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Abstract

Combining discrete and continuous data is an
important capability for generative models. We
present Discrete Flow Models (DFMs), a new
flow-based model of discrete data that provides
the missing link in enabling flow-based gener-
ative models to be applied to multimodal con-
tinuous and discrete data problems. Our key in-
sight is that the discrete equivalent of continuous
space flow matching can be realized using Contin-
uous Time Markov Chains. DFMs benefit from a
simple derivation that includes discrete diffusion
models as a specific instance while allowing im-
proved performance over existing diffusion-based
approaches. We utilize our DFMs method to build
a multimodal flow-based modeling framework.
We apply this capability to the task of protein
co-design, wherein we learn a model for jointly
generating protein structure and sequence. Our
approach achieves state-of-the-art co-design per-
formance while allowing the same multimodal
model to be used for flexible generation of the
sequence or structure.

1. Introduction
Expanding the capabilities of generative models to handle
discrete and continuous data, which we refer to as multi-
modal, is a fundamental problem to enable their widespread
adoption in scientific applications (Wang et al., 2023). One
such application requiring a multimodal generative model is
protein co-design where the aim is to jointly generate con-
tinuous protein structures alongside corresponding discrete
amino acid sequences (Shi et al., 2022). Proteins have been

*Equal contribution 1Department of Statistics, University of
Oxford, UK 2Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technology, Mas-
sachusetts, USA. Correspondence to: Andrew Campbell <camp-
bell@stats.ox.ac.uk>, Jason Yim <jyim@csail.mit.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

well-studied: the function of the protein is endowed through
its structure while the sequence is the blueprint of how the
structure is made. This interplay motivates jointly generat-
ing the structure and sequence rather than in isolation. To
this end, the focus of our work is to develop a multimodal
generative framework capable of co-design.

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2020) have achieved state-of-the-art per-
formance across multiple applications. They have potential
as a multimodal framework because they can be defined
on both continuous and discrete spaces (Hoogeboom et al.,
2021; Austin et al., 2021). However, their sample time in-
flexibility makes them unsuitable for multimodal problems.
On even just a single modality, finding optimal sampling
parameters requires extensive re-training and evaluations
(Karras et al., 2022). This problem is exacerbated for mul-
tiple modalities. On the other hand, flow-based models
(Liu et al., 2023; Albergo & Vanden-Eijnden, 2023; Lipman
et al., 2023) improve over diffusion models with a simpler
framework that allows for superior performance through
sampling flexibility (Ma et al., 2024). Unfortunately, our
current inability to define a flow-based model on discrete
spaces holds us back from a multimodal flow model.

We address this by introducing a novel flow-based model
for discrete data named Discrete Flow Models (DFMs) and
thereby unlock a complete framework for flow-based mul-
timodal generative modeling. Our key insight comes from
seeing that a discrete flow-based model can be realized us-
ing Continuous Time Markov Chains (CTMCs). DFMs are
a new discrete generative modeling paradigm: less restric-
tive than diffusion, allows for sampling flexibility without
re-training and enables simple combination with continuous
state space flows to form multimodal flow models.

Fig. 1A provides an overview of DFMs. We first define a
probability flow pt that linearly interpolates from noise to
data. We then generate new data by simulating a sequence
trajectory xt that follows pt across time which requires
training a denoising neural network with cross-entropy. The
sequence trajectory could have many transitions or few,
a property we term CTMC Stochasticity (Fig. 1B). Prior
discrete diffusion models are equivalent to picking a specific
stochasticity at training time, whereas we can adjust it at
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Figure 1. Overview. (A.) A DFM trajectory with masking over a 3-dim. sequence with 4 possible states. (B.) CTMC stochasticity
controls the number of transitions in a sequence trajectory while respecting the flow pt. Shown is a 1-dim. sequence with 5 states. (C.)
Sampling with Multiflow can start from noise (bottom left) or with either the structure or sequence given (top left and bottom right). Any
sampling tasks (structure/sequence generation, forward/inverse folding, co-generation) can be achieved with a single Multiflow model.

inference: enhancing sample quality and exerting control
over sample distributional properties.

Using DFMs, we are then able to create a multimodal flow
model by defining factorized flows for each data modality.
We apply this capability to the task of protein co-design
by developing a novel continuous structure and discrete se-
quence generative model named Multiflow. We combine
a DFM for sequence generation and a flow-based struc-
ture generation method developed in Yim et al. (2023a).
Previous multimodal approaches either generated only the
sequence or only the structure and then used a prediction
model to infer the remaining modality (see Sec. 5). Our
single model can jointly generate sequence and structure
while being able to condition on either modality.

In our experiments (Sec. 6), we first verify on small scale
text data that DFMs outperform the discrete diffusion alter-
native, D3PM (Austin et al., 2021) through their expanded
sample time flexibility. We then move to our main focus,
assessing Multiflow’s performance on the co-design task of
jointly generating protein structure and sequence. Multiflow
achieves state-of-the-art co-design performance while data
distillation allows for obtaining state-of-the-art structure
generation. We find CTMC stochasticity enables control-
ling sample properties such as secondary structure com-
position and diversity. Preliminary results on inverse and
forward folding show Multiflow is a promising path towards
a general-purpose protein generative model.

Our contributions are summarized as follows:

• We present Discrete Flow Models (DFMs), a novel dis-
crete generative modeling method built through a CTMC
simulating a probability flow.

• We combine DFMs with continuous flow-based methods
to create a multimodal generative modeling framework.

• We use our multimodal framework to develop Multiflow,
a state-of-the-art generative protein co-design model with
the flexibility of multimodal protein generation.

2. Background
We aim to model discrete data where a sequence x 2
f1, . . . , SgD has D dimensions, each taking on one of S
states. For ease of exposition, we will assume D = 1; all
results hold for D > 1 as discussed in App. E. We first ex-
plain a class of continuous time discrete stochastic processes
called Continuous Time Markov Chains (CTMCs) (Norris,
1998) and then describe the link to probability flows.

2.1. Continuous Time Markov Chains.

A sequence trajectory xt over time t 2 [0, 1] that follows
a CTMC alternates between resting in its current state and
periodically jumping to another randomly chosen state. We
show example trajectories in Fig. 1B. The frequency and
destination of the jumps are determined by the rate matrix
Rt 2 RS�S with the constraint its off-diagonal elements
are non-negative. The probability xt will jump to a different
state j is Rt(xt, j)dt for the next infinitesimal time step dt .
We can write the transition probability as

pt+dtjt(jjxt) =

(
Rt(xt, j)dt for j 6= xt

1 + Rt(xt, xt)dt for j = xt

(1)

= δ fxt, jg+ Rt(xt, j)dt (2)

where δ fi, jg is the Kronecker delta which is 1 when i = j
and is otherwise 0 and Rt(xt, xt) := �

P
k 6=x Rt(xt, k) in

order for pt+dtjt(�ji) to sum to 1. We use compact notation
Eq. (2) in place of Eq. (1). Therefore, pt+dtjt is a Categor-
ical distribution with probabilities δ fxt, �g + Rt(xt, �)dt
that we denote as Cat(δ fxt, jg+ Rt(xt, j)dt):

j � pt+dtjt(jjxt) () j � Cat(δ fxt, jg+Rt(xt, j)dt).

In practice, we need to simulate the sequence trajectory
with finite time intervals �t. A sequence trajectory can be
simulated with Euler steps (Sun et al., 2023b)

xt+�t � Cat(δ fxt, xt+�tg+ Rt(xt, xt+�t)�t), (3)
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where the sequence starts from an initial sample x0 � p0

at time t = 0. The rate matrix Rt along with an initial
distribution p0 together define the CTMC.

2.2. Kolmogorov equation

For a sequence trajectory following the dynamics of a
CTMC, we write its marginal distribution at time t as pt(xt).
The Kolmogorov equation allows us to relate the rate matrix
Rt to the change in pt(xt). It has the form:

∂tpt(xt) =
X
j 6=xt

Rt(j, xt)pt(j)| {z }
incoming

�
X
j 6=xt

Rt(xt, j)pt(xt)| {z }
outgoing

(4)

The difference between the incoming and outgoing
probability mass is the time derivative of the marginal
∂tpt(xt). Using our definition of Rt(xt, xt), Eq. (4) can
be succinctly written as ∂tpt = R>t pt where the marginals
are treated as probability mass vectors: pt 2 [0, 1]S . This
defines an Ordinary Differential Equation (ODE) in a vector
space. We refer to the series of distributions pt 8t 2 [0, 1]
satisfying the ODE as a probability flow.

Key terms: A CTMC is defined by an initial distribution
p0 and rate matrix Rt. Samples along CTMC dynamics
are called a sequence trajectory xt. The probability
flow pt is the marginal distribution of xt at every time t.
We say Rt generates pt if ∂tpt = R>t pt 8t 2 [0, 1].

3. Discrete Flow Models
A Discrete Flow Model (DFM) is a Discrete data generative
model built around a probability Flow that interpolates from
noise to data. To sample new datapoints, we simulate a
sequence trajectory that matches the noise to data probability
flow. The flow construction allows us to combine DFM
with continuous data flow models to define a multimodal
generative model. Proofs for all propositions are in App. B.

3.1. A Flow Model for Sampling Discrete Data

We start by constructing the data generating probability
flow referred to as the generative flow, pt, that we will later
sample from using a CTMC. The generative flow interpo-
lates from noise to data where p0(x0) = pnoise(x0) and
p1(x1) = pdata(x1). Since pt is complex to consider di-
rectly, the insight of flow matching is to define pt using a
simpler datapoint conditional flow, ptj1(�jx1) that we will
be able to write down explicitly. We can then define pt as

pt(xt) := Epdata(x1)

�
ptj1(xtjx1)

�
. (5)

The conditional flow, ptj1(�jx1) interpolates from noise to
the datapoint x1. The conditioning allows us to write the
flow down in closed form. We are free to define ptj1(�jx1)

as needed for the specific application. The conditional flows
we use in this paper linearly interpolate towards x1 from a
uniform prior or an artificially introduced mask state, M :

punif
tj1 (xtjx1) = Cat(tδ fx1, xtg+ (1� t) 1

S ), (6)

pmask
tj1 (xtjx1) = Cat(tδ fx1, xtg+ (1� t)δ fM,xtg).

We require our conditional flow to converge on the datapoint
x1 at t = 1, i.e. ptj1(xtjx1) = δ fx1, xtg. We also require
that the conditional flow starts from noise at t = 0, i.e.
ptj1(xtjx1) = pnoise(xt). In our examples, punif

noise(xt) =
1
S and pmask

noise(xt) = δ fM,xtg. These two requirements
ensure our generative flow, pt, defined in Eq. (5) interpolates
from pnoise at t = 0 towards pdata at t = 1 as desired. Next,
we will show how to sample from the generative flow by
exploiting pt’s decomposition into conditional flows.

3.1.1. SAMPLING

To sample from pdata using the generative flow, pt, we need
access to a rate matrix Rt(xt, j) that generates pt. Given
a Rt(xt, j), we could use Eq. (3) to simulate a sequence
trajectory that begins with marginal distribution pnoise at
t = 0 and ends with marginal distribution pdata at t = 1.
The definition of pt in Eq. (5) suggests Rt(xt, j) can also
be derived as an expectation over a simpler conditional rate
matrix. Define Rt(xt, jjx1) as a datapoint conditional rate
matrix that generates ptj1(xtjx1). We now show Rt(xt, j)
can indeed be defined as an expectation over Rt(xt, jjx1).
Proposition 3.1. If Rt(xt, jjx1) is a rate matrix that gener-
ates the conditional flow ptj1(xtjx1), then

Rt(xt, j) := Ep1jt(x1jxt) [Rt(xt, jjx1)] (7)

is a rate matrix that generates pt defined in Eq. (5). The
expectation is taken over p1jt(x1jxt) =

ptj1(xtjx1)pdata(x1)

pt(xt)
.

Our aim now is to calculate Rt(xt, jjx1) and p1jt(x1jxt) to
plug into Eq. (7). p1jt(x1jxt) is the distribution predicting
clean data x1 from noisy data xt and in Sec. 3.1.2, we will
train a neural network pθ1jt(x1jxt) to approximate it. In
Sec. 3.2, we will show how to derive Rt(xt, jjx1) in closed
form. Sampling pseudo-code is provided in Alg. 1.

Algorithm 1 DFM Sampling
1: init t = 0, x0 � p0, choice of Rt(xt, �jx1) (Sec. 3.2)
2: while t < 1 do
3: Rθ

t (xt, �) Ep�
1jt(x1jxt) [Rt(xt, �jx1)]

4: xt+�t � Cat
�
δ fxt, xt+�tg+ Rθ

t (xt, xt+�t)�t
�

5: t t + �t
6: end while
7: return x1

We discuss further CTMC sampling methods in App. G. Our
construction of the generative flow from conditional flows
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Table 1. Comparison between continuous space linear interpolant �ow models and DFMs with masking. Both start with a conditional
�ow pt j 1(x t jx1) interpolating between data and noise. For continuous,pt j 1(x t jx1) = N (tx 1 ; (1 � t)2 I ) and for discrete we usepmask

t j 1 .
Solving the Fokker-Planck or Kolmogorov equations withpt j 1(x t jx1) gives a data conditioned process, speci�ed either by the velocity
�eld ( � t ) or the rate matrix (R t ). We train a model to learn the unconditional process – written analytically as the expected value of the
conditional quantity – which is then used for sampling. The side-by-side comparison reveals the similar forms of each quantity.

QUANTITY CONTINUOUS DISCRETE

FOKKER-PLANCK -KOLMOGOROV @t pt = �r � (vt pt ) @t pt = R>
t pt

CONDITIONAL PROCESS � t (x t jx1) = x 1 � x t
1� t Rt (x t ; j jx1) = � f j;x 1 g

1� t � f x t ; M g
GENERATIVE PROCESS � t (x t ) = Ep1 j t ( x 1 j x t ) [� t (x t jx1)] Rt (x t ; j ) = Ep1 j t ( x 1 j x t ) [R(x t ; j jx1)]

GENERATIVE SAMPLING x t +� t = x t + vt (x t )� t x t +� t � Cat( � f x t ; x t +� t g + R t (x t ; x t +� t )� t )

is analogous to the construction of generative probability
paths from conditional probability paths in Lipman et al.
(2023), where instead of a continuous vector �eld generating
the probability path, we have a rate matrix generating the
probability �ow. We expand on these links in Table. 1.

3.1.2. TRAINING

We train a neural network with parameters� , p�
1j t (x t jx1),

to approximate the true denoising distribution using the
standard cross-entropy i.e. learning to predict the clean
datapointx1 when given noisy datax t � pt j1(x t jx1).

L ce = Epdata (x 1 )U( t ;0;1)pt j 1 (x t j x 1 )

h
logp�

1j t (x1jx t )
i

(8)

whereU(t; 0; 1) is a uniform distribution on[0; 1]. x t can
be sampled frompt j1(x t jx1) in a simulation-free manner by
using the explicit form we wrote down forpt j1 e.g. Eq. (6).
In App. C, we analyse howL ce relates to the model log-
likelihood and its relation to the Evidence Lower Bound
(ELBO) used to train diffusion models. We stress thatL ce

does not depend onRt (x t ; j jx1) and so we can postpone
the choice ofRt (x t ; j jx1) until after training. This enables
inference time �exibility in how our discrete data is sampled.

3.2. Choice of Rate Matrix

The missing piece in Eq. (7) is a conditional rate matrix
Rt (x t ; j jx1) that generates the conditional �owpt j1(x t jx1).
There are many choices forRt (x t ; j jx1) that all generate
the samept j1(x t jx1) as we later show in Prop. 3.3. In order
to proceed, we start by giving one valid choice of rate matrix
and from this, build a set of rate matrices that all generate
pt j1. At inference time, we can then pick the rate matrix
from this set that performs the best. Our starting choice for
a rate matrix that generatespt j1 is de�ned forx t 6= j as,

R�
t (x t ; j jx1) :=

ReLU
�
@t pt j1(j jx1) � @t pt j1(x t jx1)

�

S � pt j1(x t jx1)

where ReLU(a) = max(a;0) and @t pt j1 can be found
by differentiating our explicit form forpt j1. This as-
sumespt j1(x t jx1) > 0, see App. B.2 for the full form.

We �rst heuristically justify R�
t and then prove it gener-

atespt j1(x t jx1) in Prop. 3.2. R�
t can be understood as

distributing probability mass to states that require it. If
@t pt j1(j jx1) > @t pt j1(x t jx1) then statej needs to gain
more probability mass than the current statex t resulting in
a positive rate. If@t pt j1(j jx1) � @t pt j1(i jx1) then statex t

should give no mass to statej hence theReLU. This rate
should then be normalized by the probability mass in the
current state. TheReLU ensures off-diagonal elements of
R�

t are positive and is inspired by Zhang et al. (2023).

Proposition 3.2. Assuming zero mass states,pt j1(j jx1) =
0, have@t pt j1(j jx1) = 0 , thenR�

t generatespt j1(x t jx1).

The proof is easy to derive by substitutingR�
t along with

pt j1(x t jx1) into the Kolmogorov equation Eq. (4). The
forms forR�

t (x t ; j jx1) underpunif
t j1 or pmask

t j1 are simple

R� unif
t = � f x 1 ;j g(1 � � f x 1 ;x t g)

1� t ; R� mask
t = � f x 1 ;j g� f x t ;M g

1� t

as we derive in App. F. UsingR�
t as a starting point, we

now build out a set of rate matrices that all generatept j1.
We can accomplish this by adding on a second rate matrix
that is in detailed balance withpt j1.

Proposition 3.3. LetRDB
t be a rate matrix that satis�es the

detailed balance condition forpt j1,

pt j1(i jx1)RDB
t (i; j jx1) = pt j1(j jx1)RDB

t (j; i jx1); : (9)

LetR�
t be de�ned byR�

t , RDB
t and parameter� 2 R� 0,

R�
t := R�

t + �R DB
t :

Then we haveR�
t generatespt j1(x t jx1), 8� 2 R� 0.

The detailed balance condition intuitively enforces the in-
coming probability mass,pt j1(j jx1)RDB

t (j; i jx1) to equal
the outgoing probability mass,pt j1(i jx1)RDB

t (i; j jx1).
Therefore,RDB

t has no overall effect on the probability
�ow and can be added on toR�

t with the combined rate still
generatingpt j1. In many cases, Eq. (9) is easy to solve for
RDB

t due to the explicit relation between elements ofRDB
t

as we exemplify in App. F. Detailed balance has been used
previously in CTMC generative models (Campbell et al.,
2022) to make post-hoc inference adjustments.
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CTMC stochasticity. We now have a set of rate matrices,
f R�

t : � � 0g, that all generatept j1. We can plug any
one of these into our de�nition forRt (x t ; j ) (Eq. (7)) and
sample novel datapoints using Alg. 1. The chosen value
for � will in�uence the dynamics of the CTMC we are
simulating. For large values of� , the increased in�uence
of RDB

t will cause large exchanges of probability mass
between states. This manifests as increasing the frequency
of jumps occurring in the sequence trajectory. This leads
to a short auto-correlation time for the CTMC and a high
level of unpredictability of future states given the current
state. We refer to the behaviour that� controls asCTMC
stochasticity. Fig. 1B shows examples of high and low� .

On a given task, we expect there to be an optimal stochas-
ticity level. Additional stochasticity improves performance
in continuous diffusion models (Cao et al., 2023; Xu et al.,
2023), but too much stochasticity can result in a poorly per-
forming degenerate CTMC. In some cases, setting� = 0 ,
i.e. usingR�

t , results in the minimum possible number of
jumps because theReLU within R�

t removes state pairs that
needlessly exchange mass (Zhang et al., 2023).

Proposition 3.4. For punif
t j1 and pmask

t j1 , R�
t generatespt j1

whilst minimizing the expected number of jumps during the
sequence trajectory. This assumes multi-dimensional data
under the factorization assumptions listed in App. E.

3.3. DFMs Recipe

We now summarize the key steps of a DFM. PyTorch code
for a minimal DFM implementaton is provided in App. F.

1. De�ne the desired noise schedulept j1(x t jx1) (Sec. 3.1).
2. Train denoising modelp�

1j t (x1jx t ) (Sec. 3.1.2).
3. Choose rate matrixR�

t (Sec. 3.2).
4. Run sampling (Alg. 1).

4. Multimodal Protein Generative Model

Using our �ow formulation on discrete state spaces, we can
now combine a DFM with a �ow on a continuous space
to de�ne a multimodal generative �ow. We use this to per-
form protein joint structure-sequence generation. A protein
can be modeled as a linear chain of residues, each with an
assigned amino acid and 3D atomic coordinates. Protein co-
design aims to jointly generate the amino acids (sequence)
and coordinates (structure). Prior works have used a genera-
tive model on one modality (sequence or structure) with a
separate model to predict the other (see Sec. 5). Instead, our
approach uses a single generative model to jointly sample
both modalities: a DFM for the sequence and a �ow model,
FrameFlow (Yim et al., 2023a), for the structure. We refer
to our multimodal �ow model asMulti�ow .

4.1. Multimodal Flows

Following FrameFlow, we refer to the protein structure
as thebackboneatomic coordinates of each residue. We
leave modeling side-chain atoms as a follow-up work. The
structure is represented as elements ofSE(3) to capture the
rigidity of the local frames along the backbone (Yim et al.,
2023b). A protein of lengthD residues can then be repre-
sented asf (xd; r d; ad)gD

d=1 wherex 2 R3 is the translation
of the residue's Carbon-� atom,r 2 SO(3) is a rotation
matrix of the residue's local frame with respect to global
reference frame, anda 2 f 1; : : : ; 20g [ f M g is one of 20
amino acids or the mask stateM . For brevity, we refer to
the residue state asTd = ( xd; r d; ad) and let the full pro-
tein's structure and sequence asT = f TdgD

d=1 . We de�ne
the multimodal conditional �ow aspt j1(T t jT 1) which is
a shorthand for a probability density over the continuous
variables and a probability mass function over the discrete
variables. We de�nept j1(T t jT 1) to factorize over both
dimensions and modality.

pt j1(T t jT 1) :=
DY

d=1

pt j1(xd
t jxd

1)pt j1(r d
t jr d

1 )pt j1(ad
t jad

1) (10)

Following Yim et al. (2023a),pt j1(xd
t jxd

1) andpt j1(r d
t jr d

1 )
are de�ned implicitly through specifying how samplesxd

t ,
r d

t are generated frompt j1(xd
t jxd

1), pt j1(r d
t jr d

1 ),

xd
t = tx d

1 + (1 � t)xd
0; xd

0 � N (0; I ) (11)

r d
t = exp r d

0

�
t logr d

0
(r d

1 )
�

; r d
0 � U SO(3) ; (12)

whereexpandlog are the exponential and logarithmic maps.
USO(3) is the uniform distribution onSO(3). Following
Sec. 3,pt j1(ad

t jad
1) is de�ned explicitly.

pt j1(ad
t jad

1) = Cat
�
t�

�
ad

1; ad
t

	
+ (1 � t)�

�
M; ad

t

	 �
(13)

Our conditional trajectory that follows this conditional �ow
will be an ODE on the continuous modalities with a CTMC
for the amino acids. The conditional ODE on translations
and rotations is parameterized through conditional velocities
vd

x (xd
t jxd

1) 2 R3, vd
r (r d

t jr d
1 ) 2 Tanr d

t
SO(3) (Yim et al.,

2023a).vd
x is a standard Euclidean vector �eld whereasvd

r
is a vector �eld on the Riemannian ManifoldSO(3) (Chen
& Lipman, 2023). The trajectory can be simulated using
Euler steps with step size� t,

xd
t +� t = xd

t + vd
x (xd

t jxd
1)� t

r d
t +� t = exp r d

t
(� t � vd

r (r d
t jr d

1 )) (14)

ad
t +� t � Cat

�
�

�
ad

t ; ad
t +� t

	
+ Rd

t (ad
t ; ad

t +� t ja
d
1)� t

�
:

We choosevd
x such that it individually generates the

pt j1(xd
t jxd

1) given by Eq. (11) if it were simulated by it-
self in R3. Similarly, for vd

r andRd
t , they are chosen such
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that they individually generatept j1(r d
t jr d

1 ) (Eq. (12)) and
pt j1(ad

t jad
1) (Eq. (13)) respectively. The explicit forms for

vd
x , vd

r andRd
t are as follows,

vd
x (xd

t jxd
1) = ( xd

1 � xd
t )=(1 � t)

vd
r (r d

t jr d
1 ) = log r d

t
(r d

1 )=(1 � t) (15)

Rd
t (ad

t ; j d jad
1) = �

�
j d; ad

1

	
�

�
ad

t ; M
	

=(1 � t):

wth velocities following Yim et al. (2023a) and rate matrix
derived in App. F.1 assuming� = 0 . The following propo-
sition veri�es these choices are consistent with our initial
de�nition of pt j1(T t jT 1).

Proposition 4.1. The multimodal process de�ned by
Eq.(15)has the �owpt j1(T t jT 1) given by Eq.(10).

We would now like to be able to sample a trajectory that fol-
lows the unconditional �ow. Mirroring Prop. 3.1, we again
�nd that the desired unconditional velocities and rate matrix
are expectations of their respective conditional quantities.

Proposition 4.2. The following velocities and rate matrix
together generatept (T t ) = Epdata (T 1 )

�
pt j1(T t jT 1)

�
,

vd
x (T t ) = Ep1 j t (x d

1 jT t )

�
vd

x (xd
t jxd

1)
�

vd
r (T t ) = Ep1 j t ( r d

1 jT t )

�
vd

r (r d
t jr d

1 )
�

Rd
t (T t ; j d) = Ep1 j t (ad

1 jT t )

�
Rd

t (ad
t ; j d jad

1)
�

:

We note that even though the conditional �ow is de�ned to
factorize over modality and dimension, the unconditional
generative �ow has coupled modalities and dimensions be-
cause each velocity and rate matrix depends on the entire
corrupted protein stateT t .

Thus far, we have assumed the same noise level in all modal-
ities. To enable �exible sampling options, we can use a
noise level for the structure,t, that is independent to the
noise level of the sequence,~t (Albergo et al., 2023). We let
T t; ~t = ( x1:D

t ; r 1:D
t ; a1:D

~t ) and use a conditional �ow of

pt; ~t j1(T t; ~t jT 1) =
DY

d=1

pt j1(xd
t jxd

1)pt j1(r d
t jr d

1 )p~t j1(ad
~t jad

1):

The unconditional �ow then becomespt; ~t (T t; ~t ) =
Epdata (T 1 ) [pt; ~t j1(T t; ~t jT 1)], with the expectations for the
unconditional velocities and rate matrix in Prop. 4.2 now
computed usingp1j t; ~t (�jT t; ~t ) instead ofp1j t (�jT t ).

4.2. Training

During training, our network will take as input the noised
proteinT t; ~t and predict the denoised translationsx̂1(T t; ~t ),
rotationsr̂ 1(T t; ~t ), and amino acid distributionp� (a1jT t; ~t ).
We then parameterize the unconditional velocities and rate

matrix in terms of these predicted quantities.

� d
x (T t; ~t ) =

x̂ d
1 (T t; ~t ) � x d

t

1� t ; � d
r (T t; ~t ) =

log r d
t

( r̂ d
1 (T t; ~t ))

1� t ;

R�d
~t (T t; ~t ; j ) =

p� (ad
1 = j jT t; ~t )
1� ~t

�
�

ad
~t ; M

	
:

In order for these to match their optimum values given in
Prop. 4.2, we minimize the following loss

E
hP D

d=1
jj x̂ d

1 (T t; ~t ) � x d
1 jj 2

1� t � logp� (ad
1 jT t; ~t ) (16)

+

�
�
�
�
�
� log r d

t
( r̂ d

1 (T t )) � log r d
t
(r d

1 )
�
�
�
�
�
�

2

1� t

i
:

where the expectation is overt; ~t � U (0; 1), T 1;1 � pdata

andT t; ~t � pt; ~t j1(T t; ~t jT 1;1). Our independentt, ~t objective
enables the model to learn over different relative levels of
corruption between the sequence and structure. Eq. (16)
corresponds to the �ow matching loss for continuous data
and the DFMs loss Eq. (8) for discrete amino acids. The
neural network architecture is modi�ed from FrameFlow
with a larger transformer, smaller Invariant Point Attention,
and extra multi-layer perception head to predict the amino
acid logits.

4.3. Sampling

To sample the generative model, we use the update equations
from Eq. (14) but with the learned unconditional velocities
and rate matrix. Furthermore, we �nd sample quality can
be improved by using the exponential rate scheduler for
rotations from Bose et al. (2023). In practice, this meansvd

r
has the following form,

� d
r (T t; ~t ) = c � logr d

t
(r̂ d

1 (T t; ~t )) :

We usec = 10 following (Yim et al., 2023a). When sam-
pling the amino acids, we also found it bene�cial to utilize
purity (Tang et al., 2022) to choose which indices to unmask
at each step. The advantage of training with decoupled time
schedules is that we have freedom to arbitrarily sample with
any combination of(t; ~t). We use this to perform condi-
tional inpainting where one of the modalities is �xed by
settingt or ~t equal to 1. For example, settingt = 1 then
using Euler steps to update~t from 0 ! 1 performs sequence
generation conditioned on the structure. We summarize the
capabilities in Fig. 1C and in Table. 2.

Table 2.Flexible multimodal sampling.

Codesign Inverse folding Forward folding

x t ; r t t : 0 ! 1 t = 1 t : 0 ! 1
a~t

~t : 0 ! 1 ~t : 0 ! 1 ~t = 1

5. Related Work

Discrete Diffusion Models. Our continuous time �ow
builds on work that extends discrete diffusion (Hoogeboom
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et al., 2021; Austin et al., 2021) to continuous time (Camp-
bell et al., 2022; Sun et al., 2023b; Santos et al., 2023; Lou
et al., 2023) but we simplify and extend the framework. We
are not restricted to noising processes that can be de�ned
by a matrix exponential as we just writept j1 down directly
and we have the freedom to chooseRt (x t ; j jx1) at infer-
ence time rather than being restricted to the time reversal.
We show how DFMs encompasses prior discrete diffusion
models in App. H. For molecular retrosynthesis, Igashov
et al. (2023) also considered a data conditional process, but
did not build a modeling framework around it. Zhang et al.
(2023) constructed low-stochasticity rate matrices and their
derivation provides the building blocks of Prop. 3.2. Some
works have built a multimodal diffusion model for molecule
generation (Peng et al., 2023; Vignac et al., 2023b; Hua
et al., 2023) whereas we focus on protein co-design using
�ows. We discuss further related work in App. D.

Protein Generation. Diffusion and �ow models have
risen in popularity for generating novel and diverse protein
backbones (Yim et al., 2023b;a; Bose et al., 2023; Lin &
AlQuraishi, 2023; Ingraham et al., 2023). RFDiffusion
achieved notable success by generating proteins validated in
wet-lab experiments (Watson et al., 2023). However, these
methods required a separate model for sequence generation.
Some works have focused only on sequence generation with
diffusion models (Alamdari et al., 2023; Gruver et al., 2023;
Yang et al., 2023; Yi et al., 2023). We focus on co-design
which aims to jointly generate the structure and sequence.

Prior works have attempted co-design. ProteinGenerator
(Lisanza et al., 2023) performs Euclidean diffusion over
one-hot amino acids while predicting the structure at each
step with RosettaFold (Baek et al., 2021). Conversely, Prot-
pardelle (Chu et al., 2023) performs Euclidean diffusion
over structure while iteratively predicting the sequence. Mul-
ti�ow instead uses a generative model overboththe structure
and sequence which allows for �exibility in conditioning at
inference time (see Sec. 6.2.1). Luo et al. (2022); Shi et al.
(2022) are co-design methods, but are limited to generating
CDR loops on antibodies. Lastly, Anand & Achim (2022)
presented diffusion on structure and sequence, but did not
report standard evaluation metrics nor is code available.

6. Experiments

We �rst show that tuning stochasticity at sample time im-
proves pure discrete generative modeling performance by
modeling text data. We then evaluate Multi�ow, the �rst
�ow model on discrete and continuous state spaces. We
show Multi�ow provides state-of-the-art-performance on
protein generation compared to prior approaches that do not
generate using a true multimodal generative model. Finally,
we investigate Multi�ow's crossmodal properties of how
varying the sequence sampling affects the structure.

Figure 2.Negative log-likelihood as measured by GPT-J-6B versus
sample entropy. For DFM, D3PM and autoregressive, we sweep
the logit temperature forp�

1j t (x1 jx t ) overf 0:5; 0:6; ; : : : ; 1g. We
aim to minimize NLL whilst staying close to the dataset entropy.

6.1. Text Modeling

Set-up. We model the text dataset, text8 (Mahoney, 2006),
which is100MB of text from English Wikipedia. We model
at the character level, following (Austin et al., 2021), with
S = 28 categories for26 lowercase letters, a white-space
and a mask token. We split the text into chunks of length
D = 256. We train a DFM usingpmask

t j1 and parameterize
the denoising network using a transformer with86M non-
embedding parameters, full details are in App. I.

Results.Text samples are evaluated following Strudel et al.
(2022). A much larger text model, we use GPT-J-6B (Wang
& Komatsuzaki, 2021), is used to evaluate the negative log-
likelihood (NLL) of the generated samples. The NLL metric
alone can be gamed by repeating similar sequences, so the
token distribution entropy is also measured. Good samples
should have both low NLL and entropy close to the data dis-
tribution. For a given value of� , we create a Pareto-frontier
in NLL vs entropy space by varying the temperature ap-
plied to thep�

1j t (x1jx t ) logits during the softmax operation.
Fig. 2 plots the results for varying levels of� and sampling
temperature. For comparison, we also include results for
the discrete diffusion D3PM method with absorbing state
corruption (Austin et al., 2021) as well as the Score Entropy
Discrete Diffusion (SEDD) method of Lou et al. (2023) us-
ing both uniform and absorbing style corruption. SEDD
does not have logits that can be temperature scaled and so
only single points in NLL vs entropy space are shown. We
�nd the DFM performs better than D3PM and SEDD due to
our additional sample time �exibility. We are able to choose
the value of� that optimizes the Pareto-frontier at sample
time (here� = 15) whereas D3PM and SEDD do not have
this �exibility. We show the full� sweep in App. I and show
the frontier for� = 0 in Fig. 2. When� = 0 , performance
is similar to D3PM due to DFMs being a continuous time
generalization of D3PM at this setting, see App. H.2. We
also include results for an autoregressive model in Fig. 2 for
reference; however, we note this is not a complete like-for-
like comparison as autoregressive models require much less
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compute to train than diffusion based models (Gulrajani &
Hashimoto, 2023).

6.2. Protein generation

Metrics. Evaluating the quality of structure-sequence sam-
ples is performed withself-consistencywhich measures how
consistent a generated sequence is with a generated struc-
ture by testing how accurately a protein folding network
can predict the structure from the sequence. Speci�cally,
either AlphaFold2 (Jumper et al., 2021) or ESMFold (Lin
et al., 2023), is �rst used to predict a structure given only the
generated sequence. Our results will use ESMFold but we
show results with AlphaFold2 in App. J. Then, we calculate
scRMSD: the Root Mean Squared Deviation between the
generated and predicted structure's backbone atoms. The
generated structure is calleddesignableif scRMSD< 2 	A.

Structure-only generative models such as RFdiffusion �rst
use ProteinMPNN (PMPNN) (Dauparas et al., 2022) to
predict a sequence given the generated structure in order to
then be able to use the self-consistency metric. We present
three variants of self-consistency:

• Co-design 1: use the sampled (structure, sequence) pair.
• PMPNN 8: take only the sampled structure and predict 8

sequences with PMPNN. Then use ESMFold to predict
a new structure for each sequence. The �nal structure-
sequence pair is the original sampled structure along with
the PMPNN sequence with minimum scRMSD.

• PMPNN 1: same as PMPNN 8 except PMPNN only
generates one sequence.

PMPNN 8 and PMPNN 1 evaluate only the quality of a
model's generated structures whereas, for co-design mod-
els, Co-design 1 evaluates the quality of a model's gener-
ated (structure, sequence) pairs. The comparison between
PMPNN 1 and Co-design 1 allows for evaluating the qual-
ity of co-designed sequences. PMPNN 8 is the procedure
used in prior structure-only works. As our main metric of
sample quality, we reportdesignabilityas the percentage of
designable samples. As a further sanity check, designable
samples are then evaluated ondiversityandnovelty. We use
FoldSeek (van Kempen et al., 2022) to report diversity as
the number of unique clusters while novelty is the average
TM-score (Zhang & Skolnick, 2005) of each sample to its
most similar protein in PDB.

Training. Our training data consisted of length 60-384
proteins from the Protein Data Bank (PDB) (Berman et al.,
2000) that were curated in Yim et al. (2023b) for a total
of 18684 proteins. Training took 200 epochs over 3 days
on 4 A6000 Nvidia GPUs using the AdamW optimizer
(Loshchilov & Hutter, 2017) with learning rate 0.0001.

Distillation. Multi�ow with PDB training generated highly
designable structures. However, the co-designed sequences

suffered from lower designability than PMPNN. Our analy-
sis revealed the original PDB sequences achieved worse des-
ignability than PMPNN. We sought to improve performance
by distilling knowledge from other models. To accomplish
this, we �rst replaced the original sequence of each structure
in the training dataset with the lowest scRMSD sequence
out of 8 generated by PMPNN conditioned on the structure.
Second, we generated synthetic structures of random lengths
between 60-384 using an initial Multi�ow model and added
those that passed PMPNN 8 designability into the training
dataset with the lowest scRMSD PMPNN sequence. We
found that we needed to add only an extra 4179 examples
to the original set of 18684 proteins to see a dramatic im-
provement. This procedure can be seen as a single step of
reinforced self training (ReST) (Gulcehre et al., 2023).

6.2.1. CO-DESIGN RESULTS.

Following RFdiffusion's benchmark, we sample 100 pro-
teins for each length 70, 100, 200, and 300. We sample
Multi�ow with 500 timesteps using a temperature of 0.1
(PMPNN also uses 0.1) and stochasticity level� = 20. We
compare our structure quality to state-of-the-art structure
generation method RFdiffusion. For co-design, we compare
to Protpardelle and ProteinGenerator. All methods were ran
using their publicly released code and evaluated identically.

Our results are presented in Table. 3 where report the aver-
age of three seeds for each metric – see Table. 6 for results
with standard error. We �nd that Multi�ow's co-design capa-
bilities surpass previous co-design methods, none of which
use a joint multimodal generation process. Multi�ow gener-
ates sequences that are consistent with the generated struc-
ture at a comparable level to PMPNN which we see through
comparing the Co-design 1 and PMPNN 1 designability.
On pure structure generation, we �nd that Multi�ow outper-
forms all baselines in terms of structure quality measured by
PMPNN 8 designability. Multi�ow also attains comparable
diversity and novelty to previous approaches. We ablate our
use of distillation and �nd that distillation results in overall
designability improvements while also improving diversity.
Finally, we train our exact same architecture except only
modeling the structure on the distilled dataset using the loss
presented in Yim et al. (2023a). We �nd our joint structure-
sequence model achieves the same structural quality as the
structure-only version, however, additionally including the
sequencein our generative process induces extrastructural
diversity.

Crossmodal modulation.We next investigate how modu-
lating the CTMC stochasticity of the sequence affects the
structural properties of sampled proteins. Fig. 3 shows that
varying the stochasticity level� results in a change of the
secondary structure composition (Kabsch & Sander, 1983)
of the sampled proteins. This is an example of the �exibil-

8



Discrete Flow Models

Table 3.Co-design results. Abbreviations: Designability (DES.), Diversity (DIV. ), Novelty (NOV.). For Protpardelle, we report Co-design
1 as same numbers as PMPNN 1 since their co-design approach employs PMPNN. We note this is not co-generation since PMPNN is
used while Multi�ow explicitly learns co-generation without using PMPNN.

M ETHOD CO-DESIGN 1 PMPNN 8 PMPNN 1
DES. (" ) DIV. (" ) NOV. (#) DES. DIV. NOV. DES. DIV. NOV.

PROTPARDELLE 0.63* 38* 0.60* 0.90 47 0.59 0.63 38 0.60
PROTEINGENERATOR 0.37 35 0.69 0.89 75 0.65 0.78 64 0.66
RFDIFFUSION N/A 0.87 158 0.63 0.66 111 0.64
MULTIFLOW 0.86 143 0.61 0.99 156 0.61 0.88 143 0.61
MULTIFLOW W /O DISTILLATION 0.42 72 0.62 0.89 126 0.62 0.71 101 0.63
MULTIFLOW W /O SEQUENCE N/A 0.99 116 0.63 0.86 97 0.62

Figure 3.Multi�ow structural properties. Average proportion of
residues that are part of an alpha helix or beta strand versus the
CTMC stochasticity level. Proportions of helices or strands can be
desirable based on the family of proteins to generate (Vinothkumar
& Henderson, 2010). Error bars show the standard error.

ity our multimodal framework provides to tune properties
between data modalities at inference time.

6.2.2. FORWARD AND INVERSEFOLDING

Multi�ow can achieve state-of-the-art codesign perfor-
mance, but can accomplish more tasks as described in
Fig. 1B and Table. 4. Expanding Multi�ow to achieve com-
petitive performance on all tasks is a future work. Here,
we take the same model weights for co-design and evalu-
ate forward and inverse foldingwithout additional training.
We compare performance to ESMFold and ProteinPMNN
which are specialized models for forward and inverse fold-
ing. We curated a clustered test-out set of 449 monomeric
proteins with length< 400from the PDB using a date split
of our training set. Details of forward/inverse folding and
these experiments can be found in App. J. We �nd Multi-
�ow can achieve very close performance with ProteinMPNN
while it achieves poor results compared to ESMFold. This
highlights a limitation that Multi�ow cannot perform com-
petitively at every generation task, but leaves exciting future
work for a potential general-purpose generative model.

Table 4.Forward and inverse folding: mean� std.

Inverse folding Forward folding
Method scRMSD (#) RMSD (#)

ProteinMPNN 1.9� 2.7 N/A
ESMFold N/A 2.7� 3.9
Multi�ow 2.2 � 2.6 15.3� 4.5

7. Discussion

We presented Discrete Flow Models (DFMs), a �ow based
generative model framework by making analogy to continu-
ous state space �ow models. Our formulation is simple to
implement, removes limitations in de�ning corruption pro-
cesses, and provides more sampling �exibility for improved
performance compared to previous discrete diffusion mod-
els. Our framework enables easy application to multimodal
generative problems which we apply to protein co-design.
The combination of a DFM and FrameFlow enables state-
of-the-art co-design with Multi�ow. Future work includes
to develop more domain speci�c models with DFMs and
improve Multi�ow's performance on all protein generation
tasks including sidechain modeling.
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Impact statement

In this paper we work to advance general purpose generative
modeling techniques, speci�cally those used for modeling
discrete and multimodal data. We apply these techniques to
the task of protein generation. Improving protein modeling
capabilities can have wide ranging societal impacts and care
must be taken to ensure these impacts are positive. For
example, improved modeling capabilities can help design
better enzymes and drug candidates that can then go on to
improve the lives of many people. Conversely, these general
purpose techniques could also be misused to design toxic
substances. To mitigate these risks, we do not present any
speci�c methods to apply Multi�ow to tasks that could be
easily adjusted to the design of harmful substances without
expert knowledge.
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Appendix to:

Generative Flows on Discrete State-Spaces:
Enabling Multimodal Flows with Applications to Protein Co-Design

A. Organization of Appendix

The Appendix is organized as follows. App. B provides proofs for all propositions in the main text. App. C analyses the
cross entropy objective used to train DFM and links controlling the cross entropy to controlling the model log-likelihood.
App. D discusses further related work. App. E shows how DFM can be applied to multidimensional data through applying
factorization assumptions topt j1. App. F gives concrete realizations with PyTorch code for DFM using the masking or
uniform forms forpt j1. App. G discusses methods for sampling from CTMCs and discusses their relation to our sampling
method. App. H compares DFM to classical discrete diffusion models in discrete and continuous time �nding that they
can be �t within the DFM framework. App. I gives further details and results for our text experiment. App. J gives further
details and results for our protein co-design experiments.

B. Proofs

Notation When writing rate matrices,Rt (i; j ), we will assumei 6= j unless otherwise explicitly stated.

We writeRt (i ) :=
P

j 6= i Rt (i; j ).

B.1. Proof of Proposition 3.1

We simply take the expectation with respect topdata of both sides of the Kolmogorov equation forpt j1(x t jx1) and
Rt (x t ; j jx1). Note we use the fact thatRt (i; i ) = �

P
j 6= i Rt (i; j ) for compactness.

@t pt j1(x t jx1) =
X

j

Rt (j; x t jx1)pt j1(j jx1)

Epdata (x 1 )
�
@t pt j1(x t jx1)

�
= Epdata (x 1 )

2

4
X

j

Rt (j; x t jx1)pt j1(j jx1)

3

5

@t Epdata (x 1 )
�
pt j1(x t jx1)

�
=

X

j

X

x 1

pdata (x1)pt j1(j jx1)Rt (j; x t jx1)

@t pt (x t ) =
X

j

X

x 1

pt (j )p1j t (x1jj )Rt (j; x t jx1)

@t pt (x t ) =
X

j

Ep1 j t (x 1 j j ) [Rt (j; x t jx1)] pt (j )

Where we notice that the �nal line is the Kolmogorov equation for a CTMC with marginalspt (x t ) and rate
Ep1 j t (x 1 j x t ) [Rt (x t ; j jx t )]. Therefore we have shown thatEp1 j t (x 1 j x t ) [Rt (x t ; j jx t )] generatept (x t ).

B.2. Proof of Proposition 3.2

In the main text we provided the form forR�
t under the assumption thatpt j1(j jx1) > 0 for all j . Before proving Prop. 3.2,

we �rst give the full form forR�
t . First, assumingx t 6= j andpt j1(x t jx1) > 0 we have,

R�
t (x t ; j jx1) :=

ReLU
�
@t pt j1(j jx1) � @t pt j1(x t jx1)

�

Z t pt j1(x t jx1)

whereReLU(a) = max(a; 0) andZ t is the number of states that have non-zero mass,Z t = jf x t : pt j1(x t jx1) > 0gj.
R�

t (x t ; j jx1) = 0 whenpt j1(x t jx1) = 0 or pt j1(j jx1) = 0 . Whenx t = j , R�
t (x t ; x t jx1) = �

P
j 6= x t

R�
t (x t ; j jx1) as we

have de�ned before.
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For our proof, we assume thatpt j1(j jx1) = 0 = ) @t pt j1(j jx1) = 0 . This assumption means that when we have dead
states with zero probability mass, they cannot be resurrected and gain probability mass in the future. We begin the proof
with the Kolmogorov equation for processes conditioned onx1,

@t pt j1(x t jx1) =
X

j 6= x t

Rt (j; x t jx1)pt j1(j jx1) �
X

j 6= x t

Rt (x t ; j jx1)pt j1(x t jx1) (17)

We will now verify thatR�
t satis�es this Kolmogorov equation and thus generates the desiredpt j1(x t jx1) conditional �ow.

We will �rst check that the Kolmogorov equation is satis�ed whenpt j1(x t jx1) > 0. With this form of rate matrix, the RHS
of equation (17) becomes

RHS=
X

j 6= x t ;p t j 1 ( j j x 1 )> 0

ReLU
�
@t pt j1(x t jx1) � @t pt j1(j jx1)

�

Z t pt j1(j jx1)
pt j1(j jx1)

�
X

j 6= x t ;p t j 1 ( j j x 1 )> 0

ReLU
�
@t pt j1(j jx1) � @t pt j1(x t jx1)

�

Z t pt j1(x t jx1)
pt j1(x t jx1)

=
1

Z t

X

j 6= x t ;p t j 1 ( j j x 1 )> 0

ReLU
�
@t pt j1(x t jx1) � @t pt j1(j jx1)

�

�
1

Z t

X

j 6= x t ;p t j 1 ( j j x 1 )> 0

ReLU
�
@t pt j1(j jx1) � @t pt j1(x t jx1)

�

=
1

Z t

X

j 6= x t ;p t j 1 ( j j x 1 )> 0

�
@t pt j1(x t jx1) � @t pt j1(j jx1)

�

=
Z t � 1

Z t
@t pt j1(x t jx1) �

1
Z t

X

j 6= x t ;p t j 1 ( j j x 1 )> 0

@t pt j1(j jx1)

=
Z t � 1

Z t
@t pt j1(x t jx1) �

1
Z t

@t (1 � pt j1(x t jx1))

=
Z t � 1

Z t
@t pt j1(x t jx1) +

1
Z t

@t pt j1(x t jx1)

= @t pt j1(x t jx1)

= LHS

In the case thatpt j1(x t jx1) = 0 by assumption we have that@t pt j1(x t jx1) = 0 . We have bothR�
t (x t ; j jx1) = 0 and

R�
t (j; x t jx1) = 0 becausept j1(x t jx1) = 0 . Therefore we haveLHS = RHS = 0 and thus the Kolmogorov equation is

satis�ed.

Intuitively, we require the assumption that dead states cannot be resurrected becauseR�
t is designed such that all states can

equally distribute the mass �ux requirements of making sure the marginal derivatives@t pt j1(x t jx1) are satis�ed. If there is a
state for whichpt j1(x t jx1) = 0 but @t pt j1(x t jx1) > 0 then this state would require mass from other states but could not
provide any mass of its own sincept j1(x t jx1) = 0 . This would then violate the sharing symmetry required for our form
of R�

t . We note that this assumption is not strictly satis�ed for the masking interpolant att = 0 or t = 1 and not satis�ed
for the uniform interpolant att = 1 . However, it is satis�ed for anyt 2 (0; 1) and so we can conceptualize starting our
process att = � , � � 1, � > 0, approximating a sample fromp� (x � ) with a sample fromp0(x0) and running the process
until t = 1 � � and stopping here. The approximation can be made arbitrarily accurate by taking� ! 0.

B.3. Proof of Proposition 3.3

A rate matrix that satis�es the detailed balance condition(9) will result in @t pt j1(i jx1) = 0 when simulating with this rate.
This can be seen by substituting into the conditional Kolmogorov equation (17)

@t pt j1(x t jx1) =
X

j 6= x t

RDB
t (j; x t jx1)pt j1(j jx1)
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�
X

j 6= x t

RDB
t (x t ; j jx1)pt j1(x t jx1)

@t pt j1(x t jx1) =
X

j 6= x t

RDB
t (x t ; j jx1)pt j1(x t jx1)

�
X

j 6= x t

RDB
t (x t ; j jx1)pt j1(x t jx1)

@t pt j1(x t jx1) =0

Given a rate matrixRt (x t ; j jx1) that generatespt j1(x t jx1), we �rst prove thatRt (x t ; j jx1)+ �R DB
t (x t ; j jx1) also generates

pt j1(x t jx1) for any� 2 R� 0. We show this by verifying that the combined rate matrix satis�es the Kolmogorov equation
for conditional �ow pt j1(x t jx1). The right hand side of the Kolmogorov equation is

RHS=
X

j

�
Rt (x t ; j jx1) + �R DB

t (x t ; j jx1)
�

pt j1(j jx1)

=
X

j

Rt (x t ; j jx1)pt j1(j jx1) + �
X

j

RDB
t (x t ; j jx1)pt j1(j jx1)

| {z }
=0

=
X

j

Rt (x t ; j x 1)pt j1(j jx1)

= @t pt j1(x t jx1)

= LHS

where we have used the fact thatRDB is in detailed balance withpt j1(j jx1) and thatRt (x t ; j jx1) generatespt j1. SinceR�
t

is a matrix that generatespt j1, we also have the stated result as a speci�c case:R�
t + �R DB

t generatespt j1.

B.4. Proof of Proposition 3.4

We will assume we haveD dimensional datax1:D
1 with eachxd

1 2 f 1; : : : ; Sg. We give an overview of how our
method operates in the multi-dimensional case in Appendix E. Namely, we assume that our conditional �ow factorizes as
pt j1(x1:D

t jx1:D
1 ) =

Q D
d=1 pt j1(xd

t jxd
1). We also assume that our rate matrix is0 for jumps that vary more than1 dimension

at a time. Our optimality results are derived under these assumptions.

B.4.1. MASKING INTERPOLANT

We �rst prove thatR�
t achieves the minimum number of transitions for the masking interpolant case. We have

pt j1(x1:D
t jx1:D

1 ) =
DY

d=1

pt j1(xd
t jxd

1)

with
pt j1(xd

t jxd
1) = t�

�
xd

t ; xd
1

	
+ (1 � t)�

�
xd

t ; M
	

Our rate in dimensiond is

R�
t

d(xd
t ; j d jxd

1) =

8
<

:

ReLU (@t pt j 1 ( j d j x d
1 ) � @t pt j 1 (x d

t j x d
1 ))

Z d
t pt j 1 (x d

t j x d
1 ) for pt j1(xd

t jxd
1) > 0; pt j1(j d jxd

1) > 0

= 0 otherwise

with Z d
t = jf j d : pt j1(j d jxd

1) > 0gj. Substituting in@t pt j1 andpt j1 in the masking case gives

R�
t

d(xd
t ; j d jxd

1) =
1

1 � t
�

�
xd

t ; M
	

�
�

j d; xd
1

	

We refer to Appendix F.1 for the details of this derivation. SinceR�
t

d depends only onxd
t , j d andxd

1 and not values in any
other dimensions, each dimension propagates independently and we can consider each dimension in isolation. Consider the
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process for dimensiond. The CTMC begins in statexd
0 = M . We haveR�

t
d(xd

t = M; j d jxd
1) = 1

1� t �
�

j d; xd
1

	
. Therefore,

the only possible next state that the process can jump to isxd
1. Once the process has jumped toxd

1, the rate then becomes
R�

t
d(xd

t = xd
1; j d jxd

1) = 0 . We also know that the process must jump becausep1(xd
t jxd

1) = �
�

xd
t ; xd

1

	
, xd

1 6= M and we
know our rate matrix traverses our desired marginals by Proposition 3.2. Therefore, exactly one jump is made in dimension
d. In total, ourD dimensional process will makeD jumps. Under our factorization assumption, during a jump no more than
one dimension can change value. Therefore, the absolute minimum number of jumps for any process that starts atx1:D

0
with xd

0 = M; 8d and ends atx1:D
1 , xd

1 6= M; 8d is D . Our prior distribution isp0(xd
0) = �

�
xd

0; M
	

and so for anyx0

sample, we will always need to makeD jumps. Therefore, the minimum expected number of jumps isD andR�
t achieves

this minimum.

B.4.2. UNIFORM INTERPOLANT

We now prove thatR�
t achieves the minimum number of transitions for the uniform interpolant case. The conditional �ow is

pt j1(xd
t jxd

1) = t�
�

xd
t ; xd

1

	
+ (1 � t)

1
S

With this interpolant, our rate matrix becomes

R�
t

d(xd
t ; j d jxd

1) =
1

1 � t
�

�
j d; xd

1

	 �
1 � �

�
xd

t ; xd
1

	�

We refer to Appendix F.2 for the derivation. As before,R�
t

d depends only on the values in dimensiond, xd
t ; j d; xd

1 and
therefore each process propagates independently in each dimension and we can consider each dimension in isolation.
Considering dimensiond, the process begins in statexd

0. Bothxd
0 = xd

1 andxd
0 6= xd

1 are possible in the uniform interpolant
case. In the case thatxd

0 = xd
1, thenR�

t
d = 0 for all t and therefore no jumps are made in this dimension. In the case

thatxd
0 6= xd

1 then before any jump is made we haveR�
t

d(xd
t ; j d jxd

1) = 1
1� t �

�
j d; xd

1

	
and so the only possible next state

the process can jump to isxd
1. Once the process has jumped toxd

1, the rate then becomesR�
t (xd

t = xd
1; j d jxd

1) = 0 and
so no more jumps are made. We also know that the process must jump at some point becausep1(xd

t jxd
1) = �

�
xd

t ; xd
1

	

and we know our rate matrix traverses our desired marginals by Proposition 3.2. Therefore, in the case thatxd
0 6= xd

1,
exactly one jump is made for the process in dimensiond. In total, the number of jumps made in allD dimensions is
dH (x0; x1) = jf d : xd

0 6= xd
1gj which is the Hamming distance betweenx0 andx1. The expected number of jumps for our

process withR�
t is thusEp0 (x 0 )pdata (x 1 ) [dH (x0; x1)].

Now consider an optimal process that makes the minimum number of jumps when starting fromx0 and meets our
factorization assumptions. By this assumption, during a jump only one dimension can change in value. Clearly we have that
the minimum number of jumps required to get fromx0 to x1 is dH (x0; x1). Therefore, for this optimal process we also
have that the minimum number of expected jumps isEp0 (x 0 )pdata (x 1 ) [dH (x0; x1)]. Therefore,R�

t achieves the minimum
expected number of jumps.

B.4.3. DISCUSSION

We have provenx1 conditioned optimality only for the two simple conditional �ows featured in the main text and we note
that this result in not generally true for any conditional �ow. Intuitively this is becauseR�

t treats the distribution of mass
symmetrically between states, considering only the local differences in@t pt j1 between pairs of states. In general, the optimal
rate would need to solve a global programming problem.

We also note that although we have masking and uniform optimality forR�
t (x t ; j jx1) when conditioned onx1, this

is not necessarily the case when we consider the unconditional versionEp1 j t (x 1 j x t ) [R�
t (x t ; j jx1)]. There may exist

rate matrices that achieve a lower number of average jumps and successfully pass through the unconditional marginals
pt (x t ) = Epdata (x 1 )

�
pt j1(x t jx1)

�
. This is analogous to continuous �ow-based methods which can create optimal straight-

line paths when conditioned on the end pointx1, but don't necessarily achieve the optimal transport when considering the
unconditional vector �eld (Shaul et al., 2023).
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B.5. Proof of Proposition 4.1

We have that the individual velocities and rate matrices independently generate their respective �ows in each dimension.
Speci�cally, for xd

t 2 R3, we have that it satis�es the following Fokker-Planck equation,

@t pt j1(xd
t jxd

1) = �r (d) �
�
vd

x (xd
t jxd

1)pt j1(xd
t jxd

1)
�

:

wherer (d) � is the divergence operator for elements in dimensiond. Similarly for r t 2 SO(3),

@t pt j1(r d
t jr d

1 ) = �r (d) �
�
vd

r (r d
t jr d

1 )pt j1(r d
t jr d

1 )
�

;

where the divergence operator now acts on elements inTanr d
t
SO(3) (Yim et al., 2023b). Finally, forad

t , we have the familiar
Kolmogorov equation,

@t pt j1(ad
t jad

1) =
X

j

Rt (j; a d
t jad

1)pd
t j1(j jad

1):

For the joint spaceT 2 (R3 � SO(3) � f 1; : : : ; 20; M g)D and process de�ned by the updates in Eq. (14), we also have a
joint continuity equation known as the Fokker-Planck-Kolmogorov equation (Bect, 2010),

@t pt j1(T t jT 1) = � r �
�
vx (x1:D

t jx1:D
1 )pt j1(T t jT 1)

�
� r �

�
vr (r 1:D

t jr 1:D
1 )pt j1(T t jT 1)

�
+

X

j 1: D

Rt (j 1:D ; a1:D
t ja1:D

1 )pt j1
�
(x1:D

t ; r 1:D
t ; j 1:D )jT 1

�
: (18)

Our aim is to show that the following choices ofpt j1, vx , vr andRt corresponding to independent processes within each
modality and dimension are consistent under Eq. (18) i.e. these choices ofvx , vr andRt will actually generatept j1 when
simulated using Eq. (14) with� t ! 0. The choices are as follows:

pt j1(T t jT 1) =
DY

d=1

pt j1(xd
t jxd

1)pt j1(r d
t jr d

1 )pt j1(ad
t jad

1)

vx (x1:D
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1 ) =

2

6
4
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x (x1

t jx1
1)

...
vD

x (xD
t jxD

1 )

3

7
5

vr (r 1:D jr 1:D ) =
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6
4
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r (r 1

t jr 1
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...
vD

r (r D
t jr D

1 )

3

7
5

Rt (j 1:D ; a1:D
t ja1:D

1 ) =
DX

d=1

�
n

j 1:D nd; a1:D nd
t

o
Rd

t (j d; ad
t jad

1)

More discussion regarding the form ofRt (j 1:D ; a1:D
t ja1:D

1 ) can be found in Appendix E. Under these choices, the LHS of
Eq. (18) becomes

LHS = @t pt j1(T t jT 1)

=
DX

d=1

@t pt j1(xd
t jxd

1)
pt j1(T t jT 1)

pt j1(xd
t jxd

1)
+ @t pt j1(r d

t jr d
1 )

pt j1(T t jT 1)

pt j1(r d
t jr d

1 )
+ @t pt j1(ad

t jad
1)

pt j1(T t jT 1)

pt j1(ad
t jad

1)

by the product rule for differentiation. The RHS of Eq. (18) becomes

RHS=
DX

d=1

�r (d) �
�
vd

x (xd
t jxd

1)pt j1(T t jT 1)
�

� r (d) �
�
vd

r (r d
t jr d

1 )pt j1(T t jT 1)
�

+
X

j 1: D

DX
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�
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t

o
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t jad

1)pt j1
�
(x1:D

t ; r 1:D
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�
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=
DX

d=1

�r (d) �
�
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= LHS

Therefore we have shown that our choices ofvx , vr andRt will generate the desiredpt j1.

B.6. Proof of Proposition 4.2

Our proof will mirror that of Proposition 3.1 by taking the expectation with respect topdata (T 1) of both sides of the
Fokker-Planck-Kolmogorov equation (Eq. (18)).

Epdata (T 1 )
�
@t pt j1(T t jT 1)

�
= Epdata (T 1 )

h
� r �

�
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� i
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3

5
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(19)

where on the second line on the left hand side we have used the fact thatpt (T t ) = Epdata (T 1 )
�
pt j1(T t jT 1)

�
. We shall �rst

examine thevd
x term on the right hand side in isolation.
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= �r (d) �

 Z
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The same argiments follow through for thevd
r term giving
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We �nally analyse theRd
t term in isolation. In the following, we will usea1:D nd

t � j d to refer to theD dimensional discrete
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t in all dimensions exceptd and the valuej d in dimensiond.
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Now we substitute these simpli�ed forms back into Eq. (19).
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(20)

We will now show that Eq. (20) is the Fokker-Planck-Kolmogorov equation forpt (T t ) with the following choices for the
velocities and rate matrix.
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We shall substitute the choices in Eq. (21) into the Fokker-Planck-Kolmogorov equation forpt (T t ) and show that this equals
Eq. (20).
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which we see matches Eq. (20). Therefore, we have shown that the choices for the velocities and rate matrix in Eq. (21)
create a process that generatespt (T t ) as desired.

C. Analysis of Training Objective

In this section we analyse how our cross entropy objectiveL ce relates to the log-likelihood of the data under the generative
model and to the ELBO used to train classical discrete diffusion models.

Our proof is structured as follows. We �rst introduce path space measures for CTMCs in Section C.1 that we will require
for the rest of the derivation. In Section C.1.1 we then derive the standard evidence lower bound,L ELBO on the model log
likelihood,Epdata (x 1 ) [logp� (x1)]. We then decomposeL ELBO into the cross entropy, a rate regularizer and a KL term in
Section C.2. Finally in Section C.2.1 we show thatL ELBO corresponds exactly to the weighted cross entropy loss for the
masking interpolant case.

C.1. Introduction to CTMC path measures

Before beginning the proof, we introduce path space measures for CTMC processes, following the exposition in (Del Moral
& Penev, 2017), Chapter 18. A path of a CTMC is a single trajectory from time0 to timet. The trajectory is a function
! : s 2 [0; t] 7! ! s 2 f 1; : : : ; Sg that is everywhere right continuous and has left limits everywhere (also known as c�adl�ag
paths). Intuitively, it is a function that takes in a time variable and outputs the position of the particle following the trajectory
at that time. The c�adl�ag condition in our case states that at jump time� we have! � taking the new jumped to value and
! �

� := lim s" � ! s being the previous value before the jump, see Fig. 1B.

A trajectory drawn from the CTMC,W, can be fully described through its jump times,T1; : : : Tn and its state values
between jumps,W0; W1; : : : ; WTn where at jump timeTk the CTMC jumps from state valueWk � 1 to valueWk . A path
space measureP is able to assign probabilities to a drawn trajectoryW from time0 to t in the sense of

P(W 2 d! ) := P(W0 2 d! 0; (T1; WT1 ) 2 d(t1; ! t 1 ); : : : (Tn ; WTn ) 2 d(tn ; ! t n ); Tn +1 � t)

whered! t n anddtn denote in�nitesimal neighborhoods around the points! t n 2 f 1; : : : ; Sg andtn 2 [0; t]. This is the same
sense in which a probability density function assigns probabilities to the in�nitesimal neighborhood around a continuous
valued variable.

To understand the form ofP(W 2 d! ) we remind ourselves of the de�nition of a CTMC with rate matrixRt . The CTMC
waits in the current state for an amount of time determined by an exponential random variable with time-inhomogeneous
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rateRt (Wt ) :=
P

k6= W t
Rt (Wt ; k), see Norris (1998) and Campbell et al. (2022) Appendix A for more details. After the

wait time is �nished, the CTMC jumps to a next chosen state where the jump distribution is

P(Wt k jW �
t k

) =
Rt (W �

t k
; Wt k )

�
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For an exponential random variable with time-inhomogeneous rate, the cumulative distribution function is given by
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�
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Therefore, the probability density function,p(t) = @
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We �nally note that if we wish to knowP(Tk < t jTk � 1) i.e. the probability that thek-th jump time is less thant given we
know thek � 1-th jump time, then this is just an exponential random variable started at timeTk � 1 when the previous jump
occurred,

P(Tk < t jTk � 1) = 1 � exp

 

�
Z s= t

s= Tk � 1

Rs(W �
s )ds

!

In other words, we simply start a new exponential timer once the previous jump occurs and the same equation carries
through.

We can now write the form ofP(W 2 d! ). We split it into a series of conditional distributions
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s:W s 6= W �
s
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wherep0 is the initial state distribution.

We will also need to understand Girsanov's transformation for CTMCs. Girsanov's transformation can be thought of as
`importance sampling' for path space measures. Speci�cally, if we take an expectation with respect to path measureP,

EP [f (W )], then this is equal toEQ

h
f (W ) dP

dQ (W )
i

whereQ is a different path measure anddP
dQ is known as the Radon-

Nikodym derivative. The path measureQ will result from considering a CTMC with a different rate matrix to our original
measureP. Girsanov's transformation allows us to calculate the expectation which should have been taken with respect to
the CTMC withP rate matrix instead with a CTMC with rate matrix corresponding toQ.

The Radon-Nikodym derivative in our case has a form that is simply the ratio ofP(W 2 d! ) andQ(W 2 d! ). Let Rt , p0

be the rate matrix and initial distribution de�ningP and letR0
t , p0

0 be the rate matrix and initial distribution de�ningQ.

dP
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�
�
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� Q
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C.1.1. DERIVATION OF L ELBO

In this section we will derive the standard evidence lower bound for the model log-likelihood assigned to the data,
Epdata (x 1 ) [logp� (x1)] when using our learned generative process to generate data. The entire structure of this section can
be understood intuitively by making analogy to the derivation of the evidence lower bound for VAEs, (Kingma & Welling,
2013; Rezende et al., 2014; Huang et al., 2021). In a VAE, we have a latent variable modelp� (z; x) for observed datax. To
derive the ELBO, we introduce a second distribution over the latent variablesq(zjx) with which we will use to take the
expectation. The ELBO derivation proceeds as

logp� (x) = log
X

z

p� (z; x)

logp� (x) = log
X

z

q(zjx)
p� (z; x)
q(zjx)

Girsanov's transformation / Importance sampling

logp� (x) �
X

z

q(zjx) log
�

p� (z; x)
q(zjx)

�
Jensen's inequality

Epdata (x ) [p� (x)] � Epdata (x )q(zjx ) [logp� (z; x)] + C

In our case,x corresponds to the �nal state of the generative process at timet = 1 , x1. The latent variablez corresponds
to all other states of the CTMCWt , t 2 [0; 1). Our modelp� (z; x) corresponds to our generative CTMC with rate matrix
R�

t (x t ; j ) = Ep� (x 1 j x t ) [Rt (x t ; j jx1)] and initial distributionp0(x0). Our latent variable distributionq(zjx) corresponds to
thex1 conditioned CTMC that begins at distributionp0j1(x0jx1) and simulates withx1 conditioned rate matrixRt (x t ; j jx1).
We note here thatRt (x t ; j jx1) can be any rate matrix that generates the desiredx1 conditional �ow, pt j1(x t jx1) as we
described in the main text.

We now deriveL ELBO using our path space measures for CTMCs. We will useP� to denote the path measure corresponding
to the CTMC simulating fromp0(x0) using the generative rate matrixR�

t (x t ; j ) = Ep� (x 1 j x t ) [Rt (x t ; j jx1)]. We will use
Qj x 1 to denote the path measure corresponding to the CTMC simulating fromp0j1(x0jx1) using thex1 conditioned rate
matrixRt (x t ; j jx1).

We begin by marginalizing out the latent variables,Wt , t 2 [0; 1) for our generative CTMC

logp� (x1) = log
Z

W 1 = x 1

P� (d! )

We now apply Girsnov's transformation using ourx1 conditioned CTMC

logp� (x1) = log
Z

W 1 = x 1

Qj x 1 (d! )
dP�

dQj x 1
(! )

where

dP�

dQj x 1
(! ) =

p0(W0) exp
�

�
Rt =1

t =0 R�
t (W �

t )dt
� Q

t :W t 6= W �
t

R�
t (W �

t ; Wt )

p0j1(W0jx1) exp
�

�
Rt =1

t =0 Rt (W �
t jx1)dt

� Q
t :W t 6= W �

t
Rt (W �

t ; Wt jx1)

we note at this point thatp0j1(W0jx1) = p0(W0) and the two intial distribution terms cancel out. Now, apply Jensen's
inequality

logp� (x1) �
Z

W 1 = x 1

Qj x 1 (d! ) log
dP�

dQj x 1
(! )

and take the expectation with respect to the data distribution

Epdata (x 1 ) [logp� (x1)] �
Z

pdata (dx1)Qj x 1 (d! ) log
dP�

dQj x 1
(! )

Finally, substitute in the form fordP�

Qj x 1
and take terms that don't depend on� out into a constant

Epdata (x 1 ) [logp� (x1)] �
Z

pdata (dx1)Qj x 1 (d! )

8
<

:
�

Z t =1

t =0
R�

t (W �
t )dt +

X

t :W t 6= W �
t

logR�
t (W �

t ; Wt )

9
=

;
+ C
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=
Z

pdata (dx1)Qj x 1 (d! )

8
<

:
�

Z t =1

t =0
R�

t (W �
t )dt +

X

t :W t 6= W �
t

logEp� (~x 1 jW �
t )

�
Rt (W �

t ; Wt j~x1)
�
9
=

;
+ C

= L ELBO + C

where

L ELBO =
Z

pdata (dx1)Qj x 1 (d! )

8
<

:
�

Z t =1

t =0
R�

t (W �
t )dt +

X

t :W t 6= W �
t

logEp� (~x 1 jW �
t )

�
Rt (W �

t ; Wt j~x1)
�
9
=

;
(22)

C.2. Decomposition ofL ELBO

Consider the termlog
�

Ep� (~x 1 jW �
t )

�
Rt (W �

t ; Wt j~x1)
� �

,

log
�

Ep� (~x 1 jW �
t )

�
Rt (W �

t ; Wt j~x1)
� �

= log
�

Ep(~x 1 jW �
t )

�
p� (~x1jW �

t )
p(~x1jW �

t )
Rt (W �

t ; Wt j~x1)
��

= log
�

Ep(~x 1 jW �
t )

�
p� (~x1jW �

t )
p(~x1jW �

t )
Rt (W �

t ; Wt j~x1)
��

+ Ep(~x 1 jW �
t )

�
log

�
p� (~x1jW �

t )
p(~x1jW �

t )
Rt (W �

t ; Wt j~x1)
��

� Ep(~x 1 jW �
t )

�
log

�
p� (~x1jW �

t )
p(~x1jW �

t )
Rt (W �

t ; Wt j~x1)
��

= Ep(~x 1 jW �
t )

�
logp� (~x1jW �

t )
�

+ C

+ log
�

Ep(~x jW �
t )

�
p� (~x1jW �

t )
p(~x1jW �

t )
Rt (W �

t ; Wt j~x1)
��

� Ep(~x 1 jW �
t )

�
log

�
p� (~x1jW �

t )
p(~x1jW �

t )
Rt (W �

t ; Wt j~x1)
��

= Ep(~x 1 jW �
t )

�
logp� (~x1jW �

t )
�

+ C

+ log
�

Ep(~x jW �
t )

�
p� (~x1jW �

t )
p(~x1jW �

t )
P(Wt jW �

t ; ~x1)Rt (W �
t j~x1)

��

� Ep(~x 1 jW �
t )

�
log

�
p� (~x1jW �

t )
p(~x1jW �

t )
P(Wt jW �

t ; ~x1)Rt (W �
t j~x1)

��

where we have used our de�nition of the jump distribution of

P(Wt jW �
t ; ~x1) =

Rt (W �
t ; Wt j~x1)

Rt (W �
t j~x1)

Now we de�ne two new distributions,

p� (~x1jW �
t )P(Wt jW �

t ; ~x1) = p� (Wt jW �
t )p� (~x1jW �

t ; Wt )

where
p� (Wt jW �

t ) :=
X

~x 1

p� (~x1jW �
t )P(Wt jW �

t ; ~x1)

and

p� (~x1jW �
t ; Wt ) :=

p� (~x1jW �
t )P(Wt jW �

t ; ~x1)
P

x 0
1

p� (x0
1jW �

t )P(Wt jW �
t ; x0

1)
(23)
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Substitute in these newly de�ned distributions into our equation forlog
�

Ep� (~x jW �
t )

�
Rt (W �

t ; Wt j~x1)
� �

to get

log
�

Ep� (~x jW �
t )

�
Rt (W �

t ; Wt j~x1)
� �

= Ep(~x 1 jW �
t )

�
logp� (~x1jW �

t )
�

+ C

+ log
�

Ep(~x jW �
t )

�
p� (Wt jW �

t )p� (~x1jW �
t ; Wt )

p(~x1jW �
t )

Rt (W �
t j~x1)

��

� Ep(~x 1 jW �
t )

�
log

�
p� (Wt jW �

t )p� (~x1jW �
t ; Wt )

p(~x1jW �
t )

Rt (W �
t j~x1)

��

= Ep(~x 1 jW �
t )

�
logp� (~x1jW �

t )
�

+ C

+ ( ( ( ( ( ( (
logp� (Wt jW �

t ) + log
�

Ep(~x jW �
t )

�
p� (~x1jW �

t ; Wt )
p(~x1jW �

t )
Rt (W �

t j~x1)
��

� ( ( ( ( ( ( (
logp� (Wt jW �

t ) � Ep(~x 1 jW �
t )

�
log

�
p� (~x1jW �

t ; Wt )
p(~x1jW �

t )
Rt (W �

t j~x1)
��

= Ep(~x 1 jW �
t )

�
logp� (~x1jW �

t )
�

+ log
�

Ep� (~x 1 jW �
t ;W t )

�
Rt (W �

t j~x1)
� �

+ KL
�
p(~x1jW �

t ) jj p� (~x1jW �
t ; Wt )

�
+ C

Substituting this into our form forL ELBO given in equation (22) gives

L ELBO =
Z

pdata (dx1)Qj x 1 (d! )

(

�
Z t =1

t =0
R�

t (W �
t )dt +

X

t :W t 6= W �
t

 

Ep(~x 1 jW �
t )

�
logp� (~x1jW �

t )
�

+

log
�

Ep� (~x 1 jW �
t ;W t )

�
Rt (W �

t j~x1)
� �

+

KL
�
p(~x1jW �

t ) jj p� (~x1jW �
t ; Wt )

�
!)

Substituting this into our original bound on the model log-likelihood gives

Epdata (x 1 ) [logp� (x1)] � L ELBO + C = L ce + L R + L KL + C

where

L ce =
Z

pdata (dx1)Qj x 1 (d! )
X

t :W �
t 6= W t

Ep(~x 1 jW �
t )

�
logp� (~x1jW �

t )
�

L R =
Z

pdata (dx1)Qj x 1 (d! )

(

�
Z t =1

t =0
R�

t (Wt )dt +
X

t :W �
t 6= W t

log
�

Ep� (~x 1 jW �
t ;W t )

�
Rt (W �

t j~x1)
� �

)

L KL =
Z

pdata (dx1)Qj x 1 (d! )
X

t :W �
t 6= W t

KL
�
p(~x1jW �

t ) jj p� (~x1jW �
t ; Wt )

�

andC is a constant term independent of� .

In the next stages of the proof, we going to show thatL ce is the weighted cross-entropy,L R is a regularizer towards the
arbitrarily chosenx1 conditioned rate matrix that we argue we can ignore andL KL is a KL term that we will absorb into the
bound on the model log-likelihood.

In order to proceed, we will need to make use of Dynkin's formula
Z

pdata (dx1)Qj x 1 (d! )
X

t :W �
t 6= W t

f (W �
t ; Wt ) =

Z
pdata (dx1)Qj x 1 (d! )

Z t =1

t =0

X

y6= W t

Rt (Wt ; yjx1)f (Wt ; y)dt
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wheref (�; �) is a two-argument function. This formula can be understood intuitively as allowing us to switch from a sum
over the jump times to a full integral over the time interval appropriately weighted by the probability that a jump occurs and
the destination to which a jump goes to.

Weighted Cross Entropy We �rst show thatL ce is the weighted cross entropy.

L ce =
Z

pdata (dx1)Qj x 1 (d! )
X

t :W �
t 6= W t

Ep(~x 1 jW �
t )

�
logp� (~x1jW �

t )
�

=
Z

pdata (dx1)Qj x 1 (d! )
Z t =1

t =0

X

y6= W t

Rt (Wt ; yjx1)Ep(~x 1 jW t ) [logp� (~x1jWt )] dt Dynkin

=
Z Z t =1

t =0
pdata (dx1)Qj x 1 (d! )Ep(~x 1 jW t ) [logp� (~x1jWt )] Rt (Wt jx1)dt

= Epdata (x 1 )U( t ;0;1)p(x t j x 1 )
�
Rt (x t jx1)Ep(~x 1 j x t ) [logp� (~x1jx t )]

�

= Epdata (x 1 )U( t ;0;1)p(x t j x 1 )p(~x 1 j x t ) [Rt (x t jx1) log p� (~x1jx t )]

= EU(t ;0;1)p(x 1 ;x t )p(~x 1 j x t ) [Rt (x t jx1) log p� (~x1jx t )]

= EU(t ;0;1)p(x t )p(x 1 j x t )p(~x 1 j x t ) [Rt (x t jx1) log p� (~x1jx t )]

= EU(t ;0;1)p(x t )p(~x 1 j x t )p(x 1 j x t ) [Rt (x t j~x1) log p� (x1jx t )] Relabelx1 $ ~x1

= EU(t ;0;1)p(x t )p(x 1 j x t )
�
Ep(~x 1 j x t ) [Rt (x t j~x1)] log p� (x1jx t )

�

= EU(t ;0;1)p(x t )p(x 1 j x t ) [! t (x t ) log p� (x1jx t )]

where on the second line we apply Dynkin's formula withf (W �
t ; Wt ) = Ep(~x 1 jW �

t )

�
logp� (~x1jW �

t )
�

which we note is
independent ofWt . ! t (x t ) is a weighting function. In diffusion model training it is common for the likelihood based
objective to be a weighted form of a recognisable loss e.g. the L2 loss for diffusion models. Here we have a `likelihood
weighted' cross entropy. We can then make the same approximation as in diffusion models and set! (x t ) = 1 to equally
weight all loss levels. This also has the bene�t of making our loss independent of the arbitrarily chosen rate matrixRt that
could have been any rate that generates the desired conditional �ow.

Rate Forcing Term We now analyse the termL R . We will show that it is approximately equal to an objective which at
its optimum sets the learned generative rate matrix to have the same overall jump probability as the arbitrarily chosen rate
matrix that generates ourpt j1(x t jx1) conditional �ow.

L R =
Z

pdata (dx1)Qj x 1 (d! )

(

�
Z t =1

t =0
R�

t (Wt )dt +
X

t :W �
t 6= W t

log
�

Ep� (~x 1 jW �
t ;W t )

�
Rt (W �

t j~x1)
� �

)

=
Z

pdata (dx1)Qj x 1 (d! )

(

�
Z t =1

t =0
R�

t (Wt )dt +
Z t =1

t =0

X

y6= W t

Rt (Wt ; yjx1) log
�
Ep� (~x 1 jW t ;y ) [Rt (Wt j~x1)]

�
dt

)

where on the second line we have applied Dynkin's formula withf (W �
t ; Wt ) = Ep� (~x 1 jW �

t ;W t )

�
Rt (W �

t j~x1)
�
. To further

understand this term, we make the following approximation

Ep� (~x 1 jW t ;y ) [Rt (Wt j~x1)] � Ep� (~x 1 jW t ) [Rt (Wt j~x1)]

p� (~x1jWt ; y) is the Bayesian posterior update given by equation(23) starting with priorp� (~x1jWt ) and with likelihood
P(yjWt ; ~x1). It is therefore the models prediction of~x1 updated with the information that the process has jumped to new
valuey. When our CTMC is multi-dimensional then a single jump will change only a single dimension, see Appendix E,
and so when we operate in high-dimensional settings, the Bayesian posterior will be close to the prior.

We will denote the approximate form ofL R asL̂ R .

L̂ R =
Z

pdata (dx1)Qj x 1 (d! )

(

�
Z t =1

t =0
R�

t (Wt )dt +
Z t =1

t =0

X

y6= W t

Rt (Wt ; yjx1) log
�
Ep� (~x 1 jW t ) [Rt (Wt j~x1)]

�
dt

)
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=
Z

pdata (dx1)Qj x 1 (d! )

(

�
Z t =1

t =0
R�

t (Wt )dt +
Z t =1

t =0
log

�
Ep� (~x 1 jW t ) [Rt (Wt j~x1)]

�
Rt (Wt jx1)dt

)

=
Z Z t =1

t =0
pdata (dx1)Qj x 1 (d! )

(

� R�
t (Wt ) + Rt (Wt jx1) log R�

t (Wt )

)

dt

= EU(t ;0;1)pdata (x 1 )pt (x t j x 1 )
�
� R�

t (x t ) + Rt (x t jx1) log R�
t (x t )

�

= EU(t ;0;1)pt (x t )
�
� R�

t (x t ) + Ep(x 1 j x t ) [Rt (x t jx1)] log R�
t (x t )

�

where on the third line we have used the de�nition ofR�
t (Wt ) = Ep� (~x 1 jW t ) [Rt (Wt j~x1)]. Now consider maximizinĝL R

with respect to the value ofR�
� (z) at test inputz and test time� . DifferentiatingL̂ R with respect toR�

� (z) and setting to0
gives

@̂L R

@R� (z)
= p� (z)

�
� 1 + Ep(x 1 j z) [R� (zjx1)]

1
R�

� (z)

�
= 0

=) R�
� (z) = Ep(x 1 j z) [R� (zjx1)] at stationarity

Therefore, we have found that maximizinĝL R encouragesR�
t (x t ) to equalEp(x 1 j x t ) [Rt (x t jx1)]. However,Rt (x t jx1) is

the overall rate of jumps for the arbitrarily chosen rate matrix that generates thept j1(x t jx1) conditional �ow. This rate of
jumps is completely dependent on the level of stochasticity chosen forRt (x t jx1) which does not have any a priori known
correct level. Therefore, we do not want to be encouraging our learned generative rate matrixR�

t to be matching this
stochasticity level and so the term̂L R is undesirable to have in the objective. The true evidence lower bound includes the
termL R which we expect to have a similar effect asL̂ R as we argued previously.

KL Term When we maximize theL ELBO objective, we would try to maximize theL KL term i.e. we try and pushp(~x1jW �
t )

andp� (~x1jW �
t ; Wt ) as far apart as possible. This makes sense to do as we try and push the posterior over~x1 given the

information contained in both the pre-jump stateW �
t and the post jump stateWt away from the distribution over~x1 given

just the information withinW �
t . Digging into this term deeper we see that

KL
�
p(~x1jW �

t ) jj p� (~x1jW �
t ; Wt )

�

= Ep(~x 1 jW �
t )

�
log

p(~x1jW �
t )

p� (~x1jW �
t ; Wt )

�

= Ep(~x 1 jW �
t )

2

4� log
�
p� (~x1jW �

t )P(Wt jW �
t ; ~x1)

�
+ log

0

@
X

x 0
1

p� (x0
1jW �

t )P(Wt jW �
t ; x0

1)

1

A

3

5 + C

= Ep(~x 1 jW �
t )

2

4� logp� (~x1jW �
t ) + log

0

@
X

x 0
1

p� (x0
1jW �

t )P(Wt jW �
t ; x0

1)

1

A

3

5 + C

where we have substituted in our de�nition ofp� (~x1jW �
t ; Wt ) given by equation(23). We see that the �rst term

� logp� (~x1jW �
t ) cancels with our cross entropy term. This then makes clear how we have arrived at our cross en-

tropy decomposition ofL ELBO. L ELBO will usually remove the cross entropy training signal and replace it with the term

log
� P

x 0
1

p� (x0
1jW �

t )P(Wt jW �
t ; x0

1)
�

which will be used as the training signal for the denoising modelp� (x1jW �
t ). The

denoising model is encouraged to be such that the expected jump probability assigns high likelihood to the jump observed
under thex1 conditioned processQj x 1 . This is an indirect training signal forp� (x1jW �

t ) and one that relies on the arbitrary
speci�cation of ourQj x 1 process. We instead show how we can replace thisp� (x1jW �

t ) training signal with the cross
entropy loss and be left with a KL term showing that the cross entropy is a lower bound onL ELBO minus the rate regularizing
term. We summarize this argument in the next section.

Summary To summarize, we have �rst derived the standard evidence lower bound on the model log-likelihood when
using our speci�c generative rate matrix,R�

t (x t ; j ) = Ep� (x 1 j x t ) [Rt (x t ; j jx1)] for some arbitrarily chosenRt (x t ; j jx1)
that generates thept j1(x t jx1) conditional �ow.

Epdata (x 1 ) [logp� (x1)] � L ELBO + C
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We then splitL ELBO into three termsL ce + L R + L KL . We have seen how the termL KL allows us to remove the standard
L ELBO training signal for the denoising modelp� (x1jx t ) and replace it with the cross entropy, creating theL ce term. This
creates a looser bound if we are to train without theL KL term,

Epdata (x 1 ) [logp� (x1)] � L ce + L R + C

We then argue thatL R is close toL̂ R which is an unnecessary forcing term encouraging our generative rate to achieve a
similar jump rate to our chosenRt (x t ; j jx1) even though thisRt matrix is an arbitrary decision and will have a different
jump rate depending on whichRt is chosen. We are then left with the standard cross entropy term as our �nal objective for
p� (x1jx t ) with a �nal modi�cation to its unweighted form for implementation ease.

C.2.1. OBJECTIVE FOR THEMASKING INTERPOLANT

In this section we will show thatL ELBO is exactly the weighted cross entropy for the case when we use the masking form for
pt j1(x t jx1). We note that a similar result has been proven by Austin et al. (2021) for the discrete time diffusion model, and
here we verify that this result also holds for our DFM model. We will assume multi-dimensional data,x1 2 f 1; : : : ; SgD .
We refer to Appendix E for the details of the multi-dimensional setting. We will also assume that we useR�

t as our rate
matrix that generates thept j1(x t jx1) conditional �ow.

Before we manipulateL ELBO, we will �rst �nd the forms of R�
t (x1:D

t ; j 1:D jx1:D
1 ), R�

t (x1:D
t ; j 1:D ) andR�

t (x1:D
t ) for the

masking case. From Appendix F.1, equation (31) we have,

R�
t

d(xd
t ; j d jxd

1) =
1

1 � t
�

�
j d; xd

1

	
�

�
xd

t ; M
	

and so

R�
t (x1:D

t ; j 1:D jx1:D
1 ) =

DX

d=1

�
n

x1:D nd
t ; j 1:D nd

o
R�

t (xd
t ; j d jxd

1)

=
DX

d=1

�
n

x1:D nd
t ; j 1:D nd

o
�

�
j d; xd

1

	
�

�
xd

t ; M
	 1

1 � t

From Appendix F.1, equation (32) we have that,
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where on the �nal line we have used the fact thatp� (xd
1 = M jx1:D

t ) = 0 .

We are now ready to manipulate the form ofL ELBO. We start with
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We then apply Dynkin's formula
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We now substitute in the masking forms forR�
t (Wt ), R�

t (Wt ; yjx1) andR�
t (Wt ; y)

L ELBO =
Z

pdata (dx1)Qj x 1 (d! )

 Z t =1

t =0

 

�
DX

d=1

�
�

W d
t ; M

	 1
1 � t

!

+

X

y1: D 6= W 1: D
t

(  
DX

d=1

�
n

W 1:D nd
t ; y1:D nd

o
�

�
yd; xd

1

	
�

�
W d

t ; M
	 1

1 � t

!

�

log

 
DX

d=1

�
n

W 1:D nd
t ; y1:D nd

o
�

�
W d

t ; M
	

p� (yd jW 1:D
t )

1
1 � t

! )

dt

!

+ C

L ELBO =
Z

pdata (dx1)Qj x 1 (d! )

 Z t =1

t =0

DX

d=1

X

yd 6= W d
t

�
�

W d
t ; M

	
�

�
yd; xd

1

	 1
1 � t

log
�
p� (yd jW 1:D

t )
�

dt

!

+ C

where we have moved terms that don't depend on� into the constant.
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+ C (24)

where we have arrived at the weighted cross entropy, weighted by1
1� t and only calculated for dimensions that are masked

in our corrupted samplex t .

D. Discussion of Related Work

Flow based methods for generative modelling were introduced by (Liu et al., 2023; Albergo & Vanden-Eijnden, 2023; Lipman
et al., 2023). These methods simplify the generative modelling framework over diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2020) by considering noise-data interpolants rather than considering forward/backward
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diffusions. This work brings these bene�ts to discrete data denoising models which previously have used the diffusion
methodology (Sohl-Dickstein et al., 2015; Hoogeboom et al., 2021; Austin et al., 2021) relying on forward/backward
processes de�ned by Markov transition kernels. Speci�cally, prior discrete diffusion works �rst de�ne a forward noising
process with a rate matrix~Rt . This de�nes in�nitesimal noise additions. To train the model, we need access to the equivalent
of pt j1, i.e. the total amount of noise added simulating from1 to t. To �nd this value, the matrix exponential needs to be

applied to the forward rate matrix,pt j1 = exp
� R1

t
~Rsds

�
. This means that discrete diffusion models are limited in the

choice of forward noising process. The choice of~Rt must be such that the matrix exponential is tractable. For DFM, we
simply write downpt j1 rather than implicitly de�ning it through the matrix exponential and then can �nd a rate matrix
to simulate with by differentiatingpt j1 and usingR�

t . Furthermore, the standard ELBO objective used to train discrete
diffusion models depends on the initial choice of~Rt . At sample time, it is then standard to simulate with the time reversal of
~Rt . This needlessly limits the choice of simulation process as we have shown in this work that there are in�nitely many
valid choices of rate matrices that could be used for sampling.

There have been post-hoc changes to the sampling process made in prior work e.g. corrector steps used by Campbell
et al. (2022), however due to the ELBO maximizing the model log-likelihood under the assumption of sampling using the
time-reversal, the diffusion framework still revolves around one `canonical' sample time process (the time-reversal) whereas
DFM makes it clear this choice is arbitrary and the sample process can be chosen at inference time for best performance.

Previous discrete diffusion works have also suggested alternatives to the ELBO. Sun et al. (2023b) introduce a categorical
score matching loss that resembles the cross entropy, however, the denoising network is required to make a predictionxd

0

based only on the otherD � 1 dimensions of the input noisy state,x1:D nd
t . This requires specialized architectures and

methods to remain computationally ef�cient. Vignac et al. (2023a) propose to learn a diffusion based model solely using the
cross-entropy but do not analyse the link between the cross-entropy and the log-likelihood of the model as we do in App. C.
Meng et al. (2022) propose to learn a discrete score model based on data ratios using an L2 based loss which has some
undesirable properties such as not penalizing mode dropping as described by Lou et al. (2023). Lou et al. (2023) re�ne
this approach and propose to learn data ratios using the score entropy loss which, like the standard cross entropy, does not
depend on the choice of forward rate matrix. However, in order for the score entropy to be a true ELBO, the forward rate
matrix needs to be used as a weighting factor.

Multimodal diffusion models have been applied to tabular data (Kotelnikov et al., 2023) where continuous diffusion is
used for continuous features and a uniform style of corruption under a discrete diffusion framework is applied to discrete
features. This idea was then expanded to molecule generation where the task is to generate a molecules atom types, their
positions and their connectivity. Peng et al. (2023) use a masking process for the discrete atom types and bond types with
a continuous space process for the atom positions. Vignac et al. (2023b) use a discrete process converging towards the
independent marginal distribution in each dimension (Vignac et al., 2023a) for atom types, bond types and formal charges of
the molecules along with a continuous process for atom positions. Hua et al. (2023) use a uniform discrete process for bond
types with a continuous space process applied to atom positions as well as atom features embedded in continuous space.
These works also investigate the importance of the multimodal noise schedule. Peng et al. (2023) �nd that corrupting the
bonds �rst and then the atom positions improves performance by avoiding unphysical bonds appearing in the corruption
process. Vignac et al. (2023b) have a similar �nding that during corruption, the atom types should be corrupted �rst, then
the bond types and �nally the atom positions. We generalize these ideas by using the approach of Albergo et al. (2023) and
learning our model over all relative levels of noise between our modalities. This allows picking the desired path through the
multimodal noise landscape at inference time either performing co-generation, inverse folding or forward folding.

Other approaches for discrete data modelling opt to embed the data into a continuous space in order to still use the continuous
diffusion framework (Li et al., 2022; Chen et al., 2023a; Richemond et al., 2022; Gong et al., 2023; Dieleman et al., 2022;
Han et al., 2022; Strudel et al., 2022; Gulrajani & Hashimoto, 2023; Floto et al., 2023), however, this loses the discrete
structure of the data during generation. This can be important when the quantity that is represented by the discrete variable as
algorithmic importance. For example, Qin et al. (2023) perform sparse graph generation where the discrete token represents
the existence of an edge. It is then important for the edge to be known to physically exist or not so that sparse graph networks
can be applied to the problem.

General Fokker-Planck equations on discrete state spaces (Chow et al., 2012) have been used to construct sampling methods
for energy functions (Sun et al., 2023a). Further, in a generative modelling context, the Kolmogorov equation has been used
to construct equivalent diffusion processes with fewer transitions (Zhang et al., 2023) making links to optimal transport. We
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take this idea further to build a generative modelling paradigm around the �exibility of the Kolmogorov equation.

The construction of discrete diffusion model from a marginal distribution perspective as opposed to a forward corruption
process has also been used by Chen et al. (2023b). Their method de�nes the marginal distribution at timet as a combination
of the data and a noise sample and then �nds a process that generates those marginals, for the masking and uniform case.
They use this to create a faster sampling algorithm by exploiting the fact that if you have a low stochasticity process, you
know there should only beD transitions in the masking case (although this is not the case in the unconditional uniform
case). Therefore, when conditioning on these times, onlyD function evaluations are needed. This approach could also be
used with a DFM when� = 0 , however, our general framework also demonstrates the bene�ts of allowing� > 0.

The consideration of �ows on discrete state spaces has also been used to construct GFlowNet algorithms (Bengio et al.,
2023) which aim to sample from a given energy function. Here we instead focus on the the generative modeling context
where we aim to sample novel datapoints when only given access to some dataset of training examples. GFlowNets also can
use the detailed balance equation Eq. (9) as a training training objective. Detailed balance is also used in Markov Chain
Monte Carlo methods (Metropolis et al., 1953; Hastings, 1970) to construct a transition probability with the desired energy
function that we wish to sample from as its stationary distribution. In our work, we use the detailed balance condition as a
way to increase the inference time �exibility in our framework

E. Multidimensional Data

In this section we derive how we can ef�ciently modelD dimensional data,x1 2 f 1; : : : ; SgD by using factorization
assumptions. When we wish to emphasize the multidimensional aspect we can writex1:D

1 and usexd
1 2 f 1; : : : ; Sg to refer

to the value in dimensiond. We use1 : Dnd to denote all dimensions exceptd. To operate in multidimensional spaces, we
will make the following assumptions

• Assumption 1 pt j1(x1:D
t jx1:D

1 ) =
Q D

d=1 pt j1(xd
t jxd

1)

• Assumption 2 pt j1(xd
t jxd

1) = 0 = ) @t pt j1(xd
t jxd

1) = 0 ; 8d

• Assumption 3 Rt (x1:D
t ; j 1:D jx1:D

1 ) =
P D

d=1 � f x1:D nd
t ; j 1:D ndgRd

t (xd
t ; j d jxd

1)

The �rst assumption creates independent corruption processes in each dimension, similar to the factorization assumptions
made in diffusion models where the forward noising processes proceed independently in each dimension. Assumption 2 is
the same assumption we made in order to deriveR�

t in 1-dimension but now we assume it individually for every dimension.
Finally, assumption 3 states that for our data conditional rate matrix, it decomposes into a sum of rate matrices for each
dimension and so the rate for transitions that change more than1 dimension at a time are 0. This is the same assumption
made by Campbell et al. (2022) in order to make calculations tractable. We will enable our process to make multiple
dimensional changes simultaneously later when we come to derive our sampling algorithm.

Under these assumptions, we will now derive DFM for the multidimensional case. We start with the data conditional
Kolmogorov equation

@t pt j1(x1:D
t jx1:D

1 ) =
X

j 1: D

Rt (j 1:D ; x1:D
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1 )pt j1(j 1:D jx1:D
t ) (25)

We now substitute the form for the rate matrix under Assumption 3 into the RHS of (25) to get

RHS=
X

j 1: D

DX

d=1

� f x1:D nd
t ; j 1:D ndgRd

t (j d; xd
t jxd

1)pt j1(j 1:D jx1:D
1 )

=
DX

d=1

X

j d

Rd
t (j d; xd

t jxd
1)pt j1(x1:D nd

t � j d jx1:D
1 ) (26)

where we usex1:D nd
t � j d to denote a vector of dimensionD where in thed-th dimension it has the value ofj d and in the

other dimensions it has valuesx1:D nd
t . We now verify that the following form forRd

t satis�es the Kolmogorov equation,

R�
t

d(xd
t ; j d jxd

1) =

8
<

:

ReLU (@t pt j 1 ( j d j x d
1 ) � @t pt j 1 (x d

t j x d
1 ))

Z d
t pt j 1 (x d

t j x d
1 ) for pt j1(xd

t jxd
1) > 0; pt j1(j d jxd

1) > 0

= 0 otherwise
(27)
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whereZ d
t = jf j d : pt j1(j d jxd

1) > 0gj and we only de�neR�
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For the case that there exists ad0 for whichpt j1(xd0
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where we use1 : Dnd; d0 to mean all dimensions exceptd andd0. We now examine the RHS of equation (25).
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1 ) = 0 Therefore, for both cases we have
R�

t satis�es the conditional Kolmogorov equation(25) and thus we have found a rate matrix that generates our desired
conditional �ow. The �nal step is to convert this rate matrix conditioned onx1:D

1 into an unconditional rate matrix that can
be used for generative modeling. We �rst write down the unconditional multi-dimensional Kolmogorov equation
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We now make the following assumption for the form of the unconditional rate matrix and verify that it indeed satis�es the
unconditional multi-dimensional Kolmogorov equation, (28).
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= Epdata (x 1: D
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where we have used Eq. (26) with the fact that we knowR�
t given by Eq. (27) satis�es the conditional Kolmogorov equation

Eq. (25). We have now veri�ed that the rate given by Eq. (29) gives us our desired unconditional �ow and we can use it for
generative modeling.

E.1. Training

In order to approximate the true generative rate matrix given by equation(29), we need approximations to the denoising
distributions in each dimension,p(xd

1 jx1:D
t ), for d = 1 ; : : : ; D . We can parameterize these conditionally independentxd

1
distributions through a neural network that outputs logits of shapeD � S when given inputx1:D

t of shapeD. We then apply
a softmax to the logits to obtain approximate denoising probabilitiesp� (xd

1 jx1:D
t ), d = 1 ; : : : ; D of shapeD � S. We learn

the parameters of the neural network with the cross entropy loss for each dimension
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E.2. Sampling

The standard Euler step transition probability for our CTMC de�ned through our learned denoising model with time step� t
is
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In this form, we would be unable to make transition steps that involve more than1 dimension changing at a time due to our
factorized form forR�

t (x1:D
t ; j 1:D ). To enable multiple dimensions to transition simultaneously in a single update step we

can approximate the standard Euler transition step(30) with a factorized version~pt +� t j t (j 1:D jx1:D
t ) with the following

form
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where we can see on the �nal line that~pt +� t j t approximatespt +� t j t to �rst order. Sampling from~pt +� t j t can be seen as
taking an Euler step in each dimension independently for each simulation step.

We note this sampling method is similar to the tau-leaping method used in prior CTMC based approaches (Gillespie, 2001;
Campbell et al., 2022) however tau-leaping allows multiple jumps to be made in the same dimensions which is unsuitable
for categorical data.

E.3. Detailed Balance

In this section we verify that if we achieve detailed balance individually and independently in each dimension, then our full
dimensional process will also be in detailed balance.

Consider the multidimensional detailed balance equation

pt j1(x1:D
t jx1:D

1 )Rt (x1:D
t ; j 1:D jx1:D

1 ) = pt j1(j 1:D jx1:D
1 )Rt (j 1:D ; x1:D

t jx1:D
1 )
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Now, substitute in our factorized forms forRt (x1:D
t ; j 1:D jx1:D

1 ) andpt j1(x1:D
t jx1:D

1 )

 
DY

d=1

pt j1(xd
t jxd

1)

!  
DX

d=1

� f x1:D nd
t ; j 1:D ndgRd

t (xd
t ; j d jxd)

1 )

!

=

 
DY

d=1

pt j1(j d jxd
1)

!  
DX

d=1

� f j 1:D nd; x1:D nd
t gRd

t (j d; xd
t jxd

1)

!

Now, both sides are0 for whenx t andj differ in more than one dimension. Consider the case when they differ in exactly
one dimension, call itd. The detailed balance equation simpli�es to

pt j1(xd
t jxd

1)Rd
t (xd

t ; j d jxd
1) = pt j1(j d jxd

1)Rd
t (j d; xd

t jxd
1)

which we note is the standard single dimensional detailed balance equation for dimensiond. Therefore, if ourRd
t matrices

are all in detailed balance with their respectivept j1(xd
t jxd

1) conditional marginals, then the full dimensional rate matrix
Rt (x1:D

t ; j 1:D jx1:D
1 ) will also be in detailed balance with the full dimensional conditional marginalspt j1(x1:D

t jx1:D
1 ).

F. Implementation Details

In this section we provide concrete derivations of our DFM method. We use a masking process in App. F.1, a uniform process
in App. F.2 and explore the general case for any givenpt j1 in App. F.3. We also provide minimal PyTorch implementations
for our training and sampling loops in each case. We will assume multi-dimensional data under the factorization assumptions
listed in App. E.

Notebooks containing these minimal examples can be found athttps://github.com/andrew-cr/discrete_
flow_models .

F.1. Masking Example

Here, we assume the masking form forpt j1. We begin by writing this data conditional �ow

pt j1(x1:D
t jx1:D

1 ) =
DY

d=1

pt j1(xd
t jxd

1)

=
DY

d=1

�
t�

�
xd

t ; xd
1

	
+ (1 � t)�

�
xd

t ; M
	�

This is the distribution we will use to train our denoising modelp�
1j t (x

1:D
1 jx1:D

t ). PyTorch code for the training loop is given
in Listing 1
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Listing 1. Masking Training loop
import torch
import torch.nn.functional as F

# Variables, B, D, S for batch size, number of dimensions and state space size
respectively

# Assume we have a model that takes as input xt of shape (B, D) and time of
shape (B,) and outputs x1 prediction logits of shape (B, D, S-1). We know
the clean data contains no masks and hence we only need to output logits
over the valid values.

mask_index = S - 1 # Assume the final state is the mask state

for x1 in dataset:
# x1 has shape (B, D)
optimizer.zero_grad()
t = torch.rand((B,))
xt = x1.clone()
xt[torch.rand((B,D)) < (1 - t[:, None])] = mask_index
logits = model(xt, t) # (B, D, S-1)
x1[xt != mask_index] = -1 # Don't compute the loss on unmasked dimensions
loss = F.cross_entropy(logits.transpose(1, 2), x1, reduction='mean',

ignore_index=-1)
loss.backward()
optimizer.step()

We will also derive the form forR�
t

d(i d; j d jxd
1). For this we need to �nd@t pt j1(xd

t jxd
1).

@t pt j1(xd
t jxd

1) = @t
�
t�

�
xd

t ; xd
1

	
+ (1 � t)�

�
xd

t ; M
	�

= �
�

xd
t ; xd

1

	
� �

�
xd

t ; M
	

We can now �ndR�
t

d(xd
t ; j d jxd

1). When working with rate matrices in this section, we will always assumexd
t 6= j d and

calculate the diagonal entries asRt (i; i ) = �
P

j 6= i Rt (i; j ) later. We note thatR�
t

d(xd
t ; j d jxd

1) = 0 for pt j1(xd
t jxd

1) = 0 or

pt j1(j d jxd
1) = 0 . Further, our initial distributionp0(x1:D

0 ) =
Q D

d=1 �
�

xd
0; M

	
. Therefore, at all points in our CTMC,xd

t is
only everM or xd

1. Furthermore, we only ever have to consider transitions to aj d that is eitherj d = M or j d = xd
1. Now,

for pt j1(xd
t jx1:D

1 ) > 0 andpt j1(j d jx1:D
1 ) > 0 we have

R�
t

d(xd
t ; j d jxd

1) =
ReLU

�
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�
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�
xd

t ; xd
1

	
+ (1 � t)�

�
xd

t ; M
	�

=
1

1 � t
for j d = xd

1; xd
t = M and0 otherwise (31)

We note here that our calculation may not strictly be valid for exactlyt = 0 or t = 1 but are valid for anyt 2 (0; 1) and so
we can simply ignore these edge cases, see App. B.2 for further discussion. Now we �nd our unconditional rate matrix

R�d
t (x1:D

t ; j d) = Ep�
1 j t (x d

1 j x 1: D
t )

h
R�

t
d(xd

t ; j d jxd
1)

i

= Ep�
1 j t (x d

1 j x 1: D
t )

�
1

1 � t
�

�
j d; xd

1

	
�

�
xd

t ; M
	

�

=
p�

1j t (x
d
1 = j d jx1:D

t )

1 � t
�

�
xd

t ; M
	

(32)

Our transition step is then
pt +� t j t (j

d jx1:D
t ) = �

�
j d; xd

t

	
+ R�d

t (x1:D
t ; j d)� t
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For j d 6= xd
t this is

pt +� t j t (j
d jx1:D

t ) = � t
p�

1j t (x
d
1 = j d jx1:D

t )

1 � t
�

�
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(33)

For j d = xd
t this is

pt +� t j t (j
d = xd

t jx1:D
t ) = 1 �

X

k6= x d
t

pt +� t j t (kjx1:D
t )

= 1 �
X

k6= x d
t

� t
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1j t (x
d
1 = kjx1:D

t )

1 � t
�

�
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t ; M
	

= 1 �
� t

1 � t
�

�
xd

t ; M
	

where on the �nal line we have used the fact that whenp�
1j t (x

d
1 = M jx1:D

t ) = 0 . Therefore, ifxd
t = M then we have a

dt
1� t chance of �ipping to some unmasked state with the probabilities for the token to unmask to given byp�

1j t (x
d
1 jx1:D

t ). If

xd
t 6= M (i.e. it has already been unmasked) then we simply stay in the current unmasked state.

Listing 2 shows PyTorch code that implements this sampling loop.

Listing 2. Masking Sampling loop
import torch
import torch.nn.functional as F
from torch.distributions.categorical import Categorical

# Variables, B, D, S for batch size, number of dimensions and state space size
respectively

# Assume we have a model that takes as input xt of shape (B, D) and time of
shape (B,) and outputs x1 prediction logits of shape (B, D, S-1). We know
the clean data contains no masks and hence we only need to output logits
over the valid values.

t = 0.0
dt = 0.001
mask_index = S-1

xt = mask_index * torch.ones((B, D), dtype=torch.long)

while t < 1.0:
logits = model(xt, t * torch.ones((B,))) # (B, D, S-1)
x1_probs = F.softmax(logits, dim=-1) # (B, D, S-1)
x1 = Categorical(x1_probs).sample() # (B, D)
will_unmask = torch.rand((B, D)) < (dt / (1-t)) # (B, D)
will_unmask = will_unmask * (xt == mask_index) # (B,D) only unmask currently

masked positions
xt[will_unmask] = x1[will_unmask]

t += dt

F.1.1. DETAILED BALANCE

In order to expand our family of rate matrices that we can use at sampling time, we want to �nd a detailed balance rate
matrixRDB

t that satis�es the detailed balance equation

pt j1(i jx1)RDB
t (i; j jx1) = pt j1(j jx1)RDB

t (j; i jx1)

We now have to make some assumptions on the form forRDB
t . With this masking noise a process that is in detailed balance

will have some rate for transitions going from a mask state towardsx1 and some rate for transitions going fromx1 back
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towards the mask state. Such a rate would have the following form

RDB
t (i; j jx1) = at � f i; x 1g� f j; M g + bt � f i; M g� f j; x 1g

for some constantsat andbt that we must �nd. Substituting this into the detailed balance equation along with the masking
interpolation form forpt j1(x t jx1) gives

(t� f i; x 1g + (1 � t)� f i; M g) (at � f i; x 1g� f j; M g + bt � f i; M g� f j; x 1g) =

(t� f j; x 1g + (1 � t)� f j; M g) (at � f j; x 1g� f i; M g + bt � f j; M g� f i; x 1g)

tat � f i; x 1g� f j; M g + (1 � t)bt � f i; M g� f j; x 1g = tat � f j; x 1g� f i; M g + (1 � t)bt � f j; M g� f i; x 1g

This equation must be true for alli; j . Pick i = x1 andj = M to get

tat = (1 � t)bt

If we pick i = M andj = x1 then we would obtain the same equation and if we pick any other values fori; j with i 6= j
then we would get0 = 0. Note that we will �ndRDB

t for i 6= j and then the value forRDB
t (i; i ) is simply calculated using

RDB
t (i; i ) = �

P
j 6= i RDB

t (i; j ). Since we will obtain no more constraints on the values ofat andbt , we will need to pick
a value for one of them. We can simply setat = � where� is our stochasticity parameter since this value sets the rate at
which points that are already atx1 will come off x1 and travel back to the mask state. This givesbt = �t

1� t and so fori 6= j ,

RDB
t (i; j jx1) = �� f i; x 1g� f j; M g +

�t
1 � t

� f i; M g� f j; x 1g:

We now combine this rate withR�
t

d that we calculated previously to �nd a new unconditional rate matrix with a variable
amount of stochasticity.
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where on the �nal line we have used the fact thatp�
1j t (x

d
1 = xd

t jx1:D
t ) = 0 for xd

t = M andp�
1j t (x

d
1 = xd

t jx1:D
t ) = 1 when

xd
t 6= M because if a dimension is unmasked then it must be the truex1 value under our de�nition ofpt j1(x t jx1). We now

�nd our transition probabilities
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= 1 � � t
1 + �t
1 � t

�
�

xd
t ; M

	
� � t� (1 � �

�
xd

t ; M
	

)

where again we have used the fact thatp�
1j t (x

d
1 = M jx1:D

t ) = 0 . Inspectingpt +� t j t (j d jx1:D
t ) for j d 6= xd

t , we see that if

xd
t = M then we have an overall probability of unmasking of1+ �t

1� t � t and once we do unmask, the new value is drawn from
p�

1j t (x
d
1 jx1:D

t ). This is like before but now there is a bonus probability of unmasking of�t
1� t . Whenxd

t 6= M then we have a
probability of� � t of jumping back to the mask state. This creates a �ux of states switching back and forth between masked
and unmasked for� > 0 hence why these processes are more `stochastic'. However, because when� is increased we also
increase the rate at which we unmask, the desired conditional �owpt j1(x t jx1) is maintained for any value of� . Listing 3
shows PyTorch code that implements sampling with this extra stochasticity.

Listing 3. Masking sampling loop with noise
import torch
import torch.nn.functional as F
from torch.distributions.categorical import Categorical

# Variables, B, D, S for batch size, number of dimensions and state space size
respectively

# Assume we have a model that takes as input xt of shape (B, D) and time of
shape (B,) and outputs x1 prediction logits of shape (B, D, S-1). We know
the clean data contains no masks and hence we only need to output logits
over the valid values.

t = 0.0
dt = 0.001
mask_index = S-1
N = 10 # Level of stochasticity

xt = mask_index * torch.ones((B, D), dtype=torch.long)

while t < 1.0:
logits = model(xt, t * torch.ones((B,))) # (B, D, S-1)
x1_probs = F.softmax(logits, dim=-1) # (B, D, S-1)
x1 = Categorical(x1_probs).sample() # (B, D)
will_unmask = torch.rand((B, D)) < (dt * (1 + N * t) / (1-t)) # (B, D)
will_unmask = will_unmask * (xt == mask_index) # (B,D) only unmask currently

masked positions
will_mask = torch.rand((B, D)) < dt * N # (B, D)
will_mask = will_mask * (xt != mask_index) # (B, D) only re-mask currently

unmasked positions
xt[will_unmask] = x1[will_unmask]
t += dt
if t < 1.0: # Don't re-mask on the final step

xt[will_mask] = mask_index

Our method has similarities to other discrete diffusion models when using this form forpt j1 and we clarify these links in
App. H.2.

F.1.2. PURITY SAMPLING

When using the masking form forpt j1 we can also easily implement a purity sampling scheme (Tang et al., 2022). This
sampling method decides which dimensions to unmask based on an estimate of the model con�dence in that dimension's
�nal value. Currently, our sampling method will uniformly at random choose which dimension to unmask. To improve upon
this approach, purity sampling will instead rank dimensions based on which dimension has the highest model probability.
More speci�cally, for each dimension we calculate a purity score for dimensiond de�ned as

purityd = max
x d

1

p�
1j t (x

d
1 jx1:D

t )

For the next simulation step, we then decide how many dimensions should be unmasked. The number of dimensions to
unmask is binomially distributed with probability of success� t

1� t and number of trials equal to the number of dimensions
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that are currently masked. Once we have sampled a number of dimensions to unmask from this binomial distribution, we
then unmask that number of dimensions starting from the dimension with highest purity score, then the dimension with
second highest purity score and so on. We only consider dimensions that are currently masked to be eligible for unmasking.
When using� > 0, the probability of success in our binomial distribution increases to� t 1+ �t

1� t and so on average more
dimensions get unmasked during each simulation step. At the end of each simulation step, we then remask a sample of
randomly chosen dimensions which are uniformly chosen at random each with a probability� t� of being chosen.

F.2. Uniform Example

In this section we walk through the derivation and implementation of DFM when using the uniform based interpolation
distribution. We start with the data conditional marginal distribution

pt j1(x1:D
t jx1:D

1 ) =
DY

d=1

pt j1(xd
t jxd

1)

=
DY

d=1

�
t�

�
xd

t ; xd
1

	
+ (1 � t)

1
S

�

This distribution is all that is needed to train the denoising modelp�
1j t (x

1:D
1 jx1:D

t ). We give PyTorch code for the training
loop with the uniform interpolant in Listing 4.

Listing 4. Uniform training loop
import torch
import torch.nn.functional as F

# Variables, B, D, S for batch size, number of dimensions and state space size
respectively

# Assume we have a model that takes as input xt of shape (B, D) and time of
shape (B,) and outputs x1 prediction logits of shape (B, D, S).

for x1 in dataset:
# x1 has shape (B, D)
optimizer.zero_grad()
t = torch.rand((B,))
xt = x1.clone()
uniform_noise = torch.randint(0, S, (B, D))
corrupt_mask = torch.rand((B, D)) < (1 - t[:, None])
xt[corrupt_mask] = uniform_noise[corrupt_mask]
logits = model(xt, t) # (B, D, S)
loss = F.cross_entropy(logits.transpose(1,2), x1, reduction='mean')
loss.backward()
optimizer.step()

In order to sample our trained model, we will need to deriveR�
t

d(i d; j d jxd
1). The �rst step is to �nd@t pt j1(xd
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We will now �nd R�
t

d(xd
t ; j d jxd

1). As before we will always assumexd
t 6= j d and calculate diagonal entries as needed using

the relationRt (i; i ) = �
P

j 6= i Rt (i; j ).
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The only non-zero value is whenj d = xd
1 andxd
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We can now �nd the unconditional rate matrix, still assumingxd
t 6= j d
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Our transition step is
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Listing 5 shows PyTorch code that implements this sampling loop.

41



Discrete Flow Models

Listing 5. Uniform sampling loop
import torch
import torch.nn.functional as F
from torch.distributions.categorical import Categorical

# Variables, B, D, S for batch size, number of dimensions and state space size
respectively

# Assume we have a model that takes as input xt of shape (B, D) and time of
shape (B,) and outputs x1 prediction logits of shape (B, D, S).

t = 0.0
dt = 0.001

xt = torch.randint(0, S, (B, D))
while t < 1.0:

logits = model(xt, t * torch.ones((B,))) # (B, D, S)
x1_probs = F.softmax(logits, dim=-1) # (B, D, S)

# Calculate the off-diagonal step probabilities
step_probs = ((dt / (1-t)) * x1_probs).clamp(max=1.0) # (B, D, S)

# Calculate the on-diagnoal step probabilities
# 1) Zero out the diagonal entries
step_probs.scatter_(-1, xt[:, :, None], 0.0)
# 2) Calculate the diagonal entries such that the probability row sums to 1
step_probs.scatter_(-1, xt[:, :, None], (1.0 - step_probs.sum(dim=-1,

keepdim=True)).clamp(min=0.0))

xt = Categorical(step_probs).sample() # (B, D)

t += dt

F.2.1. DETAILED BALANCE

Here we derive the form ofRDB
t for the uniform interpolant case which we can use to vary the stochasticity of sampling.

RDB
t satis�es the detailed balance equation

pt j1(i jx1)RDB
t (i; j jx1) = pt j1(j jx1)RDB

t (j; i jx1)

We now make some assumptions for the form ofRDB
t . We will assume there will be some rate of transitions fromx1 back

towards a random other state and a rate towardsx1 in order to cancel out this effect and achieve detailed balance. We note
there are other choices for detailed balance, some of which we explore in App. H.1. We will again be assumingi 6= j in the
following calculations.

RDB
t (i; j jx1) = at � f i; x 1g + bt � f j; x 1g

We have parameterizedRDB
t with some time-dependent constantsat andbt . Substituting this into the detailed balance

equation gives
�

t� f i; x 1g + (1 � t)
1
S

�
(at � f i; x 1g + bt � f j; x 1g) =

�
t� f j; x 1g + (1 � t)

1
S

�
(at � f j; x 1g + bt � f i; x 1g)

Now, this equation must be true for anyi 6= j . Pick i = x1 andj 6= x1 to get
�

t + (1 � t)
1
S

�
at = (1 � t)

1
S

bt

bt = at
t + (1 � t) 1

S

(1 � t) 1
S
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= at
St + 1 � t

1 � t
(34)

We would obtain the same equation if we were to instead picki 6= x1 andj = x1. Therefore we have to �x one ofat or bt .
If we want a stochasticity level of� then we can setat = � which is the rate at which points that are at the clean data come
back off the clean datapoint.bt can then be found from equation (34). This gives a form forRDB

t of

RDB
t (i; j jx1) = �� f i; x 1g + �

St + 1 � t
1 � t

� f j; x 1g

This can now be combined withR�
t

d to create a new unconditional rate matrix with a variable amount of stochasticity.

R�d
t (x1:D

t ; j d) = Ep�
1 j t (x d

1 j x 1: D
t )

h
R�

t
d(xd

t ; j d jxd
1) + RDB d

t (xd
t ; j d jxd

1)
i

= Ep�
1 j t (x d

1 j x 1: D
t )

�
1

1 � t
�

�
j d; xd

1

	
(1 � �

�
xd

t ; xd
1

	
) + ��

�
xd

t ; xd
1

	
+ �

St + 1 � t
1 � t

�
�

j d; xd
1

	
�

= Ep�
1 j t (x d

1 j x 1: D
t )

�
1 + � + � (S � 1)t

1 � t
�

�
j d; xd

1

	
(1 � �

�
xd

t ; xd
1

	
) + ��

�
xd

t ; xd
1

	
�

=
1 + � + � (S � 1)t

1 � t
p�

1j t (x
d
1 = j d jx1:D

t ) + �p �
1j t (x

d
1 = xd

t jx1:D
t )

We can interpret this rate, with the �rst term being the rate at which we should transition to states that are predicted to
correspond to the clean data. The second term is a `noise term' which creates transitions away from the current state if it
is predicted to correspond to the �nal clean data. The �rst term then has additional weighting as� is increased to counter
act this effect. The effect of the stochasticity is then to create a �ux going on and off the predicted �nal clean state during
generation. We now �nd our transition probabilities

pt +� t j t (j
d jx1:D

t ) = �
�

j d; xd
t

	
+ R�d

t (x1:D
t ; j d)� t

For j d 6= xd
t ,

pt +� t j t (j
d jx1:D

t ) = � t
1 + � + � (S � 1)t

1 � t
p�

1j t (x
d
1 = j d jx1:D

t ) + � t�p �
1j t (x

d
1 = xd

t jx1:D
t )

We can �ndpt +� t j t (j d jx1:D
t ) for j d = xd

t programmatically as before by requiring that the probability vector sum to1.
Listing 6 shows the implementation for the uniform interpolant with noise.
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Listing 6. Uniform sampling loop with noise
import torch
import torch.nn.functional as F
import torch.distributions.categorical import Categorical

# Variables, B, D, S for batch size, number of dimensions and state space size
respectively

# Assume we have a model that takes as input xt of shape (B, D) and time of
shape (B,) and outputs x1 prediction logits of shape (B, D, S).

t = 0.0
dt = 0.001
noise = 1

xt = torch.randint(0, S, (B, D))

while t < 1.0:
logits = model(xt, t * torch.ones((B,))) # (B, D, S)
x1_probs = F.softmax(logits, dim=-1) # (B, D, S)
x1_probs_at_xt = torch.gather(x1_probs, -1, xt[:, :, None]) # (B, D, 1)

# Don't add noise on the final step
if t + dt < 1.0:

N = noise
else:

N = 0

# Calculate the off-diagonal step probabilities
step_probs = (

dt * ((1 + N + N * (S - 1) * t ) / (1-t)) * x1_probs +
dt * N * x1_probs_at_xt

).clamp(max=1.0) # (B, D, S)

# Calculate the on-diagnoal step probabilities
# 1) Zero out the diagonal entries
step_probs.scatter_(-1, xt[:, :, None], 0.0)
# 2) Calculate the diagonal entries such that the probability row sums to 1
step_probs.scatter_(-1, xt[:, :, None], (1.0 - step_probs.sum(dim=-1,

keepdim=True)).clamp(min=0.0))

xt = Categorical(step_probs).sample() # (B, D)

t += dt

F.3. General Case

We now describe the training and sampling loop for a general conditional �owpt j1(x t jx1). We require this interpolant to be
factorized,pt j1(x1:D

t jx1:D
1 ) =

Q D
d=1 pt j1(xd

t jxd
1), be differentiable and havept j1(j d jxd

1) = 0 = ) @t pt j1(j d jxd
1) = 0 . We

assume that we have access to functions that can sample frompt j1(x t jx1), evaluatept j1(x t jx1) and evaluate@t pt j1(x t jx1).
Our training loop consists of sampling data, samplingx t � pt j1(x t jx1) and training with the cross entropy loss, see Listing
7.
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Listing 7. General training loop
import torch
import torch.nn.functional as F

# Variables, B, D, S for batch size, number of dimensions and state space size
respectively

# Assume we have a model that takes as input xt of shape (B, D) and time of
shape (B,) and outputs x1 prediction logits of shape (B, D, S).

def sample_p_xt_g_x1(x1, t):
# x1 (B, D)
# t (B,)
# Returns xt (B, D)

for x1 in dataset:
# x1 has shape (B, D)
optimizer.zero_grad()
t = torch.rand((B,))
xt = sample_p_xt_g_x1(x1, t)
logits = model(xt, t) # (B, D, S)
loss = F.cross_entropy(logits.transpose(1,2), x1, reduction='mean')
loss.backward()
optimizer.step()

Now for sampling we can programmatically calculateR�
t

d(xd
t ; j d jxd

1) using Eq. (27). It may not be possible to analytically
calculate the expectation with respect top�

1j t (x
1:D
1 jx1:D

t ) but we note that our Euler step is still valid if we instead take a

sample fromp�
1j t (x

1:D
1 jx1:D

t ) and substitute intoRd
t (xd

t ; j d jxd
1), see App. G. We assume access further to a function that can

produce samples from the prior distributionpnoise corresponding to the chosenpt j1. We provide the general case sampling
loop in Listing 8.
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Listing 8. General sampling loop
def dt_p_xt_g_xt(x1, t):

# x1 (B, D)
# t float
# returns (B, D, S) for varying x_t value

def p_xt_g_x1(x1, t):
# x1 (B, D)
# t float
# returns (B, D, S) for varying x_t value

def sample_prior(num_samples, D):
# num_samples, D both integer
# returns prior sample of shape (num_samples, D)

t = 0.0
dt = 0.001
num_samples = 1000
xt = sample_prior(num_samples, D)

while t < 1.0:
logits = model(xt, t * torch.ones((num_samples,))) # (B, D, S)
x1_probs = F.softmax(logits, dim=-1) # (B, D, S)
x1 = Categorical(x1_probs).sample() # (B, D)

# Calculate R_tˆ *
# For p(x_t | x_1) > 0 and p(j | x_1) > 0
# R_tˆ * (x_t, j | x_1) = Relu( dtp(j | x_1) - dtp(x_t | x_1)) / (Z_t * p(x_t

| x_1))
# For p(x_t | x_1) = 0 or p(j | x_1) = 0 we have R_tˆ * = 0
# We will ignore issues with diagnoal entries as later on we will set
# diagnoal probabilities such that the row sums to one later on.

dt_p_vals = dt_p_xt_g_xt(x1, t) # (B, D, S)
dt_p_vals_at_xt = dt_p_vals.gather(-1, xt[:, :, None]).squeeze(-1) # (B, D)

# Numerator of R_tˆ *
R_t_numer = F.relu(dt_p_vals - dt_p_vals_at_xt[:, :, None]) # (B, D, S)

pt_vals = p_xt_g_x1(x1, t) # (B, D, S)
Z_t = torch.count_nonzero(pt_vals, dim=-1) # (B, D)
pt_vals_at_xt = pt_vals.gather(-1, xt[:, :, None]).squeeze(-1) # (B, D)

# Denominator of R_tˆ *
R_t_denom = Z_t * pt_vals_at_xt # (B, D)

R_t = R_t_numer / R_t_denom[:, :, None] # (B, D, S)

# Set p(x_t | x_1) = 0 or p(j | x_1) = 0 cases to zero
R_t[ (pt_vals_at_xt == 0.0)[:, :, None].repeat(1, 1, S)] = 0.0
R_t[ pt_vals == 0.0] = 0.0

# Calculate the off-diagonal step probabilities
step_probs = (R_t * dt).clamp(max=1.0) # (B, D, S)

# Calculate the on-diagnoal step probabilities
# 1) Zero out the diagonal entries
step_probs.scatter_(-1, xt[:, :, None], 0.0)
# 2) Calculate the diagonal entries such that the probability row sums to 1
step_probs.scatter_(-1, xt[:, :, None], (1.0 - step_probs.sum(dim=-1,

keepdim=True)).clamp(min=0.0))

xt = Categorical(step_probs).sample() # (B, D)
t += dt
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F.3.1. DETAILED BALANCE

There are many ways one could solve the detailed balance equation forRDB
t as the choice will depend on what kinds of

noise are desirable to include in the generative process. A baseline example of how you could solve the detailed balance
equation for generatept j1(x t jx1) is to note

RDB
t (i; j jx1)pt j1(i jx1) = RDB

t (j; i jx1)pt j1(j jx1)

RDB
t (i; j jx1)

RDB
t (j; i jx1)

=
pt j1(i jx1)
pt j1(j jx1)

which gives a relation between the diagonal elements ofRDB
t . As a �rst choice we could simply set the upper triangular

section ofRDB
t to 1 and set the lower triangular part to the ratiopt j 1 ( i j x 1 )

pt j 1 ( j j x 1 ) which would satisfy detailed balance.

G. CTMC Sampling Methods

In the main text, our sampling algorithm Alg. 1 �rst constructs the unconditional rate matrixR�
t (x t ; j ) =

Ep�
1 j t (x 1 j x t ) [Rt (x t ; j jx1)] and then samples the next state from the Euler step,

x t +� t � Cat
�
� f x t ; x t +� t g + R�

t (x t ; x t +� t )� t
�

:

The form of this update means that we don't necessarily need to calculate the full expectation overRt (x t ; j jx1). We can
simply samplex1 from p�

1j t (x1jx t ) and then plug this sample intoRt (x t ; j jx1) which we then use in the Euler update.
To see that this strategy still samples from the same distribution overx t +� t , we can write the distribution overx t +� t as
pt +� t j t ,

pt +� t j t (x t +� t jx t ) = � f x t ; x t +� t g + Ep�
1 j t (x 1 j x t ) [Rt (x t ; x t +� t jx1)] � t

= Ep�
1 j t (x 1 j x t ) [� f x t ; x t +� t g + Rt (x t ; x t +� t jx1)� t]

=
X

x 1

p�
1j t (x1jx t )pt +� t j t (x t +� t jx1; x t )

where

pt +� t j t (x t +� t jx1; x t ) := � f x t ; x t +� t g + Rt (x t ; j jx1)� t

and sopt +� t j t (x t +� t jx t ) can be seen as the marginal of joint distributionp�
1j t (x1jx t )pt +� t j t (x t +� t jx1; x t ). There-

fore, to produce a samplex t +� t from pt +� t j t (x t +� t jx t ), we can instead samplex1; x t +� t from the joint distribution
p�

1j t (x1jx1:D
t )pt +� t j t (x t +� t jx1; x t ), and take only thex t +� t part of this joint sample.

Another method to simulate a CTMC is� -leaping, (Gillespie, 2001; Campbell et al., 2022) which allows multiple jumps
to be made both across dimensions and within each dimension. Multiple jumps within a single dimension does not make
sense for categorical data where there is no ordering, however, it can be useful for ordinal data such as a discretized image
where the� -leaping update allows multiple jumps to be applied at once to cover a larger distance. To calculate a� -leaping
update, a Poisson random variable needs to be drawn with the rate matrix giving the rate parameter. Therefore, for this type
of update, the full unconditionalR�

t (x t ; j ) would need to be calculated.

We �nally note that there is a body of work creating CTMC samplers for generative models (Sun et al., 2023b; Lou et al.,
2023) that may be faster to simulate than the standard Euler step. In this work, we focus on framework simplicity, not
optimizing for sampling speed and leave application of these approaches as future work.

H. Comparison with Discrete Diffusion Models

In this section we clarify the relationship between DFM and classical discrete diffusion models. In App. H.1 we compare
to continuous time models using the uniform corruption process as an example. In App. H.2 we compare to discrete time
models using the masking process as the example.
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H.1. Continuous Time Discrete Diffusion Models

Here we compare to continuous time discrete diffusion models (Campbell et al., 2022) using the uniform corruption process
as an example. In this section, we will assumet = 0 is pure noise andt = 1 is clean data which we note is a �ipped
de�nition of time to classical diffusion models to aid in our comparison with DFMs.

For discrete diffusion, we �rst specify a corruption process and then approximate its time reversal to give us the generative
process. Our corruption process will evolve fromt = 1 back to timet = 0 . It will be speci�ed using a rate matrixRt .
In order to make calculation ofpt j1(x t jx1), Rt needs to be of a special form, namelyRt = � (t)Rb where� (t) is a time
dependent scalar function andRb is a base rate matrix that can be decomposed using the eigendecompositionRb = Q� Q� 1.
For uniform corruption, we can setRb = 11> � SI where1 is a vector of all1's. We will now assumeS = 3 so we can
carry out all calculations explicitly.

We haveRb = Q� Q� 1 with

Q =

2

4
� 1 � 1 1
0 1 1
1 0 1

3

5 � =

2

4
� 3 0 0
0 � 3 0
0 0 0

3

5 Q� 1 =

2

4
� 1

3 � 1
3

2
3

� 1
3

2
3 � 1

3
1
3

1
3

1
3

3

5

To calculatept j1(x t jx1) we can use the equation

Pt = Q exp
�

�
Z t

1
� (s)ds

�
Q� 1

where(Pt ) ij = pt j1(x t = j jx1 = i ) andexp is the element wise exponential. By the symmetry of the problem, we can
infer thatpt j1(x t = j jx1 = i ) will have only two possible values. Eitherj = i and we are �nding the probability of staying
at i , or j 6= i and we are �nding the probability of having lefti , and since uniform corruption treats all states equally, these
will be same quantities for any starting state and any statej 6= i . So to �nd our schedule we just need to consider one
element of the matrixPt . Let us consider an off-diagonal elementi 6= j of Pt , which will have probability

(Pt ) ij =
1
3

�
1 � exp

�
� 3

Z t

1
� (s)ds

��
; i 6= j

We will try and match this to the simple linear schedule that we have had as our running example in the explanation of DFM.

1
3

�
1 � exp

�
� 3

Z 1

t
� (s)ds

��
=

1
3

(1 � t)

=) � (t) =
1
3t

Therefore, we have found that a corruption rate matrix ofRt = 1
3t

�
11> � 3I

�
gives a conditional �ow ofpt j1(x t jx1) =

t� f x t ; x1g + (1 � t) 1
3 .

The next step in a discrete diffusion model is to �nd the time reversed rate matrixR̂t which gives a CTMC that runs in the
opposite direction toRt and generates novel data from noise. HereR̂t is running from timet = 0 at noise towards clean
data att = 1 . From Campbell et al. (2022), we have

R̂t (i; j ) =
X

x 1

Rt (j; i )
pt j1(j jx1)
pt j1(i jx1)

p1j t (x1ji ) i 6= j

We notice a similarity to the DFM equations, where the generative rate is the expectation of a quantity with respect
to p1j t (x1ji ). Indeed we now show thatRt (j; i ) pt j 1 ( j j x 1 )

pt j 1 ( i j x 1 ) is ax1 conditioned rate matrixRdiff
t (i; j jx1) that achieves the

conditional �ow pt j1(i jx1). Consider the Kolmogorov equation

@t pt j1(i jx1) =
X

j 6= i

Rdiff
t (j; i jx1)pt j1(j jx1) �

X

j 6= i

Rdiff
t (i; j jx1)pt j1(i jx1)
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Substitute in our form forRdiff
t

RHS=
X

j 6= i

Rt (i; j )
pt j1(i jx1)
pt j1(j jx1)

pt j1(j jx1) �
X

j 6= i

Rt (j; i )
pt j1(j jx1)
pt j1(i jx1)

pt j1(i jx1)

=
X

j 6= i

Rt (i; j )pt j1(i jx1) �
X

j 6= i

Rt (j; i )pt j1(j jx1)

= �

2

4
X

j 6= i

Rt (j; i )pt j1(j jx1) �
X

j 6= i

Rt (i; j )pt j1(i jx1)

3

5

= �
�
� @t pt j1(i jx1)

�

= LHS

where on the second to last line we have used the fact that the corruption matrixRt (i; j ) when started atpt =1 (x t jx1) =
� f x t ; x1g will evolve the marginals according topt j1(x t jx1) because this is how we derivedpt j1(x t jx1) in the �rst place.
NoteRt runs in the reverse direction hence the negative sign.

Therefore, the diffusion framework has made an implicit choice forRt (i; j jx1) = Rdiff
t (i; j jx1) and this choice is made at

training time. We now show on our uniform noise example thatRdiff
t is simplyR�

t + RDB
t for a speci�c choice ofRDB

t .

Firstly, we write out the explicit form forRdiff
t using Rdiff

t (i; j jx1) = Rt (j; i ) pt j 1 ( j j x 1 )
pt j 1 ( i j x 1 ) , Rt = 1

3t

�
11> � 3I

�
and

pt j1(i jx1) = t� f x t ; x1g + (1 � t) 1
3 .

Rdiff
t =

1
3t

2

4
� 1 � 1+2 t

1� t
1+2 t
1� t 1

1� t
1+2 t � 2 1� t

1+2 t
1� t
1+2 t

1 1+2 t
1� t � 1 � 1+2 t

1� t

3

5

We will now �nd RDB
t such thatRdiff

t = R�
t + RDB

t . We will need a slightly more general form forRDB
t than was previously

derived for the uniform noise case. We will have

RDB
t (i; j jx1) = at � f i; x 1g + bt � f j; x 1g + ct (1 � � f i; x 1g)(1 � � f j; x 1g)

Using the detailed balance equation,pt j1(i jx1)RDB
t (i; j jx1) = pt j1(j jx1)RDB

t (j; i jx1), we �nd that we need

at =
(1 � t) 1

3 bt

t + (1 � t) 1
3

with bt andct being fully �exible (provided they are positive). Using the form forR�
t (i; j jx1) = 1

1� t � f j; x 1g(1 � � f i; x 1g)
that we derived in Appendix F.2 we have

R�
t + RDB

t =

2

6
4

� 1
1� t � bt � ct

1
1� t + bt ct

(1 � t ) 1
3 bt

t +(1 � t ) 1
3

� 2 (1 � t ) 1
3 bt

t +(1 � t ) 1
3

(1 � t ) 1
3 bt

t +(1 � t ) 1
3

ct
1

1� t + bt � ct � 1
1� t � bt

3

7
5

which is equal toRdiff
t if we havebt = ct = 1

3t .

In summary, we have found that classical discrete diffusion models make an implicit choice forRt (i; j jx1) which corresponds
to a certain level of stochasticity in the CTMC and that the choice is made at training time because the rate matrix is used in
the ELBO objective. Further, we have seen it is much harder to derive the noise schedulept j1(x t jx1) in classical discrete
diffusion models due to the need to be able to apply the matrix exponential toRt . In DFM, we can simply write down the
pt j1(x t jx1) noise schedule we want and we are not restricted in having to pickRt that are amenable to matrix exponentiation.
We also get to choose anyRt (i; j jx1) at test time rather than being �xed to the implicit choice ofRdiff

t .

H.2. Discrete Time Discrete Diffusion Models

In this section we will clarify the link to the discrete time diffusion method D3PM (Austin et al., 2021) when using the
masking process for both methods. Here, we will use the convention from Austin et al. (2021) of usingt = 0 for clean data
andt = T for noise.
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We will �rst summarize the key results from (Austin et al., 2021) when using the absorbing state process which is a different
name for a masking type process (the mask is the absorbing state).t can take on any discrete value int 2 f 0; 1; : : : ; Tg.
The diffusion model is �rst de�ned using a noising transition kernel

p(x t jx t � 1) =

8
><

>:

1 if x t = x t � 1 = M
1 � � t if x t = x t � 1 6= M
� t if x t = M; x t � 1 6= M

From this transition kernel, we can then calculate the noise marginals,p(x t jx0)

p(x t jx0) =

0

@1 �
Y

k � t

(1 � � k )

1

A � f x t ; M g +

0

@
Y

k � t

(1 � � k )

1

A � f x t ; x0g

We then de�ne our generative reverse process as

p� (x t � 1jx t ) =
X

x 0

p(x t � 1jx t ; x0)p� (x0jx t )

wherep� (x0jx t ) is the learned denoising model. Note how this is similar to our generative process,R�
t (x t ; j ) =

Ep� (x 1 j x t ) [Rt (x t ; j jx1)] where nowp(x t � 1jx t ; x0) is the transition kernel for the clean data conditioned process. We
then create our generative model by taking the expectation of this conditional kernel with respect to our denoising model.

Continuing with the D3PM example using the absorbing state process, we obtain the following form forp� (x t � 1jx t )

p� (x t � 1jx t ) =

8
>><

>>:
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Q
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When we set� t = 1
T � t +1 , we obtain a linear noise schedule giving

p� (x t � 1jx t ) =

8
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�
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�
if x t = x t � 1 = M

1
t p� (x0 = x t � 1jx t ) if x t = M; x t � 1 6= M
� f x t � 1; x t g if x t 6= M

Now, let us de�ne� := t
T to be the proportion that the process is through the total number of time steps.� 2 [0; 1] and if we

consider it to be an analogue of our continuous time variable, we can see that the original discretization steps of D3PM
correspond to a discretization of the[0; 1] interval with timesteps of� t = 1

T . Substituting these de�nitions into our update
step gives,

p� (x t � 1jx t ) =

8
>><

>>:

�
1 � � t

�

�
if x t = x t � 1 = M

1
� � tp� (x0 = x t � 1jx t ) if x t = M; x t � 1 6= M

� f x t � 1; x t g if x t 6= M

Now we can see a clear comparison to Eq. (33) noting the �ipped de�nition of time. With our method we can pick any
time discretization at test time because our method has been trained on all possiblet 2 [0; 1]. We also deriveRDB

t for the
masking case which is not included in the prior D3PM framework. For training we note that the ELBO also simpli�es down
to a weighted cross entropy term for D3PM as noted by (Austin et al., 2021) and is also the case in our framework, see
Appendix C.2.1.

I. Text Experiment Details

Code for our text experiments can be found athttps://github.com/andrew-cr/discrete_flow_models .

For our denoising network we use the transformer architecture (Vaswani et al., 2017) as implemented in the nanoGPT
repository,https://github.com/karpathy/nanoGPT . We generally follow the smallest GPT2 architecture
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(Radford et al., 2019). At the input we have our input tokensx t of shapeB; D whereB is the batch size andD is the
number of dimensions i.e. the sequence length, our timet of shapeB , and, if we are self-conditioning, priorx1 prediction
tokens of shapeB; D . We embed thex t andx1 tokens using the same learned embedding, and use a model embedding
size of768resulting in tensors of shapeB; D; 768. We embed the position of each token using a learned embedding for
each possible position. We embed the timet, using Transformer sinusoidal embeddings following (Ho et al., 2020). We
train all our diffusion models with self-conditioning (Chen et al., 2023a). To input the priorx1 prediction, we stack thex t

embedded tensorB; D; 768with thex1 prior prediction token tensorB; D; 768to obtain a tensor of shapeB; D; 768� 2.
We then apply a linear layer to project down to the model embedding dimension resulting in a tensor of shapeB; D; 768.
Before applying transformer blocks, we add together thex t (andx1) embedding tensor, the position embedding and the
time embedding to obtain the �nalB; D; 768input tensor.

The transformer stack consists of12 transformer blocks, each block consisting of a LayerNorm, SelfAttention, LayerNorm,
MLP stack. Within our SelfAttention block, we use12heads and apply Qk-layernorm (Dehghani et al., 2023) to our query
and key values as we observed this improved convergence. Our MLP blocks consist of a768 ! 768� 4 linear layer,
followed by a GELU activation, followed by a768� 4 ! 768linear layer. We do not apply dropout. Our output layer
consists of a linear head with output dimension28. We use28 token categories,26 lower case letters, a whitespace character
and a mask token. The model outputs logits of shapeB; D; 28 which we then apply a softmax to, to obtainp� (x1jx t )
probabilities.

The dataset text8 is100MB of text data from English Wikipedia. The text is all converted to lower case letters, i.e. capital
letters are converted to lower case and numbers are written as text, i.e.8 becomes `eight'.

During training, we use a batch size of256 with 8 gradient accumulation steps. We train on sequences of length256.
The model is therefore trained on524; 288 tokens per gradient update. To train self-conditioning, on50% of training
iterations, we input priorx1 prediction tokens as all masks so that the model learns to be able to predictx1 without any prior
information. On the other50%of training iterations, we perform two model forward passes. We �rst predictx1 using masks
as the priorx1 tokens to obtain an initial set ofp� (x1jx t ) logits. We then sample from the initialp� (x1jx t ) distribution to
obtain predictedx1 tokens. We then feed these tokens back into the model through the self-conditioning input and predict
thex1 logits once more. These logits are then used in the loss. We only back propagate through the second forward pass of
the model.

When training the D3PM model, we found that the default cross entropy weighting of1=t (with a �ipped de�nition of time)
resulted in poor convergence and so we applied an equal weighting of the cross entropy across time to be consistent with the
DFM loss.

We train our D3PM and DFM models for750k iterations on 4 Nvidia A40 GPUs using a learning rate of10� 4 and1000
linear warm up steps. We use a cosine decay schedule after the initial warm up towards a minimum learning rate of10� 5

which would be reached at1M iterations. We use the AdamW optimizer (Loshchilov & Hutter, 2017) with weight decay
parameter0:1. We monitor the validation loss throughout training. Validation loss continues to drop throughout training and
we evaluate the �nal750k model in our experiments. When training the autoregressive model, we use the same architecture
but �nd that it begins to over�t the data much faster than the diffusion based models. After3500iterations the validation loss
begins to increase and so we use the model with minimum validation loss in our evaluations. This is consistent with �ndings
that autoregressive models require much less compute to converge than diffusion based models (Gulrajani & Hashimoto,
2023).

We use the masking interpolant in our DFM with linear interpolant, as described in Appendix F.1. For D3PM, we use the
absorbing state corruption process, the links to the DFM process are described in Appendix H.2.

For the SEDD baseline, we train two models from scratch using the provided code for750k training iterations with an
effective batch size of2048to be consistent with the DFM and D3PM training runs. All other parameters are left at their
default values with the transformer using the same hidden size, number of blocks and number of layers as our other runs.

For evaluation, we sample the DFM with� t = 0 :001. We simulate up tot = 0 :98and then for any remaining tokens that
are still mask, we set them to the most likely token under the model's denoising distribution,p� (x1jx t ). We stop simulating
at t = 0 :98 to avoid any singularities similar to how diffusion models stop neart = 0 . For D3PM we train with1000
timesteps to match DFM.

For each temperature setting applied to thep� (x1jx t ) logits, we sample512sequences all of length256tokens. We then
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Figure 4.Curves in Entropy-NLL space for varying noise levels used during sampling. For each noise level, the temperature applied to the
logits of thep� (x1 jx t ) prediction is varied over values0:5; 0:6; 0:7; 0:8; 0:9; 1:0.

Method BPC

DFM � = 0 � 1:41
Multinomial Diffusion (Hoogeboom et al., 2021) � 1:72
MAC (Shih et al., 2022) � 1:40
BFN (Graves et al., 2023) � 1:41
D3PM Uniform (Austin et al., 2021) � 1:61
D3PM Absorb (Austin et al., 2021) � 1:45
SEDD Uniform (Lou et al., 2023) � 1:41
SEDD Absorb (Lou et al., 2023) � 1:32

Table 5.Model log-likelihoods computed on the test set of text8 in bits-per-character (BPC).

calculate the negative log-likelihood assigned to each sequence using GPT-J-6B (Wang & Komatsuzaki, 2021) and the BPE
tokenizer (Radford et al., 2019). We then average the negative log-likelihoods over the512sequences. The sample entropy
is calculated by �rst tokenizing with the BPE tokenizer and then calculating the entropy as

P
i � pi logpi wherepi is the

empirical probability of tokeni estimated using the full set of512samples. Tokens for whichpi = 0 are not included in the
sum. For reference, the dataset achieves a negative log-likelihood of 4.2 as measured by GPT-J-6B.

I.1. Stochasticity Sweep

Here we examine the effect of the noise level� on the sample quality of generations from our DFM method. We follow the
follow the same procedure as before but vary� with values� = 0 ; 1; 2; 5; 10; 15; 20; 30; 50. We plot the results in Figure 4.
We �nd that generally, as the noise level increases, we lower our negative log-likelihood. However, we �nd that if the noise
level is increased too much, then degenerate behaviour can occur, for example when� = 50, at high logit temperatures the
negative log-likelihood increases and the sample entropy decreases away from the dataset. Observing the samples, we �nd
that the model generates incoherent text at this point. We �nd that the intermediate noise level� = 15 provides good sample
quality whilst avoiding this behaviour.

I.2. Model Log-Likelihoods

Here we calculate bounds on the log likelihoodlogp� (x1) that the model assigns to the test set of text8. We use Eq. (24) to
calculate this bound. We compare our log-likelihoods to other discrete diffusion style methods in terms of bits-per-character
in Table. 5, reporting the numbers from Lou et al. (2023). We �nd that DFM achieves a similar BPC to previous masking
style diffusion models with the recent work of Lou et al. (2023) achieving the lowest BPC.
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Figure 5.The temperature settings for each model for which we will examine sample generations. The selected temperature setting is
highlighted with a black circle.

I.3. Example Text Generations

In this section we provide non cherry picked generations from the text models. For each model we have swept over the
temperature applied to the logits and it would be impractical to include examples for all models for all temperature settings.
Instead, we select one temperature setting for each model such that the samples have similar entropy but vary in negative
log-likelihood. We show the selected temperature settings in Figure 5. For SEDD the method does not have a temperature
setting and we select the corruption style that is closest in entropy-NLL space to the other methods.

SEDD Uniform
Samples:

change status regional courses and markets especially canada sport in canada and tennessee in canada
the of�cial light offered an newspaper licence named liu beijing world s main neighbouring fan site
was sugar the only man with major historical works lic

ions of extension one or at least four subsets of a unique value of one example all these extensions
heard of the function is called real line the implementation comes distributed with a continuous input
extension to input and two classes the diagram emplo

of physics the radio atomic institutions independently the eastern united states followed into four
six countries norway thus was the father of the university of gloucester but while also the father of
germany can we also announce the coexistence of limit

D3PM Temperature 0.8
Samples:

ved as a personal area to form the �ve counties of the area and a country with their own which is
usually called paris gietgothic can also lead an area to work in divisions over a pileur as in the name
of man the bears have over the last two years from th

one �ve zero zero zero zero press money to present this to a meschasel linear industrial base ulse
sudan expanded its economy and accounts for car prices and two eight �ve more than one zero zero
of the largest industrial inventions over the world were

eed alternatively as human being and the anti constitutionalay doctrines a particular example of the
concept is one reason for human rights or as in certain regions there is a double constitution more
recognized region of europe in this region the glass an
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DFM � = 0 Temperature 0.8
Samples:

ed era vol seven one nine one one december one nine six one junju that s one of nine one one country
page of love footnote pages charles s feadman history of the red sea corea one nine nine one red sea
vol one january one nine nine seven �ying pro�les ch
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me io the plate n and feminine along the trail to change the amount of naturated information in the
start tape selective �gurative memory the mind is determined by the second net on the string c with
two buttons the tag retes the header when queued the se

Autoregressive Temperature 0.9
Samples:

licklyn american football coach to holy roman emperor and roman stories radio and facilities in the
u s civil rights movement the dc circuit collection of the witches leading the transissario times and
spinoffs to american cartoonists cartoonist kyle marci

the british one one eight four minamoto minister or al di nortello ministries son of monte oise klepe
which chose to give up its character on the go he was known to publish a wade of white performances
started in one eight �ve one kleine married the gigan

mausoleum in one eight one six alabama was engaged by a large scale as we know alabama migration
the palace of westminsters and proceeded to father she also learned to speak with the abramic mouth
of the space the replica was apparently built de provence g

DFM � = 15 Temperature 0.8
Samples:

e curous greek by alexander van hep ven see archaic origin of the word cupola another meaning
suggests that the word kupola is the latin word cupei kupolum old german derived from the latin word
for the river the name comes from a latin word for tree with

es so balloonists re�ne this combination speci�cally to preserve your own land in the runner both
examples of clean steering creating agout like rods that produced successful rods and for the end the
�rst few pistols compact stunt a musical setting mult

by reign over agassi is considered a greatest match by the day he will never play and will continue
to be imitated agassi can play determinedly but agassi would always look to the victorious build he
should not �nish years going up to then that he would b

J. Protein Generation Experiment Details

We present additional experiment details and results for protein generation with Multi�ow.

Code for Multi�ow and experiments can be found athttps://github.com/jasonkyuyim/multiflow

J.1. Experimental Details

Model Architecture. We use an architecture modi�ed from the FrameDiff architecture from Yim et al. (2023b). This
architecture consists of Invariant Point Attention (Jumper et al., 2021) combined with transformer blocks, we refer to Yim
et al. (2023b) for in-depth details. We modify this network architecture by increasing the number of network blocks to 8,
increasing the number of transformer layers within each block to 4, decreasing the number of hidden channels used in the
IPA calculation to 16, removing skip connections and removing psi-angle prediction. To enable our model to output logits
for the discretep�

1j t (x1jx t ) distribution, we add an output 3 layer MLP with the same embedding size as the main trunk.
This results in a network with 21.8M parameters.
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In Yim et al. (2023b), psi-angle prediction is used to infer the location of oxygen atoms, however, this position can be
inferred to high accuracy using prior knowledge of the backbone structure of proteins, following (Yim et al., 2023a).

When training with ourt; ~t objective that enables the model to learn over different relative levels of corruption between
structure and sequence, 10% of the time we sett = 1 and draw~t � U (0; 1) and 10% of the time we set~t = 1 and draw
t � U (0; 1). The remaining 80% of the time we draw botht and~t independently fromt; ~t � U (0; 1).

J.2. Additional Multi�ow Results

We show results of Multi�ow across more lengths than done in Sec. 6.2.1 and show that using the ESMFold oracle for data
distillation still gives improved performance when we switch the evaluation oracle to AlphaFold2.

Main metrics with standard error. Table. 6 presents results of Table. 3 with standard error. We see our interpretation of
the results do not change.

Larger length range. Our results in Sec. 6.2.1 only evaluated 4 lengths (70, 100, 200, 300) to match the benchmark in
RFdiffusion. However, other works have evaluated designability across all the lengths the method was trained on. We follow
Protpardelle (Chu et al., 2023) to use Multi�ow in generating 8 samples per length in the rangef 50, 51,: : : , 400g. Fig. 6
shows the results in the same format as Figure 2B in Protpardelle. We see Multi�ow achieves near perfect designability
up to around length 350 at which point designability starts to drop. This is expected since Multi�ow was only trained on
lengths up to 384, but also demonstrates the ability to generalize beyond the lengths it was trained on. We see Multi�ow
also achieves a desirable spread of secondary structure. We show samples above length 370 with the highest and lowest
Co-design 1 RMSD in Fig. 7.

Figure 6. Multi�ow results on Protpardelle benchmark. (Left ) PMPNN 8 scRMSD and designability versus length. Designability is
computed as the proportion of samples that havescRMSD< 2 	A within a sliding window of size 11. Average pLDDT as computed by
ESMFold for each sample is plotted as the colour of the scatter point. (Right) Secondary structure distribution. For each sample the
proportion of residues as part of an alpha helix or beta strand is measured giving an xy scatter point coordinate.

Figure 7. Multi�ow samples. (Left ) 2 undesignable Multi�ow samples with the highest scRMSD from the benchmark. (Right) 2
designable Multi�ow samples with the lowest scRMSD from the benchmark.

AlphaFold2 evaluation oracle.In Sec. 6.2.1, we presented a distillation technique of �ltering out training examples that did
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not pass the designability criterion. This also involved adding more proteins to the training set after sampling structures with
Multi�ow and �ltering with designability using ProteinMPNN and ESMFold. A potential risk of distillation is our model
may over�t to ESMFold since this model is used to �lter training data and also for evaluation. We show this is not the case in
Table. 7 by presenting the Co-design 1 results using AlphaFold2 (AF2) as an alternative oracle. Our main results do not use
AF2 since it is very slow and cumbersome to run and evaluate all our baselines. We evaluated Multi�ow with and without
distillation to testif distillation with ESMFold provides an improvement regardless of the oracle used at evaluation. Overall
designability numbers are lower with AF2; however, in both columns we see there is a two fold improvement regardless of
the evaluation oracle. This demonstrates distillation is not over�tting to the oracle used at evalution.

Table 7.Co-design 1 designability results based on oracle.

Designability with ESMFold Designability with AF2

Multi�ow w/o distillation 0.41 0.38
Multi�ow w/ distillation 0.88 0.83
Net improvement +0.47 +0.45

J.3. Uniform Conditional Flow Ablation

We ablate our use of the masking conditional �ow and train a version of our Multi�ow model using the uniform conditional
�ow ( see App. F.2). We assessed the model's co-design performance by measuring the Co-Design 1 designability and
diversity versus stochasticity level used at inference time. We also measure the secondary structure composition of the
generated samples versus stochasticity level. Our results are given in Fig. 8. We �nd that in general, the Co-Design 1
designability increases with increasing stochasticity whilst the diversity as measured by the number of structural clusters
decreases. We can see the reason when examining the secondary structure statistics versus stochasticity. We see that at
high stochasticity levels, the model heavily favours generating alpha helices at the expense of beta strands thus reducing
the overall structural diversity. This will be due to interactions between errors in the model and the `churn' induced by
extra stochasticity. It may be counter-intuitive that extra stochasticity reduces model diversity however we hypothesize that
this is linked to the stochasticity inducing the model to converge on local optima in the likelihood landscape. When the
model is generating a sample that it is con�dence about, extra stochasticity will not shift it away from continuing down this
simulation trajectory. However, when the model is exploring lower likelihood regions, the stochasticity can shift the models
trajectory until it becomes stuck in a local optima again.

We �nd an overall worse trade-off between diversity and designability when using the uniform interpolant and so opt to use
the masking interpolant in our main models.

Figure 8.Sample metrics for Multi�ow trained with the uniform interpolant on the discrete sequence modality.(Left) Co-Design 1
designability and diversity versus stochasticity level used when simulating the discrete CTMC. Higher is better for both designability
and diversity.(Right) Average proportion of residues that are part of an alpha helix or beta strand versus the stochasticity level used to
simulate the CTMC. Each point corresponds to the mean over 400 samples, 100 samples each for lengths 70, 100, 200, 300. Error bars
show the standard error of the mean.
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J.4. Forward and Inverse Folding Experiments

The goal of our work is to develop the missing piece for a general-purpose framework for protein generation – namely DFM
to integrate discrete data generation with a flow model. We combined DFM and FrameFlow to develop Multiflow where we
have flexibility at inference time to choose which modality to provide and which to generate. The task we focus on in this
work is co-generation where the structure and sequence are jointly sampled rather than one after the other as done in prior
works. The other useful tasks in protein modeling are forward and inverse folding. The two tasks are briefly described as
follows; more in-depth description can be found in Gao et al. (2020).

1. Forward folding: the task is to take the sequence as input and predicts the most thermodynamically plausible structure
of the sequence. During evaluation, the ground truth structure is known, so we calculate the aligned structure erorr
between the prediction and the ground truth. Several metrics exist to compute structure error, such as the Global
Distance Test (GDT) commonly used in biophysical modeling (Pereira et al., 2021). We choose to use the aligned
backbone RMSD error to keep our analysis simple and intuitive. The most well-used methods are AlphaFold2 (Jumper
et al., 2021), RosettaFold (Baek et al., 2021), and ESMFold (Lin et al., 2023). AlphaFold2 and RosettaFold rely on
using evolutionary information which our model does not have access to (though can be extended to use). We compare
against ESMFold, which does not use explicit evolutionary information, and due to its speed.

2. Inverse folding: the task is to use the structure as input and predict the most likely sequence that would forward fold
into the structure. By this definition, the most sensible metric is the designability metric also used for co-generation.
Specifically, the inverse folding model generates a sequence and we use ESMFold to predict the structure given this
generated sequence. We call the self-consistency RMSD (scRMSD) as the RMSD between the structure predicted by
ESMFold and the original input structure (Trippe et al., 2022). The objective is to minimize scRMSD. The de facto
method for inverse folding is ProteinMPNN (Dauparas et al., 2022). Hence we compare against ProteinMPNN.

It is important to emphasize that different deep learning models have been specifically developed for forward and inverse
folding, but no method can accomplish both tasks nor co-generate both sequence and structure. Multiflow is unique in this
regard to be able to perform co-generation, forward folding, and inverse folding. We leave improving forward and inverse
folding performance as a future work. Our aim is to demonstrate baseline performance of using a co-generation method
to perform forward and inverse folding. We hope others can aid in advancing general purpose protein generative models.

Test set. ESMFold and ProteinMPNN have their own training and test sets which makes rigorous comparison impossible.
Re-training ESMFold and ProteinMPNN with the same training set of Multiflow is beyond the scope of our work. Our
results are a initial baseline of how Multiflow generally fares to specialized models on forward and inverse folding.

Our test set is based on a time-based split of the PDB. We downloaded structures and sequences from the PDB that were
released between 1st September 2021 and 28th December 2023. This time-based split ensures that none of the test set
proteins are present in the training data for Multiflow, ProteinMPNN or ESMFold. We then select all single chain monomeric
proteins with length between 50 and 400 inclusive. We further filter out proteins that are more than 50% coil residues and
proteins that have a radius of gyration in the 96th percentile of the original dataset or above. We also filter out structures that
have missing residues. We cluster proteins using the 30% sequence identity MMSeqs2 clustering provided by RCSB.org.
We take a single protein from each cluster that matches our filtering criteria. This gives us a test set of 449 proteins with
minimum length 51 and maximum length 398.

J.4.1. FORWARD FOLDING RESULTS

As described in Table. 2, forward folding with Multiflow is performed by fixing the sequence time to ~t = 1, providing the
ground truth sequence as input, and running DFM from t = 0 to t = 1.

In Fig. 9 we examine the distribution of errors on our test set for both ESMFold and Multiflow. We find that generally
Multiflow can have some success with proteins of smaller length but struggles with longer proteins. We investigate salient
test examples from the plot to understand success and failure modes of our model. Multiflow is generally able to predict
realistic protein structures with often similar secondary structure distributions as to the ground truth example seen by having
similar proportions of non-loop residues between the ground truth and predicted structure. However, Multiflow often fails to
predict the exact folded structure with high accuracy.

We quantify the secondary structure prediction accuracy in Fig. 10 by comparing the secondary structure present in the
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