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ABSTRACT

We propose DIVERSE, a framework for systematically exploring the Rashomon
set of deep neural networks, the collection of models that match a reference
model’s accuracy while differing in their predictive behavior. DIVERSE aug-
ments a pretrained model with Feature-wise Linear Modulation (FiLM) layers
and uses Covariance Matrix Adaptation Evolution Strategy (CMA-ES) to search
a latent modulation space, generating diverse model variants without retraining or
gradient access. Across MNIST, PneumoniaMNIST, and CIFAR-10, DIVERSE
uncovers multiple high-performing yet functionally distinct models. Our exper-
iments show that DIVERSE offers a competitive and efficient exploration of the
Rashomon set, making it feasible to construct diverse sets that maintain robust-
ness and performance while supporting well-balanced model multiplicity. While
retraining remains the baseline to generate Rashomon sets, DIVERSE achieves
comparable diversity at reduced computational cost.

1 INTRODUCTION

In many machine learning tasks, there exists a large set of diverse models that achieve a similar
performance for the same tasks, yet differ substantially in the pathway leading to their predictions.
These differences can manifest in decision boundaries, internal representations, or feature impor-
tance (Fisher et al., 2019; Black et al., 2022). This phenomenon, where models attain similar per-
formance yet differ in their decision pathways, is known as the Rashomon Effect (Breiman, 2001),
often also referred to as model multiplicity (Black et al., 2022; Dai et al., 2025). The collection of
these functionally diverse yet accurate models is known as a Rashomon set (Semenova et al., 2022).

Within a Rashomon set, models may produce divergent predictions for identical inputs, a property
termed predictive multiplicity (Marx et al., 2020). This has been leveraged for tasks such as as-
sessing model uncertainty (Eerlings et al., 2025), promoting fairness (Dai et al., 2025), improving
interpretability (Semenova et al., 2022), and increasing model flexibility (Jain et al., 2025). At the
same time, multiplicity poses practical challenges in high-stakes applications, since equally accurate
models may assign different outcomes which might be considered a threat to fairness and trust in
machine learning (Meyer et al., 2025). Rashomon sets capture the hidden flexibility of models while
highlighting the need for systematic, computationally feasible methods to explore them.

While the Rashomon Effect is better understood in simpler model families such as decision
trees (Xin et al., 2022) and generalized additive models (Zhong et al., 2023), its characterization in
deep neural networks remains limited. The challenge is to explore their vast hypothesis space, while
staying within a narrow margin of optimal performance, making Rashomon set exploration both
computationally demanding and conceptually complex. Recent work has approximated Rashomon
sets in neural networks through model retraining (Ganesh, 2024; Eerlings et al., 2025), Adversarial
Weight Perturbation (AWP) (Hsu & Calmon, 2022), and dropout-based sampling (Hsu et al., 2024).
These approaches offer valuable insights and a strong foundation for our work, in which we ex-
plore important trade-offs: retraining is computationally costly, AWP can scale poorly, and dropout
sampling offers limited control over diversity. Building on previous work, our work proposes an
alternative perspective that emphasizes efficiency and explicit diversity control.

We propose DIVERSE, gradient-free framework for systematically exploring the Rashomon set
of deep neural networks without costly retraining. DIVERSE augments a pretrained model with
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Feature-wise Linear Modulation (FiLM) layers (Perez et al., 2018), which apply affine transforma-
tions to hidden pre-activations controlled by a latent vector z. This design enables fine-grained
adjustments to internal representations while leaving the original weights untouched. By varying
z, the model traverses a modulation space, a low-dimensional region of the hypothesis space where
functionally distinct variants can be realized without retraining. To search this space, we employ
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen, 2006), which optimizes over
candidate vectors z to induce predictive disagreement with the pre-trained model while maintaining
accuracy within a predefined margin, thereby delineating the Rashomon set.

Contributions. (1) We introduce a robust Rashomon exploration method that combines FiLM-
based modulation with CMA-ES, requiring no retraining or gradient access; (2) on MNIST, Pneu-
moniaMNIST, and CIFAR-10, DIVERSE discovers accurate and diverse model sets, outperforming
retraining in efficiency and dropout most of the time in diversity.

2 BACKGROUND & RELATED WORK

Defining and Approximating Rashomon Sets. We consider the standard supervised learning set-
ting with dataset D = {(xi, yi)}Ni=1, inputs xi ∈ X ⊆ Rq and corresponding labels yi ∈ Y ⊆ Rk,
and a hypothesis space H where each model fw ∈ H is parameterized by weights w ∈ Rp. Perfor-
mance of each model is evaluated by a loss function L, with empirical risk, following the principle
of Empirical Risk Minimization (Vapnik, 1995):

R̂(fw) =
1

N

N∑
i=1

L(fw(xi),yi). (1)

Standard supervised learning seeks a model that minimizes empirical risk, obtained through standard
training, which we denote as the reference model fref . However, multiple parameter configurations
w can minimize the empirical risk equally well, yielding hypotheses fw ∈ H that match the perfor-
mance of fref . The existence of many such solutions gives rise to the Rashomon set Rϵ, defined
as the subset of models whose empirical risk lies within an ϵ-tolerance, known as the Rashomon
parameter (Semenova et al., 2022; 2023), of the reference model, for ϵ ≥ 0 (Fisher et al., 2019).

Enumerating the complete Rashomon set is computationally infeasible in the high-dimensional hy-
pothesis space of deep neural networks. Following Hsu et al. (2024), we therefore work with an
empirical Rashomon set, defined over the finite collection of m models produced during search:

Rm
ϵ = {fwi

∈ Hm | R̂(fwi
) ≤ R̂(fref ) + ϵ}, (2)

where Hm ⊂ H is the finite candidate pool. As m grows, Rm
ϵ increasingly approximates Rϵ (Hsu

et al., 2024). For brevity, we refer to Rm
ϵ simply as the Rashomon set in the remainder of this

paper. The Rashomon Ratio (Semenova et al., 2022) summarizes this set by measuring the fraction
of candidates in Hm that meet the constraint, providing a scalar view of Rashomon set size.

Several strategies have been proposed to approximate Rashomon sets in deep neural networks.
Retraining from scratch with different seeds, hyperparameters, or augmentations (Ganesh, 2024;
Eerlings et al., 2025) offers global exploration but is computationally costly and does not always
guarantee models with equivalent performance. Adversarial Weight Perturbation (Hsu & Calmon,
2022) perturbs a trained model’s weights to induce disagreement while preserving accuracy, but
this requires costly optimization for each (sample, class) pair, making it way slower than retraining
and impractical for large neural networks (Hsu et al., 2024). Dropout-based sampling (Hsu et al.,
2024) provides a scalable, training-free alternative by stochastically generating subnetworks at test
time, while showing substantial speedups over retraining, the resulting diversity is limited and not
explicitly controlled

FiLM Layers for Latent Modulation. Feature-wise Linear Modulation (FiLM) (Perez et al.,
2018) is a conditioning mechanism that applies affine transformations to neural activations, enabling
controlled modulation of intermediate representations. A FiLM layer applies a transformation of the
form

FiLM(h; γ;β) = γ ⊙ h+ β, (3)
where h is a hidden pre-activation, and γ, β are the modulation parameters that may be dynamically
computed by another function.
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FiLM has been widely adopted for conditional computation across a range of settings. In do-
main generalization, MixStyle (Zhou et al., 2021) introduces stochastic affine perturbations, which
are FiLM-like, to simulate domain shifts. In few-shot learning, Tseng et al. (2020) use feature-
wise transformations to adapt representations to new tasks. A related use is found in FiLM-
Ensemble (Turkoglu et al., 2022), where ensemble members are defined by distinct, learned FiLM
parameters optimized for epistemic uncertainty.

In our work, we repurpose FiLM layers to define a family of modulated models centered around a
fixed reference network (fref ). Rather than learning new weights for each model instance, we freeze
both the network and the FiLM projection layers, and search over a latent vector z from which γ and
β are derived. This defines a continuous subspace of the hypothesis space, the modulation space,
that supports controlled exploration without retraining. We denote a model with a given latent vector
z applied as fz .

CMA-ES for Diversity-Oriented Search. Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) is a widely used optimization algorithm for continuous, non-convex search
spaces (Hansen, 2006). Unlike gradient-based methods, CMA-ES does not require access to gradi-
ents of the objective function. Instead, it adapts a multivariate Gaussian distribution over the search
space by repeatedly sampling candidate solutions, evaluating their fitness, and updating the distri-
bution parameters based on the relative ranking of candidates. Specifically, candidates at generation
g are drawn as:

x
(g)
k ∼ N (m(g), σ(g)2C(g)), (4)

where m(g) is the current mean (best guess), σ(g) is the global step size, and C(g) is the covariance
matrix that shapes the search distribution. These parameters are updated across generations based
on the relative fitness of sampled candidates: the mean is shifted toward better-performing solutions,
the covariance matrix is adapted to reflect the directions of successful search steps, and the step size
is adjusted using the length of a cumulative path. CMA-ES is known for its invariance properties and
ability to adaptively learn the structure of difficult objective landscapes, making it particularly ef-
fective in moderately high-dimensional or ill-conditioned settings (Auger et al., 2009). However, its
scalability is limited: empirical evidence shows that CMA-ES struggles with very high-dimensional
problems (e.g., over several hundred dimensions), where the cost of full covariance adaptation be-
comes prohibitive (Omidvar & Li, 2011). In our work, we exploit these strengths in the context of
latent vector z search, while keeping in mind the scalability limits of CMA-ES, which will have an
impact on our choice of latent dimensionality.

Quantifying Diversity. To explore distinct solutions in the z-space, we require measures that
quantify functional differences between models. We distinguish two complementary notions:

Hard disagreement. A standard way to quantify diversity between two classifiers is to measure the
proportion of inputs on which their predicted labels differ. Formally, for two models fwa

and fwb

evaluated on dataset D, hard disagreement is given by:

Dis(fwa
, fwb

) =
1

N

N∑
i=1

1[ŷai ̸= ŷbi ], ŷai = fwa
(xi), ŷ

b
i = fwb

(xi), (5)

where 1[·] denotes the indicator function, equal to 1 if the condition inside holds and 0 otherwise.
This notion of disagreement originates in ensemble learning, where it was introduced as a measure
of classifier diversity (Skalak, 1996; Ho, 1998; Kuncheva & Whitaker, 2003).

Soft disagreement. To quantify differences between two models’ predictive behaviors, we compare
their output probability distributions on the same input samples. While Kullback-Leibler (KL) (Kull-
back & Leibler, 1951) and Jensen-Shannon (JS) (Lin, 1991) divergences are common choices for
measuring distributional differences, both rely on logarithmic ratios that assume overlapping sup-
port between distributions. This assumption becomes problematic when models produce near-
deterministic outputs, leading to zero probabilities and numerical instabilities (Thomas M. Cover,
2005). We instead adopt the Total Variation Distance (TVD) (Devroye et al., 1996) as a more robust
metric:

TVD(P,Q) =
1

2

N∑
i=1

|Pi −Qi|, (6)
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where P and Q are probability distributions from the two models. The TVD is bounded in
[0, 1], making it numerically stable even for deterministic predictions, and maintains connections
to information-theoretic measures through Pinsker’s inequality (Pinsker, 1964).

Measuring Predictive Multiplicity. Having obtained a collection of models that satisfy the
Rashomon criteria as defined in Eq. (2), we require metrics to characterize the extent and structure
of predictive multiplicity. Unlike the metrics discussed in Section 2, these operate at the set level
and summarize the properties of an entire collection of near-optimal solutions. Formal definitions
of all metrics are provided in the Appendix for completeness.

Decision-based Metrics. One approach is to evaluate predictive multiplicity directly through model
outputs. Ambiguity measures the proportion of instances whose predicted labels vary across models,
while discrepancy captures the maximum proportion of disagreements between a baseline model
and any alternative. Together, these metrics characterize whether multiplicity manifests as scattered
disagreements or as systematic divergence across the Rashomon set (Marx et al., 2020).

Probability-based Metrics. Beyond decision-level measures, probability-based metrics capture how
predictive multiplicity manifests in model output scores. The Viable Prediction Range (VPR)
(Watson-Daniels et al., 2023) summarizes, for each sample, the range of predicted probabilities
assigned across the Rashomon set, indicating how wide predictions can vary while maintaining ac-
curacy. The Rashomon Capacity (RC) (Hsu & Calmon, 2022) instead measures score variations in
the probability simplex using information-theoretic quantities, quantifying the effective number of
distinct predictive distributions while avoiding the overestimation that can occur with thresholded
decisions. Together, VPR highlights the spread of probabilities for a class, whereas RC captures the
richness of distributional variation, providing complementary perspectives on multiplicity.

3 MODULATING ACTIVATIONS FOR RASHOMON SET GENERATION

Our method, DIVERSE, explores the Rashomon set of neural networks by embedding a pretrained
model into a FiLM-modulated latent space and optimizing this space with CMA-ES. The approach
unfolds in three steps: (i) training a reference model, (ii) defining a FiLM-modulated space of
models, and (iii) exploring this space with CMA-ES under Rashomon constraints.

Reference model. We train a reference network fref under standard supervised learning, with
training stopped once validation performance stabilizes. The reference performance sets the
Rashomon threshold, defined as the minimum performance required for inclusion in the set. All
subsequent variants are initialized from fref ’s learned weights.

FiLM-modulated model space. To induce controlled variation without retraining, we wrap the
pretrained reference model with frozen FiLM layers. The reference latent vector is initialized to
zref = 0, which recovers the unmodified network. Any nonzero choice of z defines a candidate
model fz that inherits all weights from fref but differs in its internal activations.

We consider three insertion strategies, shown in Fig. 1: (a) after dense layers, (b) after convolutional
blocks (after batch normalization, before the nonlinearity), and (c) along residual skip connections.
FiLM always acts on pre-activations h, and all layers in a network share the same latent vector z, so
a single vector modulates the model in a coordinated network-wide fashion.

Formally, FiLM applies a feature-wise affine transformation with modulation parameters (γ and β),

FiLM(h; z) = γ(z)⊙ h+ β(z), γ(z) = 1 + tanh(zWγ), β(z) = tanh(zWβ), (7)

where Wγ ,Wβ ∈ Rd×C are frozen projection matrices with random initialization drawn from
N (0, 0.52).The use of tanh bounds modulation to γ ∈ [0, 2] and β ∈ [−1, 1], preventing desta-
bilizing amplification or large DC shifts during search. By construction, z = 0 recovers the ref-
erence model (γ = 1, β = 0), while nonzero vectors induce structured, bounded variations. For
dense outputs h ∈ RB×C , FiLM acts feature-wise. For convolutional outputs h ∈ RB×H×W×C ,
γ, β ∈ RB×C are reshaped to (B, 1, 1, C) and broadcast across spatial dimensions, ensuring consis-
tent per-channel modulation.

By freezing the projection matrices, the latent vector effectively defines a reproducible, low-
dimensional modulation space of functional variations. This design eliminates additional hyper-
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Latent Vector 
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+

Latent Vector 
Z

(a)

Skip connection

(b)

(c)

Figure 1: Schematic illustration of where FiLM layers (highlighted in blue) are placed: (a) after
dense layers, (b) after batch-normalization in convolutional blocks, and (c) on residual skip connec-
tions. The shared latent vector z (also in blue) is used to determine the modulation parameters for
all FiLM layers in one model.

parameters, making the method simple and stable while remaining expressive enough to generate
diverse behaviors.

Latent Vector Design. The latent vector z ∈ Rd parameterizes the FiLM modulations defined
in Eq. (7). This provides a modulation space: instead of operating in the full weight space of
the network, CMA-ES explores a lower-dimensional latent space that indirectly controls network
behavior. Its dimensionality d determines the effective size of the search space explored by CMA-
ES. Small d values yield efficient exploration but could restrict the diversity of functional variants,
since the same latent dimensions are projected across many features. Larger d values could permit
richer modulations and a broader range of behaviors, but increase computational cost and strain
CMA-ES, which scales poorly in very high dimensions (Omidvar & Li, 2011).

Initialization also plays an important role. As previously discussed, z = 0 recovers the pretrained
reference model, making it a natural anchor point for search. However, because CMA-ES adapts
its distribution locally, different starting means can bias exploration toward different regions of the
modulation space, potentially uncovering distinct Rashomon members. To mitigate this sensitivity,
and to study how initialization affects the Rashomon set that is uncovered, we evaluate multiple
starting points probing both near-identity and stronger modulation regimes (see Section 4).

Searching the Latent Modulation Space with CMA-ES. Given a choice of dimensionality and
initialization (Section 3), exploration of the modulation space is performed with CMA-ES. At each
generation, CMA-ES samples candidate latent vectors from a multivariate Gaussian distribution
(Eq. (4)), evaluates their fitness, and then adapts the sampling distribution toward higher-scoring
regions. This makes it well-suited for our setting: the search space is continuous, non-convex, and
gradient information is unavailable since underlying network weights are frozen.

The key design choice is the fitness function, which must balance two objectives: (i) keeping can-
didates close to the reference model in performance, so they remain in the Rashomon set, and (ii)
maximizing predictive disagreement with the reference, so that discovered models are diverse. To
do this, we compute class probabilities on the training set pz(x), and form a loss- and diversity-
aware objective. Let pref(x) be the reference model’s probabilities, and denote the cross-entropy
(CE) training loss of fz and fref by Ltrain(z) and Lref

train, respectively.

5
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We define the relative loss increase

∆(z) =
Ltrain(z)− Lref

train

Lref
train + 10−8

, (8)

where the denominator is stabilized with a small constant to prevent division by zero. Then we apply
a Gaussian penalty centered at 0,

ϕϵ(z) = exp(−∆(z)2

2ϵ2
), (9)

which softly enforces the Rashomon parameter ϵ: candidates with losses close to the reference
(i.e., ∆(z) ≈ 0) receive little penalty; larger deviations are exponentially down-weighted rather
than hard-rejected. This choice avoids discarding potentially diverse candidates that lie near the
Rashomon boundary, allowing CMA-ES to explore the trade-off between accuracy and disagreement
more flexibly.

To capture functional diversity, we combine soft (Eq. (6)) and hard disagreement (Eq. (5)) with a
mixing weight λ ∈ [0, 1]. This weighting allows us to tune their relative influence: when λ = 0,
the score reflects only hard disagreement, while λ = 1 reduces it to purely soft disagreement; in our
experiments, we fix λ = 0.5 to balance contributions. The resulting diversity score is defined as:

Divλ(z) = λTVD(pref(x), pz(x)) + (1− λ)Dis(fref , fz). (10)

Finally, we combine the diversity score with the Gaussian penalty into a single fitness function:

F(z) = Divλ(z) · ϕϵ(z). (11)

Taken together, the fitness design steers CMA-ES towards models that remain within the Rashomon
set while exhibiting meaningful disagreement at both the decision and probability levels. The Gaus-
sian penalty softly preserves accuracy, preventing premature rejection of boundary cases, while the
mixture of hard and soft disagreement captures complementary notions of diversity. To ensure these
properties extend beyond the training distribution, we enforce the Rashomon constraint on the val-
idation set, retaining only z-candidates within ϵ of the reference model (Eq. (2)). The surviving
models are then evaluated on a held-out test set, ensuring that reported Rashomon members reflect
genuine diversity rather than overfitting to the search process.

4 EXPERIMENTAL SETUP

Datasets and Reference Models. We evaluate DIVERSE on three complementary benchmarks,
each with an appropriate reference model. On MNIST (LeCun et al., 1998) (70k samples, 10
classes), we use a 3-layer MLP (98% val/test), testing applicability beyond convolutional architec-
tures. On PneumoniaMNIST (Yang et al., 2023) (5.8k samples, 2 classes), we adopt an ImageNet-
pretrained ResNet-50 (98% val, 91% test), reflecting standard transfer learning in medical imaging.
On CIFAR-10 (Krizhevsky, 2009) (60k samples, 10 classes), we use an ImageNet-pretrained VGG-
16 (77% val, 75% test), a common baseline for moderate-scale vision tasks. Reference models are
trained with Adam and early stopping on validation performance; their accuracies define Rashomon
thresholds and remain frozen during CMA-ES search. When no validation set is available, 10% of
training data is reserved. All subsequent variants are FiLM-modulated according to the insertion
strategies in Section 3 and illustrated in Fig. 1.

Z-vectors. The latent vector z ∈ Rd parameterizes FiLM modulations as described in Section 3.
We study d ∈ {2, 4, 8, 16, 32, 64}, balancing search reach against CMA-ES scaling. As discussed
in Section 3, initialization biases exploration toward different regions of the latent space. To probe
this effect, for each d we run 10 initializations: the natural anchor (z = 0), a stronger perturba-
tion (z = 1, and eight additional draws from Gaussians centered at 0 or 1 (σ = 0.1). The same
initialization seeds are reused across all experiments for comparability.

CMA-ES Search Protocol. Having defined the CMA-ES fitness function and validation pro-
cedure in Section 3, we now specify the experimental search protocol. We adopt the standard
CMA-ES defaults (Hansen, 2016), setting the population size (popsize) to 4 + 3 log d for the latent
vector dimension d. Each candidate is evaluated k = 80 times, and the number of generations is
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set to ⌈k · d/popsize⌉, which also serves as the stopping criterion. The total number of candidate
models evaluated is therefore m = k · d, which we refer to as the search budget. This budget scales
with d to account for the increased complexity of higher-dimensional search spaces. As a controlled
hyperparameter study, we repeat all experiments with initial step sizes σ0 ∈ {0.1, 0.2, 0.3, 0.4, 0.5},
allowing us to assess how initialization influences the found Rashomon sets.

Metrics. We evaluate the Rashomon sets along two dimensions: their size and their internal
structure. The Rashomon Ratio (Section 2) quantifies the proportion of candidates that meet the
Rashomon constraint, capturing test size. To assess structural diversity, we measure ambiguity and
discrepancy to capture decision-level variation, and employ the Variable Prediction Range (reported
as the width of the range rather than its bounds) and Rashomon Capacity (Section 2) to characterize
distributional variation, with the latter reflecting the number of distinct predictive distributions in
the set. Together, these metrics provide a comprehensive characterization of multiplicity within the
discovered Rashomon sets.

Baselines. We compare DIVERSE against two families of baselines. First, retraining-based, ob-
tained by reinitializing and retraining the reference model with different seeds, represents the stan-
dard but computationally costly approach to Rashomon exploration. Second, we include dropout-
based Rashomon exploration (Hsu et al., 2024), of which we use the gaussian sampling method they
introduce, which implicitly samples functional variations by applying dropout masks at evaluation
time. Unlike our method, however, dropout defines Rashomon membership directly on the test set,
which risks optimistic estimates since the same data is used for both selection and evaluation. Our
protocol instead enforces Rashomon constraints on a validation set, and reports diversity metrics
only on held-out test data, yielding stricter but unbiased comparisons. Because of the heavy com-
putational cost and impracticality of AWP for large neural networks, as discussed in Section 2, we
do not include Adversarial Weight Perturbation (Hsu & Calmon, 2022) as a baseline. For base-
line comparisons, we report DIVERSE under the best-performing hyperparameter configuration
per ϵ, chosen by average performance across all metrics. All methods were executed on the same
hardware; full details are in the Appendix.

5 RESULTS

We evaluate DIVERSE against retraining and dropout baselines on MNIST, PneumoniaMNIST,
and CIFAR-10. Our analysis addresses three questions: (i) how large and diverse are the Rashomon
sets discovered, (ii) how robust is the method to hyperparameters, and (iii) how does DIVERSE
compare to the baselines.

Rashomon Sets and Latent Dimension. Fig. 2 reports five metrics across Rashomon thresholds
ϵ: Rashomon Ratio, discrepancy, ambiguity, Viable Prediction Range (VPR), and Rashomon Capac-
ity. On MNIST, nearly all modulated models satisfy the tolerance (ratios ≈ 1.0), while discrepancy
and ambiguity grow with ϵ, showing that DIVERSE uncovers functionally varied solutions. Pneu-
moniaMNIST and CIFAR-10 yield lower ratios, reflecting the challenge of preserving performance
in deeper models, yet diversity metrics still increase with ϵ, confirming meaningful multiplicity.

Latent dimension d further shapes these outcomes. On MNIST, all combinations of ϵ and d yield
Rashomon sets, with larger d providing only small gains in diversity. At d = 32 and d = 64,
the Rashomon Ratio shows jitter at the strictest thresholds (ϵ = {0.01, 0.02}). On CIFAR-10 and
PneumoniaMNIST, the effect is more restrictive: d ∈ {2, 4} yields sets across all ϵ, d = 8 only at
ϵ ≥ 0.03, and no sets are recovered for d ≥ 16.

Robustness to Hyperparameters. We further evaluated sensitivity to the CMA-ES step size σ0

(Appendix, Fig. 4) and to latent initialization (Appendix, Fig. 5). Initializing the latent vector at
z = 0 consistently produced Rashomon members across datasets, whereas initialization around
z = 1 often failed to find candidates. An exception is MNIST, where such initializations still
yielded Rashomon members, though with reduced Rashomon ratios. The effect of σ0 also varies
across datasets: larger initial step sizes increase diversity on MNIST, while smaller step sizes are
more effective on PneumoniaMNIST and CIFAR-10.

Baseline Comparison and Runtime Efficiency. Fig. 3 compares DIVERSE, dropout-based sam-
pling, and retraining across diversity metrics and the Rashomon Ratio. Retraining achieves the
highest diversity metrics in most cases but does not always yield the largest Rashomon Ratios. On
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Figure 2: Diversity metrics (discrepancy, ambiguity, Rashomon capacity, VPR) and Rashomon Ratio
across Rashomon thresholds (ϵ) for varying latent dimensions (d). Each group of points corresponds
to one ϵ; horizontal spacing within groups is only for readability and carries no semantic meaning.
Markers show medians, error bars the interquartile range (IQR) across latent initializations, CMA-
ES step sizes (σ0), and d.

Table 1: Runtime (hh:mm:ss) to obtain m candidate models under the same Rashomon constraint.

MNIST PneumoniaMNIST CIFAR-10

Method m=162 m=640 m=162 m=640 m=162 m=640

Retrain 00:29:39 01:57:36 02:09:00 08:16:00 03:17:26 12:37:27
Dropout 00:00:30 00:01:57 00:01:32 00:05:47 00:01:58 00:06:30
DIVERSE 00:00:50 00:03:16 00:01:49 00:07:15 00:02:11 00:08:42

MNIST, DIVERSE exceeds retraining on discrepancy at higher ϵ values and outperforms dropout
across all metrics except VPR. On CIFAR-10, DIVERSE surpasses dropout across all metrics. On
PneumoniaMNIST, DIVERSE outperforms dropout and retraining on discrepancy at the highest
ϵ-level, but falls short at stricter thresholds. Across datasets, DIVERSE attains consistently lower
VPR values. Table 1 compares the runtimes to generate m candidates. Retraining is prohibitively
costly, requiring hours on PneumoniaMNIST and CIFAR-10, dropout samples models within sec-
onds, and DIVERSE completes search in minutes, but remains slower than dropout-based sampling.

Taken together, these results show that DIVERSE consistently produces non-trivial Rashomon sets
under principled validation constraints, with efficiency that makes exploration feasible at scale. We
next discuss implications for multiplicity research and limitations of our approach.

6 DISCUSSION

Key Findings. Our study shows that DIVERSE can reliably uncover non-trivial Rashomon sets
across datasets of varying complexity. It recovers functionally distinct models even under strict ϵ,
remains robust to different initialization and step size settings, and generates candidate sets within

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.01

0.02
D

is
cr

ep
a
n

cy

MNIST

0.05

0.10

PneumoniaMNIST

0.05

0.10

0.15

CIFAR-10

0.05

0.10

0.15

A
m

b
ig

u
it

y

0.1

0.2

0.25

0.50

0.25

0.50

V
P

R

0.25

0.50

0.25

0.50

1.1

1.2

R
a
sh

.
C

a
p

.

1.1

1.2

1.25

1.50

0.01 0.02 0.03 0.04 0.05

0.5

1.0

R
a
sh

.
R

a
ti

o

0.01 0.02 0.03 0.04 0.05

0.5

1.0

0.01 0.02 0.03 0.04 0.05

0.50

0.75

Rashomon parameter (ε)

DIVERSE Dropout Retraining

Figure 3: Best hyperparameter configuration for DIVERSE compared against the pre-defined pa-
rameters of the dropout authors vs retraining.

minutes of computation. Compared to existing approaches, DIVERSE is far more efficient than
retraining while delivering equal or better diversity than dropout under principled validation and
test constraints. These findings establish DIVERSE as a practical tool for large-scale multiplicity
research in deep neural networks.

Interpretation of Results. The experiments reveal how dataset complexity and architecture in-
fluence which configurations yield valid Rashomon sets. On MNIST, Rashomon members appear
for all combinations of ϵ and latent dimension d, though diversity gains fall off at larger d and the
Rashomon Ratio shows jitter at very small ϵ values. This suggests boundary effects under tight
tolerances, where small fluctuations in validation performance determine membership. By con-
trast, PneumoniaMNIST and CIFAR-10 admit Rashomon sets only at small latent dimensions, with
d ≥ 16 failing entirely. This points to the more complex search landscapes created by deeper net-
works with many FiLM injections, where increased dimensionality makes it harder for CMA-ES
to locate candidates within the Rashomon tolerance. Hyperparameter sensitivity follows the same
pattern: larger initial step sizes encourage exploration in the simpler MNIST MLP, whereas smaller
values are more effective for deeper models, where rugged landscapes benefit from finer search
granularity. These results also contextualize comparisons with baselines: retraining provides broad
exploration at high cost, while dropout is nearly instantaneous but bypasses search on the training
set and defines Rashomon membership directly on the test set, leading to diversity estimates that
may be optimistically biased by model selection on test data. Taken together, these findings suggest
that multiplicity in deep networks is shaped not only by optimization but by the interplay of search
dimensionality, architectural complexity, tolerance thresholds, and the evaluation protocol itself.

Limitations. First, CMA-ES struggles when latent dimensionality grows, restricting exploration
to relatively small d values. Second, while FiLM modulation enables efficient functional variation,
it does not guarantee that discovered models differ in interpretable or causally meaningful ways.
Third, although our evaluation already covers three datasets of varying scale and domain (handwrit-
ten digits, natural images, and medical imaging), future work could extend this validation to other
modalities and tasks to further strengthen the generality of our conclusions.
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REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our work. All datasets used (MNIST,
CIFAR-10, and PneumoniaMNIST) are publicly available, with preprocessing and splits described
in Section 4. Detailed descriptions of the methodology, including FiLM modulation, CMA-ES
search, and the fitness function, are provided in Section 3, with full metric definitions in Appendix.
Hyperparameter settings and search protocols are outlined in Section 4, and additional sensitivity
analyses are reported in Appendix. A complete specification of the hardware setup is provided in
Appendix. Anonymous source code and experiment scripts will be made available as supplementary
material to facilitate exact reproduction of our experiments.

ETHICS STATEMENT

This work focuses on methods for exploring the Rashomon set of neural networks. All datasets
used (MNIST, CIFAR-10, and PneumoniaMNIST) are publicly available and widely adopted for
academic research under appropriate licenses. No personally identifiable information or sensitive
private data were collected or generated in this study. We have taken care to ensure fairness by
reporting results across multiple datasets and by using a validation-based Rashomon membership
criterion to avoid biased or overly optimistic evaluations. Potential risks of this research are limited
to misuse of diverse model sets for generating deceptive predictions; however, we emphasize that
our intended contribution is to improve robustness, transparency, and understanding of predictive
multiplicity.
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A APPENDIX

A.1 PREDICTIVE MULTIPLICITY METRICS.

We begin by introducing the notation used throughout this appendix. Let D = {(xi, yi)}Ni=1 denote
the dataset with N samples. Let fref be the reference model obtained under standard training. The
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empirical Rashomon set, constructed according to Eq. (2), is given by

Rm
ϵ = {f (1), f (2), . . . , f (M)},

where each f (j) is a candidate model within the tolerance ϵ. For a model f (j) ∈ Rm
ϵ , we denote its

predicted label on input xi by
ŷ j
i = f (j)(xi),

and the prediction of the reference model by

ŷ ref
i = fref(xi).

Rashomon Ratio. As introduced by Semenova et al. (2022), the Rashomon Ratio measures the
relative size of a Rashomon set. Adapting this definition to the empirical Rashomon set Rm

ϵ , it is
given by:

RRϵ =
|Rϵ

m|
|Hm|

. (A.1)

Ambiguity. Following Marx et al. (2020), the fraction of samples for which at least one Rashomon
model disagrees with the reference prediction:

Ambiguity(Rm
ϵ , fref) =

1

N

N∑
i=1

1
[
[∃j ∈ {1, . . . ,M} : ŷji ̸= ŷrefi

]
(A.2)

Discrepancy. Following Marx et al. (2020), the worst-case disagreement rate between the reference
model and any Rashomon model:

Discrepancy(Rm
ϵ , fref) = max

j∈{1,...,M}

1

N

N∑
i=1

1
[
ŷji ̸= ŷrefi

]
, (A.3)

Viable Prediction Range (VPR). As introduced by Watson-Daniels et al. (2023), for a sample xi,
model f (j) ∈ Rm

ϵ outputs a class–probability vector p(j)i,· ∈ ∆k−1. For class c ∈ {1, . . . , k}, define
the per-class VPR as

VPRi,c = max
1≤j≤M

p
(j)
i,c − min

1≤j≤M
p
(j)
i,c . (A.4)

In practice we report the true-class width VPRi,yi
and summarize {VPRi,yi

}Ni=1 over the test set.

Rashomon Capacity (RC). Proposed by Hsu & Calmon (2022) and empirically computed as in Hsu
et al. (2024), the RC measures the effective number of distinct predictive distributions in the set: we
fix xi and view the empirical Rashomon set as a discrete channel with input W ∈ {1, . . . ,M}
(model index) and output Y ∈ {1, . . . , k} (predicted class), where P (Y = c | W = j) = p

(j)
i,c . The

per-sample Rashomon Capacity is the channel capacity:

RCi = max
r∈∆M

I(W ;Y ) = max
r∈∆M

M∑
j=1

rj DKL

(
p
(j)
i,·

∥∥∥ M∑
ℓ=1

rℓ p
(ℓ)
i,·

)
, (bits). (A.5)

We compute RCi via the Blahut–Arimoto algorithm (using log2). Set-level summaries
(mean/median) are reported over {RCi}Ni=1.

A.2 HARDWARE SETUP.

All experiments were run on a workstation equipped with an NVIDIA GeForce RTX 4090 GPU (24
GB VRAM), an Intel Core i9-14900K CPU, and 64 GB of system memory.

A.3 LLM USAGE

Large language models (LLMs) were used in the preparation of this paper exclusively as general-
purpose assistive tools. They supported tasks such as grammar correction, improving readability, and
rephrasing for clarity. LLMs were not used to generate original research ideas, design experiments,
produce results, or fabricate citations. All technical contributions, experimental designs, analyses,
and conclusions in this paper were conceived, implemented, and validated by the authors. The
authors remain fully responsible for the accuracy and integrity of the content.
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A.4 IMPACT OF INITIAL STEP SIZE AND Z INITIALIZATION

We analyzed how CMA-ES hyperparameters influence Rashomon recovery. Figure 4 shows that
the initial step size σ0 affects the balance between exploration and precision: larger values promote
greater diversity on simpler architectures such as MNIST, while smaller values are more effective
on deeper networks, where fine-grained search helps maintain Rashomon membership. Figure 5
illustrates the effect of latent vector initialization. Starting from the anchor z = 0 consistently yields
Rashomon members across datasets, while initializations centered around stronger perturbations
(z = 1) often fail to recover candidates, except on MNIST. These results confirm that both hyperpa-
rameters shape the diversity and robustness of the discovered sets, underscoring the importance of
initialization when exploring the modulation space.
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Figure 4: Diversity metrics (discrepancy, ambiguity, Rashomon capacity, and Viable Prediction
Range) and Rashomon Ratio across Rashomon thresholds (ϵ) for varying step sizes (σ0). The x-
axis values are discrete: each group corresponds to the same ϵ level, and the horizontal spacing
within groups is for readability only and carries no semantic meaning. Markers denote the median
across runs; error bars show the interquartile ranges (IQR), reflecting variability across latent vector
initializations and CMA-ES initial step sizes (σ0) and latent dimensions (d).
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Figure 5: Diversity metrics (discrepancy, ambiguity, Rashomon capacity, and Viable Prediction
Range) and Rashomon Ratio across Rashomon thresholds (ϵ) for varying latent vector initializations.
The seeds sampled around 0 are: z0seed1, z0seed3, z0seed5, z0seed7, while: z0seed0, z0seed2,
z0seed4 and z0seed6 are sampled around 1. The x-axis values are discrete: each group corresponds
to the same ϵ level, and the horizontal spacing within groups is for readability only and carries no
semantic meaning. Markers denote the median across runs; error bars show the interquartile ranges
(IQR), reflecting variability across latent vector initializations and CMA-ES initial step sizes (σ0)
and latent dimensions (d).
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