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Abstract

Public fame and easy open access to the Chat-001
GPT, and the following wide use, or what could002
be considered misuse and abuse, of the model003
by some in the education and research commu-004
nities, caused initially sharp negative reaction005
in the education and academic institutions and006
publishing services, aimed at detection and ban007
of the LLM (Large Language Models) gener-008
ated texts, under efforts to combat plagiarism009
and chatting. Later, upon realising that such010
a blanket prohibition is technically problem-011
atic with the desired degree of reliability and012
confidence, as well as that LLMs can be legiti-013
mately used as tools for increasing productivity014
by taking on mundane writing tasks, the com-015
munities’ attitude relaxed. The most remark-016
able changes in the public discourse are related017
to rethinking the very aims of the education018
system: “If some of the areas of the intellectual019
labour could be automated and become obso-020
leted by LLM, maybe it is time for education to021
concentrate on teaching students to think and022
behave not like LLMs"? Such a Constructivist023
view on education, considered unrealistic a cen-024
tury ago, now may become the only sound way025
forward.026

1 Introduction027

Large Language Models (LLM) are posed to re-028

place a significant part of so-called intellectual029

labour. Students, being taught by the current ed-030

ucation system primarily to memorise, or at least031

to obtain pre-packaged “knowledge”, will risk be-032

ing outcompeted by the more efficient LLMs on033

routine and trivial tasks, which require extensive034

information search and mundane text generation.035

Therefore, new education adapted to the LLMs’036

presence needs to find intellectual labour niches037

in which humans are superior to LLMs, and needs038

to teach students to be not like LLMs to maintain039

competitiveness in the new market. Hence, signifi-040

cant changes are needed in education, preliminaries041

to which, and changes themselves, we discuss in 042

this position paper. 043

The contribution is organized in the following 044

manner: Section 2 gives a brief overview of the 045

attitude development on the LLM emergence; Sec- 046

tion 3 discusses LLM flaws ; Section 4 outlines 047

potential education changes to incorporate into the 048

teaching process; and Section 5 concludes the dis- 049

cussion. 050

2 Large Language Models - a Friend or a 051

Foe? 052

An explosive debut in public of the ChatGPT (Bib, 053

2023a) and the following similar Large Language 054

Models (LLM) (Bib, 2023c; Chowdhery et al., 055

2022; Bib, 2023b; Touvron et al., 2023) also initi- 056

ated a debate on LLMs’ effects on education. An 057

obvious first reaction was concern about abusing 058

the LLMs’ ability to generate human-like texts for 059

cheating and plagiarism (Orenstrakh et al., 2023) in 060

such examinations and tests that evaluate students 061

in such faculties as memorisation, summarisation, 062

reviewing, and basic analysis. Various methods 063

of detection and prevention of using LLMs in ed- 064

ucation and academia were proposed (Tang et al., 065

2023; Khalil and Er, 2023; Rodriguez et al., 2022; 066

Savelka et al., 2023). 067

However, the next wave of publications on the 068

place of LLMs in education started to contem- 069

plate the thought that even if education shut the 070

doors before LLMs, the industry would not, such 071

as putting graduates who are not accustomed to 072

the use of LLMs at a disadvantage. The publica- 073

tions started coming to the conclusion that educa- 074

tion itself should change, not pursuing obsolete 075

goals and not executing obsolete practices (Anders, 076

2023; Rudolph et al., 2023), but instead concentrat- 077

ing more on the areas where human-lead education 078

(even armed with LLMs as tools) has advantages 079

over mere LLMs in themselves (Fuchs, 2023; Cope 080

and Kalantzis, 2019). 081
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From the literary text analysis perspective, the082

generated by LLMs, though usually syntactically083

correct, are effete, emotionless washed-up texts,084

lacking linguistic variability and distinctness, and085

pragmatic intercity and originality (Gao et al.,086

2022; Chaves and Gerosa, 2021; Wilkenfeld et al.,087

2022; Mitrović et al., 2023). On the dynamic de-088

bating or deliberation text generation, LLMs also089

perform far from ideal. For example, on detecting090

discourse move, ChatGPT performed even worse091

than simple BERT models (Wang et al., 2023). De-092

bates with ChatGPT, as everybody can see using the093

OpenAI interface, suffer from circular arguments,094

self-contradiction, and evasiveness - tendencies to095

please human preferences in Reinforcement Learn-096

ing (RL) (Ramamurthy et al., 2022; Carta et al.,097

2023) - exactly those practices that nobody wants098

to foster in students. When used to detect manipu-099

lative discussion tactics of cyberattacks, ChatGPT100

also scored significantly worse than simple BERT101

models (Fayyazi and Yang, 2023).102

General LLMs’ problems with functional do-103

mains such as mathematics, reasoning, and logic104

(Frieder et al., 2023), emotional expressivity, wit,105

humour and ethics (Borji, 2023; Arkoudas, 2023),106

factual data, privacy, and false, bias and discrim-107

ination (Basta et al., 2019; Kurita et al., 2019;108

Sheng et al., 2019; Gehman et al., 2020; Bib,109

2022; Bianchi et al., 2022; Weidinger et al., 2021;110

Tang et al.; Goldstein et al., 2023) are well doc-111

umented. Machine Learning (ML) specific prob-112

lems of LLMs add such issues as lack of inter-113

pretability and understanding, (Bender and Koller,114

2020; Lake and Murphy, 2020; Marcus et al., 2022;115

Ouyang et al., 2022; Leivada et al., 2022; Ruis116

et al., 2022), and catastrophic ageing and forgetting117

by LLMs (Lazaridou et al., 2021; Hombaiah et al.,118

2021; Dhingra et al., 2022; McCloskey and Cohen,119

1989; Parisi et al., 2019; Ratcliff, 1990; Kirkpatrick120

et al., 2017). When using LLMs in education, their121

shortcomings may not only be accounted for in the122

real-life application but also can be used as a foun-123

dation of fresh approaches to education to foster124

those qualities and skills of students that will not125

be made obsolete by the use of LLMs, and on the126

opposite, give students a competitive edge.127

3 Fundamental Foundations of the LLMs’128

Flaws129

Although implementation details of the latest mod-130

els are kept proprietary, previously published re-131

search shows that LLM models are built and trained 132

using three main principles. Traditional Natural 133

Language Processing (NLP) tokenizing techniques 134

include the preprocessing stage, on which “stop- 135

words” are removed, remaining words are stemmed 136

and lemmatized (converted to canonical dictionary 137

form), and the Bag of Words (BoW) algorithm is 138

used to map lemmatized words into a linear vector 139

space, spanned on the most frequent and impor- 140

tant words dictionary basis. The whole sentence 141

or a bigger text is represented as a linear sum of 142

all token vectors (or also so-called “embeddings”) 143

(Zhang et al., 2010). Such an approach is very re- 144

source usage effective but does not count in the 145

sentence or larger text structure. For example, such 146

sentences as: ”A dog bites a man”, “A man bites a 147

dog”, and “Dogs bite men” would be represented 148

by the same embedding. 149

To introduce implicit elements of the linguis- 150

tic structures, modern NLP models frequently use 151

context tokenizers (Taylor, 1953) of the BERT-like 152

family (Devlin et al., 2018). A simple illustration of 153

the BoW and BERT embedding differences would 154

be the former creating “DOG”, “BITE”, “MAN”, 155

and the latter - “nullDOGbite”, “dogBITEman”, 156

“biteMANnull”, “nullMANbite”, “manBITEdog”, 157

“biteDOGnull”. That solves the BoW’s structure 158

blindness problem but greatly increases the dimen- 159

sionality of the embedding space, which is the start- 160

ing point of LLMs’ high computational demands 161

and size. 162

The second foundation technology the LLMs 163

use is based on the statistical n-gram approach 164

(Brown et al., 1992). The supervised training of the 165

Machine Learning (ML) models has a bottleneck 166

in the manual labelling of the training data sets. 167

To process high amounts of text and other media, 168

LLM uses a self-supervised approach based on the 169

Masked Language Model (MLM) (Salazar et al., 170

2019; Besag, 1975). In such a paradigm, part of 171

the words are kept hidden from the ML model in 172

training, and the purpose of the training is to find 173

words with the highest probability of being in the 174

hidden positions. Again, such an approach does not 175

directly model linguistic structures but implicitly 176

stochastically takes them into account. 177

To keep with the human reader’s attention span 178

and produce a coherent flow of text, LLMs have 179

to use long context windows for MLM training 180

of thousands of words. The brute force use of 181

the whole continuous windows is computationally 182
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problematic; therefore, another technique of ex-183

tracting the most valuable and influential context184

words on the predicted word gave birth to compu-185

tationally tractable but still huge LLMs - Attention186

mechanism (Bahdanau et al., 2014; Luong et al.,187

2015; Gehring et al., 2016) and its Transformer im-188

plementation (Vaswani et al., 2017). In such an ap-189

proach of “attention”, learnable matrices are used190

to compute cosine or Euclidean distances between191

the word relevance to the projected prediction over192

the context window sliding, and the most consistent193

contributor over time is kept and used, in such a194

way, reducing computational demand.195

The stochastic nature of the LLMs in modelling196

structured natural languages has been a point of197

fierce debate since the LLMs introduction (Ben-198

der et al., 2021; Schick and Schütze, 2020; Mar-199

cus, 2018; Blodgett and Madaio, 2021; Bommasani200

et al., 2021).201

Another obvious problem of LLMs is the naivety202

of their language representation from the theoret-203

ical linguistics perspective that operates with cat-204

egories of syntactic and semantic structures. The205

former are various kinds or relations in the mathe-206

matical sense (Combe et al., 2022; Marcolli et al.,207

2023), specific to particular languages, which en-208

dow non-ordered multi-sets of the morphing lex-209

emes and are continuously mapped to the univer-210

sal semantic structures (of meaning or of thought)211

(Chomsky, 2023) (or, possibly, to universal gram-212

mar) (Watumull and Chomsky, 2020).213

Noam Chomsky especially emphasises the non-214

locality of such synthetic units. For example, in215

inflectional languages such as Balto-Slavic, or ag-216

glutinating such as Japanese, the non-locality is217

obvious because of their free word order, but even218

for the significantly sequential analytic English,219

Chomsky referees at the semantic attachment of an220

adverb to a correct verb regardless of their position221

and order, for example in “Intuitively, birds that fly222

swim” (Berwick and Chomsky, 2016).223

Building models of such complex relations in224

LLMs, capable of discovering and retrieving such225

linguistic structures and, in such a way, achieving226

explainability and interoperability of LLMs, is a227

drastically undeveloped area of research (Delétang228

et al., 2022), frequently limited to naive methods229

of asking LLMs about their internals (Jiang et al.,230

2020).231

These mechanisms introduce implicit naive syn-232

tax emulation elements by projecting hierarchical233

tree structures on flat sequences but with the loss of 234

complexity. For example, in Chomsky’s example, 235

“Intuitevely” can become the sequential neighbour 236

of “swim” by dropping “fly”. 237

Even more complicated question of whether 238

LLMs can model thought and intelligence, al- 239

though receiving some optimistic answers (Kosin- 240

ski, 2023; Bubeck et al., 2023), predominately an- 241

swered negatively (Ullman, 2023; Sap et al., 2022). 242

From the linguistics view on natural human lan- 243

guages, universal semantic roles and relations be- 244

tween parts of a sentence, for example “Elmer 245

threw a porcupine to Hortense”, such as Actor 246

(Elmer), Patient (porcupine), and Beneficiary (Hort- 247

ense) could be mapped to syntactic roles and re- 248

lations, specific to particular languages (Marantz, 249

1981). In English, syntactic relations between Sub- 250

ject, Direct and Indirect Objects are marked by the 251

order and prepositions (to); in languages such as 252

Balto-Slavic - by the case (nominative, accusative, 253

dative) suffixes; in Japanese - by particles (を,に). 254

However, the question of what is the language of 255

semantics/meaning, or the “language of thought”, 256

and how it is externalised into syntactic structures, 257

is difficult even for linguistics and neuroscience of 258

the natural human languages (Gallistel, 2011). 259

Surprisingly, in the last years, the voices of the 260

critics of the limitations of the traditional narrow 261

ML (and LLMs as part of it), such as Noam Chom- 262

sky and Garry Marcus, were joined by such big 263

names of the narrow ML as Joshua Bengio (Lex 264

Clips, 2023), Yann LeCun (Bib, 2023d), and even 265

Geoffrey Hinton whose students built ChatGPT 266

(Metz, 2023). 267

4 Education Ameliorating Horizons In 268

the Context of LLMs 269

Although LLMs lack agency, structural represen- 270

tation of the language, and real-world picture 271

(Browning, 2022; Floridi, 2023), they, under hu- 272

man teacher supervision, could still be used to 273

help foster those abilities in students. Such non- 274

commodified abilities to behave not like LLM 275

(LLMs behaviour is described by Ben Goertzel 276

as “competent mediocrity” (Charrington, 2023)), 277

will remain in high value and demand. 278

Educational methodologies founded on initia- 279

tive, curiosity, and active actionable students’ con- 280

struction of knowledge (Vygotsky, 2012; Beilin, 281

1992; Shchedrovitsky, 1995), and therefore de- 282

manding high educator involvement, hence pro- 283
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hibitively costly, with the routine and trivial tasks284

delegated to LLMs may become practically sound.285

We want students to be “competent”, for which286

goal LLMs may be useful tools and examples, but287

also not “mediocre”, for which LLMs may be used288

as counter-example tools. It’s been observed that289

LLM-generated scientific paper abstracts are easily290

identified by humans based on Goertzel’s “compe-291

tent mediocrity” style, though such estimates have292

a noticeable false positive error - people also write293

papers in such a style (Gao et al., 2022).294

Sporadic research in applying LLMs to educa-295

tion change in the active direction is visible in pub-296

lications. For example, one of the routine tasks297

a competent educator may be released from, but298

a general eye on, is the trace of the students’ dis-299

course flow (Wang et al., 2023), or teamwork feed-300

back (Katz et al., 2023). Constant feedback, person-301

alized and adaptive learning (Annuš, 2023), student302

initiative and psychometrics (Katz et al., 2023),303

collaborative, transparent and diverse intelligence304

(Cope et al., 2021). LLMs and other AI models are305

inherently student-driven, and it’s up to the educa-306

tion system, particularly up to its change, to view307

and experience that drive as a threat or benefit (Dai308

et al., 2023; Haensch et al., 2023).309

We propose systematic research on the use of310

LLMs and other AI methods in practical imple-311

mentation methods of education of constructing312

knowledge and understanding, such as (but not lim-313

ited to):314

• Fostering a big picture view, understanding,315

and based on them, first-hand actionable appli-316

cation, experimentation and implementation317

of the knowledge.318

• Continuous, recursive (i.e. changing assign-319

ments) feedback (aizuchi - a rare Japanese320

loan into English linguistic jargon (Kita and321

Ide, 2007)).322

• Pursuit of student questions and interests. In-323

teractive (i.e. self-assigning) and co-acting324

(together with pedagogue) learning.325

• Non-disciplinary or non-didactic learning,326

self-involved assessment.327

• Dynamic knowledge acquisition, with each328

step in it being a challenge for the student,329

seemingly impossible, but with guidance and 330

work achievable, building confidence in own 331

abilities. 332

• Collaborative, social learning - learning 333

through teaching other students. 334

• Emotion and sentiment expression aware and 335

competent learning and teaching. 336

5 Discussion and Conclusions 337

5.1 Limitations 338

The presented review is in no way comprehensive 339

and exhaustive - a number of publications on vari- 340

ous aspects of LLM creation and use are published 341

at an astonishing rate, and the very LLM landscape 342

is changing quickly, outpacing academic publish- 343

ing cycles. The research results are frequently con- 344

tradicting, not merely because some of them are 345

not rigorous - the research field is so vast that avail- 346

able results are fragmented and patchy, depending 347

on the initial conditions that hardly can cover com- 348

prehensively all possible aspects of the LLM use. 349

Inevitably, this opinion piece is incomplete in its 350

foundations and subjective in proposals. 351

5.2 Risks 352

A significant change in the education system, espe- 353

cially if it is related to a significant cost increase, 354

and hence, applied to limited society strata, can 355

lead to further societal disparity. However, the 356

risks of keeping the outdated education system that 357

produces an incompetent and unneeded workforce 358

can be even greater. 359

5.3 Conclusions 360

Under the likely perspective of LLMs taking on a 361

significant share of the previously thought of “in- 362

tellectual” labour, education needs to shift its goals 363

and methods to fostering students’ abilities and 364

habits that differentiate them from LLMs. That 365

requires gaining a better understanding of what 366

LLMs can not successfully do, not only from the 367

empirical perspective but also from the first prin- 368

ciples laying in the foundations of LLM. Build- 369

ing the education system from human strengths, 370

such as agency, individual initiative and interest, 371

social collaboration, emotional involvement, and 372

structural view of the language and world picture, 373

would likely require significant and expensive ed- 374

ucation system change, the core of which would 375

likely align with the Constructivist view on it Of 376

Vygotsky and Piaget.377
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