.1 38.7 41.9 34.3 33.3 23.8 32.2 21.4
VMI-FGSM 97.5* 54.4 58.0 66.0 51.2 28.6 40.5 46.5 49.4 36.0 44.4 25.3 44.1 21.9

LI-Boost-VMI 99.3* 67.0 71.4 79.3 65.9 39.7 53.7 61.4 62.6 37.9 59.1 30.4 60.4 36.8
PGN 99.1* 84.2 86.4 91.6 81.5 54.8 69.7 77.0 78.8 46.2 78.3 41.4 79.7 48.6

LI-Boost-PGN 98.7* 86.4 87.8 92.1 83.9 62.1 74.3 80.2 81.3 50.4 82.3 50.8 84.8 65.4
MUMODIG 97.1* 72.8 78.4 84.7 72.1 42.9 58.6 67.7 66.4 37.6 68.2 26.4 52.2 26.7

LI-Boost-MUMODIG 98.6* 83.4 85.6 90.9 81.8 60.0 72.8 80.0 77.7 41.3 78.7 33.4 90.2 45.8

Models. To validate its effectiveness, we adopt various architectures as the victim models, in-
cluding five CNNs, i.e., ResNet-50 ((RN-50) He et al. (2016)), Inception-v3 ((Inc-v3) Szegedy
et al. (2016)), MobileNet-v3((MN-v3) Howard et al. (2019)), DenseNet-121 ((DN-121) Huang et al.
(2017)), FasterNet ((FSNet) Chen et al. (2023)) and four ViTs, i.e., ViT( Dosovitskiy et al. (2021)),
PiT( Heo et al. (2021)), Visformer( Chen et al. (2021)), Swin( Liu et al. (2021)). To further sub-
stantiate the effectiveness of LI-Boost, we also consider five state-of-the-art defense mechanisms,
namely AT( Wong et al. (2020)), HGD( Liao et al. (2018)), RS( Cohen et al. (2019)), NRP( Naseer
et al. (2020)) and DiffPure( Nie et al. (2022)).

Baselines. To comprehensively assess the generality of LI-Boost, we establish several baselines
encompassing multiple categories of transfer-based attacks, including gradient-based attacks (MI-
FGSM Dong et al. (2018), VMI-FGSM Wang & He (2021), PGN Ge et al. (2023)),MUMODIG Ren
et al. (2025b), input transformation-based attacks (DIM Xie et al. (2019), Admix Wang et al.
(2021a), SIA Wang et al. (2023b), BSR Wang et al. (2024a)), model-related attacks (SGM Wu et al.
(2020), Linbp Guo et al. (2020), BPA Wang et al. (2023a), VDC Zhang et al. (2024a)), FPR Ren
et al. (2025a), advanced objective functions (ILA Huang et al. (2019), FIA Wang et al. (2021c),
ILPD Li et al. (2023), BFA Wang et al. (2024b)) and ensemble attack Dong et al. (2018). For
consistency, MI-FGSM is adopted as the default backbone baseline across all experiments.
Evaluation. We employ the attack success rates to assess the efficacy of adversarial attacks. To
ensure a fair and consistent comparison across different attacks, we adopt a common attack setting
with the perturbation budget ϵ = 16/255, number of iterations T = 10, step size α = ϵ/T and
the decay factor µ = 1.0. We adopt k = 6, N = 30, and Logarithmic distribution to sample
the translated perturbations for LI-Boost. All the baselines adopt the default parameters as in their
original papers, which are detailed in the Appendix Material A.6 and all experiments are conducted
on a single RTX4090 GPU with 24 GB of VRAM.

4.2 EVALUATION ON GRADIENT-BASED ATTACKS

To validate the effectiveness of our proposed LI-Boost, we first integrate it into various gradient-
based attacks, i.e., MI-FGSM, VMI-FGSM, PGN and MUMODIG. We generate the adversarial
examples on ResNet-50 and evaluate the transferability on the other CNNs, ViTs and defense meth-
ods. The results are summarized in Tab. 1, and the results on other models are summarized in the
Appendix Tab. 8. As we can observe, LI-Boost significantly improves the white-box attack per-
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Table 2: Attack success rates (%) on nine models and five defense approaches of various input
transformation-based attacks w/wo LI-Boost. The adversarial examples are crafted on ResNet-
50. * indicates the white-box model.

Input Transforma-
tion-based Attacks

CNNs ViTs Defenses
RN-50 Inc-v3 MN-v3 DN-121 FSNet ViT PiT Visformer Swin AT HGD RS NRP DiffPure

DIM 92.7* 52.4 56.7 64.4 46.9 23.9 35.0 42.1 43.6 34.9 40.3 23.6 33.6 19.2
LI-Boost-DIM 98.1* 61.0 68.3 75.8 61.1 36.0 47.7 57.2 56.4 36.3 54.9 26.9 42.2 30.4

Admix 99.3* 59.4 67.4 77.6 54.6 27.7 41.8 52.5 53.3 35.7 47.9 24.6 44.4 20.8
LI-Boost-Admix 99.5* 71.7 80.5 86.5 73.9 44.8 58.5 70.5 69.2 38.4 66.9 30.9 57.7 38.4

SIA 99.3* 76.2 89.1 92.9 81.3 43.5 66.8 78.4 76.6 38.0 71.0 27.2 57.0 25.4
LI-Boost-SIA 99.8* 87.0 95.1 96.8 91.8 64.0 81.2 90.3 88.1 42.2 86.8 36.0 71.2 45.4

BSR 98.6* 84.6 92.8 95.7 87.5 53.1 75.5 84.7 81.4 39.2 81.4 28.7 58.2 31.3
LI-Boost-BSR 99.2* 91.3 96.4 97.8 94.5 70.6 85.1 93.6 90.6 43.2 91.6 38.1 71.7 51.0

Table 3: Attack success rates (%) on nine models and five defense approaches of various model-
related attacks w/wo LI-Boost. The adversarial examples are crafted on ResNet-50, except for
VDC and FPR, which are based on ViT. * indicates the white-box model.

Model-related
Attacks

CNNs ViTs Defenses
RN-50 Inc-v3 MN-v3 DN-121 FSNet ViT PiT Visformer Swin AT HGD RS NRP DiffPure

SGM 99.5* 44.8 57.2 61.3 31.8 15.0 27.7 33.4 38.8 35.0 22.8 23.3 29.3 14.2
LI-Boost-SGM 100.0* 61.5 78.4 82.0 46.7 29.1 46.4 57.6 61.0 36.8 48.0 27.1 41.3 25.4

Linbp 89.2* 44.4 55.8 62.3 29.0 9.6 17.2 28.6 31.8 34.5 24.2 22.7 27.7 22.0
LI-Boost-Linbp 99.2* 60.1 76.9 85.4 52.4 15.2 25.5 49.9 44.9 34.6 43.7 24.1 32.8 23.0

BPA 89.9* 79.6 88.1 96.4 66.9 30.4 46.0 64.4 65.7 37.5 69.2 27.9 47.9 28.1
LI-Boost-BPA 93.0* 86.1 92.1 98.4 77.3 39.4 53.7 73.8 75.0 40.6 81.4 34.7 57.1 43.3

VDC 51.7 58.6 67.0 65.6 52.1 97.5* 55.2 59.3 71.5 38.2 41.8 28.8 35.8 28.4
LI-Boost-VDC 61.3 65.8 73.4 72.9 62.0 96.7* 66.7 68.9 76.8 39.4 52.0 33.9 41.9 38.9

FPR 43.2 51.8 57.0 57.4 43.5 98.2* 45.8 49.7 61.3 35.4 33.7 24.8 30.4 22.0
LI-Boost-FPR 53.5 57.8 63.7 63.5 54.6 96.8* 58.1 60.4 68.3 36.7 43.3 27.9 34.8 29.9

formance on ResNet-50, underscoring the advantage of increasing local invariance to strengthen
adversarial perturbations. Regarding black-box performance, MI-FGSM exhibits the lowest trans-
ferability among the baseline methods, whereas VMI-FGSM, PGN and MUMODIG demonstrate
considerably stronger attack capabilities. Notably, LI-Boost consistently boosts the performance
of these attacks across both CNNs and emerging ViT architectures. On average, the attack suc-
cess rates show significant improvement, with the increases of 12.2%, 12.0%, 2.6% and 10.0%
for MI-FGSM, VMI-FGSM, PGN and MUMODIG, respectively. These consistent and substantial
performance gains highlight the effectiveness and generalizability of LI-Boost across diverse model
architectures and defense strategies. Furthermore, even when facing robust defense mechanisms, LI-
Boost significantly enhances the attack performance, revealing the limitations of existing defenses
and raising new concerns about the robustness of models.

4.3 EVALUATION ON INPUT TRANSFORMATION-BASED ATTACKS

To assess the generality of LI-Boost, we integrate it with four prominent input transformation-based
attacks, i.e., DIM, Admix, SIA and BSR. As shown in Tab. 2, LI-Boost significantly enhances the
performance of white-box attacks, achieving near-perfect success rates of approximately 100.0%.
This further corroborates the hypothesis that increasing local invariance strengthens adversarial at-
tacks. Under black-box settings, LI-Boost consistently boosts the performance of various input
transformation-based attacks. Overall, the integration of LI-Boost results in substantial performance
gains over the baseline methods: an improvement of 5.4% ∼ 15.1% for DIM, 8.9% ∼ 19.3% for
Admix, and 3.9% ∼ 20.5% for SIA and 2.1% ∼ 17.5% for BSR. Furthermore, attacks augmented
with LI-Boost demonstrate superior robustness under various defense mechanisms. These signifi-
cant improvements underscore the effectiveness of LI-Boost in enhancing adversarial transferability
across diverse attack scenarios. Please refer to Appendix Tab. 9 for the results on other models.

4.4 EVALUATION ON MODEL-RELATED ATTACKS

To evaluate the efficacy of LI-Boost in model-related attacks, we integrate it with five prominent
model-related attack methods, i.e., SGM, Linbp, BPA for CNNs and VDC, FPR for ViTs. The
experimental results, presented in Tab. 3, demonstrate that attacks augmented with LI-Boost not
only maintain high success rates in white-box settings but also achieve substantial improvements
over the baseline methods in black-box scenarios: 14.1% ∼ 24.2% for SGM, 5.6% ∼ 23.4% for
Linbp, 2.0% ∼ 10.4% for BPA, 5.3% ∼ 11.5% for VDC and 6.0% ∼ 12.3% for FPR. These
results highlight that LI-Boost significantly outperforms the baseline methods by considerable mar-
gins. Moreover, LI-Boost consistently enhances attack performance, achieving higher success rates
across all evaluated defense strategies. These findings underscore the effectiveness of LI-Boost in
augmenting adversarial attacks and suggest its potential as a robust approach for generating highly
transferable adversarial examples.
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Table 4: Attack success rates (%) on nine models and five defense approaches of various advanced
objective functions w/wo LI-Boost. The adversarial examples are crafted on ResNet-50. * indicates
the white-box model.

Advanced Objec-
tive Functions

CNNs ViTs Defenses
RN-50 Inc-v3 MN-v3 DN-121 FSNet ViT PiT Visformer Swin AT HGD RS NRP DiffPure

ILA 90.0* 29.0 37.9 42.4 22.4 8.2 15.4 20.8 27.1 33.4 13.9 21.6 20.0 11.4
LI-Boost-ILA 93.2* 41.3 56.7 64.6 36.2 12.2 23.2 33.4 39.1 33.8 24.3 22.6 24.6 14.1

FIA 77.8* 37.5 45.1 53.4 23.3 8.1 15.8 20.9 29.1 35.3 16.6 23.4 24.7 12.2
LI-Boost-FIA 89.6* 53.6 65.1 76.2 42.7 13.9 25.5 37.7 45.4 36.7 32.8 25.2 30.8 15.4

ILPD 95.0* 65.6 74.1 80.6 65.0 62.0 52.7 61.4 61.9 46.8 57.0 27.5 55.3 28.5
LI-Boost-ILPD 94.3* 69.5 79.7 84.7 69.6 66.9 56.3 67.7 65.9 51.5 62.5 31.0 58.3 35.1

BFA 98.8* 82.9 90.5 94.5 84.4 46.0 67.5 79.8 79.7 39.5 77.0 29.0 68.5 27.1
LI-Boost-BFA 98.7* 86.8 92.6 96.0 87.9 53.8 72.1 84.8 83.8 42.3 83.7 36.3 74.5 44.4

Table 5: Attack success rates (%) on nine models and five defense approaches of various ensemble
attacks w/wo LI-Boost. The adversarial examples are crafted on ResNet-50, Inc-v3, MobileNet-v3
and DenseNet-121. * indicates the white-box model.

Ensemble
Attacks

CNNs ViTs Defenses
RN-50 Inc-v3 MN-v3 DN-121 FSNet ViT PiT Visformer Swin AT HGD RS NRP DiffPure

MI-FGSM 95.4* 99.8* 99.3* 100.0* 67.8 39.3 53.7 66.6 68.5 37.2 66.6 27.1 44.7 24.6
LI-Boost-MI 97.9* 100.0* 99.6* 100.0* 85.6 58.4 71.0 83.2 83.9 39.9 85.3 34.5 58.3 40.9
VMI-FGSM 97.3* 99.9* 99.4* 100.0* 84.7 60.1 73.0 82.4 83.3 40.5 84.5 33.4 66.0 39.7

LI-Boost-VMI 99.3* 100.0* 99.7* 100.0* 93.1 73.7 84.5 91.8 92.4 45.0 94.0 42.6 83.6 58.2
PGN 98.8* 100.0* 99.6* 100.0* 94.6 81.2 88.7 94.1 94.1 54.9 95.9 58.4 90.0 71.0

LI-Boost-PGN 98.7* 99.7* 99.5* 100.0* 95.4 83.6 90.0 94.5 94.6 60.4 96.7 68.8 93.3 83.6
MUMODIG 99.6* 99.8* 99.8* 100.0* 97.2 84.2 92.3 97.1 96.3 46.4 98.0 40.4 82.4 52.8

LI-Boost-MUMODIG 99.6* 99.8* 99.8* 100.0* 98.1 89.1 95.0 98.2 97.5 51.9 98.8 51.1 90.6 72.8
DIM 97.8* 99.9* 99.6* 100.0* 86.1 61.5 74.5 84.4 84.7 39.9 87.6 31.9 60.4 38.2

LI-Boost-DIM 99.0* 99.9* 99.8* 100.0* 93.2 76.1 84.4 92.4 92.1 44.4 94.4 42.7 71.8 58.1
Admix 99.5* 100.0* 99.8* 100.0* 92.7 69.5 82.7 91.8 92.0 44.5 93.5 37.7 75.9 43.2

LI-Boost-Admix 99.4* 100.0* 100.0* 100.0* 96.1 83.1 89.6 95.6 95.4 51.0 97.5 53.3 85.5 70.2
SIA 99.8* 100.0* 100.0* 100.0* 98.0 82.3 93.6 97.9 97.3 44.6 98.6 37.5 78.7 46.1

LI-Boost-SIA 99.9* 99.9* 100.0* 100.0* 99.5 91.9 96.8 99.3 99.0 51.8 99.5 53.2 89.5 71.0
BSR 99.8* 99.6* 100.0* 100.0* 89.5 80.4 92.5 97.6 96.0 45.7 98.2 37.8 74.3 48.4

LI-Boost-BSR 99.9* 99.9* 100.0* 100.0* 99.3 90.6 95.8 99.2 98.7 52.4 99.5 53.4 86.2 74.4

4.5 EVALUATION ON ADVANCED OBJECTIVE FUNCTIONS

To validate the effectiveness of LI-Boost in advanced objective functions, we integrate our LI-Boost
with ILA, FIA, ILPD and BFA. The results are presented in Tab. 4. As we can see from the ta-
ble, under white-box setting, LI-Boost significantly improves the success rates of ILA and FIA by
3.2% and 11.8%, respectively, while maintaining performance of ILPD and BFA. For black-box set-
tings, ILA exhibits the weakest performance among the three baseline methods, whereas FIA, ILPD
and BFA demonstrate superior efficacy. Notably, LI-Boost substantially enhances the attack perfor-
mance across both CNNs and ViTs. In particular, the magnitudes of improvement for ILA, FIA,
ILPD and BFA are 3.2% ∼ 22.2%, 5.8% ∼ 22.8%, 3.6% ∼ 6.3% and 1.5% ∼ 7.8%, respectively.
Additionally, we evaluate the attack performance against five different defense mechanisms, where
LI-Boost can still boost the baselines’ performance. For instance, ILPD achieves an average success
rate of 41.2% while LI-Boost-ILPD attains 45.0%. These performance improvements convincingly
illustrate that LI-Boost can significantly boost the adversarial transferability.

4.6 EVALUATION ON ENSEMBLE ATTACK

To further validate the efficacy of our method, we adopt the ensemble attack as in MI-FGSM Dong
et al. (2018), by fusing the logit outputs of diverse models. The adversarial examples are gener-
ated on RN-50, Inc-v3, MN-v3 and DN-121 using eight baselines w/wo LI-Boost and all ensem-
ble models are assigned equal weights. As shown in Tab. 5, empirical results reveal that baseline
methods consistently achieve enhanced adversarial transferability when integrated with LI-Boost.
The augmented methods not only exhibit improved attack success rates in white-box scenarios but
also demonstrate remarkable performance gains in black-box settings. Furthermore, comprehensive
evaluations across five representative defense mechanisms highlight the robustness of our approach.
These findings further highlight the effectiveness of LI-Boost in enhancing transferability.

4.7 ABLATION STUDIES

To gain deeper insights into LI-Boost, we conduct a series of ablation experiments to study the
impact of hyper-parameters, i.e., the random sampling distribution, the number of sampled pertur-
bations N , and the upper bound of translated pixels k. All the adversarial examples are generated
on ResNet-50. The default setting is N = 30, k = 6, and Logarithmic distribution for sampling.
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Figure 4: Ablation studies of various sampling distributions.

On the sampling distribution. Intuitively, local invariance within smaller neighborhoods holds
greater significance than that in larger neighborhoods. Consequently, the choice of sampling distri-
bution plays a critical role. To explore the impact of sampling distribution, we employ three distinct
distributions as illustrated in Fig. 4a. As shown in Fig. 4b, Uniform distribution yields the weakest
performance, as it fails to differentiate among translated pixels.

Nevertheless, it substantially surpasses MI-FGSM, highlighting the superiority of LI-Boost. Both
Normal and Logarithmic distributions achieve better attack performance since they assign various
levels of importance to different translated pixels. Logarithmic distribution achieves the best attack
performance as it places suitable emphasis on smaller neighborhoods, which validates our hypothe-
sis. Hence, we adopt Logarithmic distribution in our experiments. The details of sampling strategies
are illustrated in Appendix Material A.4.
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Figure 5: The attack success rates(%) on eight models with
various hyper-parameters N and k. The adversarial examples
are generated by LI-Boost-MI on ResNet-50.

On the number of sampled per-
turbations N . We test LI-Boost-
MI with various N to analyze its
impact on attack performance. As
shown in Fig. 5a, the attack per-
formance is significantly boosted
with larger N but exhibits dimin-
ishing returns beyond N = 30.
Considering the growth of compu-
tational cost from gradient compu-
tations as shown in Eq. equation 5,
we emperically select N = 30 in
our experiments.

On the upper bound of trans-
lated pixels k. We conduct LI-
Boost-MI using various k to ex-
plore its impact on attack perfor-
mace. Fig. 5b shows that k = 1 already surpasses MI-FGSM, demonstrating enhanced transfer-
ability. Performance peaks at around k = 6, highlighting the role of local invariance in robustness,
while excessive k values degrade as generating effective perturbations becomes more challenging.
Thus, we select k = 6 to balance the white-box and transferable attack efficacy.

5 CONCLUSIONS

In this study, we introduce local invariance of adversarial perturbations and empirically demonstrate
a positive correlation between the local invariance of adversarial perturbations on a surrogate model
and their transferability across diverse victim models. Building on this insight, we propose LI-
Boost, a novel method designed to enhance the local invariance of adversarial perturbations on a
single model for better adversarial transferability. Through extensive experiments conducted on
the standard ImageNet validation set, we validate the effectiveness of LI-Boost across a variety
of transfer-based attacks, encompassing both CNNs, ViTs and various defense mechanisms. Our
findings not only underscore the efficacy of the proposed approach but also provide valuable insights
into potential avenues for advancing adversarial attack. We anticipate that this work will inspire
further research in this direction.
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A APPENDIX

A.1 FURTHER DISCUSSION

Through the above experiments, we have validated that LI-Boost can significantly boost the adver-
sarial transferability of various transfer-based attacks across different models and defense mecha-
nisms. To further substantiate our hypothesis that enhancing local invariance improves adversarial
transferability, we quantify the local invariance of six transfer-based attacks w/wo LI-Boost, namely
MI-FGSM, DIM, BSR, BPA, FPR and ILA.

As shown in Tab. 6, the results are consistent with that in Fig. 2 in main paper, showing that higher
local invariance correlates with improved adversarial transferability. Furthermore, LI-Boost effec-
tively increases the local invariance of generated adversarial perturbations, thereby concurrently
improving adversarial transferability. It validates our motivation that LI-Boost can boost the local
invariance to enhance the adversarial transferability.

Table 6: Average attack success rates of nine models (%) of various attacks and local invariance
(k = 6) on ResNet-50 w/wo LI-Boost. The adversarial examples are generated on ResNet-50.

LI-Boost MI-FGSM DIM BSR BPA FPR ILA

✗ 33.4/0.24 48.9/0.31 83.7/0.48 67.0/0.70 56.4/0.30 30.4/0.15

✓ 45.3/0.41 60.5/0.51 91.0/0.81 74.2/0.88 64.1/0.42 41.7/0.34

A.2 LIMITATIONS

Although we have experimentally verified that perturbations with enhanced local invariance can
improve the adversarial transferability, there is still a lack of theoretical analysis on the relationship
between local invariance and adversarial transferability. In future work, we will continue exploring
from a theoretical perspective to provide valuable insights into adversarial attacks.

A.3 THE USE OF LARGE LANGUAGE MODELS

In the preparation of this work, we used an Large Language Model (LLM) solely for grammatical
improvement. The models are not involved in generating technical content, ideas, experimental
design, or results interpretation.

It is important to note that all scientific contributions, including conceptualization, analysis and
conclusions, are entirely the work of the authors.

A.4 SAMPLING DISTRIBUTIONS

In this section, we detail the three sampling distributions for pixel translation employed in our study:
uniform, normal, and logarithmic. For the sake of simplicity, the random variable for these distribu-
tions is defined as the number of translated pixels. Given the actual number of translated pixels xp,
upperbound k, the probability mass function are as follows:

Uniform:

Puniform(X = xp; k) =

{
1
k , for xp ∈ {1, 2, . . . , k}
0, otherwise

(6)

Normal:

Pnormal(X = xp;µ = 0, σ, k) =

 exp(−
x2
p

2σ2 )

Znormal
, for xp ∈ {1, 2, . . . , k}

0, otherwise
(7)

where Znormal is the normalization constant, given by:

Znormal =

k∑
i=1

exp(− i2

2σ2
) (8)
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Logarithmic:

Plogarithmic(X = xp; k) =

{
ln( k+1

xp
)

Zlogarithmic
, for xp ∈ {1, 2, . . . , k}

0, otherwise
(9)

where Zlogarithmic is the normalization constant, defined as:

Zlogarithmic =

k∑
i=1

ln(
k + 1

i
) (10)

A.5 VISULIZATION AND APPLICATION IN PHYSICAL SCENARIO

This section presents adversarial examples generated by three methods—MI-FGSM, BSR, and
FPR—each augmented with our LI-Boost enhancement. To evaluate their real-world efficacy, we
deploy these attacks against the Baidu Cloud API. As shown in Fig. 6, each pair of images consists
of an benign, correctly classified image (top) and its corresponding adversarial example (bottom)
crafted by LI-Boost-enhanced MI-FGSM, BSR, and FPR, respectively.

A.6 PARAMETER SETTINGS

In this section, we provide the detailed parameter settings for the baseline attacks employed in our
work. These settings are consistent with the corresponding papers to ensure fair and comprehensive
evaluations. Below, we delineate the hyperparameters for each category of baseline methods in
Tab. 7. All defense models are pre-trained on the ImageNet dataset and evaluated on a single model.

AT and HGD adopt the official models provided in the corresponding papers. RS utilizes the defense
model ResNet-50 with a noise level of 0.5. For NRP and DiffPure, we choose ResNet-101 as the
target classifier.
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Sea Fox Terriers Airship Car

Tree Bird Oil Painting Temple Tower

Belt Main Dish Flamingo Rainbow Lorikeet

Watch Trilobite Drawstring bag Flower

Car Seat Belt Sea Apple Trash Can

Natural Landscape Oil Painting Watermelon Car Key

Figure 6: Visulization of benign images and their adversarial counterparts, along with their corre-
sponding classifications.
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Method Parameters

Gradient-based
Attacks

MI-FGSM( Dong et al. (2018))

perturbation budget ϵ = 16/255,
number of iterations T = 10,
step size α = ϵ/T = 1.6/255,

decay factor µ = 1.0

VMI-FGSM( Wang & He (2021)) number of sampled examples Ns = 20,
upper bound of neighborhood ζ = 1.5

PGN( Ge et al. (2023))
number of sampled examples Ns = 20,

balanced coefficient cb = 0.5,
upper bound of neighborhood ζ = 3.0× ϵ

MUMODIG( Ren et al. (2025b))

position factor λp = 0.65,
region number = NR = 2,

interpolation point number NT = 1,
number of sampled baselines NB = 1,

number of sampled transformations NT = 6

Input Transformation-
based Attacks

DIM( Xie et al. (2019)) resize rate r = 1.1,
diversity probability pdi = 0.5

Admix( Wang et al. (2021a))
number of scaled copies m1 = 5,

number of admixed images m2 = 3,
admix strength η = 0.2

SIA( Wang et al. (2023b)) number of blocks s = 3,
number of transformed images Nt = 20

BSR( Wang et al. (2024a))
number of blocks s = 3,

number of shuffled images Nu = 20,
range of rotation angles τ = 24◦

Model-related Attacks

SGM( Wu et al. (2020)) residual gradient decay γ = 0.5

Linbp( Guo et al. (2020))
number of iterations T = 300,

the first layer to be modified is the first residual unit in the third
meta block.

BPA( Wang et al. (2023a))
temperature coefficient ct = 10,

the first layer to be modified is the first residual unit in the third
meta block.

VDC( Zhang et al. (2024a))
patch size Ps = 16,

scale factor sf = 0.5,
residual gradient decay γ = 0.5

FPR( Ren et al. (2025a))

diversity factor df = 25,
scale factor sf = 0.8,

attenuation factor af = 0.3,
index set of diversified blocks I = [0, 1, 4, 9, 11]

Advanced Objective
Functions

ILA( Huang et al. (2019)) coefficient c = 1.0

FIA( Wang et al. (2021c))
drop probability pdr = 0.3,

number of aggregated gradients Na = 30,
the target layer to attack is the last layer of the second block.

ILPD( Li et al. (2023))

number of iterations T = 100,
noise size σ = 0.05,
coefficient c = 0.1,

step size α = 1/255,
the target layer to attack is the third building block of the

second ResNet meta layer.

BFA( Wang et al. (2024b))
perturbation mask size smask = 28,

number of fitting iteration steps T = 30,
the target layer to attack is the last layer of the second block

Table 7: Hyper-parameters for various transfer-based attack baselines.
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Surrogate Model Attack RN-50 Inc-v3 MN-v3 DN-121 FSNet ViT PiT Visformer Swin

MI-FGSM 34.1 99.0* 46.7 50.6 25.7 14.2 20.5 26.6 31.8
LI-Boost-MI 43.8 99.1* 56.9 62.6 37.3 20.8 26.4 35.0 40.9

VMI-FGSM 50.0 99.4* 60.3 66.3 41.6 25.5 32.7 39.7 44.8
LI-Boost-VMI 52.5 99.5* 62.0 69.1 44.2 27.0 35.1 42.6 48.0

PGN 63.1 100.0* 75.7 81.2 55.7 55.7 43.7 51.7 57.3
LI-Boost-PGN 77.3 100.0* 83.8 89.7 70.8 47.4 57.4 66.6 70.4

MUMODIG 65.1 99.5* 76.6 81.7 57.0 34.0 42.7 53.9 58.2

Inc-v3

LI-Boost-MUMODIG 89.4 99.9* 92.1 96.2 85.0 62.4 73.5 83.4 81.8

MI-FGSM 41.7 50.6 100.0* 60.0 31.4 17.9 26.6 36.9 42.7
LI-Boost-MI 65.6 67.6 100.0* 80.7 53.3 33.0 46.1 61.1 65.7

VMI-FGSM 67.5 73.0 99.9* 80.7 57.6 37.2 51.6 64.2 69.7
LI-Boost-VMI 75.5 79.0 99.9* 87.2 66.0 44.5 58.6 71.7 77.2

PGN 80.3 86.5 100.0* 92.1 70.9 49.6 64.7 76.4 82.5
LI-Boost-PGN 84.9 89.8 100.0* 94.5 78.9 59.1 71.9 82.0 86.2

MUMODIG 83.5 88.7 99.9* 93.3 75.0 51.8 68.7 81.0 82.7

MN-v3

LI-Boost-MUMODIG 90.1 92.0 100.0* 96.0 84.6 68.9 81.0 88.8 90.2

MI-FGSM 67.1 61.5 71.5 100.0* 49.6 24.3 33.6 47.9 50.2
LI-Boost-MI 82.2 74.9 84.8 100.0* 70.1 35.8 47.1 66.1 66.3

VMI-FGSM 84.7 79.7 86.0 100.0* 72.3 42.7 54.6 69.6 70.5
LI-Boost-VMI 90.9 86.5 91.1 100.0* 80.7 50.1 63.6 78.1 78.6

PGN 94.1 93.3 95.2 100.0* 86.9 60.0 72.4 84.8 85.1
LI-Boost-PGN 95.0 94.1 95.2 100.0* 88.6 64.4 75.5 86.4 86.9

MUMODIG 95.2 93.6 95.0 100.0* 86.7 55.7 69.0 84.5 82.2

DN-121

LI-Boost-MUMODIG 97.2 96.5 97.1 100.0* 92.8 70.7 80.7 92.0 89.4

MI-FGSM 44.8 42.5 51.6 53.4 97.6* 20.0 31.8 39.9 47.5
LI-Boost-MI 65.4 71.5 71.2 75.4 99.4* 37.8 54.8 67.2 69.6

VMI-FGSM 69.7 62.8 69.3 73.0 98.6* 44.0 57.6 66.1 70.5
LI-Boost-VMI 88.4 80.5 85.8 89.6 99.8* 65.6 79.1 86.1 88.2

PGN 93.7 89.9 92.0 94.5 99.5* 78.6 88.4 92.1 93.1
LI-Boost-PGN 94.6 92.2 93.4 95.6 99.2* 83.1 90.7 93.4 93.7

MUMODIG 88.3 81.5 86.0 89.9 99.0* 63.2 79.2 85.7 85.8

FSNet

LI-Boost-MUMODIG 92.4 85.9 89.8 93.3 99.0* 74.4 85.7 90.7 90.8

MI-FGSM 43.7 51.3 57.8 57.2 43.4 98.2* 45.6 49.3 61.5
LI-Boost-MI 53.2 57.8 63.2 64.7 53.4 97.0* 58.1 60.1 68.4

VMI-FGSM 55.7 61.8 66.9 66.1 58.3 99.1* 62.1 64.0 73.3
LI-Boost-VMI 61.6 67.8 72.1 71.7 65.6 99.6* 68.7 69.5 77.5

PGN 76.3 78.9 83.7 83.1 78.5 99.2* 83.4 83.2 87.6
LI-Boost-PGN 78.2 80.8 84.6 84.9 80.7 99.1* 84.7 84.7 88.5

MUMODIG 70.9 74.9 78.2 77.1 73.1 95.8* 77.8 78.1 80.9

ViT

LI-Boost-MUMODIG 77.7 78.1 82.6 83.0 79.5 98.1* 83.7 84.0 86.3

MI-FGSM 44.3 48.5 57.0 54.4 41.3 30.6 97.9* 50.0 53.5
LI-Boost-MI 56.8 56.1 67.0 64.5 54.4 45.0 98.0* 64.6 67.6

VMI-FGSM 61.6 62.1 69.9 67.8 61.7 52.3 97.9* 69.5 72.0
LI-Boost-VMI 69.7 70.4 76.6 75.7 70.9 60.4 99.3* 77.1 78.5

PGN 78.9 79.4 83.5 82.7 80.1 76.3 97.5* 84.5 85.3
LI-Boost-PGN 79.5 80.5 83.7 82.9 80.5 77.5 96.7* 84.6 85.2

MUMODIG 76.2 75.7 80.9 79.7 77.8 69.8 96.9* 82.8 83.7

PiT

LI-Boost-MUMODIG 81.7 79.9 85.3 84.7 83.0 78.6 98.3* 88.2 88.2

MI-FGSM 52.4 52.5 65.6 63.5 53.6 32.8 52.0 98.6* 64.0
LI-Boost-MI 68.4 64.0 77.7 77.4 71.3 51.1 69.8 98.0* 78.4

VMI-FGSM 73.7 71.0 80.6 80.3 76.7 59.8 76.7 98.8* 82.8
LI-Boost-VMI 77.8 75.3 82.9 82.7 80.1 66.2 80.4 98.7* 85.5

PGN 88.6 87.5 91.5 92.4 90.0 83.3 90.9 98.7* 92.7
LI-Boost-PGN 89.1 88.3 91.3 92.7 89.5 84.3 90.9 98.6* 92.5

MUMODIG 88.8 85.8 91.8 91.8 89.9 76.2 90.5 99.1* 92.4

Visformer

LI-Boost-MUMODIG 90.9 88.7 92.3 93.3 92.0 82.6 92.8 99.3* 93.9

MI-FGSM 32.8 36.9 50.0 44.2 33.0 22.2 30.5 38.9 98.1*
LI-Boost-MI 59.0 55.0 73.6 68.7 59.8 44.5 59.2 69.3 99.4*

VMI-FGSM 57.4 58.5 71.6 66.6 69.1 51.0 61.9 68.9 98.7*
LI-Boost-VMI 76.3 76.7 87.8 84.4 81.4 71.3 81.4 87.3 100.0*

PGN 85.5 86.9 93.5 91.3 89.0 85.7 90.0 92.7 99.7*
LI-Boost-PGN 87.4 88.4 93.5 92.6 90.1 87.0 91.3 93.3 99.6*

MUMODIG 80.8 80.3 88.9 86.7 84.0 69.5 84.5 87.9 99.2*

Swin

LI-Boost-MUMODIG 87.4 86.0 92.9 91.7 89.9 81.9 90.6 93.2 99.8*

Table 8: Attack success rates (%) of gradient-based attacks w/wo LI-Boost on nine models. The
adversarial examples are crafted on Inc-v3, MN-v3, DN-121, FSNet, ViT, PiT, Visformer, and Swin
respectively. * indicates white-box model.
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Surrogate Model Attack RN-50 Inc-v3 MN-v3 DN-121 FSNet ViT PiT Visformer Swin

DIM 46.0 99.0* 58.6 65.0 39.2 22.0 29.3 36.3 41.6
LI-Boost-DIM 55.6 99.6* 67.1 74.1 50.0 29.5 35.6 46.3 51.8

Admix 56.3 99.9* 68.3 75.4 45.5 25.3 33.8 43.6 48.7
LI-Boost-Admix 79.8 99.8* 84.9 91.7 62.7 49.0 52.6 67.0 70.0

SIA 77.5 99.8* 88.0 90.6 66.9 39.3 52.9 66.0 68.7
LI-Boost-SIA 91.3 99.9* 96.4 97.9 85.8 61.7 72.3 84.5 85.9

BSR 78.7 99.8* 88.8 92.3 69.5 43.2 54.9 68.5 70.6

Inc-v3

LI-Boost-BSR 90.7 100.0* 96.0 98.3 86.2 61.8 70.1 84.7 85.5

DIM 64.7 74.1 100.0* 81.9 54.4 36.4 50.0 62.0 66.8
LI-Boost-DIM 80.2 83.0 100.0* 91.0 71.4 51.7 63.3 77.2 80.4

Admix 70.9 75.8 100.0* 85.3 58.1 36.5 53.0 66.8 71.9
LI-Boost-Admix 85.9 88.6 100.0* 94.3 76.5 59.1 70.5 83.4 85.2

SIA 82.2 82.6 100.0* 92.6 71.3 46.0 65.5 79.4 83.1
LI-Boost-SIA 92.7 90.4 100.0* 97.4 84.8 63.6 79.4 90.5 91.9

BSR 88.7 89.2 100.0* 96.0 79.5 57.2 76.5 85.7 87.3

MN-v3

LI-Boost-BSR 93.8 92.8 100.0* 98.3 87.1 69.2 81.7 91.6 92.0

DIM 82.5 80.7 84.6 100.0* 69.0 38.6 49.7 65.5 65.2
LI-Boost-DIM 90.9 87.6 92.0 100.0* 81.4 50.8 60.3 79.0 77.0

Admix 91.3 87.5 91.3 100.0* 77.8 45.2 58.7 75.9 74.5
LI-Boost-Admix 95.8 94.7 96.7 100.0* 88.8 67.0 71.0 87.8 86.3

SIA 98.2 93.9 98.5 100.0* 90.7 58.0 74.8 90.3 87.6
LI-Boost-SIA 99.2 97.0 99.3 100.0* 97.0 71.9 83.5 95.6 93.5

BSR 97.4 94.6 97.7 100.0* 90.1 60.9 75.7 89.5 86.3

DN-121

LI-Boost-BSR 98.5 96.5 98.7 100.0* 94.2 68.1 78.1 93.5 90.8

DIM 44.1 38.5 52.0 53.4 97.7* 19.5 31.4 39.8 47.1
LI-Boost-DIM 71.3 56.9 71.3 75.3 99.4* 37.8 54.8 67.6 70.1

Admix 82.0 72.1 79.6 84.5 99.9* 52.7 69.0 79.5 81.9
LI-Boost-Admix 90.8 82.0 88.9 92.0 99.8* 69.3 81.0 88.6 89.5

SIA 93.9 82.5 92.3 93.5 99.7* 61.6 83.7 90.5 92.2
LI-Boost-SIA 97.9 88.1 97.1 97.6 99.8* 78.8 92.3 96.4 96.7

BSR 95.9 87.1 95.0 96.2 99.4* 69.1 88.7 93.5 92.7

FSNet

LI-Boost-BSR 98.1 92.1 97.7 98.4 99.6* 80.3 92.8 96.6 96.4

DIM 55.4 61.9 64.7 65.4 58.6 93.2* 62.3 62.7 68.3
LI-Boost-DIM 64.0 66.7 71.8 72.0 70.8 96.8* 72.1 72.4 76.2

Admix 61.2 66.9 72.2 71.9 63.2 99.3* 67.5 69.7 80.7
LI-Boost-Admix 72.4 73.3 81.4 81.2 73.7 99.2* 77.5 80.3 85.5

SIA 82.3 80.2 88.4 86.7 82.9 99.2* 88.3 87.7 90.8
LI-Boost-SIA 88.8 84.8 92.7 91.7 89.6 99.7* 93.1 93.3 94.7

BSR 85.9 85.1 89.8 89.1 86.6 96.1* 90.6 89.9 90.4

ViT

LI-Boost-BSR 89.7 87.4 93.0 92.2 90.5 97.5* 93.4 93.3 93.1

DIM 60.1 63.0 69.5 68.1 62.2 52.6 95.5* 69.8 71.9
LI-Boost-DIM 69.1 68.4 76.2 74.8 73.8 65.2 98.4* 78.4 79.2

Admix 60.4 57.7 69.1 66.8 61.3 45.6 98.4* 67.9 71.2
LI-Boost-Admix 71.6 65.0 78.2 76.0 73.8 61.3 98.6* 79.1 81.0

SIA 87.7 79.2 91.1 89.0 87.6 78.7 99.8* 93.1 93.7
LI-Boost-SIA 92.8 85.6 95.1 93.6 93.5 89.6 99.9* 97.0 97.0

BSR 88.4 84.5 92.4 90.8 89.9 81.2 99.2* 93.8 94.1

PiT

LI-Boost-BSR 91.0 86.9 94.1 93.3 92.3 88.1 99.4* 95.5 95.9

DIM 73.3 71.8 80.9 81.1 75.4 58.9 76.4 97.9* 80.9
LI-Boost-DIM 79.5 76.5 85.1 86.2 84.5 68.6 83.2 98.6* 86.7

Admix 77.4 73.5 84.3 83.2 78.9 58.6 80.3 99.0* 86.3
LI-Boost-Admix 84.4 79.7 89.2 89.1 86.2 72.2 86.9 98.8* 90.4

SIA 92.6 83.5 94.8 94.2 92.9 75.9 93.4 99.8* 96.0
LI-Boost-SIA 95.3 88.2 96.9 96.9 96.8 85.5 96.1 99.9* 97.9

BSR 95.1 90.7 96.5 97.0 95.4 81.1 95.5 99.8* 96.8

Visformer

LI-Boost-BSR 96.4 92.3 97.5 98.0 96.9 87.4 96.9 99.8* 97.9

DIM 67.2 69.2 79.3 76.1 71.4 56.7 72.7 77.1 98.6*
LI-Boost-DIM 79.4 77.0 87.5 85.2 84.5 70.8 83.8 87.9 99.6*

Admix 47.5 42.3 63.7 57.3 47.7 33.6 45.6 56.5 99.3*
LI-Boost-Admix 72.8 61.8 84.1 80.2 74.3 57.6 74.4 81.9 99.4*

SIA 83.2 73.9 92.7 87.3 84.8 66.5 85.0 90.8 99.9*
LI-Boost-SIA 92.8 84.1 97.6 95.2 95.5 82.6 94.6 96.9 99.9*

BSR 92.4 87.5 96.8 95.2 93.7 77.7 94.9 95.9 99.4*

Swin

LI-Boost-BSR 96.1 91.5 98.3 97.6 97.0 87.4 97.5 98.0 99.7*

Table 9: Attack success rates (%) of input transformation-based attacks w/wo LI-Boost on nine
models. The adversarial examples are crafted on Inc-v3, MN-v3, DN-121, FSNet, ViT, PiT, Vis-
former, and Swin respectively. * indicates white-box model.
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