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ABSTRACT

Training agents to behave as desired in complex 3D environments from visual
information is challenging. Imitation learning from diverse human behaviour
provides a scalable mechanism for training an agent with generally sensible be-
haviours, but such an agent may not perform the specific behaviours of interest
when deployed. To address this issue, we draw an analogy between the undesir-
able behaviours of imitation learning agents and the unhelpful responses of un-
aligned large language models (LLMs). We then investigate how the procedure
for aligning LLMs can be applied to aligning agents from pixels in a complex 3D
environment. For our analysis, we utilise an academically illustrative part of a
modern console game in which the human behaviour distribution is diverse, but
we would like our agent to imitate a single mode of this behaviour. We find that
we can align our base agent to consistently perform the desired behaviour, provid-
ing a demonstration of a general approach for training agents to perform specific
behaviours in complex environments.
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Figure 1: Illustration of our approach for aligning generally capable agents with a game designer’s
tasks, goals or preferences. A general agent pre-trained to imitate a large diverse dataset of human
gameplay provides a base agent which can be more robustly fine-tuned to imitate a smaller task or
demonstration dataset. This agent can then be further fine-tuned with reinforcement learning using
a reward model learned from preferences to reliably achieve a behaviour with the desired style. This
approach is analogous to the alignment procedure used for recent large language models.
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1 INTRODUCTION

The optimal recipe for training generally competent agents to act in complex 3D environments from
visual information is an open question. Many modern console games provide such 3D environments,
where the state space, action space and temporal horizons are large enough that learning from scratch
is usually infeasible, even with a clearly defined goal. In these environments, a natural approach is
to leverage a large dataset of general human behaviour to pre-train an agent with imitation learning.
This provides an agent with a general understanding of player behaviour, and there is evidence of
generalisation benefits from scaling up data and compute (Reed et al., 2022; Baker et al., 2022).

However, such an agent will inevitably learn to imitate all behaviours found within the human game-
play, including undesirable behaviours of novice or malicious players, analogous to unhelpful or
toxic responses of unaligned large language models (Ziegler et al., 2020). Additionally, game de-
signers may have preferences for agents to act with a certain style or strategy, for which it may be
difficult to codify a suitable reward function (Aytemiz et al., 2021). There is a parallel between
training useful agents and aligning large language models. In the same way that LLMs have been
aligned to serve as customer service chatbots (Banerjee et al., 2023), search engines (Spatharioti
et al., 2023) and code generation assistants (Chen et al., 2021b), we can imagine aligning a large
imitation learning agent with various objectives within a game. For example, we may wish to train
agents that can act as helpful allies, appropriately challenging opponents, or non-player-characters
(NPCs) with various objectives.

In this work, we take inspiration from recent success with the current procedure for aligning large
language models (LLMs) and take a first step towards investigating the key considerations for apply-
ing this procedure to align imitation learning agents. To address this question, we focus our analysis
on an academically illustrative part of a modern console game, where the human behaviour distribu-
tion is distinctly multi-modal over non-negligible time horizons (of the order of ∼ 10 seconds), but
we desire our agent to imitate a single mode of this distribution. This behaviour would be difficult
to learn from scratch, but an imitation learning agent pre-trained on general behaviour data only
sometimes performs the desired behaviour.

Specifically, we focus on a part of the game where players must travel from multiple spawn points
to one of three jumppads which launch the player onto different parts of a central island. We find
that a base imitation learning agent learns to model the full human distribution and reaches all three
jumppads in similar proportions to the human data. We then demonstrate that we can align this
agent to consistently reach a single preferred jumppad, using synthetic preference labelling to train
a reward model and online reinforcement learning using the reward model. We perform this entire
procedure from visual inputs with full controller action output, maintaining the generality of our
approach to other games, and providing a demonstration of applying the modern large language
model training paradigm to aligning agents on a real 3D game.

2 RELATED WORK

2.1 LARGE SCALE IMITATION LEARNING AGENTS

Imitation learning and offline reinforcement learning (Levine et al., 2020) have been gaining pop-
ularity in recent years with the aim of demonstrating similar scaling laws to LLMs (Kaplan et al.,
2020; Hernandez et al., 2021) to provide a path to obtaining more generalisable agents on ever more
complex environments. Decision Transformer (Chen et al., 2021a) proposed learning a transformer-
based policy from offline data that can be conditioned on a desired return. Multi-game Decison
Transformers (Lee et al., 2022) extended this approach to learn multiple game policies with a single
model, providing evidence that scaling transformer policies with diverse data leads to performance
improvements. GATO (Reed et al., 2022) demonstrated that the tasks do not need to be limited to
games, and was able to complete most of its 604 diverse training tasks to a rudimentary level. RT1
(Brohan et al., 2023b) shows similar scaling potential for transformers on robotics tasks, while RT2
(Brohan et al., 2023a) integrated vision-language models to help with zero-shot generalisation to
new tasks. In addition to transformer policies, Kumar et al. (2022) show promising scaling for of-
fline Q-learning, and Pearce et al. (2023) demonstrate that diffusion models can be utilised to better
capture complex human action distributions. While these methods demonstrate the scaling potential
of imitation learning, they do not incorporate preferences for imitation of multi-modal behaviours.
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2.2 FINE-TUNING IMITATION LEARNING AGENTS WITH REINFORCEMENT LEARNING

Fine-tuning large imitation learning models has also demonstrated impressive results in recent years.
The use of imitation learning as pre-training for reinforcement learning was first investigated to
improve the sample efficiency of deep RL algorithms by reducing the exploration space (Hester
et al., 2017; Vecerik et al., 2018). AlphaGo (Silver et al., 2016) and subsequently AlphaStar (Vinyals
et al., 2019) demonstrated that scaling up imitation learning on human data could provide a strong
behaviour prior for performing reinforcement learning fine-tuning (to maximise the win-rate) in
environments like StarCraft where reinforcement learning from scratch is infeasible. VPT (Baker
et al., 2022) extended this paradigm to web-scale data by first training an inverse dynamics model
on MineCraft videos and then performing imitation learning on 70k hours of human gameplay. By
fine-tuning with reinforcement learning on task-specific rewards, the agent was the first to be able
to craft diamond tools. While these works demonstrate the potential of fine-tuning large imitation
models, they use hard-coded reward functions to maximise agent performance rather than align an
agent’s behaviour with subjective preferences.

2.3 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK FOR AGENTS

Training agents with human preferences has a long history, as reviewed by Wirth et al. (2017) and
Zhang et al. (2021) (including notably Bennett et al. (2009) and Bradley Knox & Stone (2008)),
leading to the popular modern formulation for deep learning proposed by Christiano et al. (2017).
This formulation involves training a reward model from human preferences using a Bradley-Terry
model (Bradley & Terry, 1952) to scale up costly human feedback, and then using that reward model
to train an agent with reinforcement learning to align its behaviour with the human preferences. This
idea was extended by Ibarz et al. (2018) to include imitation learning as pre-training to improve the
efficiency of early preference learning. PEBBLE (Lee et al., 2021) instead utilises unsupervised
pre-training rather than imitation learning to increase the diversity of initial behaviours for prefer-
ence labelling. More recently, Abramson et al. (2022) demonstrated the scalability of reinforcement
learning from human feedback at improving the task-completion success of imitation agents where
tasks are specified by natural language in a 3D simulated world. Rather than train a single capable
agent, in this work we envision a generally capable base agent that can be aligned by game design-
ers or end-users to perform different tasks or behave with different styles according to potentially
intangible preferences (Aytemiz et al., 2021; Devlin et al., 2021).

2.4 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK FOR LLMS

The capabilities of large language models have also developed significantly in recent years, with
overlap with decision-making agents that has inspired developments on both fronts. Radford et al.
(2018) demonstrated that pre-training a language model with an unsupervised generative task (pre-
dicting the next token) on a large diverse corpus of text, followed by fine-tuning on a specific task
dataset led to significantly improved performance compared to training on the task-specific dataset
alone. Stiennon et al. (2020) (following on from Ziegler et al. (2020)) then popularised the use
of reinforcement learning from human feedback (RLHF) to further fine-tune these responses, by
demonstrating that models aligned with human preferences could better summarise long text pas-
sages. This procedure was then applied to train language models to follow instructions, leading to
InstructGPT (Ouyang et al., 2022), Chat-GPT (OpenAI, 2022) and subsequently GPT-4 (OpenAI,
2023) models. This procedure has also been successful in open-source reproductions of these mod-
els, such as Open Assistant (Köpf et al., 2023), Claude (Bai et al., 2022) and Llama 2 (Touvron
et al., 2023). This recipe has also demonstrated success in generative vision tasks, where it has
been shown that generative pre-training has similar benefits for images (Chen et al., 2020), and re-
cently that RLHF can similarly be utilised to better refine state-of-the-art image generation models
(Xu et al., 2023; Black et al., 2023). While the components of this procedure have been applied
to behaviour models (i.e. agents) both individually (Christiano et al., 2017; Reed et al., 2022) and
in combination (Ibarz et al., 2018; Abramson et al., 2022), in our work we aim to investigate the
benefits of applying the entire modern LLM alignment procedure to agents trained end to end from
visual inputs to a general action space to generate multiple preference aligned agents from a large
base model.
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3 GAME ENVIRONMENT AND ALIGNMENT GOAL

For our analysis, we utilise the video game Bleeding Edge1, which was launched in 2020 for Xbox
One2. It is a team-based 4v4 online multi-player video game. Players select from thirteen possible
heroes, each with different abilities. The game is played with a third-person view, with the camera
angle controlled by the player, so the environment is partially observable. Here we focus on a single
map, called Skygarden. This map is spread over three islands each with multiple elevation levels,
including a main island and two launch islands (one for each team).

3.1 ALIGNMENT OBJECTIVE

At the beginning of the game, players spawn at one of four nearby points on their team’s launch
island. As players compete on the main island, they may be attacked by opposing team players,
also leading to them respawning at one of these four points. From the spawn location the player can
navigate across the launch island to one of three jumppads that launches the player from their launch
island onto the main island. Depending on the jumppad selected, the player will be launched onto
different areas of the main island, so players may wish to take different jumppads during a match
depending on the location of opposing team players. For the purpose of this work, we aim to train
an agent to consistently navigate across the launch island to a single one of the three jumppads.

This small part of the full game therefore provides an academically illustrative task in which the
human data distribution is distinctly multi-modal, but we would like our agent to learn a single
mode of behaviour. Since the task requires around 60 consistent actions to complete for an optimal
agent, a random agent will rarely leave the spawn area. Additionally, without access to privileged
information such as the agent location (we only provide visual input as described below) and an
externally shaped reward function, it would be difficult to train an agent to complete this task. On
the other hand, an imitation learning agent with a suitable objective will learn to reach all three of
the jumppads, as in the human distribution. Therefore while the task is simple, it provides a clear
motivation for alignment and a setting which we can concretely analyse.

(a) (b) (c)

Figure 2: Screenshots of the agent at a spawn point (2a), heading towards the middle jumppad (2b),
and an agent looking back at the launch island after having launched from the right jumppad (2c)

3.2 OBSERVATION AND ACTION SPACES

To maintain the generality of our approach to any 3D environment, we take visual gameplay obser-
vations ot ∈ RH×W×3 as input, sampled at 10Hz. We do not provide any privileged information, so
the agent only has access to input information available to human players. The action space consists
of 12 action commands and two joysticks. The left joystick controls the movement of the agent,
while the right joystick controls the camera angle.We decompose each joystick into an x and a y
component which are independently discretised into 11 buckets. This creates a 12 + 2 + 2 = 16
dimensional discrete action space in total, although the joystick dimensions are of most relevance to
our objective.

1https://www.bleedingedge.com/en
2https://www.pcgamingwiki.com/wiki/Bleeding_Edge
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4 IMPLEMENTATION AND ANALYSIS

We now follow the general procedure outlined in Figure 1 and describe our specific implementation
of this procedure for obtaining an agent aligned to reliably head towards and reach a preferred
jumppad. We analyse the key components of this procedure to provide insight into the practicalities
of aligning agents with preferences in a 3D environment from visual input.

4.1 TRAINING A BASE IMITATION LEARNING MODEL

We aim to use a minimal but scalable approach for training a base imitation learning model from
visual observations to predict gamepad actions. This provides a behavioural prior with a general
understanding of human gameplay. Specifically we train a transformer autoregressively to learn a
policy p(at|ot, ..., ot−H) using a cross-entropy loss. For the purpose of this work, we consider an
agent trained on diverse data within a particular game, but note that given our unified observation
and action spaces (such as the visual observations and gamepad actions we consider), it would also
be possible to train across games, as explored in previous work (Reed et al., 2022; Lee et al., 2022).

Dataset: For general pre-training, a dataset was extracted from recorded human gameplay, as ex-
plained in Appendix C. This large unfiltered dataset consists of 71,940 individual player trajectories
from 8788 matches recorded between 09-02-2020 and 10-19-2022, which amounts to 9875 hours
(1.12 years) of individual gameplay. For the purposes of this work, we utilise an agent that was
trained for less than one epoch on this dataset.

Architecture and Training: For the policy, we use a GPT-2 (Radford et al., 2019) causal trans-
former architecture with 103M parameters, similar to that used by VPT (Baker et al., 2022). Ob-
servations from the human gameplay ot ∈ RH×W×3 are taken directly as input to a convolutional
encoder to give observation embeddings zt. The transformer is trained with a context window of
H = 32 timesteps (corresponding to around 3s of gameplay given the 10Hz sampling). The context
window is important since the game is partially observable: as the context window is increased, the
agent is able to better capture the state of the environment and take more informed actions (i.e. with
a more Markovian state) at the cost of computational complexity. The output corresponds to the 16
discrete action dimensions. The transformer and convolutional encoder are both trained end to end
with a cross-entropy loss over all output action components to provide a policy p(at|ot, ...ot−H).

L(π) = −
∑
τ∈D

∑
t

log π(aτt |oτt , oτt−1, ...) (1)

Evaluation: Once trained, we ran our base pre-trained agent online in the game environment
and recorded which jumppad was reached for 1000 episodes. To run the agent online, we ini-
tialised the Ninja character with an empty context buffer at one of the four spawn points on a
single launch island at random. We ran the agent until it reached one of the jumppads or timed
out after 100 timesteps. The jumppad distribution reached is demonstrated in Figure 3 below.
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Figure 3: Distribution of jumppads reached by the
base imitation learning agent.

We find that our base model reaches a jump-
pad 56.4% of the time, and has a bias towards
the middle jumppad. Our base model therefore
provides a reasonable behavioural prior that is
much better than random exploration of the
launch island (which has a 0% success rate).
However, the success rate could be improved,
which is likely partly due to under-training of
our base model, and partly due to distribution
shift between the offline data and the online en-
vironment. For example, the base model was
trained on data containing all thirteen possi-
ble characters, while our online evaluation only
uses the default Ninja character. Additionally, we initialise our agents online at the spawn point with
an empty context buffer, while in training the agent will have access to context including a spawn
animation and prior gameplay. While measures can be taken to avoid this offline to online shift,
some distribution shift is usually unavoidable as we discuss further in Appendix E.
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4.2 SUPERVISED FINE-TUNING ON TASK RELEVANT DATASET
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Figure 4: Distribution of jumppads reached by the
fine-tuned imitation learning agent.

Following the LLM pipeline, we now fine-tune
our agent on a curated dataset of the task we
wish to imitate. Pre-trained transformer models
have been shown to fine-tune more effectively,
essentially increasing the size of the fine-tuning
data compared to training from scratch (Her-
nandez et al., 2021). For this work we focus on
fine-tuning on a task relevant subset of the pre-
training data. However, we note that for spe-
cific behaviours or tasks, this could also consist
of fine-tuning on demonstrations of the desired
behaviour by the game designer.

Dataset and Training: To obtain a task relevant dataset, we curated 300 trajectories (100 successful
trajectories per jumppad) for fine-tuning, all of which involved the character Ninja and were filtered
to contain only the part of the trajectory on the launch island after the first respawn until a jumppad
was reached.

Results: We evaluated our agent in the environment again for 1000 episodes, following the same
procedure as before. We see in Figure 4 that the success rate of reaching the jumppad is now
significantly higher (88.6%), and that the agent reaches all three jumppads around a third of the time
(corresponding to the dataset we fine-tuned on). As an ablation, we also considered training the
model from scratch on the fine-tuning dataset, but found that agent performance is less robust than
fine-tuning the pre-trained model, as shown in Appendix D.4.

4.3 OBTAINING PREFERENCE DATA ON ONLINE ROLLOUTS

Once the policy has been fine-tuned on the behaviours of interest, it can be rolled out online multi-
ple times to generate trajectories for human feedback. We use the fine-tuned agent for these since
it provides more suitable trajectories for soliciting preferences compared to the base agent. This
is analogous to generating multiple LLM responses to a prompt, but in this context the prompt be-
comes the initial observation (and optionally context of previous observations and actions provided).
Similarly to LLMs, there are tradeoffs to be made in the diversity, quality and quantity of prefer-
ences when provided by humans (discussed further in Appendix J), but here we avoid such issues
by utilising synthetic preferences to isolate the effect of quantity.

Online Rollouts: Equivalent to the previous evaluation, we initialised the Ninja character with
an empty context buffer at one of the four spawn points on a single launch island at random, and
ran the agent until it reached one of the jumppads or timed out after 100 timesteps. We repeated
this procedure to generate a video dataset of 2400 on-policy trajectories to be used for preference
labelling and analysis. We subsequently divided these trajectories into train and test datasets, with
1000 trajectories for training and 1400 for evaluation.

Generating Preferences: For the purposes of our analysis, we utilise synthetic preferences based
on the primary criteria:

Preferred Jumppad Reached > Other Jumppad Reached > No Jumppad Reached

Within each of these primary categories, we further rank trajectories by their duration, with shorter
trajectories being preferred. By selecting variable numbers of trajectories within the training dataset,
we are then able to investigate how reward model performance scales with number of comparisons
(which is a proxy for the human labelling time requirement). The preference dataset is then created
by considering all pairwise comparisons utilising the criteria above for determining if one trajectory
is preferred over another or if they are equal.

4.4 TRAINING A REWARD MODEL ON PREFERENCES

A reward model is then trained on these online trajectories such that the reward model provides
higher reward for preferred trajectories. While this reward model is usually trained from scratch in
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the context of agents, following the modern LLM procedure it is also possible to utilise the fine-
tuned policy model by replacing the action classification head with a scalar regression head such
that the reward model can also benefit from the pre-training, and share the same knowledge as the
agent to reduce hallucinations (i.e. reduce out-of-distribution behaviours) (Ziegler et al., 2020).

Dataset: We use the video recordings of the online agent trajectories from spawn until jumppad (or
timeout) together with pairwise comparisons obtained from the preferences P , (τA ≻ τB) ∈ P .

Procedure: We follow the standard Bradley-Terry (Bradley & Terry, 1952) model procedure to
train a reward model r̂ from these pairwise preferences. Specifically, we interpret trajectory rewards
as preference rankings analogous to Elo (Elo, 1978) rankings developed for chess, such that the
annotator’s probability of preferring a trajectory depends exponentially on the trajectory reward. We
can then fit the reward model by minimising the cross-entropy loss between these probabilities and
the preference labels (Christiano et al., 2017), which gives:

L(r̂) =
∑

(τw,τl)∈D

− log

(
σ
(
r̂(τw)− r̂(τl)

))
(2)

where σ is the sigmoid function and (τw, τl) are the trajectories being compared, with τw being the
winning (preferred) trajectory and τl being the losing trajectory.

Since the reward model is only trained on comparisons, the scale of the predicted rewards is arbitrary.
As a result, we found the need to apply a small amount of L2 regularisation to prevent the scale
of the rewards becoming overly large for the best and worst trajectories considered. We further
empirically normalise the reward model after training using the max and min of predicted rewards
over the training trajectories to scale our reward model output to be in the range r̂ ∈ [0, 1].

Architecture: Previous work on RLHF for agents has generally relied on simple (often linear)
reward models (Bıyık et al., 2021). However recent work on LLMs has demonstrated that reward
models that utilise the pre-trained or fine-tuned policy model with the action classification head
replaced with a scalar regression head generally perform better (Stiennon et al., 2020), and also
improve with scale (Ouyang et al., 2022; Touvron et al., 2023). Following this procedure, we extract
embeddings from our agent to produce a 1024 dimensional embedding for each timestep, which
are fed into the reward model to produce a scalar return for the trajectory which is then input to
the loss function in Equation 2. As an ablation, to investigate whether the representation of the
observations used for the agent for imitation learning are also beneficial for learning the reward
(i.e. predicting preferences), we consider a reward model with an equivalent architecture but with
a randomly initialised encoder to provide random projections of the image as embeddings for each
timestep. We further investigate how reward model performance scales with number of comparisons,
to obtain an estimate of the human time required to provide sufficient feedback for training the
reward model.
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Figure 5: Reward model test performances.

Results: To measure the performance of our re-
ward models, we apply each reward model to our
test trajectories. We compute the pairwise prefer-
ences according to the reward model, and compare
to the ground truth pairwise preferences to obtain
a test set preference accuracy. We provide our re-
ward model performances in Figure 5.

We find that reward model accuracy generally in-
creases with number of comparisons, although the
random projection reward model has high vari-
ance. Importantly, the reward model utilising the
agent encoder performs better than the reward
model using random projections across the full
range of comparison sizes, suggesting that the im-
itation learning agent’s representations of the ob-
servations contains information beneficial to pre-
dicting preferences. We further find that when us-
ing this encoder it is possible to train a reward model from visual input to achieve over 90% prefer-
ence accuracy with only ∼ 100 comparisons. While we utilised synthetic preferences, we note that
this would correspond to less than 1 hour of labelling time for our task.
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4.5 ALIGNING THE FINE-TUNED MODEL WITH THE REWARD MODEL

Finally, we align our agent with our behaviour preferences as captured by our reward models.

Procedure: We run our fine-tuned agent in our environment as described in Section 3 to generate
online rollouts. After each trajectory is complete, we apply our reward model to the trajectory to
generate a reward corresponding to that trajectory. We then use this reward as the return for that
trajectory and update our agent policy π using a minimal undiscounted REINFORCE (Williams,
1992) loss. While the LLM literature commonly uses PPO (Schulman et al., 2017), we utilised
REINFORCE for simplicity.

For our experiments we ran our agent online for 9600 episodes (corresponding to around 1 day of
real time gameplay), using a batch size of 16 to give 600 online parameter updates, for 3 independent
runs. We fine-tune only the last layer for our work, but note that modern approaches such as Low-
Rank Adaption (LoRA) (Hu et al., 2021) used for fine-tuning LLMs could also be used here. We
also investigated the use of an additional KL divergence term to regularise the optimised policy
towards the initial fine-tuned policy, as is commonly used in LLM alignment (Touvron et al., 2023;
Bai et al., 2022), but found it unnecessary in preliminary experiments.

4.5.1 ALIGNING AGENT TOWARDS LEFT JUMPPAD

Figure 6: Left jumppad success rate during online
alignment. Red lines show the fine-tuned agent
from Section 4.2 aligned with reward models of
varying performance (darker corresponds to more
preference data). Blue lines correspond to addi-
tionally fine-tuning the agent on the 20% high-
est reward trajectories before online alignment.
We see: 1) Higher accuracy reward models (us-
ing more preference data) generally lead to bet-
ter alignment, 2) Preference fine-tuning improves
performance across reward models and updates.

We begin by focusing on aligning our agent
towards the left jumppad. We plot the aver-
age success rate of reaching the desired jump-
pad against the # of episodes with reward mod-
els that have been trained on 100 up to 500k
comparisons in Figure 6. We see that all of
our reward models are sufficient to align our
agent to consistently reach the left jumppad,
with reward models trained on more data (that
achieved higher test performances) generally
leading to better alignment.

However, we see that the agents take most of
the 600 updates to fully align in our simplis-
tic setup, corresponding to 1-3 days of real
time training. To improve this efficiency, we
consider the addition of an additional prefer-
ence fine-tuning phase on the preferred trajec-
tories. Specifically, we apply the reward model
to the trajectories it was trained on and take
the top 20% of trajectories by reward (corre-
sponding to the preferred trajectories) and per-
form additional fine-tuning on these trajecto-
ries. We note that this is equivalent to Rein-
forced Self-Training (ReST) concurrently in-
troduced for aligning language models (Gul-
cehre et al., 2023) with a single iteration of fil-
tered fine-tuning. We find that this improves
online performance across updates and across
all reward models, shown in Figure 6 (fine-tuned agents shown in blue, with equivalent reward mod-
els to those shown in red). However, in the absence of additional iterations of this procedure, we
find that subsequent reinforcement learning still improves alignment.

4.5.2 ALIGNING AGENT TOWARDS RIGHT JUMPPAD

We now consider aligning our agent towards the right jumppad. Since this task is seemingly of
identical difficulty, we would expect to once again be able to easily align the agent. However,
we can see in Figure 7 that both the fine-tuned and preference fine-tuned agents do not align as
quickly towards the right jumppad, although they show similar trends in terms of initial preference
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Figure 7: Right jumppad success rate
during alignment, equivalent to Figure 6.
Similar trends hold, but alignment is less
effective.

Figure 8: Fine-tuned agent trajectories
which reached the left (red) or right (green)
jumppads. While fine-tuning enables more
efficient preference labelling, it reduces di-
versity, potentially limiting alignment.

fine-tuning being beneficial for all reward models across alignment updates, and better performing
reward models (using more preference data) generally aligning better.

In order to investigate the cause of this discrepancy, we analyse the rollouts of the fine-tuned agent in
Figure 8. We see that for the trajectories that successfully reach the left jumppad, they start relatively
evenly at all 4 possible spawn locations. However, of the trajectories that successfully reach the right
jumppad, 84% originate from only 1 of the spawn locations (15% from another, and only 1% from
the 2 spawns on the right hand side). Therefore it is unsurprising that it is more difficult for the
agent to learn to go right, given that in half the episodes (corresponding to the right spawn locations)
the agent rarely receives any positive signal (although more sophisticated RL algorithms may help
to alleviate this difficulty). To confirm this hypothesis we demonstrate that the base agent can be
aligned more symmetrically in Appendix G. Final jumppad distributions for our aligned agents are
shown in Appendix H and a heatmap illustrating the alignment pipeline is shown in Appendix I.

These results highlight the importance of maintaining diversity of behaviour when attempting to
align agents (Touvron et al., 2023; Casper et al., 2023). At every stage of the alignment pipeline,
the agent becomes increasingly specialised and less diverse in its behaviour. While this generally
leads to more efficient learning and alignment, it can also cause unintended outcomes such as the
increased difficulty we find with aligning towards the right jumppad compared to the left. Fur-
thermore, these results highlight the importance of the alignment procedure described, to gradually
refine the behaviour at each stage. Additional research on improving the robustness and efficiency
of this procedure for more unbalanced and limited datasets available in the context of agents will be
important for practical application of the LLM paradigm to gameplaying agents and beyond.

5 CONCLUSION

In this paper, we have provided an analogy between training agents to perform desired behaviours
in complex game environments and training large language models. We demonstrated a proof of
concept for using this procedure to align agents with preferences from pixels on a modern console
game. This enabled us to train an agent to achieve a specific behaviour in the game that would be
difficult to achieve with either imitation learning, reinforcement learning or reinforcement learning
from human feedback alone. Our analysis shows that many of the recent developments in the current
procedure for training large language models, such as using a supervised fine-tuning step and using
pre-trained reward models, can be applied and have similar benefits for training agents. We hope that
our work encourages further communication and collaboration between the gaming and language
model communities to enable shared insights and provide a path towards practical application of
generally intelligent agents in modern games.
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ETHICS STATEMENT

This work considers aligning large scale imitation agents with human preferences. The preferences
considered in this work are synthetic for analysis purposes, but in general the source of the prefer-
ence data is an important ethical consideration to understand any biases in alignment. The data used
for the base imitation learning agent is however real human data, for which data collection was cov-
ered by an End User License Agreement (EULA) to which players agreed when logging in to play
the game for the first time. Our use of the recorded human gameplay data for this specific research
was governed by a data sharing agreement with the game studio, and approved by our institution’s
IRB. To minimize risks regarding data privacy, any personally identifiable information (Xbox user
ID) was removed when extracting the data used for this study from the original replays.

More generally, research into aligning agents with preferences is important to ensure that agents are
helpful and harmless. However, this procedure has various known open problems and limitations
(Casper et al., 2023). Games therefore provide an important test bed for such research, helping to
mitigate risks and provide insights that may generalise to other applications.

REPRODUCIBILITY STATEMENT

The general procedure proposed in this work (outlined in Figure 1 and discussed in Appendix A) is
widely reproducible. Efforts have been made to ensure that all important implementation details for
our application of this procedure are reflected in the paper (Section 4) and the authors are happy to
disclose any details that may have been unintentionally missed. While we are unable to release the
human gameplay data and environment for privacy and intellectual property reasons, we hope that
our results and analysis provide insight into the potential benefits and challenges of applying this
approach to agents in such environments. We also aim to inspire further research into each of the
components of the pipeline, and reproduction of this work in other environments and domains.
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A DISCUSSION OF GENERAL PROCEDURE FOR ALIGNING AGENTS

We break down our procedure for aligning agents with preferences (see Figure 1) into five steps:

1. Train a Base Imitation Learning Policy
The first ingredient for training large language models is to train a large, scalable trans-
former architecture with self-supervised next-token prediction on a diverse dataset of hu-
man text to obtain a general understanding of the structure of human language and learn a
language prior. In the context of agents on modern console games, we interpret this as imi-
tation learning to predict the next action taken in human gameplay data to obtain a general
understanding of human gameplay and learn a behavioural prior. Specifically this involves
training a transformer autoregressively to learn a policy p(at|ot, ..., ot−H) using a cross-
entropy loss. For the purpose of this work, we consider an agent trained on diverse data
within a particular game, but note that given our unified observation and action spaces (such
as the visual observations and gamepad actions we consider), it would also be possible to
train across games, as explored in previous work (Reed et al., 2022; Lee et al., 2022).

2. Supervised Fine-Tune on a Task Relevant Dataset
The next step in the current LLM pipeline is to fine-tune the foundation model on task
relevant data, such as instruction data (Chung et al., 2022). Pre-trained transformer models
have been shown to fine-tune more effectively, essentially increasing the size of the fine-
tuning data compared to training from scratch (Hernandez et al., 2021). For decision-
making agents this involves fine-tuning by imitation learning on the objective (or game)
of interest, although may not be required if the base agent is already behaving well. For
specific behaviours or tasks, this could also consist of fine-tuning on demonstrations of the
desired behaviour by the game designer. The training procedure is equivalent to step 1.

3. Generate Preference Data on Online Trajectories
Fine-tuned LLMs are subsequently prompted to generate multiple responses which are
compared by human labellers to provide preferences. In the context of agents, the prompt
becomes the initial observation (and optionally context of previous observations and actions
provided). The agent is then rolled out from a given initial start state multiple times to
collect multiple trajectories. Similarly to LLMs, the temperature of the softmax sampling
of the policy for action selection can be increased to generate more diverse behaviours from
the agent for easier comparison. A human (e.g. game designer) then provides preferences
on these trajectories, such as preferring trajectories where the agent plays in a certain style.

4. Train a Reward Model on Preferences
A reward model is then trained on these online trajectories such that the reward model
provides higher reward for preferred trajectories, commonly using a Bradley Terry model
(Bradley & Terry, 1952) for pairwise comparisons. While this reward model is usually
trained from scratch in the context of agents, following the modern LLM procedure it is
also possible to utilise the pre-trained or fine-tuned policy model by replacing the action
classification head with a scalar regression head such that the reward model can also benefit
from the pre-training, and share the same knowledge as the agent to reduce hallucinations
(i.e. reduce out-of-distribution behaviours) (Ziegler et al., 2020).

5. Align the Fine-tuned Model with the Reward Model
Finally the agent can be trained with online reinforcement learning, and optionally prefer-
ence filtered fine-tuning, to maximise the reward provided by the reward model, thereby
aligning the agent with the game designer’s preferences. Since online reinforcement learn-
ing can be inefficient, further fine-tuning can be performed on the high reward trajectories
to get the agent closer to the desired behaviour before deploying it online. A common
failure mode at this stage is reward model over-optimisation, where the agent performs be-
haviours that maximise the reward model output but are not aligned with preferences (also
known as reward hacking). If this occurs, regularisation towards the original policy can
be added or steps 3-5 can be repeated to generate new preferences on the reward hacking
behaviour which can be used to re-train the reward model. This may take multiple iter-
ations (e.g. 5 reward model iterations were used for Llama2 (Touvron et al., 2023)), but
eventually results in an aligned agent.
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This procedure combines the benefits of large scale pre-training to obtain an informed and general-
isable agent, with the benefits of reinforcement learning from preferences to obtain an agent reliably
aligned with behaviour preferences. The online fine-tuning also helps to alleviate the well-known
problems associated with imitation learning/offline agents going out of distribution (Ross et al.,
2011) by refining the behaviour online.

B ARCHITECTURES AND TRAINING DETAILS

B.1 BASE MODEL

For our base model (∼ 103M parameters) we use a GPT-2 causal transformer architecture with 8
layers with 1024 hidden dim. Each attention layer has 8 heads, and the feedforward layers have a
hidden dim of 4096.

Each image is resized to be of shape 128× 128× 3, divided by 255 to put its values in [0, 1], and is
then fed into a convolutional encoder to map it to a 1024 dimensional vector.

The first layer of the conv net has kernels of shape 8 × 8, with a stride of 4, and a padding of
3 and maps to 16 channel dimension. This is followed by 4 lots of ConvNext (Liu et al., 2022)
and downsampling blocks (kernel of shape 3 × 3, stride of 2, padding of 1, doubling the channel
dimension). Finally, a LayerNorm (Ba et al., 2016) is applied to the output.

The transformer operates on sequences of 32 timesteps using learnt positional encodings.

The output of the transformer is layernormed, and then fed into an MLP with a single hidden layer
of 1024 dimensions with a GELU (Hendrycks & Gimpel, 2016) non-linearity.

For our optimiser we use AdamW (Loshchilov & Hutter, 2017) with a learning rate of 1e − 4 and
a weight decay of 1e − 4. We use a batch size of 256 with a learning rate warmup period of 1000
updates and a gradient clipping value of 1.

We train with the same image augmentations as used by (Baker et al., 2022), and filter out all no-op
actions.

B.2 FINE-TUNING OF BASE MODEL

We train for 1500 batches of size 128 with a learning rate of 1e− 6 with the same image augmenta-
tions and no-op filtering as for pre-training with 200 warmup steps.

B.3 REWARD MODELS

Each trajectory is padded up to the maximum length of 100 (with 0 images) before being fed into
the reward models.

For the Random Encoder model we randomly initialise a linear layer to randomly project the
flattened values of the image to a 512 dimensional vector. This linear layer is not trained.

For the Agent Encoder model, we feed the trajectory into the fine-tuned agent and take the lay-
ernormed output of the transformer, corresponding to timesteps 0 up to 100, as the 1024 dimensional
embeddings. The parameters of the fine-tuned agent are not trained.

For both models we then feed these vectors into an MLP with a GELU non-linearity and a hidden
layer of 256 and and output dimension of 3. Each of the 100 3-dimensional vectors are concatenated
together and then fed into another MLP with a GELU, 256 hidden dimension, and an output of 1.

To train the reward models we use a minibatch of size 2048, learning rate of 1e − 4, and an L2

regularisation penalty of 0.1. We train all models for 200 epochs, except for the largest training set
size of 1000 trajectories which we train for 50 epochs.

After training, we compute the minimum and maximum outputs of the reward model on the training
set. These are then used to normalise the output of the reward model to lie within [0, 1].
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B.4 ALIGNMENT TRAINING

Preference Fine-Tuning: after training the reward model on its dataset of M trajectories (which
result in a dataset of up to N = (M)(M − 1)/2 comparisions), we compute the reward for each of
these M trajectories. We then sort them by magnitude, and take the top 20% of these as a smaller
dataset to perform behaviour cloning on.

For this final step of BC, we use a learning rate of 1e− 5 with 1000 updates on minibatches of size
256. We only train the parameters of the MLP after the transformer layers.

Reinforcement Learning: in our experiments we use an undiscounted REINFORCE loss on
batches of 16 episodes of up to 100 timesteps. We use a learning rate of 1e − 4 and once again
only train the parameters of the MLP after the transformer layers. If an error occurs during an
episode’s rollout, we simply drop the samples from that episode and subsequently use a smaller
batch size for the update.

C BLEEDING EDGE GAME HUMAN DATA COLLECTION

Human gameplay data was recorded as part of the regular gameplay process, in order to enable in-
game functionality as well as to support future research. In game, recordings allowed players to view
their past games to improve their skills and for entertainment. Games were recorded on the servers
that hosted the games in the form of so-called replay files. Recordings include a representation of
the internal game state and controller actions of all players.

D ABLATION OF UNSUPERVISED PRE-TRAINING AND MODEL SCALING

D.1 ABLATION OF UNSUPERVISED PRE-TRAINING

We see from the results in Sections 4.1 and 4.2 that fine-tuning improves the task-specific per-
formance of our pre-trained agent. However, to determine whether fine-tuning our base model is
beneficial over simply training a model from scratch on our curated task-specific dataset, we also
ablate the unsupervised pre-training stage. We train our agent from scratch for 20k updates, using
the same procedure as used previously for fine-tuning (see Appendix B) until the loss appeared to
converge. We subsequently evaluated the agent in the environment for 1000 episodes following the
same procedure described in Section 4. The distribution of jumppads reached by the agent trained
from scratch on the fine-tuning dataset is shown below (left) for comparison with the original pre-
trained+fine-tuned agent (right) in Figure 9.
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Figure 9: Distribution of jumppads reached by an imitation learning agent trained from scratch on
the task-specific dataset used for fine-tuning the base model (left) compared to the base agent that
was fine-tuned on this dataset.

We find that this agent has a greater failure rate (around 20% for the fine-tuned only agent fail to
reach any jumppad compared to only around 10% for the pre-trained+fine-tuned agent) and a much
narrower distribution of jumppads reached. This is surprising given the task-specific dataset consists
of successful trajectories evenly split between the jumppads.

As additional anecdotal evidence for the benefit of unsupervised pre-training, we also noticed a fine-
tuned agent miss a jumppad, hit the wall behind and then turn around to hit the jumppad. Since the
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fine-tuning dataset consists of only curated trajectories that directly hit the dataset, this behaviour
was not present in the fine-tuning dataset, and agents trained from scratch on the fine-tuned dataset
are found to continuously run into the wall if they miss the jumppad, as they have never seen that
observation before. This behaviour is shown in the supplementary videos of our agent at:

https://anonymous.4open.science/r/aligning-agents-like-llms/
Fine-Tuned%20Model/Fine-Tuned%20Missing%20but%20Turning%20Around.
mp4.

This provides further anecdotal but intuitive evidence for the benefits of unsupervised pre-training.

D.2 PRELIMINARY MODEL SCALING ANALYSIS

To further justify the model size and investigate scaling properties of our transformer policy, we also
trained smaller models of 4M and 25M parameters with equivalent architectures (described below
in D.3) on our task-specific dataset, using the same procedure as above. The jumppad distributions
for these models are provided in Figure 10.
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Figure 10: Distribution of jumppads reached by various size models (4M, 25M and 103M param-
eters) trained from scratch on the task-specific dataset used for fine-tuning the base model. Impor-
tantly, we see that task failure rates (the grey bars on the left) decrease as the number of parameters
increases, even given the same size of dataset and number of training updates.

We see that these smaller models have much greater failure rates that the larger 103M parameter
models shown in Figure 9, demonstrating that larger models are beneficial for imitation learning
from pixels even on this relatively small task-specific dataset of 300 trajectories. While larger models
still may be beneficial (particularly with pre-training on our large unsupervised dataset described in
Section 4), larger models would further increase the crucial inference cost and we find that 103M
parameters is sufficient for further alignment, as demonstrated in Figure 9.

D.3 SMALL MODELS ARCHITECTURE

The architecture of our 2 smaller models is identical to that of the base model described in Section
B, except for:

• ∼4M: 4 layers with 256 hidden dims and 4 heads for each attention layer.

• ∼25M: 8 layers with 512 hidden dims and 8 heads for each attention layer.

• (∼103M: 8 layers with 1024 hidden dims and 8 heads for each attention layer.)
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D.4 ALIGNMENT OF MODELS TRAINED FROM SCRATCH BY SIZE

To complete our ablation, we now investigate how pre-training and model size affects online align-
ment. To do so we followed our procedure in Appendix A and rolled these models out and generated
preferences as in Section 4. We then trained the corresponding reward models and compare aligning
these models trained from scratch to our pre-trained + fine-tuned model, as shown below in Figure
11.

Figure 11: Left and right jumppad success rate during online alignment for models of different sizes
trained from scratch using corresponding reward models trained on 500k comparisons.

We see that our pre-trained model aligns significantly better than the equivalent size model trained
from scratch when aligned left, but worse when aligned right.

We also see that larger models generally align better in terms of increase in success rate during
alignment, although the bias of the 25M parameter model towards going right make this trend less
clear.

We note that in this experiment we only considered using the reward models trained on 500k com-
parisons, in order to see whether it was possible to successfully align a model trained solely on our
small task-specific dataset. As noted in the previous section, these models have significantly less
diversity in their behaviour than the model first pre-trained and then fine-tuned. This makes it much
more costly (in terms of time to produce and subsequently provide labels) to generate sufficient
examples of the desired behaviour (less than 10% of trajectories successfully reached the left jump-
pad for the from scratch model for example compared to over 30% for the pre-trained + fine-tuned
agent).
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E DISCUSSION OF OFFLINE TO ONLINE DISTRIBUTION SHIFT

As we mention in Section 4, the nature of using a real AAA video game is such that there is signif-
icant offline to online distribution shift between our offline training data and our online evaluation.
One such source is due to character selection and customisable visual modifications, as shown below
in Figure 12. Figures (a)-(d) are taken from our task-specific dataset and are representative of the
input provided to our agent (only 256× 256 rather than 128× 128 resolution), while (e) shows the
agent we use for evaluation, demonstrating the significant distribution shift in our environment.

(a) (b) (c) (d) (e)

Figure 12: Screenshots of various agents with visual modifications performing our task contained
within our general pre-training data. All are completely representative of the input provided to our
agent (only 256× 256 rather than 128× 128 resolution). Figure (e) demonstrates the agent we use
for online evaluation.

It is well-known that offline imitation learning often suffers from online distribution shift, particu-
larly when learning from pixels in a partially observable environment, and due to action sampling
(both of which we have in our setting) even without these significant visual changes, due to accumu-
lating errors (Ross et al., 2011). The visual distribution shift in our environment only exacerbates
these issues. As a result, imitation learning agents may not consistently perform imitated behaviours
online even if the loss has converged on the offline data. This motivates the need to have some online
fine-tuning (in our case from preferences) to refine the policy to consistently perform the desired be-
haviour online. Figure 4 demonstrates that even after the supervised fine-tuning stage on a dataset
of trajectories that always reach a jumppad and involve the same character, a significant proportion
of trajectories (∼ 10%) do not reach any jumppad. However, after online fine-tuning, we are able to
increase the success rate of the desired jumppad as shown in Figure 6, and the success rate overall
for the left-aligned agent (see Appendix H).

Recent offline to online reinforcement learning literature has noted that there is often a performance
drop when transferring an agent from the offline to online setting and provided approaches to mit-
igate this (Nair et al., 2021; Nakamoto et al., 2023; Ball et al., 2023). However, we highlight that
these issues arise in offline RL due to the need to learn a pessimistic value function offline which is
then not reflected by the true values found online. In our case we train only a policy offline (with
imitation learning) and fine-tune this policy online (with on-policy REINFORCE from preferences).
Therefore we do not utilise a value function, which means that we are able to achieve a smooth
performance improvement online as demonstrated in Figure 6.
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F REWARD MODEL PERFORMANCES BY JUMPPAD

Test reward model performances against number of comparisons used for training by jumppad are
shown below in Figure 13.
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Figure 13: Test reward model performances against number of training comparisons by jumppad.
Both jumppads show the same trend for the agent encoder, reaching ∼ 90% performance for 100
comparisons and 100% performance by 500k comparisons. The random encoder is high variance,
suggesting that the model does not have enough information to successfully generalise even for large
numbers of training preferences.
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G ALIGNMENT OF BASE MODEL FOR COMPARISON WITH FINE-TUNED
MODEL

To understand how trajectory diversity affects alignment, we also consider aligning the base agent
using the same reward models (trained on the fine-tuned agent). By plotting the successful trajecto-
ries that reach the left and right jumppad we see that the base agent (left) has a greater diversity than
the fine-tuned agent (right). We note that from figures 3 and 4, the success rate for reaching the left
and right jumppads is also lower.

Figure 14: Base agent (left) and fine-tuned agent (right) trajectories for which the agents successfully
reached the left (red) or right (green) jumppads. While fine-tuning provides a greater success rate,
enabling more efficient preference labelling, it also reduces diversity of trajectories.

We now align the base agent to reach the left and right jumppads using the reward models trained on
the fine-tuned agent, as shown below. We find that the agent can be aligned more symmetrically with
both the left and the right jumppads, although alignment with the left jumppad still has a slightly
better performance. However, in comparison to alignment of the fine-tuned agent (Figures 6 and 7),
we see that the alignment is much slower, starting at a lower success rate, not increasing as quickly
during training, and reaching a lower final success rate. As before, we see the same general trend
that higher accuracy reward models (using more preference data) lead to better alignment.
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Figure 15: Left jumppad success rate for
base agent using fine-tuned agent reward
models.
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Figure 16: Right jumppad success rate for
base agent using fine-tuned agent reward
models
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H FINAL ALIGNED AGENT JUMPPAD DISTRIBUTIONS

Jumppad distributions for our final agents aligned to go left and right using preference fine-tuning
and online alignment with reward models trained on 500k preferences are shown below.

First we partially align our agents with preference fine-tuning using our (500k comparison) reward
models, so that the behaviour distributions are closer to the desired behaviour distributions to reduce
the alignment required online, as shown in Figure 17.
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Figure 17: Left and right jumppad success rate for agents partially aligned with preference fine-
tuning with reward models trained on 500k preferences.

We see that preference fine-tuning starts to align our agents towards the desired behaviour, but does
not fully align our agents. Therefore we then perform online reinforcement learning using our (500k
comparison) reward models until our agents are fully aligned.
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Figure 18: Left and right jumppad success rate for our fully aligned fine-tuned agents using prefer-
ence fine-tuning and online reinforcement learning with reward models trained on 500k preferences.

Final evaluation shows that our agents have now been effectively fully aligned with our desired
behaviour.
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I HEATMAP AND VIDEOS OF GRADUAL ALIGNMENT OF AGENTS

To help visualise the gradual alignment of our agent, we provide a heatmap of the agent trajectories
at each stage of our alignment pipeline below in Figure 19.

Base Agent Trajectories Finetuned Agent Trajectories

Right Preference  
Aligned Agent 
Trajectories

Left Preference 
 Aligned Agent 

Trajectories

Figure 19: Heatmap of agent trajectories at each stage of our alignment pipeline. 1000 rollouts
shown in each figure.

We see that the base agent trajectories are relatively diverse, capturing a variety of human be-
haviours, including those that do not reach a jumppad, or take a very indirect route to do so. The
fine-tuned agent which has been refined on curated task-specific/demonstration trajectories shows
more direct trajectories to the jumppads, but still does not incorporate any preference regarding the
the jumppad which we would like our agent to reach. Finally, by training a reward model on these
fine-tuned agent trajectories to capture our preferences, we are able to use that reward model for
preference fine-tuning and subsequent online reinforcement learning to align our agent to reliably
perform the desired behaviour, be it to reach the left or the right jumppad.

Videos of the behaviour of our agent at each stage of this alignment pipeline are provided at:
https://anonymous.4open.science/r/aligning-agents-like-llms.
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J LIMITATIONS AND FURTHER WORK

This work provides a proof of concept for training agents to act as desired on a complex 3D envi-
ronment. For our procedure to be applied in practice by game designers or in other domains such as
robotics, the efficiency of this pipeline will be essential.

One limitation of our work is that we assume access to a large amount of human data on the game
of interest to pre-train a base model. In practice however, when designing a game, large amounts of
human data may not yet be available, and even for existing games it may not be possible to access.
We leave investigation of the importance of the base model on downstream task performance, and
the potential transfer of models pre-trained on other environments to future work.

Another limitation of our approach is that we utilise synthetic preferences. While this may be a
realistic option for many use cases, human feedback from the game designer will be required in gen-
eral. Given the time expense of providing feedback, especially for agents on modern console games
which must often be run in real-time in order to be rendered, this process could be costly. Therefore
supervised fine-tuning on relevant behaviours and efficient preference labelling will be essential.
However, knowledge transfer from training LLMs could again be relevant here. Recent work on
providing human feedback for LLMs has used a hybrid form of feedback that combines preference
and evaluative feedback, in which responses are grouped into a batch of size N and simultaneously
compared on a preference scale of size P , which enables larger numbers of comparisons to be ex-
tracted from a given number of responses, improving the time efficiency of providing feedback. For
example, InstructGPT (Ouyang et al., 2022) uses 4 ≤ N ≤ 9, P = 7 while Llama2 (Touvron et al.,
2023) uses N = 2, P = 4. As N and P increase, more information can be extracted from the
provided human feedback. For example, with N = 5, P = 5 and assuming no category duplication
(no trajectories are considered equal),

(
5
2

)
= 10 comparisons can be extracted, which is equivalent

to 2 bits of information per trajectory watched, compared to just 0.5 bits per trajectory for default
pairwise comparisons with N = 2, P = 2. This results in a 4× improvement in feedback effi-
ciency for human labellers, at the cost of potential label noise due to the additional mental overhead
required. Similar strategies could be applied to providing feedback to agents to make the process
more time efficient.

A final limitation is that running agents online in modern console games can be challenging. While
our work demonstrated surprising efficiency for fine-tuning pre-trained agents with RL, for more
complex behaviours and tasks this may become prohibitively expensive. Fortunately, developments
in RLHF for language models can also be utilised here. We demonstrated in Section 4 that an
intial step of preference fine-tuning could improve the efficiency of alignment, and explained that
this corresponds to Reinforced Self-Training (ReST) (Gulcehre et al., 2023) with a single iteration.
However, the full procedure using multiple iterations could be used to further improve the sample
efficiency of aligning with preferences while maintaining the benefits of online exploration. Other
recent work has investigated aligning models completely offline. Direct Preference Optimisation
(Rafailov et al., 2023) provides an approach for optimising a model to align with preferences without
the need for a reward model or online training, while (Hu et al., 2023) uses offline reinforcement
learning with pre-generated samples and rewards. Additionally, efficient fine-tuning strategies such
as LoRA (Hu et al., 2021) could be used to reduce the hardware requirements for the fine-tuning of
a large base model for the individual applications of game designers. These new approaches provide
promising directions for further work to improve the efficiency or even removing the need for online
training completely.
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