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ABSTRACT

Fine-tuning a pre-trained model on the target data is widely used in many deep
learning applications, especially for small data sets. However, recent studies have
empirically shown that this training strategy offers almost no benefit in computer
vision tasks over training from scratch. In this work, we first revisit this obser-
vation from the perspective of generalization analysis which is popular in learn-
ing theory. Our theory reveals that the final prediction precision has a weak de-
pendency on the pre-trained model. Besides the pre-trained model, data for pre-
training are also available for fine-tuning. The observation from pre-trained model
inspires us to leverage pre-training data for fine-tuning. With the theoretical anal-
ysis, we find that the final performance on target data can be improved when the
appropriate pre-training data are included in fine-tuning. Therefore, we propose to
select a subset from pre-training data to help the optimization on the target data.
A novel selection algorithm is developed according to our analysis. Extensive
experiments on 8 benchmark data sets verify the effectiveness of the proposed
fine-tuning pipeline.

1 INTRODUCTION

After the success on ImageNet (Deng et al., 2009), deep learning attracts much attention and im-
proves the performance of various tasks significantly, e.g., object detection (Ren et al., 2015), se-
mantic segmentation(Chen et al., 2017), etc. However, when applying deep learning on the data set
with a limited number of examples, researchers find that it is easy to incur the over-fitting problem
and result in the performance degradation when generalizing. The phenomenon can be attributed to
the massive number of parameters in deep neural networks, which can fit small data sets perfectly.

Considering that labeling is expensive, it is inapplicable to obtain sufficient labels for every applica-
tion. Fortunately, given a model pre-trained on a large-scale data set as ImageNet, an effective model
for the target data set, which may only have hundreds of examples, can be learned by fine-tuning
the pre-trained model. It is because many vision tasks are related (Zoph et al., 2020) and a model
learned from ImageNet that consists of more than one million examples can contain diverse seman-
tic information and provides a better initialization than random initialization. Figure 1 (a) illustrates
the conventional fine-tuning process.

Fine-tuning from a pre-trained model becomes a prevalent strategy for handling small data sets, but
its theoretical foundation is unclear. In particular, some recent studies (He et al., 2019) have shown
that there is almost no benefit from training with ImageNet pre-trained models because training from
scratch can achieve the same accuracy after a period of additional training. This phenomenon raises
a theoretical question: when or under what kind of conditions that fine-tuning a pre-trained model
is more beneficial than training from random initialization?

To this end, we aim to answer this question from the theoretical side of generalization analysis,
which is commonly explored in the learning theory literature (Hardt et al., 2016). We have shown
in theory that the final prediction precision has a weak dependency on the pre-trained model. Our
theoretical result also tells us that when the pre-training data are too far from the target data, the do-
main gap will hurt the accuracy of target tasks. These two observations lead us to a second question:
can we develop a new strategy of fine-tuning that achieves better generalization performance than
the standard one when the target data are similar to certain examples from the pre-training data?

1



Under review as a conference paper at ICLR 2022

Fine-tunePre-train

ImageNet

Model

Target Data

Fine-tunePre-train

ImageNet

Model

Target Data

Data Selection
ImageNet Subset

(a) Conventional Method (b) Proposed Pre-Training Data Reusing Method

Figure 1: Comparison of fine-tuning methods. (a) is the conventional pre-training and fine-tuning
method. This paper provides theoretical analysis explaining the ineffectiveness of pre-trained mod-
els compared to training from scratch. (b) shows the proposed pre-training data reusing method,
which is motivated by our generalization analysis of the effect of pre-training data on fine-tuning.

This work will address this question with an affirmative answer. First, our theory indicates that the
dependence of the final performance on the pre-trained model is weak. Inspired by the analysis, we
propose to leverage the pre-training data, which are also available for fine-tuning, for target tasks.
Concretely, we propose to reuse pre-training data and optimize its classification loss along with the
target data when fine-tuning. The theoretical analysis confirms that the performance on the target
data can be improved when an appropriate portion of pre-training data is selected. The proposed
fine-tuning process is illustrated in Figure 1 (b). Note that including extra data for fine-tuning may
increase the computational cost, but the cost is affordable when the size of examples selected from
pre-training data is comparable to that of the target data.

Since target data can be from different domains, we study the reusing strategy of pre-training data
for different cases. First, when the target data are closely related to the pre-training data, one can
randomly sample a number of pre-training data for fine-tuning, which is referred to as random
selection. Second, if the label information of pre-training data is available and the classes overlapped
with target data are identifiable, one can directly use those data with overlapped classes in fine-
tuning. For example, given the data set of CUB (Wah et al., 2011), which is a data set consisting of
birds images, 59 bird classes (Qian et al., 2020) in ImageNet can be included in fine-tuning. This
scheme is referred to as label-based selection. Finally, when the labels between pre-training and
target domains cannot match exactly, the similarity measured with representations extracted from
the corresponding pre-trained model will be adopted for selection. The last setting is prevalent in
real-world applications and referred to as similarity-based selection.

Given the large scale of pre-training data, the representations from the pre-trained model can capture
semantic similarity (Donahue et al., 2014). Based on this observation, we propose a novel selection
algorithm to obtain a subset from pre-training data closest to the target data by solving an unbalanced
optimal transport (UOT) problem. Interestingly, the proposed method performs consistently well on
other scenarios, e.g., labels are overlapped, which reduces the effort of identifying overlapped pre-
training classes. The main contributions of this work are summarized as follows.

• From the perspective of generalization analysis, this work explains the phenomenon that
the pre-trained model has almost no benefit over training from scratch in some computer
vision tasks.

• We develop the theoretical analysis when pre-training and target data are used in fine-tuning
simultaneously. It demonstrates that the performance on target data can be improved when
the pre-training data is similar to the target data.

• According to the analysis, we propose to select a subset of pre-training data with better
similarity to the target data to further boost the final performance. A novel UOT-based
algorithm is developed to handle target data from different scenarios.

• The performance of the proposed fine-tuning process is evaluated on 8 benchmark data
sets. Our method surpasses the conventional fine-tuning pipeline by a large margin of
2.93% averaged over all tasks, verifying the effectiveness of reusing pre-training data.

2 RELATED WORK

Fine-tuning as a special case of transfer learning (Pan & Yang, 2009) aims to improve the perfor-
mance on the target data by transferring the knowledge from a large-scale pre-training data. For
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example, supervised pre-trained models on ImageNet have been extensively used in image classi-
fication (Donahue et al., 2014), object detection (Ren et al., 2015; Lin et al., 2017) and semantic
segmentation (Chen et al., 2017; Long et al., 2015). However, the empirical study in He et al. (2019)
shows that the advantage of a supervised pre-trained model over random initialization cannot be
observed because of the gap between pre-training and target tasks. Later, Zoph et al. (2020) demon-
strates that self-supervised pre-training improves upon training from scratch in object detection and
other vision tasks with strong data augmentation, indicating that self-supervised pre-training learns
more general visual representations. Our work considers a general pre-training paradigm including
both supervised and self-supervised approaches, and explains why pre-trained models fail to outper-
form random initialization from the view of generalization theory. Different from existing work that
regularizes the fine-tuning optimization explicitly (Gouk et al., 2020; Aghajanyan et al., 2020), we
propose to reuse pre-training data in target training based on the theoretical findings.

The most important one of the proposed data selection schemes in this work is based on a variant
of optimal transport (OT) optimization. General OT is often used in computer vision to estimate
or/and minimize the distance between two probability measures, such as prediction probabilities in
classification (Frogner et al., 2015), density maps in crowd counting (Wan et al., 2021) and the re-
construction loss in generative models (Patrini et al., 2020; Arjovsky et al., 2017). This paper solves
an unbalanced optimal transport (UOT) problem between pre-training and target data to obtain a
similarity vector for pre-training data, so that we can select a portion of data close to the target task.

3 PROBLEM DEFINITION AND PRELIMINARY

The target problem of interest that we aim to optimize can be formulated as

min
θ∈Rd

F (θ) := E(x,y)∼P [f(θ;x, y)] , (1)

where θ is the model parameter to be learned; (x, y) is the input-label pair, which follows a un-
known distribution P; E(x,y)∼P[·] is the expectation that takes over a random variable (x, y) while
we use E[·] for the sake of simplicity when the randomness is obvious; f(·;x, y) is a loss func-
tion. One example of f(·;x, y) is cross-entropy loss for K-class classification problem which is

given by f(θ;x, y) =
∑K
k=1−yk log

(
exp(pk(θ;x))∑K
j=1 exp(pj(θ;x))

)
with prediction function p(θ;x). The

problem (1) is known as population risk minimization (PRM) problem. Since the distribution P is
unknown, the explicit formulation of (1) is difficult to be obtained. In practice, a set of training data
{(x1, y1), . . . , (xn, yn)} drawn from P are given, where n is the sample size. A common approach
is to solve the empirical risk minimization (ERM) problem (Vapnik, 2013):

min
θ∈Rd

Fn(θ) :=
1

n

n∑
i=1

f(θ;xi, yi). (2)

Stochastic gradient descent (SGD) (Robbins & Monro, 1951) is a very efficient algorithm for solving
problem (2) in many computer vision applications, whose updating is given by

θt+1 = θt − η∇θf(θt;xit , yit), (3)

where t = 0, 1, . . . is the iteration number, η > 0 is the learning rate,∇θf(θ;x, y) is the gradient of
function f(θ;x, y) with respective to variable θ. When the variable to be taken a gradient is obvious,
we use∇f for simplicity. We use the excess risk as the performance measurement for a solution θ̂:

F (θ̂)− F (θ∗), (4)

where θ∗ ∈ arg minθ∈Rd F (θ) is the optimal solution of (1) and θ̂ is the output of SGD.

In order to describe the pre-trained model, we denote by G(θ) := E(x,y)∼Q[g(θ;x, y)] the ob-
jective function that pre-trained model aims to optimize. We use a parallel notation Gm(θ) :=
1
m

∑m
i=1 g(θ;xi, yi), where {(x1, y1), . . . , (xm, ym)} is a set of training data drawn from Q. Usu-

ally, the sample size of pre-training data is larger than that of target data, i.e., m� n. In this work,
for the sake of analysis, we letm is large enough and both the pre-trained model and the target learn-
ing task share the same set of parameters. In order to ensure that the model learned by optimizing
G(θ) will be valuable to the optimization of F (θ), we make the following assumption about F (θ)
and G(θ).
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Assumption 1. There exists ∆ > 0 such that ‖∇F (θ)−∇G(θ)‖ ≤ ∆, ∀θ ∈ Rd.
To establish the generalization bound, we first present some assumptions for problem (1) that will be
used in the analysis. Specifically, we make the following two assumptions, which are widely used
in the literature (Ghadimi & Lan, 2013; Wang et al., 2019; Li et al., 2020).
Assumption 2. The stochastic gradient of F (θ) is unbiased, i.e., E(x,y)[∇f(θ;x, y)] = ∇F (θ),
and the variance of stochastic gradient is bounded, i.e., there exists a constant σ2 > 0, such that
E(x,y)

[
‖∇f(θ;x, y))−∇F (θ)‖2

]
≤ σ2.

Assumption 3. F (θ) is smooth with an L-Lipchitz continuous gradient, i.e., it is differentiable and
there exists a constant L > 0 such that ‖∇F (θ1)−∇F (θ2)‖ ≤ L‖θ1 − θ2‖,∀θ1, θ2 ∈ Rd.

Assumption 3 says the objective function F (θ) is smooth with module parameter L > 0. This
assumption has an equivalent expression according to (Nesterov, 2004): F (θ1) − F (θ2) ≤
〈∇F (θ2), θ1 − θ2〉 + L

2 ‖θ1 − θ2‖2, ∀θ1, θ2 ∈ Rd. We further assume the objective function
F (θ) satisfies a Polyak-Łojasiewicz (PL) condition (Polyak, 1963) with parameter µ > 0.
Assumption 4. There exists a constant µ > 0 such that 2µ(F (θ) − F (θ∗)) ≤ ‖∇F (θ)‖2, ∀θ ∈
Rd, where θ∗ ∈ arg minθ∈Rd F (θ) is a optimal solution.

This PL condition is widely used in the literature (e.g., (Wang et al., 2019; Karimi et al., 2016;
Li & Li, 2018; Charles & Papailiopoulos, 2018)), and it has been observed in training deep neural
networks both theoretically (Allen-Zhu et al., 2019) and empirically (Yuan et al., 2019).

4 GENERALIZATION ANALYSIS AND THE PROPOSED STRATEGY

In this section, we first show the value of the pre-trained model in target tasks by examining its
excess risk bound. Then we propose a new method that leverages pre-training data during the fine-
tuning process. Our main goal is to get some insights of using pre-training data for the theoretical
result through the generalization analysis. Finally, we describe the details of pre-training data use
strategies with mainly focusing on the UOT-based method.

4.1 VALUE OF PRE-TRAINED MODEL

To see the value of a pre-trained model, we first give its excess risk bound for a target task, showing
that the bound heavily depends on ∆.
Lemma 1. Under Assumptions 1, 3, 4, suppose the function g satisfies the condition of unbi-
ased and bounded stochastic gradient as described in Assumption 2, by setting the learning rate
η = min

(
1/L,∆2/(2σ2)

)
, then the pre-trained model, denoted by θp, provides the following per-

formance guarantee for the target task F (θ), E[F (θp)− F (θ∗)] ≤ ∆2

µ .
As indicated in the above lemma, the performance gap between pre-trained model θp and the optimal
model θ∗ is bounded by ∆2/µ, where both ∆ describes the approximation accuracy when replacing
∇F (θ) with∇G(θ) according to Assumption 1.

After completing the pre-trained model, we will run the fine-tuning process by further training the
pre-trained model θp against the set of training examples (xi, yi), i = 1, . . . , n for the target task.
Lemma below provides the performance guarantee in terms of excess risk bound of the final model
θf for the target task.

Lemma 2. Under Assumptions 2, 3, 4, suppose the learning rate η = 2
nµ log

(
nµ∆2

2Lσ2

)
≤ 1

L , then
the final model after fine tuning θp against a set of n training examples, denoted by θf , provides the

following performance guarantee for the target task F (θ), E [F (θf )− F (θ∗)] ≤ 4Lσ2

nµ2 log
(
nµ∆2

2Lσ2

)
.

Remark 1. Note that ∆ only appears in the logarithmic term, implying that the final prediction
precision has a weak dependency on the pre-trained model. That is to say, the pre-trained model has
almost no benefit over training from scratch.

4.2 VALUE OF PRE-TRAINING DATA

Given the potential negative fact about fine-tune a pre-trained model in the last subsection, i.e. fine-
tuning will not be able to improve prediction accuracy from the pre-trained model when n is too
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small, a natural question is if it is possible to design a better fine-tuning process that can overcome
the limitation of the existing one. To this end, we develop a better approach for fine-tuning that aims
to leverage the data used for pre-trained model during the phase of fine-tuning. We note, during the
phase of fine-tuning, we may have two ways of estimating the gradient ∇F (θt). The first estimator
is based on the samples for fine-tuning data, which provides an unbiased estimation but with a large
variance. The second estimator is based on pre-training data, which provides a biased estimator
with almost no variance (since the sample size of pre-training data is large enough). Our goal is
to linearly combine these two estimators to provide an estimator of gradient ∇F (θt) that makes
the best trade-off between bias and variance. Hence, at each iteration t of fine tuning, our gradient
estimator is given as

∇f̃(θt) = α∇f(θt; ζit) + (1− α)∇h(θt; ξit) (5)
where α ∈ (0, 1], ζit := (xit , yit) is a training example from target data, ξit := {(xit , yit), it =
1, . . . ,m} is a set of training examples from pre-training data, and h is a loss function (e.g., cross-
entropy loss) that is related to target task. Since the sample size of pre-training data is large enough,
we use mini-batching stochastic gradient ∇h(θt; ξit) := 1

m̃

∑m̃
it=1∇h(θt;xit , yit) where m̃ is the

batch size. Please note that the loss function h can be same as the loss function of target task. Our
solution is updated by θt+1 = θt− η∇f̃(θt). The theorem below provides a performance guarantee
for using∇f̃(θt) for fine-tuning.
Theorem 1. Under Assumptions 1, 2, 3, 4, suppose the function h satisfies the condition of
unbiased and bounded stochastic gradient as described in Assumption 2 and the learning rate
η = 2

nµ log
(
nµ∆2

2αLσ2

)
≤ 1

L , by using the gradient estimator in (5) for updating solutions, we have

E [F (θf∗)− F (θ∗)] ≤
4αLσ2

nµ2
log

(
nµ∆2

2αLσ2

)
+

2(1− α)δ2

µ
, (6)

where δ2 := maxθt,ξit{E[‖∇F (θt)−∇h(θt; ξit)‖2]} and θf∗ is the final model for the target task.

Remark 2. As indicated by Theorem 1, the upper bound depends on the coefficient α and the term
δ2 which measures the difference between the gradient on target data and the stochastic gradient
on selected pre-training data during fine-tuning process. When α = 1, that is, when we ignore the
pre-training data, the bound is identical to that of Lemma 2. Several observations can be found from
the result in Theorem 1. When δ2 is small, by choosing appropriate α ∈ (0, 1], we may be able to
further reduce the error from F (θf ). For example, if the target and pre-training data are from the
same distribution, i.e., P = Q, let h be the same loss function as f , then the term δ2 can be arbitrary
small such that δ2 ≤ σ2

m̃ since the batching size m̃ of pre-training data is large enough. When δ2 is
large, that is, when the second term of upper bound in (6) dominates the total error, then it would be
worse than the result of standard fine-tuning a pre-trained model in Lemma 2. That is to say, when
the pre-training data used in the fine-tuning process is too far from the target data, the mixed use
strategy will lead to performance degradation. These theoretical observations inspire us to design a
selection strategy for pre-training data, that is, to select images “similar” to those of target data from
pre-training data and use these selected images during fine-tuning. A detailed description of the data
selection strategy is introduced in the next subsection.

4.3 THE DATA SELECTION STRATEGY

Theorem 1 shows that the benefit of pre-trained model can be enhanced when pre-training data
are used during the fine-tuning process. This inspires us to propose data selection strategies and
to choose an appropriate portion of pre-training data. In experiments, we follow the standard pre-
training practice in computer vision to use a deep neural network pre-trained on ImageNet, and
then select data from ImageNet to help fine-tuning on target classification tasks. We summarize the
proposed pre-training data reuse strategies as follows.

• When the label information of pre-training data is available, and the overlapping classes
with target data are recognizable, one can only simply select the overlapping classes and
use them during the fine-tuning (i.e., the use of label-specific pre-training data).

• When the difference between pre-training and target data sets is small (so δ2 is small), a
simple scheme is to uniformly sample pre-training data to use them during fine-tuning (i.e.,
the use of general pre-training data).
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• In general cases, the third proposed selection scheme is to select similar data as target data
from pre-training data (i.e., the use of similarity-specific pre-training data). For the sake of
simplicity, we only describe the details of UOT-based data selection.

Label-based Selection The first scheme is to select images with classes seen in target tasks. For
instance, the bird images from ImageNet are all selected when fine-tuning CUB. Unfortunately, this
scheme heavily depends on the label match between pre-training and target data, which may worsen
the performance in some real-world applications without perfectly matched classes.
Random Selection The second data selection scheme is to choose classes with uniform sampling,
referred to as random selection. This strategy can improve the performance of target tasks if the do-
main gap δ2 between pre-training and target data is small, and keep the weights close to initialization
if the selected data are sufficiently large. The drawback of uniform selection is that the domain gap
δ2 is not considered in the data reusing process, so the performance heavily depends on the inherent
property of data sets.
Similarity-based Selection To reduce the domain gap, we propose the third data selection scheme,
an UOT-based method, to choose data classes from the pre-training set whose distributional distance
to the target data set is small. To exploit the representation ability of pre-trained models, each class is
represented as the mean of deep features, e.g. 512-dim features from the penultimate layer of a pre-
trained ResNet18 model. Since the training set often has balanced classes, all classes are assigned
with unit weights for both pre-training and target set. So we have two probability measures for the
target set and pre-training set, i.e. {(ai, w(f)

i = 1)}Kf

i=1 and {(bj , w(g)
j = 1)}Kg

j=1, respectively.

Denote the features of target and pre-training data as v
(f)
i and v

(g)
j , ai =

∑
ys=i v

(f)
s /n

(f)
i and

bj =
∑
yt=j

v
(g)
t /m

(g)
j where n(f)

i is the number of images in i-th class of target data and m(g)
j

is defined similarly for pre-training data. In the general case where Kf 6= Kg , the two measures
have different total masses so we propose to compute the unbalanced OT distance between the two
by a generalized Sinkhorn iteration (Peyré et al., 2019). Specifically, the optimization objective is
formulated as a UOT problem,

min
P

< P,C > −εh(P)+τ1KL(P1,w(g)) + τ2KL(PT1,w(f)),P ∈ RKg×Kf

+ , (7)

where Ci,j is the distance between ai and bj ; P is the transportation matrix solved by the general-
ized Sinkhorn iteration; τ1 and τ2 determine the constraint on the reconstruction loss of pre-training
and target density measures; KL(·, ·) and h(·) are Kullback-Leibler divergence and entropy func-
tion. Note that as a result of unbalanced total masses, we cannot perfectly reconstruct pre-training
and target measures at the same time. Using this property, we can create a similarity ranking effect
in the P1 vector by using a large value for τ2 but a small value for τ1. P1 is the density measure of
pre-training data and PT1 is the measure for target data. Since we want all classes of the target data
to be covered, a large τ2 is needed; while we need to select a subset of classes, τ1 should be small
to relax the constraint. Thus, a large [P1]j indicates a high similarity of class-j of pre-training data
to the target data. Finally by ranking the elements in P1 and selecting top-K classes, we obtain the
selected classes for a target data set.

Before ending this subsection, we demonstrate how the gradient combination (5) is computed in the
experiment of this work. In the context of deep neural networks, we add two classification heads on
top of the network backbone. One classification head has Kf -dim output to predict the target data
and the other has Kg-dim output to predict the pre-training data. The cross entropy loss is computed
for both heads and a weighted sum of losses are backpropogated to update the network parameters
during fine-tuning, i.e. ∇f̃(θt) = 1

ñ

∑ñ
i=1∇f(θt; ζi) + λ 1

m̃

∑m̃
j=1∇h(θt; ξj), where ñ and m̃ are

mini batch size of target and pre-training data, λ is the weight for pre-training classification loss,
which controls the weight α in (5), and both f and h are cross-entropy losses.

5 EXPERIMENTS

This section presents the empirical analysis of the pre-training data reusing in image classification
tasks. The experiment uses both supervised and unsupervised pre-trained models to fine-tune a
variety of image classification data sets. First, data reusing fine-tuning schemes consistently im-
proves the performance of vanilla fine-tuning, which corroborates our theoretical result. Second, the
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(a) Supervised Pre-Training Model
Method Dogs Cars CUB Pets SUN Aircraft DTD Caltech Avg.

Baseline Fine-Tune 82.65 85.87 75.49 91.40 58.03 77.62 70.64 90.11 78.98

Data
Selection

Random 83.29 86.52 75.54 91.58 58.18 78.10 70.69 90.64 79.32
Greedy-OT 84.63 86.79 76.92 91.66 58.70 78.43 70.90 90.67 79.84
UOT 84.67 87.03 77.21 91.98 59.06 78.94 71.17 91.11 80.15

(b) Self-Supervised Pre-Training Model
Method Dogs Cars CUB Pets SUN Aircraft DTD Caltech Avg.

Baseline Fine-Tune 78.64 91.05 77.44 90.44 61.12 87.25 75.80 92.82 81.82

Data
Selection

Random 79.87 90.85 78.82 91.48 62.42 88.60 77.34 93.26 82.83
Greedy-OT 79.43 90.89 78.63 91.27 62.27 89.40 76.81 93.36 82.76
UOT 88.14 90.89 80.98 93.05 64.76 89.28 77.45 93.45 84.75

Table 1: Comparison of testing top-1 accuracy (%) on different data sets by fine-tuning the super-
vised and self-supervised pre-trained model. The proposed data selection fine-tuning consistently
improves the vanilla fine-tuning, with UOT being the best method.

comparison between different data selection strategies demonstrates that the UOT selection is ad-
vantageous over random and greedy selection. Third, we simulate the situations where the training
data are scarce by sub-sampling the given training data and show that as the training data get insuf-
ficient, the performance gain of the pre-training data reusing method will increase. Finally, some
ablation studies on the number of selected classes and other settings in UOT are given.

5.1 EXPERIMENT SETUP

The empirical study is done on both supervised and self-supervised pre-trained models. For the
supervised training, we use the official ResNet18 (He et al., 2016) pre-trained on ImageNet. For
the self-supervised training, we use the official MoCo-v2 (He et al., 2020) ResNet50 pre-trained
with 800 epochs. Images are represented in the supervised pre-trained ResNet18 by 512-dim fea-
tures from the penultimate layer while in MoCo-v2 ResNet50 by 128-dim features from the final
FC layer. The pre-trained model is fine-tuned on 8 target image classification data sets, i.e. Stanford
dogs (Dogs) (Khosla et al., 2011), Stanford cars (Cars) (Krause et al., 2013), Caltech-UCSD birds
(CUB) (Wah et al., 2011), Oxford-IIIT Pet (Pets) (Parkhi et al., 2012), SUN (Xiao et al., 2010),
FGVC-Aircraft (Aircraft) (Maji et al., 2013), Describable Textures Dataset (DTD) (Cimpoi et al.,
2014) and Caltech101 (Caltech) (Fei-Fei et al., 2004). During the fine-tuning process, both the back-
bone and random initialized classification heads are updated using SGD with Nesterov Momentum.
The training epochs are fixed to be 100 in our experiment for a sufficient training while other hyper-
parameters like learning rate, weight decay and λ are determined by grid search for all methods in
the comparison (details in the appendix).

We test 3 data selection methods, i.e. random selection, greedy selection and UOT selection, and set
the number of selected classes to be 100 unless mentioned otherwise. Specifically, we use OT-based
greedy algorithm (Cui et al., 2018) for comparison. The batch size for fine-tuning data is 256, and if
pre-training data are reused, the batch size keeps the same as target data which makes a total batch
size of 512. In random selection, we use the uniform selection over classes to be consistent with the
other data selection methods. In Greedy-OT, we use the same setting as in the original paper where
Cij is the l2 distance. In UOT, we set ε = 1.0, τ1 = 1.0 and τ2 = 100.0. The distance cost is based
on the cosine similarity Cij =

− cos(ai,bj)+1
εc

with εc = 0.01.

5.2 COMPARISON OF DATA SELECTION STRATEGIES

Table 1 shows the comparison between the standard fine-tuning and 3 data reuse methods on 8 image
classification data sets, with supervised and self-supervised pre-trained models. To make a fair
comparison, all data reuse experiments select 100 classes of ImageNet data. The first observation is
that, since the pre-training data are large enough to have similar images to target ones, even random
selection achieves better performance than the standard fine-tuning in most data sets. Secondly, the
benefit of data reuse is amplified by the similarity-based data selections, as predicted by Theorem 1.
Finally, the comparison between Greedy-OT and UOT data selections demonstrates the advantage of
the global UOT in terms of the similarity measure. Fig. 3(a) shows the performance of label-based
selection on CUB (blue line), since the birds classes happen to exist in ImageNet. It turns out the
accuracy of UOT selection method (77.21%) is comparable to the label-based selection’s (76.89%).
In addition, we also test the performance of label-based selection on Dogs (selecting 118 dog classes

7
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(a) Sub-Sampling CUB (b) Sub-Sampling Caltech 
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Figure 2: Accuracy and performance gap when sub-sampling training datausing the supervised pre-
trained ResNet18. (a) and (b) show a decreasing trend of performance gain when more training data
are added. The advantage of pre-training data reusing is larger when training data are not sufficient.
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Figure 3: Accuracy of fine-tuning using UOT data selection with different numbers of selected
classes using the supervised pre-trained ResNet18. (a) shows the performance on CUB and the blue
line is fine-tuning with all birds classes from ImageNet. The UOT selection achieves a compara-
ble performance to the label-based data selection. (b) shows the increased performance of UOT
selection on Caltech as more data are reused in UOT, while the performance of random selection is
consistently worse than the UOT’s .

of ImageNet), the performance of which (85.05%) is again comparable to UOT’s (84.67%). This
comparison demonstrates that the proposed UOT selection is generic yet effective.

Another interesting finding is that the advantage of UOT is more evident in the self-supervised
pre-training case than in the supervised pre-training one. The most considerable improvement is
achieved in Dogs, Birds and Pets data sets because the animal-related classes are dominant in Ima-
geNet (398 classes of birds, dogs, animals and mammals) and self-supervised training learns good
visual features without label information. Once the label information is added to the fine-tuning
process by data reuse, the model is taught to recognize those familiar features and achieves giant
improvements. Note that the only data on which data reuse does not help is the Cars, indicating that
the gap between ImageNet and Cars data is large when measured by the self-supervised model.

5.3 SIMULATION OF LOW-DATA REGIME

The generalization analysis in Lemma 2 indicates that when the target data size is not large enough,
the pre-training model can outperform training from scratch. More importantly, Theorem 1 shows
that when λ is properly tuned and the domain gap between reused pre-training data and target data is
small, the benefit of the pre-trained model will be strengthened. To study the effect of data reusing
in the scarce data scenario, we simulate low-data target tasks in this experiment by sub-sampling
CUB and Caltech training data. The reason why we select the two data sets is that they represent the
fine-grained and general classification task, respectively. In sub-sampling, for each class of training
data we randomly sample 20%, 40%, 60% and 80% of images to get class-balanced training data.

Figure 2 shows that accuracy and performance gap between vanilla and data-reusing fine-tuning
when different amounts of training data are available. On both data sets, the performance gap is
increased as the training data get less, indicating that the UOT-selection data reusing scheme helps
more when the target data are insufficient. This experiment demonstrates that the proposed data
reusing paradigm is particularly effective when the target task does not have enough data, which
could be a typical case in real-world applications.

8
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(a) Ablation of distance function
Method Greedy-OT-l2 Greedy-OT-cos UOT-l2 UOT-cos
Supervised 86.44% 92.92% 94.92% 98.31%
Self-supervised 16.95% 38.98% 16.95% 93.22%

(b) Sensitivity of εc in UOT-cos
Method εc = 1.0 εc = 0.3 εc = 0.1 εc = 0.03 εc = 0.01 εc = 0.003
Supervised 94.92% 94.92% 94.92% 98.31% 98.31% 96.61
Self-supervised 50.85% 69.49% 89.83% 94.92% 93.22% 93.22%

Table 2: Comparison of data selection methods on CUB. (a) The UOT-cos selection is better than
Greedy-OT selection in terms of bird classes recall rate. (b) On the supervised pre-trained model,
the recall rate is not sensitive to εc; on the self-supervised model, when εc is small, its sensitivity is
small.

5.4 ABLATION STUDY

Number of selected pre-training classes. We investigate the effect of selected class number on the
target classification accuracy. Figure 3 shows the performance of target tasks (CUB and Caltech)
when the number of selected classes ranges from 50 to 300 in UOT selection. The increased pre-
training data added in fine-tuning do not improve the performance of CUB, since there are 59 classes
of birds in the ImageNet and more reused images enlarge the gap δ2. Surprisingly, we observe that
only using the birds images (blue line) is not the best strategy on CUB. It is because that there can be
a certain number of related classes in ImageNet, which will help the prediction on birds images. The
result shows that even when labels of pre-training and target data are given and overlapped, UOT
selection can achieve a better performance by including extra relevant classes from pre-training
data. On the general classification data set (Caltech), more reused pre-training data help gain the
performance improvement because the diverse data set needs a large number of images to have a
small domain gap. On both data sets, the UOT selection performs better than the random selection
as the number of selected classes changes.

Distance function and εc. To investigate the influence of different factors in the UOT selection,
we define a recall rate as a metric to make the comparison. For a target data set whose classes
happen to exist in ImageNet, the similarity-based data selection is expected to choose those matched
classes. For example, select all 59 birds classes from ImageNet when fine-tuning on CUB. Thus,
the recall rate on CUB is defined as the ratio between the number of birds classes in top-100 similar
vector or EMD distance and 59. With the performance metric, we first compare UOT with Greedy-
OT under l2 and cosine distance in Table 2(a). With a supervised pre-trained model, Greedy-OT
is only slightly worse than UOT, while with a self-supervised model the weakness of Greedy-OT is
amplified. It means that Greedy-OT heavily relies on the label information in supervised training but
UOT only needs generic visual features to have a good similarity measure. In addition, the cosine
distance is better than the l2 distance, especially in the self-supervised model. The importance of
cosine distance is due to the cosine similarity loss used in MoCo training. Finally, Table 2(b) shows
the recall rate when using different εc. The supervised model is not sensitive to the choice of εc but
a small εc is crucial to the good performance of OT-selection in the self-supervised model. Note that
the recall rate of Greedy-OT does not depend on εc so the performance is worse than UOT no matter
what εc is used.

6 CONCLUSION

This paper theoretically investigates the generalization problem of pre-trained models when fine-
tuning on target tasks. Our theory illustrates that the pre-trained model can have little positive
influence on learning from target data under certain conditions. Therefore, we consider to include
pre-training data directly for better fine-tuning. The theoretical analysis confirms that the perfor-
mance on the target data can be improved when similar data are selected from the pre-training data
for fine-tuning. According to this result, a novel similarity-based selection algorithm is developed.
Empirical studies on diverse data sets demonstrate the effectiveness of the proposed fine-tuning
process. Our future work will focus on the self-supervised pre-trained case in which class infor-
mation is not given, and investigate label-free data selection methods to boost the performance of
self-supervised pre-trained models in target tasks.
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A PROOFS

A.1 PROOF OF LEMMA 1

Proof. For the sake of simplicity, let the training examples ξt := (xit , yit), it = 1, . . . ,m are
sampled from Q. By the smoothness of function F from Assumption 3, we have

E[F (θt+1)− F (θt)]

≤E[〈θt+1 − θt,∇F (θt)〉] +
L

2
E[‖θt+1 − θt‖2]

=− ηE[〈∇g(θt; ξt),∇F (θt)〉] +
η2L

2
E[‖∇g(θt; ξt)‖2]

=
η

2
‖∇F (θt)−∇G(θt)‖2 −

η

2
‖∇F (θt)‖2 −

η(1− ηL)

2
E[‖∇G(θt)‖2]

+
η2L

2
E[‖∇g(θt; ξt)−∇G(θt)‖2]. (8)

where the last inequality uses E[∇g(θt; ξt)] = ∇g(θt). Due to Assumptions 1, the condition of
unbiased and bounded stochastic gradient for pre-trained objective function G(θ) and η ≤ 1/L we
have

E[F (θt+1)− F (θt)] ≤
η∆2

2
+
η2σ2

2
− η

2
‖∇F (θt)‖2 (9)

Since F (·) is a µ-PL function under Assumption 4, we have

E[F (θt+1)− F (θt)] ≤ −
ηµ

2
E[(F (θt)− F (θ∗))] +

η∆2

2
+
η2σ2

2
(10)

and thus

E[F (θT+1)− F (θ∗)] ≤ exp

(
−ηµT

2

)
(F (θ1)− F (θ∗)) +

∆2

2µ
+
ησ2

2µ
, (11)

where θ∗ ∈ arg minθ∈Rd F (θ). By selecting that η is small such that η ≤ ∆2

2σ2 and selecting that T

is sufficiently large, i.e. exp
(
−ηµT2

)
(F (θ1)− F (θ∗)) ≤ ∆2

4µ , we have the following guarantee for
the pre-trained model θp

E[F (θp)− F (θ∗)] ≤
∆2

µ
.

A.2 PROOF OF LEMMA 2

Proof. For the sake of simplicity, let the training examples ζt := (xit , yit), it = 1, . . . , n are sam-
pled from P. By the smoothness of function F from Assumption 3, we have

E[F (θt+1)− F (θt)]

≤E[〈θt+1 − θt,∇F (θt)〉] +
L

2
E[‖θt+1 − θt‖2]

=− ηE[〈∇f(θt; ζt),∇F (θt)〉] +
η2L

2
E[‖∇f(θt; ζt)‖2]

=− η
(

1− ηL

2

)
‖∇F (θt)‖2 +

η2L

2
E[‖∇f(θt; ζt)−∇F (θt)‖2]

≤− η

2
‖∇F (θt)‖2 +

η2Lσ2

2
, (12)

where the second equality is due to E[∇f(θ; ζ)] = ∇F (θ) in Assumption 2 and the last inequality
uses the fact that η ≤ 1/L and Assumption 2. Following the similar analysis as that for Lemma 1
with θ1 = θp, for t, by using the condition that F (·) is a µ-PL function in Assumption 4 we have

E [F (θt+1)− F (θ∗)] ≤
(

1− ηµ

2

)
E [F (θt)− F (θ∗)] +

η2Lσ2

2
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and therefore

E [F (θn+1)− F (θ∗)] ≤ exp
(
−ηµn

2

)
E[F (θp)− F (θ∗)] +

ηLσ2

µ

We complete the proof by plugging the bound for F (θp) from Lemma 1, i.e.,

E [F (θf )− F (θ∗)] ≤ exp
(
−ηµn

2

) ∆2

µ
+
ηLσ2

µ
(13)

By setting η = 2
nµ log

(
nµ∆2

2Lσ2

)
, we will have the following bound

E [F (θf )− F (θ∗)] ≤
4Lσ2

nµ2
log

(
nµ∆2

2Lσ2

)
. (14)

A.3 PROOF OF THEOREM 1

Proof. Let ∇H(θ) := Eξ[∇h(θ; ξ)]. By the smoothness of function F from Assumption 3, follow-
ing the standard analysis, we have

E [F (θt+1)− F (θt)]

≤E [〈∇F (θt), θt+1 − θt〉] +
L

2
E
[
‖θt+1 − θt‖2

]
=− ηE [〈∇F (θt), α∇f(θt; ζit) + (1− α)∇h(θt; ξit)〉] +

η2L

2
E
[
‖α∇f(θt; ζit) + (1− α)∇h(θt; ξit)‖2

]
≤− ηE [〈∇F (θt), α∇F (θt) + (1− α)∇gh(θt; ξit)〉] +

η2L

2
E
[
(1− α)‖∇H(θt)‖2 + α‖∇F (θt)‖2

]
+
ασ2η2L

2
+

(1− α)σ2η2L

2m̃

=
η(1− α)

2
E
[
‖∇F (θt)−∇h(θt; ξit)‖2

]
+

(
−ηα+

η2Lα− η(1− α)

2

)
E[‖∇F (θt)‖2

+

(
η(1− α)(ηL− 1)

2

)
E[‖∇H(θt)‖2] +

ασ2η2L

2
+

(1− α)σ2η2L

2m̃

≤η(1− α)δ2

2
− η(1 + α− ηLα)

2
E[‖∇F (θt)‖2] +

ασ2η2L

2
+

(1− α)σ2η(ηL+ 1)

2m̃

≤η(1− α)δ2

2
− η

2
E[‖∇F (θt)‖2] +

ασ2η2L

2
+

(1− α)σ2η

m̃

where δ2 := maxθt,ξit{E[‖∇F (θt) −∇h(θt; ξit)‖2]}; the last inequality is due to η ≤ 1/L. As a
result, we have

E [F (θn+1)− F (θ∗)]

≤ exp
(
−ηµn

2

)
E [F (θp)− F (θ∗)] +

(1− α)δ2

µ
+
αηLσ2

µ
+

2(1− α)σ2

m̃µ

≤ exp
(
−ηµn

2

) ∆2

µ
+ +

(1− α)δ2

µ
+
αηLσ2

µ
+

2(1− α)σ2

m̃µ
(15)

By setting η = 2
nµ log

(
nµ∆2

2αLσ2

)
and θf∗ = θn+1, the inequality (15) will lead to the following

bound
E [F (θf∗)− F (θ∗)]

≤4αLσ2

nµ2
log

(
nµ∆2

2αLσ2

)
+

(1− α)δ2

µ
+

2(1− α)σ2

m̃µ

≤4αLσ2

nµ2
log

(
nµ∆2

2αLσ2

)
+

2(1− α)δ2

µ
, (16)

where the last inequality is due to m̃ is large enough such that m̃ ≥ 2σ2

δ .
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B ADDITIONAL EXPERIMENT DETAILS

Our experiment is run on 4 Nvidia V100 GPUs using PyTorch. The hyperparameters in the fine-
tuning are selected by a grid search on validation sets and the hyperparameter setting with the best ac-
curacy is reported in Table 3 and 4. The learning rate is searched over [0.1, 0.03, 0.01, 0.003, 0.001],
λ is over [1.0, 0.3, 0.1], weight decay is over [10−4, 10−5, 0.0]. The head and backbone learning
rate ratio is searched over [10.0, 1.0, 0.1] and the ratio is fixed for one data set’s experiment. In
Table 3 and 4, for fine-tuning, the hyperparameter vector denotes [learning rate,weight decay]; for
data reusing, the hyperparameter vector denotes [learning rate, λ,weight decay].

In the training data sub-sampling experiment, the UOT data selection is done on the sub-sampled
data. To keep the ratio between target data and pre-training data the same in different training data
sizes, we sub-sample the images in each selected pre-training class with the same sub-sampling ratio
as in target data. The pre-training data sub-sampling is done for both UOT and random selection.

Table 3: Hyperparameter settings on the supervised model.

Method Fine-Tune Random Greedy-OT UOT
Stanford Dogs [0.001, 10−5] [0.001, 1.0, 10−4] [0.001, 1.0, 10−4] [0.001, 1.0, 10−4]
Stanford Cars [0.1, 10−5] [0.1, 0.3, 10−5] [0.1, 0.1, 0.0] [0.1, 0.3, 10−4]
CUB [0.003, 10−5] [0.003, 1.0, 10−5] [0.003, 1.0, 10−5] [0.003, 1.0, 10−4]
Pets [0.001, 10−5] [0.003, 1.0, 10−4] [0.003, 1.0, 10−5] [0.001, 1.0, 0.0]
SUN [0.001, 10−5] [0.001, 1.0, 10−4] [0.001, 1.0, 10−5] [0.001, 1.0, 10−5]
Aircraft [0.03, 0.0, 1.0] [0.03, 0.1, 10−5] [0.03, 0.1, 0.0] [0.03, 0.3, 10−4]
DTD [0.001, 10−5] [0.003, 0.3, 0.0] [0.003, 0, 3, 10−5] [0.003, 0.3, 10−4]
Caltech [0.003, 10−5] [0.003, 1.0, 0.0] [0.003, 1.0, 0.0] [0.01, 1.0, 10−4]

Table 4: Hyperparameter settings on the self-supervised model.

Method Fine-Tune Random Greedy-OT UOT
Stanford Dogs [0.003, 10−4] [0.003, 1.0, 10−4] [0.003, 1.0, 10−5] [0.003, 1.0, 0.0]
Stanford Cars [0.01, 0] [0.01, 0.1, 10−5] [0.01, 0.3, 0.0] []0.01, 0.3, 10−4

CUB [0.003, 10−4] [0.01, 0.3, 10−4] [0.01, 0.3, 10−5] [0.01, 1.0, 10−4]
Pets [0.003, 0.0] [0.003, 0.3, 10−5] [0.003, 1.0, 0.0] [0.003, 1.0, 10−4]
SUN [0.003, 10−4] [0.003, 1.0, 10−5] [0.003, 1.0, 10−4] [0.003, 1.0, 0.0]
Aircraft [0.01, 10−5] [0.01, 0.1, 10−4] [0.01, 0.1, 10−5] [0.01, 0.1, 10−4]
DTD [0.001, 10−4] [0.001, 0.3, 0.0] [0.001, 1.0, 10−5] [0.003, 1.0, 10−4]
Caltech [0.003, 10−5] [0.003, 1.0, 0.0] [0.003, 1.0, 10−4] [0.003, 1.0, 0.0]
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