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Abstract

Combining discrete and continuous data is an
important capability for generative models. We
present Discrete Flow Models (DFMs), a new
flow-based model of discrete data that provides
the missing link in enabling flow-based gener-
ative models to be applied to multimodal con-
tinuous and discrete data problems. Our key in-
sight is that the discrete equivalent of continuous
space flow matching can be realized using Contin-
uous Time Markov Chains. DFMs benefit from a
simple derivation that includes discrete diffusion
models as a specific instance while allowing im-
proved performance over existing diffusion-based
approaches. We utilize our DFMs method to build
a multimodal flow-based modeling framework.
We apply this capability to the task of protein
co-design, wherein we learn a model for jointly
generating protein structure and sequence. Our
approach achieves state-of-the-art co-design per-
formance while allowing the same multimodal
model to be used for flexible generation of the
sequence or structure.

1. Introduction

Expanding the capabilities of generative models to handle
discrete and continuous data, which we refer to as multi-
modal, is a fundamental problem to enable their widespread
adoption in scientific applications (Wang et al., 2023). One
such application requiring a multimodal generative model is
protein co-design where the aim is to jointly generate con-
tinuous protein structures alongside corresponding discrete
amino acid sequences (Shi et al., 2022). Proteins have been
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well-studied: the function of the protein is endowed through
its structure while the sequence is the blueprint of how the
structure is made. This interplay motivates jointly generat-
ing the structure and sequence rather than in isolation. To
this end, the focus of our work is to develop a multimodal
generative framework capable of co-design.

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2020) have achieved state-of-the-art per-
formance across multiple applications. They have potential
as a multimodal framework because they can be defined
on both continuous and discrete spaces (Hoogeboom et al.,
2021; Austin et al., 2021). However, their sample time in-
flexibility makes them unsuitable for multimodal problems.
On even just a single modality, finding optimal sampling
parameters requires extensive re-training and evaluations
(Karras et al., 2022). This problem is exacerbated for mul-
tiple modalities. On the other hand, flow-based models
(Liu et al., 2023; Albergo & Vanden-Eijnden, 2023; Lipman
et al., 2023) improve over diffusion models with a simpler
framework that allows for superior performance through
sampling flexibility (Ma et al., 2024). Unfortunately, our
current inability to define a flow-based model on discrete
spaces holds us back from a multimodal flow model.

We address this by introducing a novel flow-based model
for discrete data named Discrete Flow Models (DFMs) and
thereby unlock a complete framework for flow-based mul-
timodal generative modeling. Our key insight comes from
seeing that a discrete flow-based model can be realized us-
ing Continuous Time Markov Chains (CTMCs). DFMs are
a new discrete generative modeling paradigm: less restric-
tive than diffusion, allows for sampling flexibility without
re-training and enables simple combination with continuous
state space flows to form multimodal flow models.

Fig. 1A provides an overview of DFMs. We first define a
probability flow p, that linearly interpolates from noise to
data. We then generate new data by simulating a sequence
trajectory x; that follows p; across time which requires
training a denoising neural network with cross-entropy. The
sequence trajectory could have many transitions or few,
a property we term CTMC Stochasticity (Fig. 1B). Prior
discrete diffusion models are equivalent to picking a specific
stochasticity at training time, whereas we can adjust it at
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Figure 1. Overview. (A.) A DFEM trajectory with masking over a 3-dim. sequence with 4 possible states. (B.) CTMC stochasticity
controls the number of transitions in a sequence trajectory while respecting the flow p:. Shown is a 1-dim. sequence with 5 states. (C.)
Sampling with Multiflow can start from noise (bottom left) or with either the structure or sequence given (top left and bottom right). Any
sampling tasks (structure/sequence generation, forward/inverse folding, co-generation) can be achieved with a single Multiflow model.

inference: enhancing sample quality and exerting control
over sample distributional properties.

Using DFMs, we are then able to create a multimodal flow
model by defining factorized flows for each data modality.
We apply this capability to the task of protein co-design
by developing a novel continuous structure and discrete se-
quence generative model named Multiflow. We combine
a DFM for sequence generation and a flow-based struc-
ture generation method developed in Yim et al. (2023a).
Previous multimodal approaches either generated only the
sequence or only the structure and then used a prediction
model to infer the remaining modality (see Sec. 5). Our
single model can jointly generate sequence and structure
while being able to condition on either modality.

In our experiments (Sec. 6), we first verify on small scale
text data that DFMs outperform the discrete diffusion alter-
native, D3PM (Austin et al., 2021) through their expanded
sample time flexibility. We then move to our main focus,
assessing Multiflow’s performance on the co-design task of
jointly generating protein structure and sequence. Multiflow
achieves state-of-the-art co-design performance while data
distillation allows for obtaining state-of-the-art structure
generation. We find CTMC stochasticity enables control-
ling sample properties such as secondary structure com-
position and diversity. Preliminary results on inverse and
forward folding show Multiflow is a promising path towards
a general-purpose protein generative model.

Our contributions are summarized as follows:

* We present Discrete Flow Models (DFMs), a novel dis-
crete generative modeling method built through a CTMC
simulating a probability flow.

* We combine DFMs with continuous flow-based methods
to create a multimodal generative modeling framework.

* We use our multimodal framework to develop Multiflow,
a state-of-the-art generative protein co-design model with
the flexibility of multimodal protein generation.

2. Background

We aim to model discrete data where a sequence = 2
f1,...,59g” has D dimensions, each taking on one of S
states. For ease of exposition, we will assume D = 1; all
results hold for D > 1 as discussed in App. E. We first ex-
plain a class of continuous time discrete stochastic processes
called Continuous Time Markov Chains (CTMCs) (Norris,
1998) and then describe the link to probability flows.

2.1. Continuous Time Markov Chains.

A sequence trajectory z; over time ¢ 2 [0, 1] that follows
a CTMC alternates between resting in its current state and
periodically jumping to another randomly chosen state. We
show example trajectories in Fig. 1B. The frequency and
destination of the jumps are determined by the rate matrix
R; 2 R® ¥ with the constraint its off-diagonal elements
are non-negative. The probability x; will jump to a different
state j is R¢(x¢, j)dt for the next infinitesimal time step d¢ .
We can write the transition probability as

Gizr) = Ry(xy, j)dt for j & x4 )
+dtj Tt) =
Pr+arje )% 1+ Ry(xy,z)dt  for j = x4

= 6fmtajg+Rt(mtu.7)dt (2)

where ¢ Ti, jg is the Kronecker delta whieh is 1 when ¢ = j
and is otherwise 0 and R;(xy, x;) := pey L2, k) in
order for p+q¢j:( i) to sum to 1. We use compact notation
Eq. (2) in place of Eq. (1). Therefore, p;+q:j; is a Categor-
ical distribution with probabilities § fz;, g + R;(z;, )dt
that we denote as Cat(d fz;, jg + Ry (xy, 7)di):

J o Perae(iz) O j  Cat(d foy, jg+ Ri(wy, j)dt).

In practice, we need to simulate the sequence trajectory
with finite time intervals . A sequence trajectory can be
simulated with Euler steps (Sun et al., 2023b)

Cat(d fry, xi+ 19+ Ri(wg, 00+ ¢) 1), (3)

Tt+ ¢
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where the sequence starts from an initial sample o  po
at time ¢ = 0. The rate matrix R; along with an initial
distribution pg together define the CTMC.

2.2. Kolmogorov equation

For a sequence trajectory following the dynamics of a
CTMC, we write its marginal distribution at time ¢ as p;(z;).
The Kolmogorov equation allows us to relate the rate matrix
R; to the change in p; (). It has the form:

Ri(4, z0)p:(4) Ri(xy, j)pe(x) (4)
AT N, U Lo ¢ SR

incoming outgoing

Opi(x) =

The difference between the incoming and outgoing
probability mass is the time derivative of the marginal
Oyp¢ (). Using our definition of R;(xy, x;), Eq. (4) can
be succinctly written as 9yp; = R; p; where the marginals
are treated as probability mass vectors: p; 2 [0,1]°. This
defines an Ordinary Differential Equation (ODE) in a vector
space. We refer to the series of distributions p; 8t 2 [0, 1]
satisfying the ODE as a probability flow.

Key terms: A CTMC is defined by an initial distribution
po and rate matrix ;. Samples along CTMC dynamics
are called a sequence trajectory z;. The probability
flow p; is the marginal distribution of x; at every time .
We say R, generates p; if d;p; = R p; 8t 2 [0, 1].

3. Discrete Flow Models

A Discrete Flow Model (DFM) is a Discrete data generative
model built around a probability Flow that interpolates from
noise to data. To sample new datapoints, we simulate a
sequence trajectory that matches the noise to data probability
flow. The flow construction allows us to combine DFM
with continuous data flow models to define a multimodal
generative model. Proofs for all propositions are in App. B.

3.1. A Flow Model for Sampling Discrete Data

We start by constructing the data generating probability
flow referred to as the generative flow, p;, that we will later
sample from using a CTMC. The generative flow interpo-
lates from noise to data where po(xzg) = pnoise(zo) and
p1(21) = pdata(x1). Since p; is complex to consider di-
rectly, the insight of flow matching is to define p; using a
simpler datapoint conditional flow, p4j1 (jz1) that we will
be able to write down explicitly. We can then define p; as

Pe(t) = Epgara(er) Prir(@er1) - 5

The conditional flow, pj1 ( jz1) interpolates from noise to
the datapoint x1. The conditioning allows us to write the
flow down in closed form. We are free to define pyj; ( jr1)

as needed for the specific application. The conditional flows
we use in this paper linearly interpolate towards 1 from a
uniform prior or an artificially introduced mask state, M:

Pt (zijar) = Cat(td fuy, 29 + (1 1)), (©6)
P (wijar) = Cat(td Fue, g+ (L )0 FM, 2,9).

We require our conditional flow to converge on the datapoint
xyatt =1, ie. pjr(xijrr) = 6 Fry, 2,9. We also require
that the conditional flow starts from noise at ¢ = 0, i.e.
i1(z4j1) = pnoise(x+). In our examples, pUnif (z,) =
ptjl .T/'tjl']_ Pnoise\Tt). u p > Pnoise\Tt
+ and @K (z) = 6 FM, 2,g. These two requirements
ensure our generative flow, p;, defined in Eq. (5) interpolates
from pnoise at t = 0 towards pgata at t = 1 as desired. Next,
we will show how to sample from the generative flow by

exploiting p;’s decomposition into conditional flows.

3.1.1. SAMPLING

To sample from pgata using the generative flow, p;, we need
access to a rate matrix R;(x¢, j) that generates p;. Given
a Ri(x¢,j), we could use Eq. (3) to simulate a sequence
trajectory that begins with marginal distribution pnejse at
t = 0 and ends with marginal distribution pgata at ¢t = 1.
The definition of p; in Eq. (5) suggests R;(x;, j) can also
be derived as an expectation over a simpler conditional rate
matrix. Define R;(x¢, jjz1) as a datapoint conditional rate
matrix that generates pyj1(z¢jx1). We now show R (x4, 7)
can indeed be defined as an expectation over R;(x;, jjx1).

Proposition 3.1. If R;(x;, jjx1) is a rate matrix that gener-
ates the conditional flow pjy (z¢jr1), then

Rt(xtmj) = Epljt(xljxt) [Rt(ztajjml)] @)

is a rate matrix that generates p; defined in Eq. (5). The
) — Prjs(zjz1)pdatalza)

expectation is taken over pqj, (v1jx; )

Our aim now is to calculate R;(z¢, jjz1) and pqj(x1]z;) to
plug into Eq. (7). paji(w1jx) is the distribution predicting
clean data x; from noisy data z; and in Sec. 3.1.2, we will
train a neural network pgj (x1jz¢) to approximate it. In
Sec. 3.2, we will show how to derive R;(x¢, jjr1) in closed
form. Sampling pseudo-code is provided in Alg. 1.

Algorithm 1 DFM Sampling
Po, choice of Ry(xy, jr1) (Sec. 3.2)

1: init t = 0, 2o
2: whilet < 1do

3 Ri(x, ) By, (aize) [Re(@e, J21)]

4 T+ ¢ Cat 6f$t,$t+ tg+R?(l’t,fI]t+ t) t
50t t+ t

6: end while

7: return 1

We discuss further CTMC sampling methods in App. G. Our
construction of the generative flow from conditional flows
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Table 1. Comparison between continuous space linear interpolant ow models and DFMs with masking. Both start with a conditional
ow pj1(Xtjx1) interpolating between data and noise. For continupys(xtjx1) = N (tx1; (1 t)21) and for discrete we uqnﬂi‘Sk .

Solving the Fokker-Planck or Kolmogorov equations with (xtjx1) gives a data conditioned process, speci ed either by the velocity
eld ( 1) or the rate matrixR:). We train a model to learn the unconditional process — written analytically as the expected value of the
conditional quantity — which is then used for sampling. The side-by-side comparison reveals the similar forms of each quantity.

QUANTITY CONTINUOUS DISCRETE

FOKKER-PLANCK-KOLMOGOROV  @pt = r (vipt) @p: = R{ pt

CONDITIONAL PROCESS t(Xejxy) = X Re(xe;jjx1) = %29 fx;Mg

GENERATIVE PROCESS t(Xt) = Epy aixo) [ e(Xeixa)]l  Re(Xe;) = Epyjy xajxo) [R(Xe5 ] jx2)]
GENERATIVE SAMPLING Xt+ t = X¢ + V(%) t Xt+ t  Cat( fxe;Xi+ 19+ Re(Xe;Xe+ t) t)

is analogous to the construction of generative probabilitye rst heuristically justify R, and then prove it gener-
paths from conditional probability paths in Lipman et al.atespj;(X¢jx1) in Prop. 3.2. R, can be understood as
(2023), where instead of a continuous vector eld generatingdistributing probability mass to states that require it. If
the probability path, we have a rate matrix generating the@p;1(j jX1) > @pyj1(XtjX1) then statg needs to gain

probability ow. We expand on these links in Table. 1. more probability mass than the current stat@esulting in
a positive rate. @pj1(jjx1)  @pyja(ijx1) then state;
3.1.2. TRAINING should give no mass to stgtéence theReLU. This rate

should then be normalized by the probability mass in the

Y(\)/eatrairr;a.;Ztgilhge:;'vzrE;V;thpsra?::fﬁ?géxtjsx.rl])’ th current state. ThReLU ensures off-diagonal elements of
pproxi ue ISing distribution using eRt are positive and is inspired by Zhang et al. (2023).
standard cross-entropy i.e. learning to predict the clean - _ NN
datapoini, when given noisy datg, Py (X(jX1). Proposition 3:2. Assuming zero mass statpg (] J_xl) =

h i 0, have@pj1(j jx1) = 0, thenR, generategyj1(X¢jX1).

Lee = Epsua cyuompyaoaainn 109PL(Xaix0) () g proot s easy to derive by substitutiRg along with
whereU(t; 0; 1) is a uniform distribution orf0; 1]. x, can ~ Pria(XtiX1) into the Kolmogczjtﬁv eq::z\;l(on Eg. (4). The
be sampled fronp;; (Xjx1) in a simulation-free manner by forms forR, (x.;jjx1) underpji’ or pj7>* are simple
using the explicit form we wrote down fqx;; e.g. Eq. (6). RN = gl fxuxi@). [ mask — (x50 fuMg
In App. C, we analyse how . relates to the model log- ™t 1t ' t 1t
likelihood and its I’.e|at?0n t.O the Evidence Lower Bound as we derive in App F. Usinst as a Starting point, we
(ELBO) used to train diffusion models. We stressthal  now build out a set of rate matrices that all genemte

does not depend dR¢(x:;]jx1) and so we can postpone e can accomplish this by adding on a second rate matrix
the choice oR;(x;] jx1) until after training. This enables that is in detailed balance wifhy; ;.

inference time exibility in how our discrete data is sampled.

Proposition 3.3. LetRP® be a rate matrix that satis es the
detailed balance condition fq;4,

. DB /it i N _ . DB /in: o ..
The missing piece in Eq. (7) is a conditional rate matrix Pus(IXa)RE (1) 1xa) = Pya( xR (i Ixa)iz (9)
Ry(x¢;] jx1) that generates the conditional opyj;(xjx;). LetR; bedened byR;, RP® and parameter 2 R °,
There are many choices f&; (x¢;] jx1) that all generate R, = R, + RPB:

the samej1(X¢jX1) as we later show in Prop. 3.3. In order _

to proceed, we start by giving one valid choice of rate matrix! N€n we hav®, generategyj; (xjx1),8 2 R °.

and f“’”_" this, bu"d. a set of rate matrices that all generz_atq.he detailed balance condition intuitively enforces the in-
Prj1- At. inference time, we can then pick th(—;- rate matr'xcoming probability mass, s i ix1)RPE (j:i jx1) to equal
from this set that performs the best. Our starting choice fthe outgoing probability masspys (ijx1)RP® (i;] jx1).

arate matrix that generatpg, is de ned forx; 6 j as, Therefore,RPE has no overall effect on the probability
ReLU @pyi(jjx1) @pyja(Xejx1) ow and'can be added on &, with the cqmbined rate still
S pyi(xiix) g%geratln@tjl. In many cases, Eqg. (9) is easy to solve for
RPB due to the explicit relation between elementRef
whereReLU(a) = maxa;0) and @pj: can be found as we exemplify in App. F. Detailed balance has been used
by differentiating our explicit form fomp;;. This as- previously in CTMC generative models (Campbell et al.,
sumespj1(Xtjx1) > 0, see App. B.2 for the full form. 2022) to make post-hoc inference adjustments.

3.2. Choice of Rate Matrix

Ry (Xt;jjx1) =
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CTMC stochasticity. We now have a set of rate matrices, 4.1. Multimodal Flows

fR, : Og, that all generatgy;;. We can plug any . .
one of these into our de nition foR; (x;:} ) (Eq. (7)) and Following FrameFlow, we refer to the protein structure

sample novel datapoints using Alg. 1. The chosen vaIu?1S thebackb_on@tomic ceordinates of each residue. We
for  will in uence the dynamics of the CTMC we are eave modellng side-chain atoms as a follow-up work. The
simulating. For large values of the increased in uence s_trl_,lc_ture Is represented as elementSB(3) to captu_re the

of RPE will cause large exchanges of probability massngldlty of the local frames along the backbone (Yim et al.,

between states. This manifests as increasing the frequen 23b). A pg‘?ted'_” (?f 'S”Q”D reS|duessc_:an then be repre-
of jumps occurring in the sequence trajectory. This lead$ nted aé(x r 1@7)0g=, Wherex 2 R is th_e translayon
to a short auto-correlation time for the CTMC and a highOf th? residue’s (;arben-atom,r 2 5.0(3) IS a rotation
level of unpredictability of future states given the currentmatr'x of the residue’s local frame with respect to global

state. We refer to the behaviour thatontrols asCTMC reference(:rameihamiz fkl.t.e\‘.e 229 [E, M ? is one ?f 2:)
stochasticity Fig. 1B shows examples of high and low amino acids or the mask s or brévily, we refer to

the residue state a& = (x9;r%;a) and let the full pro-

On a given task, we expect there to be an optimal stochagein's structure and sequenceTs= fT9g5_, . We de ne

ticity level. Additional stochasticity improves performance the multimodal conditional ow agj;(TjT 1) which is

in continuous diffusion models (Cao et al., 2023; Xu et al. a shorthand for a probability density over the continuous

2023), but too much stochasticity can result in a poorly pervariables and a probability mass function over the discrete

forming degenerate CTMC. In some cases, setting0,  variables. We de neyj;(TjT 1) to factorize over both

i.e. usingR,, results in the minimum possible number of dimensions and modality.

jumps because thiReLU within R, removes state pairs that "

needlessly exchange mass (Zhang et al., 2023). Byn(ToT) = pql(X?J'Xi’)pql(rt Jrl)ptjl(atja'i’) (10)
d=1

Proposition 3.4. For pjfi’ andpf)3*, R; generategj; Following Yim et al. (2023a)py;1(xJjx§) andpyj1(rfjre)

whilst minimizing the expected number of jumps during the, .o §e ned implicitly through specn‘ymg how sample,
sequence trajectory. This assumes multi-dimensional dat?d are generated fromy1 (x8x9), pu (réjr9),
J t J t

under the factorization assumptions listed in App. E.
=tx§+@ t)xd; xd N (0;1) (11)

3.3. DFMs Recipe rd=exp;g tlogg(rf) ;r§ Usae: (12)

We now summarize the key steps of a DFM. PyTorch codevhereexp andlog are the exponential and logarithmic maps.
for a minimal DFM implementaton is provided in App. F. Usp) is the uniform distribution or8O(3). Following

1. De ne the desired noise schedigy (xjx1) (Sec. 3.1). Sec. 3pyu(afjaf) is de ned explicitly.

2. Train denoising modqdljt(xljxt) (Sec. 3.1.2).

didy = d. .d ad
in(afjaj)=Cat t aj;a; +(1 t) M;a 13
3. Choose rate matrik, (Sec. 3.2). Pya(aiiar) nag ) ¢ @3

4. Run sampling (Alg. 1). Our conditional trajectory that follows this conditional ow
) _ _ will be an ODE on the continuous modalities with a CTMC
4. Multimodal Protein Generative Model for the amino acids. The conditional ODE on translations

. _ . and rotations is parameterized through conditional velocities
Using our ow formulation on discrete state spaces, we Car\/d(xf‘jx‘f) 2 R, vi(rdjr9) 2 Tan.SO(3) (Yim et al
’ r t .y

now combine a DFM with a ow on a continuous space _* ) .
P 2023a).v¢ is a standard Euclidean vector eld whereds

to de ne a multimodal generative ow. We use this to per-: : i .
form protein joint structure-sequence generation. A proteiHS a.vector eld on the R|emann|an 'V'a”'f‘)@.'o(?’) (Chen .
Lipman, 2023). The trajectory can be simulated using

can be modeled as a linear chain of residues, each with ? ler st ith st et
assigned amino acid and 3D atomic coordinates. Protein ¢ uler steps with step sizet,
design aims to jointly generate the amino acids (sequence) ,.d — yd d(ydiyd

Xtr ¢ = X¢ + V(X{jx7) t
and coordinates (structure). Prior works have used a genera- g drdid

r =exp,a( t v2(rijry)) (14)
tive model on one modality (sequence or structure) witha "t+ t rg rutlil
separate model to predict the other (see Sec. 5). Instead, ouraf, | Cat af;al, | + R{(af;a, jaf) t:
approach uses a single generative model to jointly sample
both modalities: a DFM for the sequence and a ow modelWe choosev¢ such that it individually generates the
FrameFlow (Yim et al., 2023a), for the structure. We referpij1(x¢jx{) given by Eq. (11) if it were simulated by it-
to our multimodal ow model asvulti ow . selfinR3. Similarly, forvd andR, they are chosen such
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that they individually generaﬂqjl(r{’jrf) (Eq. (12)) and matrix in terms of these predicted quantities.
pj1(afjad) (Eq. (13)) respectively. The explicit forms for

29(T, ) x? log, g (F§(T ¢, )
v¢, v andR¢{ are as follows, HUNE % Ty = —
. d y= P@IEITLD g
viixfix) = (x§  x{)=@1@ 1) RS (Tewl) = T agM
va(rdjrd) =log,a (ré)=1 1) (15)  In order for these to match their optimum values given in
t

R?(a?;j djai') = d. a‘f a{’; M =1 1): Prop. 4.2, we minimize the following loss
P D jjkg(Tt: t) ngjz d;
wth velocities following Yim et al. (2023a) and rate matrix E e 1t logp (afiTyr)  (16)
derived in App. F.1 assuming= 0. The following propo- log, ¢ (/4(T 1)) log, ¢ (r) 2j
sition veri es these choices are consistent with our initial + : I — :
de nition of pj1(T¢jT1).

where the expectationisovert U (0;1), T1.1  Pdata
andT .+ P;j1(Td T 1;1). Ourindependertt tobjective
enables the model to learn over different relative levels of

We would now like to be able to sample a trajectory that fol_corrupuondbettwtehen the set(ql;](_anmla an? structtl_Jre. Eqa (36)
lows the unconditional ow. Mirroring Prop. 3.1, we again corresponds 1o the ow matching 10Ss for continuous data

nd that the desired unconditional velocities and rate matrixand the DFMs loss Eq. (8) for discrete amino acids. The

are expectations of their respective conditional quantities. ngural network architecture is modi e_d from _FrameFI_ow
with a larger transformer, smaller Invariant Point Attention,

Proposition 4.2. The following velocities and rate matrix and extra multi-layer perception head to predict the amino

Proposition 4.1. The multimodal process de ned by
Eqg.(15) has the owpyj1(T+jT 1) given by Eq(10).

together generatp (T¢) = Ep,.. (1) Pja(TdiTa) . acid logits.
VR(Te) = Ep, wajryy Ve (X{iXY) 4.3. Sampling
d - depdid
Vi(Te) = Epm(ri’JTt) ve(reirs) To sample the generative model, we use the update equations
RI(Tj%) = Ep,,.(aiT0) Rd(ad;j%ad) : from Eq. (14) but with the learned unconditional velocities

and rate matrix. Furthermore, we nd sample quality can

be improved by using the exponential rate scheduler for

we no_te that even thc_)ugh the pondmonal ow is de n_e_d 0 rotations from Bose et al. (2023). In practice, this meghs
factorize over modality and dimension, the unconditional .
has the following form,

generative ow has coupled modalities and dimensions be-
cause each velocity and rate matrix depends on the entire 9T tt) = C 1094 (Ff(Tt; )

corrupted protein staf€;.
ptedp ! We usec = 10 following (Yim et al., 2023a). When sam-

Thus far, we have assumed the same noise level in all modasting the amino acids, we also found it bene cial to utilize
ities. To enable exible sampling options, we can use apurity (Tang et al., 2022) to choose which indices to unmask
noise level for the structure, that is independent to the at each step. The advantage of training with decoupled time
noise level of the sequende(Albergo et al., 2023). We let  schedules is that we have freedom to arbitrarily sample with
Ty = (x{P;r{P;alP) and use a conditional ow of any combination oft; t). We use this to perform condi-
tional inpainting where one of the modalities is xed by
) _ 4 d 4 d 4 dv. settingt or tequal to 1. For example, setting= 1 then
Py a(TedTa) = Peja (Xe X 1) Pria (riirs) Py (ariay): using Euler steps to updatérom0! 1 performs sequence
d=1 generation conditioned on the structure. We summarize the

The unconditional ow then becomes, (T ) capabilities in Fig. 1C and in Table. 2.

Epu (Tl)[pt;m(Tt; 4T1)], with the expectations for the Table 2.Flexible multimodal sampling.
unconditional velocities and rate matrix in Prop. 4.2 now Codesign, Inverse folding Forward folding
computed usingy.. ( jT.) instead ofpy; (jT+). e | t:01 1 =1 t 01 1

- 3 t:0! 1 t:0! 1 t=1
4.2. Training r

During training, our network will take as input the noised 5. Related Work

proteinT ... and predict the denoised translationgT . ),

rotationsfy (T ), and amino acid distributiop (a;jT). Discrete Diffusion Models. Our continuous time ow
We then parameterize the unconditional velocities and ratbuilds on work that extends discrete diffusion (Hoogeboom

6
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et al., 2021; Austin et al., 2021) to continuous time (Camp-
bell et al., 2022; Sun et al., 2023b; Santos et al., 2023; Lou
et al., 2023) but we simplify and extend the framework. We
are not restricted to noising processes that can be de ned
by a matrix exponential as we just wripg; down directly

and we have the freedom to chod®gx:;j jx1) at infer-
ence time rather than being restricted to the time reversal.
We show how DFMs encompasses prior discrete diffusion
models in App. H. For molecular retrosynthesis, Igashov
et al. (2023) also considered a data conditional process, but

did not build a modeling framework around it. Zhang et al._. _ o
lrzlgure 2.Negative log-likelihood as measured by GPT-J-6B versus

(2023) constructed low-stochasticity rate matrices and thei o ont For DEM. D3PM and aut .
derivation provides the building blocks of Prop. 3.2. Some>amPpie entropy. For » DoFiv an au_ O_re_gr'fn_s_s_“_'e’ we sweep
ks h built ltimodal diffusi del f lecul the logit temperature fqu,j (x1jx:) overf0:5;0:6;;:::; 1g. We

WOTKS gve ulit a multimoaal ai u§|on MOGAEITor MoIeCul® i, 14 minimize NLL whilst staying close to the dataset entropy.
generation (Peng et al., 2023; Vignac et al., 2023b; Hua
etal., 2023_) whereas we focus on prqtein co-design using 1 Text Modeling
ows. We discuss further related work in App. D.

Set-up. We model the text dataset, text8 (Mahoney, 2006),

Ffrotein Generqtion. Diffusipn and ow quels have . which is100MB of text from English Wikipedia. We model
risen in popularity for generating novel and diverse protein, « ~haracter level, following (Austin et al., 2021), with

backbones (Yim et al., 2023b;a; Bose et al., 2023; Lin &g - »g categories fo6 lowercase letters, a white-space

AlQuraishi, 2023; Ingraham et al., 2023). RFDIffusion 5,4 5 mask token. We split the text into chunks of length
achieved notable success by generating proteins validated {§ _ 256. We train a DFM using™ and parameterize
wet-lab experiments (Watson et al., 2023). However, thesghe denoising network using a trgésformer W8BM non-

methods required a separate model for sequence generati%

X X rFnbedding parameters, full details are in App. I.
Some works have focused only on sequence generation with
diffusion models (Alamdari et al., 2023; Gruver et al., 2023;Results. Text samples are evaluated following Strudel et al.
Yang et al., 2023; Vi et al., 2023). We focus on co-design(2022). A much larger text model, we use GPT-J-6B (Wang
which aims to jointly generate the structure and sequence& Komatsuzaki, 2021), is used to evaluate the negative log-

i i ) likelihood (NLL) of the generated samples. The NLL metric
Pr_lor works have attempted Co'deS'Q”- Prot.elnC_senerat%one can be gamed by repeating similar sequences, so the
(Lisanza et al., 2023) performs Euclidean diffusion overy,q, gistribution entropy is also measured. Good samples

one-hot amino acids while predicting the structure at eac@hould have both low NLL and entropy close to the data dis-
step with RosettaFold (Baek et al., 2021). Conversely, Prot

X - ¥ T " Yribution. For a given value of, we create a Pareto-frontier
pardelle (Chu et al., 2023) performs Euclidean d|1’“fu5|onin NLL vs entropy space by varying the temperature ap-
over structure while iteratively predicting the sequence. Mul

S X plied to thepljt(xljxt) logits during the softmax operation.
ti ow instead uses a generative model obaththe structure Fig. 2 plots the results for varying levels ofand sampling

and sequence which allows for exibility in conditioning at 4o 1\herature. For comparison, we also include results for
inference time (see Sec. 6.2.1). Luo et al. (2022); Shi et ajpq yiscrete diffusion D3PM method with absorbing state
(2022) are co-design methods, but are limited to generating, . ytion (Austin et al., 2021) as well as the Score Entropy
CDR loops on antlbodles. Lastly, Anand & Achim (20,22) Discrete Diffusion (SEDD) method of Lou et al. (2023) us-
presented diffusion on structure and sequence, but did n%g both uniform and absorbing style corruption. SEDD
report standard evaluation metrics nor is code available. does not have logits that can be temperature scaled and so

only single points in NLL vs entropy space are shown. We
6. Experiments nd the DFM performs better than D3PM and SEDD due to

) . .. our additional sample time exibility. We are able to choose
We rst show that tuning stochasticity at sample time im-y,o yaiye of that optimizes the Pareto-frontier at sample

proves pure discrete generative modeling performance BYme (here = 15) whereas D3PM and SEDD do not have
modeling text data. We then evaluate Multi ow, the rst s eyibility. We show the full sweep in App. | and show
ow model on discrete and continuous state spaces. W

. ; he frontier for =0 in Fig. 2. When =0, performance
show Multi ow provides state-of-the-art-performance on

i ! X is similar to D3PM due to DFMs being a continuous time
protein generation compared to prior approaches that do ”%teneralization of D3PM at this setting, see App. H.2. We

generate using a true multimodal generative model. Finallyy s, include results for an autoregressive model in Fig. 2 for
we investigate Multi ow's crossmodal properties of hoW |eference; however, we note this is not a complete like-for-

varying the sequence sampling affects the structure. like comparison as autoregressive models require much less
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compute to train than diffusion based models (Gulrajani &suffered from lower designability than PMPNN. Our analy-

Hashimoto, 2023). sis revealed the original PDB sequences achieved worse des-
ignability than PMPNN. We sought to improve performance
6.2. Protein generation by distilling knowledge from other models. To accomplish

. ) ) this, we rst replaced the original sequence of each structure
Metrics. Evaluating the quality of structure-sequence samy, e training dataset with the lowest SCRMSD sequence
ples is performed witkelf-consistencyhich measures how ;¢ of g generated by PMPNN conditioned on the structure.
consistent a generated sequence is with a generated strdes onqd, we generated synthetic structures of random lengths
ture by testing how accurately a protein folding networkpeyyeen 60-384 using an initial Multi ow model and added
can predict the structure from the sequence. Speci callyy,gse that passed PMPNN 8 designability into the training
either AIphaFoIdZ (Jumper et ‘T"I'* 2021) or ES_MFOId (Lin gataset with the lowest ScRMSD PMPNN sequence. We
etal., 2023), is rstused to predict astructure given only thety,nd that we needed to add only an extra 4179 examples
generated sequence. Our results will use ESMFold but wg, e original set of 18684 proteins to see a dramatic im-

show results with AlphaFold2 in App. J. Then, we calculate o ement. This procedure can be seen as a single step of
scRMSD: the Root Mean Squared Deviation between theginforced self training (ReST) (Gulcehre et al., 2023).

generated and predicted structure's backbone atoms. The
generated structure is callddsignabléf SSRMSD< 2A. 6.2.1. ®-DESIGN RESULTS

Structure-only generative models such as RFdiffusion rStFoIIowing RFdiffusion's benchmark, we sample 100 pro-
use _ProteinMPNN (PMPNN) (Dauparas et al., ,2022) ©teins for each length 70, 100, 200, and 300. We sample
predict a sequence given the generated structure in order Multi ow with 500 timesteps using a temperature of 0.1
then be able to use the self-consistency metric. We preseﬂgMPNN also uses 0.1) and stochasticity level 20. We

three variants of self-consistency: compare our structure quality to state-of-the-art structure
« Co-design luse the sampled (structure, sequence) paifgeneration method RFdiffusion. For co-design, we compare
« PMPNN 8 take only the sampled structure and predict 8to Protpardelle and ProteinGenerator. All methods were ran

sequences with PMPNN. Then use ESMFold to predicysing their publicly released code and evaluated identically.

a new structure for each sequence. The nal structure-

sequence pair is the original sampled structure along witfPUr results are presented in Table. 3 where report the aver-
the PMPNN sequence with minimum scRMSD. age of three seeds for each metric — see Table. 6 for results

« PMPNN t same as PMPNN 8 except PMPNN only with standard error. We nd that Multi ow's co-design capa-
generates one sequence. bilities surpass previous co-design methods, none of which

PMPNN 8 and PMPNN 1 evaluate only the quality of a use a joint multimodal generat!on process. Multi ow gener-
tes sequences that are consistent with the generated struc-

model's generated structures whereas, for co-design mo?u're at a comparable level to PMPNN which we see through

els, Co-design 1 evaluates th? quality of a quels geneF:'omparing the Co-design 1 and PMPNN 1 designability.
ated (structure, sequence) pairs. The comparison betwe

. . n pure structure generation, we nd that Multi ow outper-
:DMonlzg.jeas?dngg g:ngennieilogfﬂE&ﬁvg Iil'Js it;]neg tpoecggﬁlrforms all baselines in terms of structure quality measured by
L?s/ed in riorgtructurg—onl W(.)I’kS As our main rl?wetric of BPMPNN 8 designability. Multi ow also attains comparable
prior y S diversity and novelty to previous approaches. We ablate our
sample quality, we repodesignabilityas the percentage of

designable samples. As a further sanity check designab%se of distillation and nd that distillation results in overall
) . . ! esignability improvements while also improving diversity.
samples are then evaluateddimersityandnovelty We use g yimp P 9 Y

FoldSeek (van Kempen et al., 2022) to report diversity asFma”)./’ we train our exact same architecture e_xcept only
) ; : modeling the structure on the distilled dataset using the loss
the number of unique clusters while novelty is the average

TM-score (Zhang & Skolnick, 2005) of each sample to itSpresented in Yim et a_I. (2023a). We nd our joint strgcture-
- o sequence model achieves the same structural quality as the
most similar protein in PDB.

structure-only version, however, additionally including the
Training. Our training data consisted of length 60-384 sequencén our generative process induces exaictural
proteins from the Protein Data Bank (PDB) (Berman et al.diversity.

2000) that were curated in Yim et al. (2023b) for a total

of 18684 proteins. Training took 200 epochs over 3 day Crossmodal modulation.We next investigate how modu-

- . . %ating the CTMC stochasticity of the sequence affects the
on 4hAr?'I000 Nvidia G2PUs US.I;':gI the_AdamW optimizer structural properties of sampled proteins. Fig. 3 shows that
(Loshchilov & Hutter, 2017) with learning rate 0.0001. varying the stochasticity level results in a change of the
Distillation. Multi ow with PDB training generated highly ~secondary structure composition (Kabsch & Sander, 1983)
designable structures. However, the co-designed sequencekthe sampled proteins. This is an example of the exibil-
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Table 3.Co-design results. Abbreviations: DesignabiliBES.), Diversity OIV.), Novelty NOV.). For Protpardelle, we report Co-design
1 as same numbers as PMPNN 1 since their co-design approach employs PMPNN. We note this is not co-generation since PMPNN is
used while Multi ow explicitly learns co-generation without using PMPNN.

METHOD Co-DESIGN 1 PMPNN 8 PMPNN 1

DeEs. (") Div. (") Nov.(#) | DEs. Div. Nov. | DEs. Div. Now.
PROTPARDELLE 0.63* 38* 0.60% 0.90 47 0.59 | 0.63 38 0.60
PROTEINGENERATOR 0.37 35 0.69 0.89 75 0.65 0.78 64 0.66
RFDIFFUSION N/A 0.87 158 0.63| 0.66 111 0.64
MULTIFLOW 0.86 143 0.61 0.99 156 0.61| 0.88 143 0.61
MULTIFLOW W/O DISTILLATION 0.42 72 0.62 0.89 126 0.62 0.71 101 0.63
MULTIFLOW W/O SEQUENCE N/A 0.99 116 0.63| 0.86 97 0.62

7. Discussion

We presented Discrete Flow Models (DFMs), a ow based
generative model framework by making analogy to continu-
ous state space ow models. Our formulation is simple to
implement, removes limitations in de ning corruption pro-
cesses, and provides more sampling exibility for improved
performance compared to previous discrete diffusion mod-

Figure 3.Multi ow structural properties. Average proportion of els. Qur framework enables easy application to multimodal

residues that are part of an alpha helix or beta strand versus ﬂ%enerativg prqblems which we apply to protein co-design.
CTMC stochasticity level. Proportions of helices or strands can bel "€ combination of a DFM and FrameFlow enables state-

desirable based on the family of proteins to generate (Vinothkuma@f-the-art co-design with Multi ow. Future work includes

& Henderson, 2010). Error bars show the standard error. to develop more domain speci ¢ models with DFMs and
improve Multi ow's performance on all protein generation

ity our multimodal framework provides to tune properties tasks including sidechain modeling.

between data modalities at inference time.
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ESMFold N/A 27 3.9

Multi ow 22 26 15.3 45




Discrete Flow Models
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In this paper we work to advance general purpose generative
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purpose techniques could also be misused to design toxic framework for discrete denoising modeksdvances in
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Appendix to:

Generative Flows on Discrete State-Spaces:
Enabling Multimodal Flows with Applications to Protein Co-Design

A. Organization of Appendix

The Appendix is organized as follows. App. B provides proofs for all propositions in the main text. App. C analyses the
cross entropy objective used to train DFM and links controlling the cross entropy to controlling the model log-likelihood.
App. D discusses further related work. App. E shows how DFM can be applied to multidimensional data through applying
factorization assumptions ;. App. F gives concrete realizations with PyTorch code for DFM using the masking or
uniform forms forp,j;. App. G discusses methods for sampling from CTMCs and discusses their relation to our sampling
method. App. H compares DFM to classical discrete diffusion models in discrete and continuous time nding that they
can be t within the DFM framework. App. | gives further details and results for our text experiment. App. J gives further
details and results for our protein co-design experiments.

B. Proofs

Notation When writing rate matrice®}; (i;j ), we will assume 6 j unless otherwise explicitly stated.
P

We writeR; (i) := i6i Re(i;j ).

B.1. Proof of Proposition 3.1

We simply take the expectation with respectpigsa of both sides of the Kolmogorov equation fpg1(x¢jx1) and
Rt (X¢;]jX1). Note we use the fact th&;(i;i) = i6i R¢(i;j ) for compactness.
X
@pj1(Xejx1) = Re(js X tJx1)Pj(J jX1)
j

3
- X . . ..
Eps (x1) @Pj1(XtiX1) = Epyw k)4 Re(i X ¢iX2)prja(j jx1)®
- X x J .. - -
@Epe (x1) Prja(Xtjx1) = Pdata (X1)Ptj1(J IX1)Re(J; X tjX1)
@pe(xt) = Pt (j ) Paje (X1jj )Rt (j; X tjX1)
@pe(xt) = Epy xajiy [Re(s X 1jx2)] pe(j)

j
Where we notice that the nal line is the Kolmogorov equation for a CTMC with margipals;) and rate
Ep., (x1jx) [Rt(Xt;] jXt)]. Therefore we have shown thaf . (x,jx,) [Re(Xt;]JXt)] generatey (x:).

B.2. Proof of Proposition 3.2

In the main text we provided the form f&, under the assumption thag(j jx1) > Ofor all j. Before proving Prop. 3.2,
we rst give the full form forR, . First, assuming; 6 j andpj1(x¢jXx1) > Owe have,

ReLU @pj1(jjx1) @prja(XtjX1)

Re (Xt;]jx1) =

Zprja(XtjX1)
whereRelLU(a) = maxa;0) andZ; is the number of states that have non-zero mﬂs;,ij Xt © Prja(Xejx1) > 0Ogj.
R (Xt;]ix1) = 0 whenpyja(X¢jX1) = 0 or pyj1(jjX1) = 0. Whenx, = j, Ry (Xt; XtjX1) = iex, Rt (Xt;]ix1) as we

have de ned before.
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For our proof, we assume that1(jjx1) =0 =)  @p1(j jX1) = 0. This assumption means that when we have dead
states with zero probability mass, they cannot be resurrected and gain probability mass in the future. We begin the proof
with the Kolmogorov equation for processes conditionec gn

X X
@pj1(Xtjx1) = Re (s X tJX1)pj1(J jX1) Ri(Xt; ] jX1)Prja(XtjX1) (17)

j 6 Xt j 6 Xt

We will now verify thatR, satis es this Kolmogorov equation and thus generates the desiggetjx1) conditional ow.
We will rst check that the Kolmogorov equation is satis ed whp (X¢jx1) > 0. With this form of rate matrix, the RHS
of equation (17) becomes

X ReLU @pj(Xtjx @pea (i ix .
RHS= pu;( tJ. (1_).X ) Prj1(jJX1) ati)
j 6 X¢iptja(jjx1)>0 tPjaU JX1
X ReLU @pya(ijx1)  @pya(xeixa) '
Zprja(Xtjx1) Prj1(XtjX1)

i€ Xt3prj1(jix1)>0
1 X . .
= Z ReLU @pyj1(XtjX1) @pyja(jjx1)
i 8 x¢;pej1(jjx1)>0
1 X . .
7 ReLU @pj1(jjx1) @prja(Xejx1)
i 6 xt;ptjr(jix1)>0
1 X . .
= Z @prja(XejX1)  @prja(jjxa)
i &xt:ptj1(jjx1)>0
X
= 2L 2app(aix) o @ (i %)

Zy to
j 6 Xt3pej1(jix1)>0

Z, 1 _ 1 .

= tzt @pya(xijx1) 7@ Pya(xeixa))
Z. 1 . 1 .

= tzt @y (xejx2) + Z-@Pyya (xexa)

= @pyj1(XtjX1)

= LHS

In the case thapj;(Xtjx1) = 0 by assumption we have th@p;j;(x¢jx1) = 0. We have bottR, (x¢;jjx1) = 0 and
R; (Jix tjx1) = 0 becauseyji(x¢jx1) = 0. Therefore we haveHS = RHS = 0 and thus the Kolmogorov equation is
satis ed.

Intuitively, we require the assumption that dead states cannot be resurrected ligcéaidesigned such that all states can
equally distribute the mass ux requirements of making sure the marginal deriv@dipgs(x:jx1) are satis ed. If there is a
state for whichpj1 (X¢jx1) = 0 but @pj1(X¢jx1) > 0then this state would require mass from other states but could not
provide any mass of its own sinpg; (Xtjx1) = 0. This would then violate the sharing symmetry required for our form
of R; . We note that this assumption is not strictly satis ed for the masking interpolant 8tort = 1 and not satis ed

for the uniform interpolant at = 1. However, it is satis ed for any 2 (0; 1) and so we can conceptualize starting our
process at = , 1, > 0, approximating a sample from(x ) with a sample fronpg(Xg) and running the process
untilt =1 and stopping here. The approximation can be made arbitrarily accurate by tdkiryy

B.3. Proof of Proposition 3.3

A rate matrix that satis es the detailed balance condif@ywill result in @pyj1(ijx1) = 0 when simulating with this rate.
This can be seen by substituting into the conditional Kolmogorov equation (17)

X
@pj1(Xtjx1) = RP® (j; X tjx1)prja(j jX1)
j 6 Xt
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RP® (Xt; ] jX1)Pyja(XejX1)
i 6 Xt

@prj1(Xtjx1) = RP® (X¢: ] jX1)Pyj1(Xejx1)

IR

RO® (Xt;]iX1)Pej1(XejX1)
j 6 Xt

@ptj1(thX1) =0

Given a rate matriR (X, ] jX1) that generategj; (X¢jX1), we rst prove thatR;(x¢;] jx1)+ R PB (x1;] jx1) also generates
Prj1(x¢jx1) forany 2 R 0. We show this by verifying that the combined rate matrix satis es the Kolmogorov equation
for conditional ow pyj;(Xtjx1). The right hand side of the Kolmogorov equation is

X
RHS= Re(Xe;jjx1) + R 2B (Xe;jixa) pryalijxa)

X
= RXjixo)py(iixa) + RP8 (Xq:] jX1) Py iX1)
: E {z }
=0

X

Ri(Xt;] X 1)pj2( jX1)
j
@prj1(Xtjx1)
LHS

where we have used the fact tiR{t® is in detailed balance withyj1(j jx1) and thatR¢ (X;; ] jX1) generategyj;. SinceR,
is a matrix that generatgs;;, we also have the stated result as a speci c ci&set R be generategy;;.

B.4. Proof of Proposition 3.4

method operates @ the multi-dimensional case in Appendix E. Namely, we assume that our conditional ow factorizes as
1DiylDy= <D diyd Y i i
Pt (X X0 ) = g=1 Pya(X{ix§). We also assume that our rate matri¥ior jumps that vary more thahdimension

at a time. Our optimality results are derived under these assumptions.

B.4.1. MASKING INTERPOLANT

We rst prove thatR, achieves the minimum number of transitions for the masking interpolant case. We have

\D
PP ixTP) = pya(xfixy)
d=1
with
pirxfixd =t xhx§ +@ ) x{;M
Our rate in dimensiod is
< ReLU (@pyj1(j jx§)  @pyjz(x{jx$))
R (x{:j%x) = | IR
=0 otherwise

for pyja (x{ixg) > 0; pyja (j “jx{) > O

with zd = jfjd: Pj (] 9jx{) > 0gj. Substituting iN@pj1 andpyjz in the masking case gives

1
d Lod: _ . +d.
R, “(x{j%x$) = T x&M o jdxd

We refer to Appendix F.1 for the details of this derivation. SiF'a;é depends only on?, j ¢ andx¢ and not values in any
other dimensions, each dimension propagates independently and we can consider each dimension in isolation. Consider the
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process for dimensiod. The CTMC begins in state = M . We haveR, °(x{ = M;j 9x{) = X 9 x{ . Therefore,

the only possible next state that the process can jumpx. i©nce the process has jumpedkip the rate then becomes

R, 4(x¢ = x%:j9jx¥) = 0. We also know that the process must jump becauéeljx®) = x3:x¢ , x4 6 M and we

know our rate matrix traverses our desired marginals by Proposition 3.2. Therefore, exactly one jump is made in dimension
d. In total, ourD dimensional process will mak® jumps. Under our factorization assumption, during a jump no more than
one dimension can change value. Therefore, the absolute minimum number of jumps for any process thatistarts at
with x4 = M; 8d and ends axi®, x{ 6 M; 8dis D. Our prior distribution igpo(xd) =  x3;M and so for anykg

sample, we will always need to makejumps. Therefore, the minimum expected number of jumis endR, achieves

this minimum.

B.4.2. UNIFORM INTERPOLANT

We now prove thaR; achieves the minimum number of transitions for the uniform interpolant case. The conditional ow is
diy,dy — d.,d 1
Pya(X¢ix1) =t xg;xy +(1 t)g

With this interpolant, our rate matrix becomes

1
1

d Ld: —_ - d. .
R, “(x{j%x$) = ifxy 1 xihx§

—

We refer to Appendix F.2 for the derivation. As befoRg,® depends only on the values in dimensihxd;j 9; x¢ and
therefore each process propagates independently in each dimension and we can consider each dimension in isolation.
Considering dimensiod, the process begins in statg. Bothx§ = x§ andxd & x{ are possible in the uniform interpolant
case. In the case thaf = x4, thenR, ¢ = 0 for all t and therefore no jumps are made in this dimension. In the case
thatxg 6 x¢ then before any jump is made we haRe’(x{;j %jx{) = 2 % x{ and so the only possible next state
the process can jump to x§. Once the process has jumpedty the rate then becomés (x{ = x§;j9x{) = 0 and

S0 no more jumps are made. We also know that the process must jump at some point pgodlish) = x&; x§

and we know our rate matrix traverses our desired marginals by Proposition 3.2. Therefore, in the ods® txgt
exactly one jump is made for the process in dimensioin total, the number of jumps made in &l dimensions is

dn (x0; x1) = jfd: x§ 6 x{gj which is the Hamming distance betweenandx;. The expected number of jumps for our
process WithR, is thusEp (xo)psua (x1) [AH (X0; X1)].

Now consider an optimal process that makes the minimum number of jumps when startingframa meets our
factorization assumptions. By this assumption, during a jump only one dimension can change in value. Clearly we have that
the minimum number of jumps required to get framgto X1 is dy (Xo; X1). Therefore, for this optimal process we also

have that the minimum number of expected jumESJSy,)pe. (x1) [dH (Xo0; X1)]. ThereforeR, achieves the minimum
expected number of jumps.

B.4.3. DISCUSSION

We have provex; conditioned optimality only for the two simple conditional ows featured in the main text and we note
that this result in not generally true for any conditional ow. Intuitively this is becariséreats the distribution of mass
symmetrically between states, considering only the local differenc@pip between pairs of states. In general, the optimal
rate would need to solve a global programming problem.

We also note that although we have masking and uniform optimalityRfdx:;jjx1) when conditioned orxi, this

is not necessarily the case when we consider the unconditional VEE§jQf, jx,) [R; (Xt;jjx1)]. There may exist

rate matrices that achieve a lower number of average jumps and successfully pass through the unconditional marginals
Pt(Xt) = Epuw (xa) Prjr(X¢jX1) . This is analogous to continuous ow-based methods which can create optimal straight-
line paths when conditioned on the end poinf but don't necessarily achieve the optimal transport when considering the
unconditional vector eld (Shaul et al., 2023).
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B.5. Proof of Proposition 4.1

We have that the individual velocities and rate matrices independently generate their respective ows in each dimension.
Speci cally, for x¢ 2 R®, we have that it satis es the following Fokker-Planck equation,

@ra(X{ix) = 1 @D v Oixd)pya (xfixd)
wherer (9 s the divergence operator for elements in dimensio8imilarly forr; 2 SO(3),

@ (riir) = v O I irDpga(rfird)
where the divergence operator now acts on eIemeanariq SO(3) (Yim et al., 2023b). Finally, for{, we have the familiar
Kolmogorov equation, X
@pyu(afial) = Rerafja)pfs(jad):

j

For the joint spac& 2 (R® SO(3) f 1;:::;20;M g)P and process de ned by the updates in Eq. (14), we also have a
joint continuity equation known as the Fokker-Planck-Kolmogorov equation (Bect, 2010),

@(TT= 1 WP RE)P(TTY) 1 W (i ®)pa(T Ty +
Ru( 400t jak®)pyy (0 rE0 10Ty (18)

J'l:D

Our aim is to show that the following choicesmfy, vx, vi andR; corresponding to independent processes within each
modality and dimension are consistent under Eq. (18) i.e. these choiegswfandR; will actually generatgyj; when
simulated using Eq. (14) witht ! 0. The choices are as follows:

\D
Pyr(TeTa) = pya(XEixDpya(rir) pya(afjal)
=1
. 3
Vi (X{x1)
WOt pE®) =
Ve (%P ixP)
ve(riird)
v, (r10jr10) = 8 :
VP (rfir?)
Y n )
Ri(i*?;a{®jal®) = jrord " REG Y aljad)
d=1
More discussion regarding the form&f (j 2P ; al'P jal'®) can be found in Appendix E. Under these choices, the LHS of
Eq. (18) becomes

LHS = @pj2(T¢jT1)

Pja(TeT 1)
P (afjad)

Pja(TeiT 1)

» T
- P(TejTa)
= @pyu(xPxg) .
A P2 (rdird)

ria (xFixd) + @pyji(adjad)
d=1 prja (xdjx$) jr(arjag

+ @pya(rfird)

by the product rule for differentiation. The RHS of Eq. (18) becomes

»
RHS=  r @ vaxdix)pya(TeiTy) r @ v dirdpya(TT1)
d=1
X)Pn-dl'Dndodddd
+ PP a ™ REGY afial)pyy (xR Ty

i 1D d=1
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¥ (T4 ) By (TAiT 1)
— r @ Vd(deXd)pt_ (dexd Ptj1 t' 1 (d) Vd(rdjrd)pt_ (rdjrd j1 t. 1
R b (xfix) N ()
w (
¥ p (x{ ixD)pfa(riird)  REG % afjad) i %al)
d=1 do=1 8 jd 9 4
X n'l'D d 1'Dnd0< Y . g% _d° =
e . P “jay).
jl:Dnd ) d°=1 nd )
o . i . i
. ptjl(Tt]Tl) d:.d ptjl(Tt]Tl)
= @1 (XX =g + @pya(rir)
IR b (X T b (rflir )
X ( ) E Y g
d® o.,d%, d% d® . d% d° dgid. odiad idiod d% ~d°
+ Pja (Xt 11 )P (re Jra) Ri( % afjan)pa(i“jag) . prja(a; jag ).
d=1 d°=1 jd " d°=1nd ’
gy Pa(TeTa) aioay Pir(TeT1) o pya(TeTa) drid. dd ded
= @y (X)) g g + @pya(rfry) -+ . RY( % af'jal) pya (j %jad)
T Gl T T i) T pya(afad) |, T
P (TejT1) g dy P (TejTa) d:ds Pja(TjT 1)
= @ (X)) e+ @ (rfir ) S + @pgu(@fjal) S
IR g (xEix) P b (rflir ) R by (adfjad)

= LHS

Therefore we have shown that our choices,gfv, andR; will generate the desireg};;.

B.6. Proof of Proposition 4.2

Our proof will mirror that of Proposition 3.1 by taking the expectation with respeptd@ (T 1) of both sides of the
Fokker-Planck-Kolmogorov equation (Eg. (18)).
h

Epoa (T1) @Prj1(TtjT1) =Epu (t0) 1 Vi (XEP X TP )Py (T T 1) T Ve (rEP P )pga(TTe) +
X i
Ri( P 5a®)pys (7255 H0)iTa

JliD
0 h i
@p(T+) = Epa (m) T D vEXIXD)Pya(TeiTe)  +
d=1 h i
Epa () 1@ VA Dpya(TeiTe)  +
2 y 3)
Epeea (T1) 4PurTT) RYG 9 afjad)pya(j %jag)® (19)

pj1(afjad) 4

where on the second line on the left hand side we have used the fapt(a} = E,,. (t.) Pyj1(TjT1) . We shall rst
examine thesd term on the right hand side in isolation.

h i Z Z
Epdata (T1) r (@ VS(XthXg)pt]l(TtJTl) = xkb (LD X pdata (Tl)r @ Vg(xgjxg)ptll(TtJTl) dX%:D dri—:D
1 1 a%ID
0Z Z -
=r O @ Paata (T VR (X{ XD Pyja (T T 1)dx3® dry® A
0 X%:D r%:D a%D 1
z Z 2 x
=0 @@ kD) L P (TR (TdTa)dxg *dr i axfA
1 1 1 a}b
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!

4
=t @ DR (T 0Py (KT

X1

d dsydiyd
r @ Epljt(xngt) VX(XtJXl) pt(Tt)

The same argiments follow through for tgterm giving
h i
Epa (7o) 1D VA Arpya(TjTy) =1 @ Epycrdito) vardird) p(To)

We nally analyse theR{ term in isolation. In the following, we will usatl:Dnd j 9 to refer to theD dimensional discrete
variable with the valueag:D " in all dimensions except and the valug¢? in dimensiond.
" (TejT1) X ’

ptjl T'[]Tl ds:d. ~d: ~d . d:d

— - Re(%aja)pya(itiag)

ptj;(aﬁjaz‘i) o

_ X P2 (T T 1) X

= Pdata (T1) —— v

x¥D LD ali ptjl(atjal) o
Z 4 X X

Epdala (T 1)

R{( % afjal)pya (j ‘jad)dx1® dri®

:D.,.1:D.,1:Dnd s dy. . d. . . .
= por (xFPrEPar ™ Ty RYGY; afjad)dx} P driP
X%‘D "%‘D aliD jd
Z Z )é
. . : . 1:Dnd H H . . . . 1:Dnd .
= P O™ ) pye aliod®rd i )
X%'D I'iLD a%:D jd
:D.,1:D.,1:Dndy: _d. D.,1:D.,1:Dnd : :
PO rE0 3l e 0P a0 RIG el O ar}?
X X
:D.,1:D.,1:Dnd iro1:D. . 1:D.1:Dnd .
= o (¢FPrEPrat™ N pye afjxPirdPia ™ ) RYGY afljal)
J'd ad
Z Z X !
:D.,1:D.,1:Dndy: d. :D.,.1.D.,1:Dnd . : :
- p (xPriPrar "jad P ) dxgPri®
xyP P ai:Dnd
I {z }
X iy
— E Rd('d.ad'ad) (Xl:D.rZI.:D.al:Dnd 'd)
pu (gi(xr g0l 0 oy Nl ada) P X TeT & J
J'd
Now we substitute these simpli ed forms back into Eq. (19).
P (
@p(Ty) = r @B iy WOEIXD) p(To) 1 @D By eiry (IS p(To) +
d=1
X )
E ] Rd('d. d'ad) (XltD.rl:D.aliDnd 'd) (20)
pl“(atij(xllzD;rtl:D;atl-D”d i tU Yatl 1 Pt t o't s Gt J

]'d

We will now show that Eq. (20) is the Fokker-Planck-Kolmogorov equatiompfEr ;) with the following choices for the
velocities and rate matrix.

2 3

Epu it Va (Xtix3)
Ve (T) = 2 ; g
Eplj[(X?jT[) V>|<D (XltjjxlD)
Epy ity Vi(riird)
Ve(Te) = 2

D(/D;rD
Epljt(rngt) Vr (rt Jrl)
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1D XN o 1Dnd dad.idiad
R(Te;j77) = a " EpcagiTy Ri(agsjtjag) (21)
d=1

We shall substitute the choices in Eq. (21) into the Fokker-Planck-Kolmogorov equatiar{Tqn) and show that this equals
Eq. (20).

X
(TP (T)) 1 (i(To)p(T))+  Re (xF25rEPjEPyal® p (x{P;rdP;j Py

@p(Te)=r1
( l'l:D )
P
= @B ey WOEIXD) p(To) 1 @D By ey I p(To) #
d=1
X ® n-1-Dnd l'DndO dgid. od; od 1.D.,1:D.; 1D
177 ey Epm(agj(xgrD;rgrD;j1:D)) Ri(%adja) pe (Xg—sre50i77)
jl:D d=1
X (d) drydiyd (d) d/pdi d
= r Epoxdjmy W(Xixg) pe(Te) v Epcrgjtoy Vr(redry) p(Te) +
d=1
)

dgid. odiod 1D.,1:D.,1Dnd :d
id B tagitro rroaone oy Re 5080 po (ireia 1)
i

which we see matches Eq. (20). Therefore, we have shown that the choices for the velocities and rate matrix in Eq. (21)
create a process that genergigd () as desired.

C. Analysis of Training Objective

In this section we analyse how our cross entropy objedtigerelates to the log-likelihood of the data under the generative
model and to the ELBO used to train classical discrete diffusion models.

Our proof is structured as follows. We rst introduce path space measures for CTMCs in Section C.1 that we will require
for the rest of the derivation. In Section C.1.1 we then derive the standard evidence lowerlbgwadyn the model log
likelihood, E,.. (x,) [logp (X1)]. We then decompodeg, go into the cross entropy, a rate regularizer and a KL term in
Section C.2. Finally in Section C.2.1 we show thatgo corresponds exactly to the weighted cross entropy loss for the
masking interpolant case.

C.1. Introduction to CTMC path measures

Before beginning the proof, we introduce path space measures for CTMC processes, following the exposition in (Del Moral
& Penev, 2017), Chapter 18. A path of a CTMC is a single trajectory from @imogtimet. The trajectory is a function

paths). Intuitively, it is a function that takes in a time variable and outputs the position of the particle following the trajectory
at that time. The adlag condition in our case states that at jump timee have! taking the new jumped to value and
I =limgs !¢ being the previous value before the jump, see Fig. 1B.

A trajectory drawn from the CTMCW, can be fully described through its jump timés, ::: T, and its state values
space measuteis able to assign probabilities to a drawn trajectdfyfrom timeOtot in the sense of
P(W2d!'):=PWp2d o;(Ty;Wr,) 2d(ts;! ;)0 :(TnsWr, ) 2d(th; e, ) Tner 1)

sense in which a probability density function assigns probabilities to the in nitesimal neighborhood around a continuous
valued variable.

To understand the form &f(W 2 d! ) we remind ourselves of the de nition of a CTMC with rate matRx. The CTMC
waits in the current state for an amount of time determined by an exponential random variable with time-inhomogeneous
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P
rateR((Wi) == g w, Ri(Wi; k), see Norris (1998) and Campbell et al. (2022) Appendix A for more details. After the
wait time is nished, the CTMC jumps to a next chosen state where the jump distribution is

. Re(W, ; Wy, ) 1 W, i Wi
P(Wtklwtk) = - th(W ) ) k
tk

For an exponential random variable with time-inhomogeneous rate, the cumulative distribution function is given by
VARSS
P(T<t)=1 exp Rs(W; )ds
s=0
Therefore, the probability density functioo(t) = @@IP(T <t),is
z s=t
p(t) = exp Rs(Ws )ds  Ri(W, )
s=0

We nally note that if we wish to knowP(Tx <t Ty 1) i.e. the probability that th&-th jump time is less thahgiven we
know thek  1-th jump time, then this is just an exponential random variable started affiimewhen the previous jump

occurred, |
Z oy ’

P(Te <tjTx 1)=1 exp Rs(Wy )ds

s=Tk 1

In other words, we simply start a new exponential timer once the previous jump occurs and the same equation carries
through.

We can now write the form d?(W 2 d! ). We split it into a series of conditional distributions

P(W 2 d!')=P(Wp 2 d! o)P((T1; Wr, 2 d(t1;!¢,)jWo)

Z s=T;
P(W 2 d!') = po(Wo)exp Rs(Ws )ds Ry, (Wq,)P(Wr,jWr,))
=0
z s=Tp, ! z s=t
exp Rs(Ws )ds R, (Wq )P(Wr, W5 )exp Rs(W; )ds
s=Th 1 s=Th
s=t Y
P(W 2 d!') = po(Wo)exp Rs(Ws )ds Rs(Ws ; Ws)
s=0

S:Ws8 Wy

wherepy is the initial state distribution.

We will also need to understand Girsanov's transformation for CTMCs. Girsanov's transformation can be thought of as
‘importance sampling' for path space measurgs. Speci cally, if we take an expectation with respect to path Rieasure

Ep [f (W)], then this is equal t&g f (W)g—g(W) whereQ is a different path measure algé is known as the Radon-
Nikodym derivative. The path measugewill result from considering a CTMC with a different rate matrix to our original
measurd®. Girsanov's transformation allows us to calculate the expectation which should have been taken with respect to
the CTMC withP rate matrix instead with a CTMC with rate matrix correspondin@to

The Radon-Nikodym derivative in our case has a form that is simply the raB¢Wf2 d! ) andQ(W 2 d! ). LetRy, po
be the rate matrix and initial distribution de nirfgand letR?, p§ be the rate matrix and initial distribution de nirg.

R.-
4P Po(Wo)exp o Rs(Wg )ds Q

— iy

S:Ws6 Wy RS(WS ; WS)

P Wy = a 9
dQ P(Wo)exp o' RIWs )ds = iy gw. RIUWs ;We)
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C.1.1. DERIVATION OF LgLBO

In this section we will derive the standard evidence lower bound for the model log-likelihood assigned to the data,
Epea (x2) [109P (X1)] when using our learned generative process to generate data. The entire structure of this section can
be understood intuitively by making analogy to the derivation of the evidence lower bound for VAEs, (Kingma & Welling,
2013; Rezende et al., 2014; Huang et al., 2021). In a VAE, we have a latent variablepm@jel) for observed data. To

derive the ELBO, we introduce a second distribution over the latent varigfdpg with which we will use to take the
expectation. The ELBO derivation proceeds as

X
logp (x)=log  p (z;x)

z

X .
logp (x) =log a(zjx) P (Z.’ X) Girsanov's transformation / Importance sampling
, a(zjx)
X .
, p (z;%) o ;
lo X zjx)lo - Jensen's inequalit
gp (x) q(zjx)log e quality

z
Epia 0 [P ()] Epea (azix) [l0gp (z;X)]+ C

In our casex corresponds to the nal state of the generative process atttimk, x;. The latent variable corresponds
to all other states of the CTM@/;, t 2 [0; 1). Our modelp (z;x) corresponds to our generative CTMC with rate matrix
Ri (Xt3]) = Ep (x4jx.) [Rt(Xt:] jx1)] and initial distributionpo(Xo). Our latent variable distributiog(zjx) corresponds to
thex; conditioned CTMC that begins at distributipg1 (XojX1) and simulates witlx; conditioned rate matriR; (X¢; j jX1).
We note here thaR;(x;;] jx1) can be any rate matrix that generates the desifecbnditional ow, pj1(X¢jX1) as we
described in the main text.

We now derivel g go Using our path space measures for CTMCs. We willRs& denote the path measure corresponding
to the CTMC simulating fronpo(Xo) using the generative rate mati¢ (X¢;j) = Ep (x,jx) [Rt(Xt;]jX1)]. We will use
Q"1 to denote the path measure corresponding to the CTMC simulatingai@(ojx1) using thex; conditioned rate
matrix R¢ (Xt ;] jX1).

We begin by marginalizing out the latent variablég,, t 2 [0; 1) for our generative CTMC
z

logp (x1) = log P d!)

W1: X1

We now apply Girsnov's transformation using our conditioned CTMC

Z
; dP
lo X1) = lo )X (d! —(!
gp (x1) =log W1:X1Q ( )de()
where
Ri=1 Q ,
dP | pO(WO)eXp t=0 Rt (Wt )dt t:W 6 W, Rt (Wt ,Wt)

TR ) Ri= ) Q )
dQ Pos(Woix)exp (o Re(W, jx)dt ~ yiew, Re(W; ;Wijxy)

we note at this point thaly;; (Wojx1) = po(Wo) and the two intial distribution terms cancel out. Now, apply Jensen's
inequality 7

i dpP
| LCINY .
ogp (x1) wlleQ (d!)log o

and take the expectation with respect to the data distribution
z

Epuaa (x1) 09D (X1)] Pata (dX1)Q**(d! ) log

(")

dP
dexl (' )
Finally, substitute in the form fo% and take terms that don't depend oout into a constant

8 9
z < 4 t=1 —

. X =
Epgaa (x2) 0GP (X1)] Pdata (dx1)Q* (d!) . Ry (W, )dt + logR (W; ;Wy), +C
. t=0 1
t:W16W‘
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8 9
Z . < Z t=1 X =
= Pdaa (Ax1)Q7*(d!) . Ry (W, )dt + l0gE, (xjw, ) Ri(Wy iWijxa) - + C
' - tW B W, ’
= Legot+ C
where
8 9
Z . < Z t=1 X =
Leteo = Pdata (dXx1)Q™*(d!) Ry (W, )dt + l0gE, (x,jw, ) Re(Wy ;Wijxa) (22)
' t=0 LW 6 W, '
C.2. Decomposition ofL g go
Consider the terrtog E, (W, ) Re(W; s Wijx1)
- P (%W, ) -
log E, . Re(W; ;Wijx1) =log E,, . AT L IRU(W, W)
p (xajw, ) TR TTUAL POUWE ) TpoegjW, ) et
P (%W, ) :
=log Ej.,; ——— " Re(W; ;Wijx1)
P(x1jW, ) pOe1jW, ) t
P (%W, ) :
+E,_ . log ==L 2R(W, ; Wijx1)
P(x1jW, ) p(%1jW, ) t
x1jW .
E MRt(Wt s Wijx1)

. lo
P(x1jW ) g pC¢1jW, )
Ep(xle1 ) Ing (leWt ) +C

p (x1jW; ) o
+log Ep(ij‘ ) WVV:)R’((W’( ; Wi jxq)
p (leWt ) .
E - log ———————2R(W, ;W;jx
p(x:jw, ) 109 o(xLjW, ) t(Wy 3 Wijx1)
= Epgeujw, ) 109p (x2jW; ) +C
p (%W, ) R .
+log Ep(xjwt ) W\N:)P(Wtjwt %) Re (W, jx1)
p (*1jW; ) . .
E o 100 ot Jpowjw, 5x)R (W
pP(*1jW, ) 0g P(*1jW, ) (WejW,  %1)Re(W, jx1)

where we have used our de nition of the jump distribution of

Re (W, ; Wyjx1)

P(W{jW, %1) = Ro(W, 1)
t

Now we de ne two new distributions,

P (x1jWy JP(WijW, ;x1) = p (WejW, )p (x2]W, s Wh)

where X

P (WiWe )= p (xaJW, JP(WejW, 5%1)
X1

and . .

o P (%jW, J)P(W W, ;%)

P (%1jW, ;W) = | : :
s w2 P OV, JP(WEW, 5x9)

(23)
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Substitute in these newly de ned distributions into our equatiodgr E, (xiW, ) Re(W; ;Wijx1) toget

log E Ri(W; ;Wijpx1) =E logp (%jW; ) +C

P (WejW, )p (1jW, ;W)

p (xjW, ) P(x1jW; )

+log E_.. Ri(W, j
g p(xjW, ) p(xljwt ) t( t ]X‘]_)
p (WijW, )p (%1jW, ;W) .
E . lo R (W,
p(xiiw, ) 109 o0 W, ) (W, jx1)
= Eppeujw, ) 10gp (x2jW, ) + C
A p (¢1jW, ;W) -
+ Jog( (WY +109 E . AU TV RU(W, jx
fogp( (WSW,") +log  E iw, e R (W )
A P (e1jWy ;W) :
og ol (W§w E ... log ———1 ' Y R(W, jx
{ gd( tg t ) p()(l]Wt ) g p(X‘]_]Wt ) t( t J l)
= Boxajw, ) logp (x1jW; )
*1og Ep eijw, wy Re(Wi jxa)
+ KL p(x2jW; )i p (%1jW; ;Wi) + C
Substituting this into our form fol g, go given in equation (22) gives
Z ( Zi X
Letgo = Pata (dx1)Q%1(d!) R, (W, )dt + Eppesiw, ) 109p (xajW, ) +
t=0

t:W16WI

log EP (%1jW, W) Re(W jx1) +

KL p(x1jWy ) jjp (%1jW, s Wi)

Substituting this into our original bound on the model log-likelihood gives

Epea (x1) [109P (X1)] L Eleo+ C=Leet Lr+ Lkt + C

where

z X

Lee=  Paata (dx1)Q7*(d!) Epcejw, ) 109P (x1jW, )
W, 6 W,

z Cz X )

LR =  Pdata (dx1)Q*(d!) Ry (Wy)dt + log B, (xjw, wy Re(Wy jxi)
t=0 LW, W,

z X

Lkt = Pdata (dX1)Q*(d!) KL p(x1jW; )jip (%2jW; ;W)

LW, 6W,
andC is a constant term independent of

In the next stages of the proof, we going to show thatis the weighted cross-entrofyg is a regularizer towards the
arbitrarily choserx; conditioned rate matrix that we argue we can ignorelagdis a KL term that we will absorb into the
bound on the model log-likelihood.

In order to proceed, we will need to make use of Dynkin's formula
z _ X z . Zq x
Paata (dX1)Q* (d!) f(Wy ;Wi) = Paata (dx1)Q7* (d!) Re(Wi; yixa)f (Wi y)dt

tW, 6W, =0 yew,
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wheref (; ) is a two-argument function. This formula can be understood intuitively as allowing us to switch from a sum
over the jump times to a full integral over the time interval appropriately weighted by the probability that a jump occurs and
the destination to which a jump goes to.

Weighted Cross Entropy We rst show thatl ¢ is the weighted cross entropy.
Z

) X
Pdata (dx1)Q™*(d!) Ep(*let ) logp (%1jW; )
LW, W,

z . Zi=1 x

Pdata (dX1)Q**(d!) Rt (Wt; YjX1)Epexjw,) [logp (¢1jWe)ldt  Dynkin

=0 Lgw,
Z7Z,., g
Pdata (AX1)Q**(d! )Epix,jwy) [10gp (1]Wi)] Re (Wqjx1)dt

LCE

t=0

= Epgaa (x0)U(t0:0)p(xeixs) Rt(Xt]X1)Epexyjx) 109D (*1jX%t)]

= Epupw (x0)U(t:0:1)p(xijxa)peeajxe) [Rt(XejX1)logp (x1jx¢)]

= Eyt;0;1)pexaix)pixajxe) [Rt(XejX1) logp (%1jXt)]

= Bu(t;0;1)p(x)p(xajx)plxaixe) [Re(Xtjx1)logp (%1jxt)]

= But;0:1)p(x)pCxaix)p(xajxe) [Rt(Xej%1)10gp (X1jXt)] Relabelx; $ x;

= BEuo:pxopaix) Epeejx) [Re(Xijx1)]logp (XajXt)

= But;0;1)p(x)p(xajxe) [ t(Xe)10g p (X1jxt)]
where on the second line we apply Dynkin's formula wittw, ;W;) = Ep(xlet ) logp (x1jW,; ) which we note is
independent ofV,. ! {(x;) is a weighting function. In diffusion model training it is common for the likelihood based
objective to be a weighted form of a recognisable loss e.g. the L2 loss for diffusion models. Here we have a "likelihood
weighted' cross entropy. We can then make the same approximation as in diffusion models!aixg)setl to equally

weight all loss levels. This also has the bene t of making our loss independent of the arbitrarily chosen rat&riaix
could have been any rate that generates the desired conditional ow.

Rate Forcing Term We now analyse the tering . We will show that it is approximately equal to an objective which at
its optimum sets the learned generative rate matrix to have the same overall jump probability as the arbitrarily chosen rate
matrix that generates opy;j; (Xtjx1) conditional ow.

z ( zy X )
LR = Pdata (dx1)Q™*(d!) Ry (Wy)dt + l0g By (x,jw, awy) Re(Wy jx1)
t=0 tW, 6W,
Z C z4 Zia1 X )
= Poaa (dX1)Q*(d!) Ry (W)dt + Ri(Wi;Yix1) 109 Ep (x;jw,y) [Re(Wijxa)] dt
t=0 =0 ygw,

where on the second line we have applied Dynkin's formula Wwi{tW/, ; W;) = E, (x1W, Wo) Ri (W, j»1) . To further
understand this term, we make the following approximation

Ep xijwey) [Rt(Wiejx)]l  Ep (xyjwy) [Re(Wijx1)]

p (*¥1jW¢;y) is the Bayesian posterior update given by equatit®) starting with priorp (x1jW;) and with likelihood
P(yjW¢; x1). Itis therefore the models prediction:ef updated with the information that the process has jumped to new
valuey. When our CTMC is multi-dimensional then a single jump will change only a single dimension, see Appendix E,
and so when we operate in high-dimensional settings, the Bayesian posterior will be close to the prior.

We will denote the approximate form bfz aslg.
z ( Z i Z i X )
Cr = Paaa (dx1)Q*(d!) R (Wy)dt + Re(Wt;yjx1) 109 Ep (eijw,) [Re(Wijx1)] dt
t=0 t=0
y8 Wi
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Z ( Z o Zi )
Pdata (dX1)Q**(d!) R; (Wy)dt + 109 Ep (x:jw,) [Rt(Wijx1)] Re(Wijxq)dt
ZZ., ( )
Pdata (dxl)QJM(d! ) Rt (Wt) + Rt (Wtjxl) |09 Rt (Wt) dt

t=0
= BEu(t:0:)paan (x)pe(xeix)  Re (X0) + Re(XejX1) log Ry ()
= Buonpx)  Re(Xt) + Epixajxo) [Re(Xtjx1)]log Ry (X¢)

where on the third line we have used the de nitionRf(W;) = Ep (x,jw,) [Rt(Wijx1)]. Now consider maximizing

with respect to the value & (z) at test inputz and test time . Differentiatingl"r with respect tdR (z) and setting t®
gives

@'r
@R(2)

=P @ 1+ Euup R @l gy =0

=) R (2) = Epp,jz) [R (zjx1)]  at stationarity

Therefore, we have found that maximizitig encourage®, (x;) to equalEp(y, jx,) [Re(Xtjx1)]. HoweverR;(xijx1) is

the overall rate of jumps for the arbitrarily chosen rate matrix that generatgg {fva jx1) conditional ow. This rate of
jumps is completely dependent on the level of stochasticity chosd®y {akjx;) which does not have any a priori known
correct level. Therefore, we do not want to be encouraging our learned generative rateRpdtrike matching this
stochasticity level and so the teilfi is undesirable to have in the objective. The true evidence lower bound includes the
termL which we expect to have a similar effectldg as we argued previously.

KL Term  When we maximize the g go objective, we would try to maximize thex, termi.e. we try and pusp(>1jW, )
andp (x1jW, ;W;) as far apart as possible. This makes sense to do as we try and push the postexoigbxen the
information contained in both the pre-jump stéite and the post jump staw/; away from the distribution oves; given
just the information withinV/, . Digging into this term deeper we see that

KL p(x1jW; ) jjp (x2jW, ;Wr)

P1jW, )

= E, . log ——————"—
p(%1jW, )2 9 P (X’le[ ;Wt)

0 13
X
= Eppeyjw, )4 109 P (62jW, JP(WijW, 5x1) +log @ p (xW, JP(WijW, ;x)AS + C

2 0 “ 13
X
= Eppeajw, )4 109P (x1jW, ) +log @ p (x§jW, )P(WijW, ;x)A5 + C

0
X1

where we have substituted in our de nition pf(x1jW, ;W;) given by equation(23). We see that the rst term
logp (*1jW, ) cancels with our cross entropy term. This then makes clear how we have arrived at our cross en-
tropy_decomposition df g, go. L g go Will usually remove the cross entropy training signal and replace it with the term

log xo P (x9jW, YP(W,jW, ;x?) which will be used as the training signal for the denoising m@dék,1jW, ). The

denoising model is encouraged to be such that the expected jump probability assigns high likelihood to the jump observed
under thex; conditioned proces®*:. This is an indirect training signal far (x1jW, ) and one that relies on the arbitrary

speci cation of ourQ*: process. We instead show how we can replacegh(is;jW, ) training signal with the cross
entropy loss and be left with a KL term showing that the cross entropy is a lower boung gn minus the rate regularizing

term. We summarize this argument in the next section.

Summary To summarize, we have rst derived the standard evidence lower bound on the model log-likelihood when
using our speci ¢ generative rate matriR, (Xt;j) = Ep (x,jx,) [Rt(Xt:] jx1)] for some arbitrarily choseR¢(X;;] jX1)
that generates tha;; (X;jx1) conditional ow.

Epgaa (x1) [109P (X1)] L EBo+ C
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We then splil_g go into three termd&. .+ Lr + Lk, . We have seen how the telny, allows us to remove the standard
L gL go training signal for the denoising model(x1jx;) and replace it with the cross entropy, creatingltQgterm. This
creates a looser bound if we are to train withoutlthg term,

Epdata (x1) [|ng (Xl)] L etLgr+C

We then argue thdtg is close to'r which is an unnecessary forcing term encouraging our generative rate to achieve a
similar jump rate to our choseR; (X;;]j jX1) even though thi®; matrix is an arbitrary decision and will have a different
jump rate depending on whidR; is chosen. We are then left with the standard cross entropy term as our nal objective for
p (x1jXt) with a nal modi cation to its unweighted form for implementation ease.

C.2.1. BJIECTIVE FOR THEMASKING INTERPOLANT

In this section we will show thdt g go is exactly the weighted cross entropy for the case when we use the masking form for
Prj1(Xtjx1). We note that a similar result has been proven by Austin et al. (2021) for the discrete time diffusion model, and

We refer to Appendix E for the details of the multi-dimensional setting. We will also assume that R aseour rate
matrix that generates thigj, (xjx1) conditional ow.

Before we manipulate g go, we will rst nd the forms of R, (x}:P;j P jx}P), R, (xt'P;j+P) andR, (x{'P) for the
masking case. From Appendix F.1, equation (31) we have,

o 1
RO x) = 1

it xEm

and so
® n 1:Dnd d0 d.;d;,d
1:.D.;1:D;,,1:Dy\ — -Dnd, . 1:D Lids
Re(X¢y— sl ixg) = Xi PN RG] XY

d=1
o 0 1

— 1.Dnd.: 1:Dnd +d.d d.

= Xt | 17Xy Xg; M 1t
d=1

From Appendix F.1, equation (32) we have that,

- x4 = jdix1D
R (xLP:jd) = P (X3 =]%xi") d- M

Xi;
1t t
and therefore,
1:D.; 1:D »n 1:Dnd.: 1:D do d/ y1:D.;d
Ri(x¢75i77)= ¢ i RE(XTTSTY)
d=1
_ » N 1:Dnd.-1:Dnd0p(x(i:jdjxtl:D) d.
= X; 1] Xt M
1t
d=1
We now nd R, (x£'P)
1:D X 1:D.; 1D
Ri(X;~)= Re(X¢ =3 77)
jl:D@th:D
n (0] — idiyl:
_ X 1 j LDy LD » jl:Dnd;thiDnd D(X?]—-J(:thlD) xd: M
jl:D d=1
X X n o 1 X
-1 1:Dnd .1 . cAq.e 1
— Jl.Dnd;Xt n x{‘;M T 1 Jl.D;th.D p(xg:JdJth.D)
d:ljl:Dnd ]'d
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_>@ d. 1 X +d.d d - ;d:;,1:D
= Xg; M 11 1 5% P (X3 =%%¢7)
d=1 jd
_)@ d. 1 X d_ :d;,1:D
= X¢;M 1 1 p (X1 =]"Ix{™)
d=1 jda6 x¢
» 1
= xd; M 1
d=1

where on the nal line we have used the fact thagx§ = M jx#P)=0.

We are now ready to manipulate the formLaf go. We start with

0 1
Z ' Z.,4 X
Leteo = Poata (dx1)Q1(d! ) @ R (Wy)dt + log R (W, ;W;) A+ C
t=0 tW, 6W,
We then apply Dynkin's formula
0 1
z _ Z X
Leteo = Pata (dx1)QX1(d! ) @ Ri (Wy) + R, (Wi;yjx1)log R (Wi;y) dtA + C
t=0 Y8 W,

We now substitute in the masking forms Ry (W;), R, (W;; yjx1) andR; (W;;y)
!

4 . Ziy o 1
Leteo =  Pdata (dx1)QX*(d!) (VAR T ¢
t=0 d=1
( !
X  n 0 1
th-D nd; yl.D nd yd, Xg Wtd; M 1 t
yreews® = n oo
)@ n 1:Dnd, 1:Dnd0 d. d; 1:D 1 . .
log Wiy WM p (Y5 Wy )ﬁ dt +C
d=1
|
Z _ Zt:l)@ X 1 . .
Letgo = Pdata (dx1)Q*2(d!) waM o yhx§ ——log p (yYjW{P) dt +C

- 1t
t=0 d=1 ydgwtd

where we have moved terms that don't depend amto the constant.
!

Z Z =1 yp
; 1 . )
LetBo = Pdata (dXx1)Q71(d!) w; M ﬁ'OQ p (x§jwrP) dt +C
. 50 g1 #
» 1 .
= EU(t:0/1) poaa (x1)P1 (x1]%1) XiiM = logp (xijx;®) +C (24)
d=1

where we have arrived at the weighted cross entropy, Weightqé—lbymd only calculated for dimensions that are masked
in our corrupted sampbe;.
D. Discussion of Related Work

Flow based methods for generative modelling were introduced by (Liu et al., 2023; Albergo & Vanden-Eijnden, 2023; Lipman
et al., 2023). These methods simplify the generative modelling framework over diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2020) by considering noise-data interpolants rather than considering forward/backward
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diffusions. This work brings these bene ts to discrete data denoising models which previously have used the diffusion
methodology (Sohl-Dickstein et al., 2015; Hoogeboom et al., 2021; Austin et al., 2021) relying on forward/backward
processes de ned by Markov transition kernels. Speci cally, prior discrete diffusion works rst de ne a forward noising
process with a rate matriR;. This de nes in nitesimal noise additions. To train the model, we need access to the equivalent
of pyj1, i.e. the total amount of noise added simulating frbro t. To nd this value, the matrix exponential needs to be

applied to the forward rate matrig;;; = exp tl Rsds . This means that discrete diffusion models are limited in the

choice of forward noising process. The choicdpfmust be such that the matrix exponential is tractable. For DFM, we
simply write downpj, rather than implicitly de ning it through the matrix exponential and then can nd a rate matrix

to simulate with by differentiatingy;, and usingR, . Furthermore, the standard ELBO objective used to train discrete
diffusion models depends on the initial choiceRyf. At sample time, it is then standard to simulate with the time reversal of
R:. This needlessly limits the choice of simulation process as we have shown in this work that there are in nitely many
valid choices of rate matrices that could be used for sampling.

There have been post-hoc changes to the sampling process made in prior work e.g. corrector steps used by Campbell
et al. (2022), however due to the ELBO maximizing the model log-likelihood under the assumption of sampling using the
time-reversal, the diffusion framework still revolves around one “canonical' sample time process (the time-reversal) whereas
DFM makes it clear this choice is arbitrary and the sample process can be chosen at inference time for best performance.

Previous discrete diffusion works have also suggested alternatives to the ELBO. Sun et al. (2023b) introduce a categorical
score matching loss that resembles the cross entropy, however, the denoising network is required to make axffediction
based only on the oth& 1 dimensions of the input noisy stabql,:D " This requires specialized architectures and
methods to remain computationally ef cient. Vignac et al. (2023a) propose to learn a diffusion based model solely using the
cross-entropy but do not analyse the link between the cross-entropy and the log-likelihood of the model as we do in App. C.
Meng et al. (2022) propose to learn a discrete score model based on data ratios using an L2 based loss which has some
undesirable properties such as not penalizing mode dropping as described by Lou et al. (2023). Lou et al. (2023) re ne
this approach and propose to learn data ratios using the score entropy loss which, like the standard cross entropy, does not
depend on the choice of forward rate matrix. However, in order for the score entropy to be a true ELBO, the forward rate
matrix needs to be used as a weighting factor.

Multimodal diffusion models have been applied to tabular data (Kotelnikov et al., 2023) where continuous diffusion is
used for continuous features and a uniform style of corruption under a discrete diffusion framework is applied to discrete
features. This idea was then expanded to molecule generation where the task is to generate a molecules atom types, their
positions and their connectivity. Peng et al. (2023) use a masking process for the discrete atom types and bond types with
a continuous space process for the atom positions. Vignac et al. (2023b) use a discrete process converging towards the
independent marginal distribution in each dimension (Vignac et al., 2023a) for atom types, bond types and formal charges of
the molecules along with a continuous process for atom positions. Hua et al. (2023) use a uniform discrete process for bond
types with a continuous space process applied to atom positions as well as atom features embedded in continuous space.
These works also investigate the importance of the multimodal noise schedule. Peng et al. (2023) nd that corrupting the
bonds rst and then the atom positions improves performance by avoiding unphysical bonds appearing in the corruption
process. Vignac et al. (2023b) have a similar nding that during corruption, the atom types should be corrupted rst, then
the bond types and nally the atom positions. We generalize these ideas by using the approach of Albergo et al. (2023) and
learning our model over all relative levels of noise between our modalities. This allows picking the desired path through the
multimodal noise landscape at inference time either performing co-generation, inverse folding or forward folding.

Other approaches for discrete data modelling opt to embed the data into a continuous space in order to still use the continuous
diffusion framework (Li et al., 2022; Chen et al., 2023a; Richemond et al., 2022; Gong et al., 2023; Dieleman et al., 2022;
Han et al., 2022; Strudel et al., 2022; Gulrajani & Hashimoto, 2023; Floto et al., 2023), however, this loses the discrete
structure of the data during generation. This can be important when the quantity that is represented by the discrete variable as
algorithmic importance. For example, Qin et al. (2023) perform sparse graph generation where the discrete token represents
the existence of an edge. It is then important for the edge to be known to physically exist or not so that sparse graph networks
can be applied to the problem.

General Fokker-Planck equations on discrete state spaces (Chow et al., 2012) have been used to construct sampling methods
for energy functions (Sun et al., 2023a). Further, in a generative modelling context, the Kolmogorov equation has been used
to construct equivalent diffusion processes with fewer transitions (Zhang et al., 2023) making links to optimal transport. We
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take this idea further to build a generative modelling paradigm around the exibility of the Kolmogorov equation.

The construction of discrete diffusion model from a marginal distribution perspective as opposed to a forward corruption
process has also been used by Chen et al. (2023b). Their method de nes the marginal distributioh @ tinsembination

of the data and a noise sample and then nds a process that generates those marginals, for the masking and uniform case.
They use this to create a faster sampling algorithm by exploiting the fact that if you have a low stochasticity process, you
know there should only bB transitions in the masking case (although this is not the case in the unconditional uniform
case). Therefore, when conditioning on these times, Bnfynction evaluations are needed. This approach could also be

used with a DFM when = 0, however, our general framework also demonstrates the bene ts of allowing.

The consideration of ows on discrete state spaces has also been used to construct GFlowNet algorithms (Bengio et al.,
2023) which aim to sample from a given energy function. Here we instead focus on the the generative modeling context
where we aim to sample novel datapoints when only given access to some dataset of training examples. GFlowNets also can
use the detailed balance equation Eqg. (9) as a training training objective. Detailed balance is also used in Markov Chain
Monte Carlo methods (Metropolis et al., 1953; Hastings, 1970) to construct a transition probability with the desired energy
function that we wish to sample from as its stationary distribution. In our work, we use the detailed balance condition as a
way to increase the inference time exibility in our framework

E. Multidimensional Data

to the value in dimensiod. We usel : D nd to denote all dimensions exceht To operate in multidimensional spaces, we
will make the following assumptions

 Assumption 1 pjq(x{PjxP) = ngl prja(xdjx¢)
* Assumption 2 pi(x{jx§) =0 =)  @pya(x{jx§) =0;8d
P .
- Assumption 3 Ry(x{:j M0 jxP) = gy 0" EPgRExE;  4ix)

The rst assumption creates independent corruption processes in each dimension, similar to the factorization assumptions
made in diffusion models where the forward noising processes proceed independently in each dimension. Assumption 2 is
the same assumption we made in order to deRiven 1-dimension but now we assume it individually for every dimension.
Finally, assumption 3 states that for our data conditional rate matrix, it decomposes into a sum of rate matrices for each
dimension and so the rate for transitions that change moreltdanension at a time are 0. This is the same assumption
made by Campbell et al. (2022) in order to make calculations tractable. We will enable our process to make multiple
dimensional changes simultaneously later when we come to derive our sampling algorithm.

Under these assumptions, we will now derive DFM for the multidimensional case. We start with the data conditional

Kolmogorov equation X

@O PP = RGP P xR )pya P ) (25)
j 1:D

We now substitute the form for the rate matrix under Assumption 3 into the RHS of (25) to get

— X ® f 1:Dnd.: 1:Dndypd(; d. ydiydy~ . (i 1:D iy 1:D
RHS= X¢ gR{ (5 xeixDpa (7 jx1)
jl:D d=1
_ ® X dgid.diyd 1.Dnd :d:,1:D
= R (%5 x¢1x1)prja (X J9x77) (26)
d=1 jd

where we use(f:D "l jd to denote a vector of dimensidh where in thed-th dimension it has the value pf and in the

other dimensions it has valug§8D " \We now verify that the following form foR{ satis es the Kolmogorov equation,
< ReLU (@pyj1 (i %ixY) @pyj1(x{ix]))

R A(x%j%xd) = 2T XD
=0 otherwise

for pya (x¢ix§) > 0 pa(j %ixg) > 0 -
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wherez¢ = jfj4 : Bria(] dix9) > 0gj and we only de neR, ¢ for off-diagonal entriesxd 6 j9 remembering that
RS xEXE) = jagye RO i),

We rst assumep;j;(x{jx§) > 08d and substitute iR, ¢ into equation (26).

) X ReLU @pyr(x¥jx§)  @pyja(j 9jx9)
Zpyja(j 9ixg)

ReLU @pij1(j%ix9)  @pyja(x{jxd)

RHS=

pn(x¢ P j9ixEP)

d=1 jd6 x%;pj1(j4jxd)>0 |

P (X ° x1®)

Z 3pya(xdix9)
— X 1 1:Dnd:_1:D X d:d +did
RHS= ﬁpm(xt X1 ReLU @pyj1(Xtix1)  @pyja(i “ix7)
d=1 J96195p1(9jx§)> 0 |
ReLU @pj1(j 9jx$) @ptjl(X?J'X?)
[
_ ® 1 1:0nd;1:D X diud diod
RHS= ﬁptjl(xt X17) @pyj1(X(iX1)  @pyja(j “ix3
d=1 ! j96i:py1(j¢jx9)>0
» Brd. 1. .
pi1(xi° "ixEP) @y (xEjx$)
d=1 |
=@ py1(x7x9)
d=1
= LHS

where we have used the fact thgt (x#'° jx}P) = Q,?:l P2 (xjx9).

For the case that there exists%or which pyj3 (x¢jx$") = 0 we have@pj; (x{'jx¢") = 0 by assumption. We rst examine
the LHS of equation (25) in this case.

LHS = @py1 (xi"® jx1°)

¥ divd .
=@ Prja (Xt X1
d=1

» :Dnd._1:Dn .
= (M ) @y (x{ixS)

d=1

1:D nd°®

1:Dnd._1:Dnd
Prj(X;

. 1:Dnd® d°%: . d° » d:d
X7 ) @pya(X¢ jxg ) + Pya(Xe ™ TIXTT ) @pyja(X{jX7)
d=1 nd®

1:D nd;d°®

0. A0 1 .40 .
Pus O IXE) Ps O " ") @py O )

1:D nd®. _1:D nd° d%., d°
Pa(X; T jXq )@pm({xt Jx1f+

X
d=1 nd°

=0
where we usd : Dnd; d°to mean all dimensions exceppandd®. We now examine the RHS of equation (25).
X X . .
RHS= R G o ixDpa (™ 1 9xE®)
d=1 jd
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X 0 . . . p X . . .
= R IXEX) oy P xR + R 4G9 xdxd)pya (i ®™ j9xiP)
jdo d=1ndo jd
= R ¢ X Jxlg prr (0" i)
ja° o
X X
+ R 4G ¢ ,Xthl)Fm( EJxlfpm(xtlD“dd j djx 0 nd%y
d=1nd° jd
=0
= LHS

where we have used the fact trmtd°(j d’ x9°jxg°) = 0 becauseyjq(j dOjxfl’o) = 0 Therefore, for both cases we have
R, satis es the conditional Kolmogorov equati¢®5) and thus we have found a rate matrix that generates our desired
conditional ow. The nal step is to convert this rate matrix conditionedxdf into an unconditional rate matrix that can

be used for generative modeling. We rst write down the unconditional multi-dimensional Kolmogorov equation

X
@ (xi®)=  R(GY7xP IR MP) (28)

jl:D

We now make the following assumption for the form of the unconditional rate matrix and verify that it indeed satis es the
unconditional multi-dimensional Kolmogorov equation, (28).

1:D.; 1.D )@ 1:Dnd.: 1:.Dnd d 1.D.;d
Re(x¢ 73 77) = fxq IR (X Y) (29)
d=1
with h . i
R?(th'D ;j d) = Ep(x‘i]x}:D) Rt (X?;j djx(lj

with R, 4(x9;j 4jx¢) being given by (27). Substitute this form into (28)

X R .1 and h . i -1
RHS= £ 100 X P MGE o) R OGExEXE) pi( 1)
juDb d=1
X X h
= Ep(x djx PN jdy R (J ) tJX1) pt(xtand Jd)
d=1 j¢ '
X X X
= POt ®™ TR G xix ) pe (P )
d=1 jd xd
X X X
= pOxSixe®™ TR AGE X XD (P ) p(x1° Mjxd;x P jd)
d=1 jd x? X1Dnd
| {z }
=1
X X X
= pOAP xR GG xIxDpe(x P 9
d=1 jd X%:D
X X X
= Paaa (XE2)Pa(x 0™ j9xEP)R, 4G ¢ xdxd)
d=1 jd x%:
3
4)@ X 1:Dnd 1:D diy,d\5
= Epdata (x}P) ptjl(xt JX1 )R; (J s X¢JX1)
d=1 jd
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= Epdala (X%:D) @ptjl(XéLDJX%D) by (26)

@ (x{®)
= LHS

where we have used Eq. (26) with the fact that we kigwgiven by Eqg. (27) satis es the conditional Kolmogorov equation
Eq. (25). We have now veri ed that the rate given by Eq. (29) gives us our desired unconditional ow and we can use it for
generative modeling.

E.1. Training
In order to approximate the true generative rate matrix given by equ@®nve need approximations to the denoising
distributions in each dimensiop(x{jx#P), ford=1;:::;D. We can parameterize these conditionally indepenxignt
distributions through a neural network that outputs logits of stizipeS when given inpuk:® of shapeD . We then apply
a softmax to the logits to obtain approximate denoising probabifitiés{jx®),d = 1;:::;D of shapeD S. We learn
the parameters of the neural network with the cross entropy loss for each dimension
" #
)P d;\,1:D
Lee = Bpgu kP )uciompys (2 ixi®) - 109y (X21X7)

d=1

E.2. Sampling

The standard Euler step transition probability for our CTMC de ned through our learned denoising model with timé step
is

P eI ) = PP g R Pt
» .
g+ fx"jEPgE
d=1
In this form, we would be unable to make transition steps that involve moreltdanension changing at a time due to our
factorized form foR, (x}'P ;j 1'P). To enable multiple dimensions to transition simultaneously in a single update step we

can approximate the standard Euler transition ¢8&pwith a factorized versiop.. :(j “° jx{®) with the following
form

1:D.;1.D
t

= fxtP:j w0y RE(X:j %))t (30)

p (x{ix]

e 1e( P jx{P) B e (i)

d=1
\D : d.:;d dsyd.;d:d °
= x99+ Ep (aajeroy REOKE; XDt
d=1
D . 1: 1:0nd,: 1: s
= x{P5iPg+ T "GP MGE, ajceoy RE(XSIXT)  t+ O( t7)

d=1

where we can see on the nal line that. ;; approximateg;, i to rstorder. Sampling fronp. j; can be seen as
taking an Euler step in each dimension independently for each simulation step.

We note this sampling method is similar to the tau-leaping method used in prior CTMC based approaches (Gillespie, 2001;
Campbell et al., 2022) however tau-leaping allows multiple jumps to be made in the same dimensions which is unsuitable
for categorical data.

E.3. Detailed Balance

In this section we verify that if we achieve detailed balance individually and independently in each dimension, then our full
dimensional process will also be in detailed balance.

Consider the multidimensional detailed balance equation

puj1 (62 IXEP )R (0 70 xE0) = pya 10 IO R (10 5 x0 x40)
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Now, substitute in our factorized forms f&% (x{P ;j 1P jx1'P) andpj1 (x{P jx3P)

| | | |

B _ _ ' A2 C® . . gl

Pz (xJjx$) fxg P jrondgRA(xd:j9x ) = P2 (i 4jx$) fj1ond: xFOMgRAG 9 xdjx)
d=1 d=1 d=1 d=1

Now, both sides ar6é for whenx; andj differ in more than one dimension. Consider the case when they differ in exactly
one dimension, call id. The detailed balance equation simpli es to

P (XEIXDRE (1 ixE) = pya (i “ixDREG % x{lixd)

which we note is the standard single dimensional detailed balance equation for dinmariEiwrefore, if ouRY matrices
are all in detailed balance with their respecqiyg(x?jx‘l’) conditional marginals, then the full dimensional rate matrix
Ri(x{'P;j P jx1'P) will also be in detailed balance with the full dimensional conditional margipg$x® jx1®).

F. Implementation Details

In this section we provide concrete derivations of our DFM method. We use a masking process in App. F.1, a uniform process
in App. F.2 and explore the general case for any giwenin App. F.3. We also provide minimal PyTorch implementations

for our training and sampling loops in each case. We will assume multi-dimensional data under the factorization assumptions
listed in App. E.

Notebooks containing these minimal examples can be fouhttfat://github.com/andrew-cr/discrete_
flow_models
F.1. Masking Example

Here, we assume the masking form figr,. We begin by writing this data conditional ow

PO Pixa®) = pya(x{lixg)
d=1
\D
= t xIHx$ +@ t) x%wM
d=1

This is the distribution we will use to train our denoising moplg|(x™® jx{*?). PyTorch code for the training loop is given
in Listing 1
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Listing 1. Masking Training loop

import torch
import torch.nn.functional as F

# Variables, B, D, S for batch size, number of dimensions and state space size
respectively

# Assume we have a model that takes as input xt of shape (B, D) and time of
shape (B,) and outputs x1 prediction logits of shape (B, D, S-1). We know
the clean data contains no masks and hence we only need to output logits
over the valid values.

mask_index = S - 1 # Assume the final state is the mask state

for x1 in dataset:

# x1 has shape (B, D)

optimizer.zero_grad()

t = torch.rand((B,))

xt = x1.clone()

xt[torch.rand((B,D)) < (1 - t[:;, None])] = mask_index

logits = model(xt, t) # (B, D, S-1)

x1[xt != mask_index] = -1 # Don't compute the loss on unmasked dimensions

loss = F.cross_entropy(logits.transpose(1, 2), x1, reduction="mean’,
ignore_index=-1)

loss.backward()

optimizer.step()

We will also derive the form foR, °(i%;j 4jx{). For this we need to nd@pyj1 (x{jx$).

@ (i) = @ t x{ixi +(1 ) XM
= x%xd xd; M

We can now ndR, %(x¢:j%jx%). When wopking with rate matrices in this section, we will always assufné j ¢ and

calculate the diagonal entries Rs(i; i ) = i1 Re(i:] ) later. We note thaR, d(x@;j%xg) = 0 for pyj1 (x{jxd) = 0 or
py(j %jx$) = 0. Further, our initial distributiopo(x5°) = ~ 5.,  x3;M . Therefore, at all points in our CTMG{ is

only everM or x§. Furthermore, we only ever have to consider transitionsj tothat is eithej ¢ = M orj9 = x$. Now,
for pyj1(x¥jx1®) > Oandpj1(j 4jx1P) > Owe have

ReLU @pija(i%ix)  @pya(x{jx{)
Zpya (x{ix9)

ReLU  j9x{ j4Mm xtix§ + x{im
2t xIx§ +@ 1) xtM

R4 (x&;j %jxd

1 . .
1 forj4 = x{;x% = M andO0 otherwise (31)
We note here that our calculation may not strictly be valid for exacty ort = 1 but are valid for any 2 (0; 1) and so
we can simply ignore these edge cases, see App. B.2 for further discussion. Now we nd our unconditional rate matrix
i

D.pdy = dsod.:d:
th (th.D j9) = Epm(xgjxg;D) R, (X?,dex‘lj)
1 .
- EPlJt(X‘fJX?D) 1 t j%xg xd: M
P, (Xd = jdjxl:D)
- t KM (32)

1t

Our transition step is then

id

P e Oixi?) = hxf + RGPt
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Forjd & x{ thisis
tpljt(xclj = j9x¢P)

P e () = T X{:M (33)
Forjd = x{ thisis
.d d:, 1D X 1D
P+ 4e(° = x¢ixg~)=1 P+ e(Kjxi ™)
k6 xd
X ) (Xd - ijlzD)
=1 tpl't ! ! xd; M
1 t
k6 xd
_ t d
- 1t v

where on the nal line we have used the fact that wlmfi“jlg(xflj = Mjx{#P) = 0. Therefore, ix! = M then we have a
ld—tt chance of ipping to some unmasked state with the probabilities for the token to unmask to gi]ﬂ;@p(lz@jx%:D ). If
x4 8 M (i.e. it has already been unmasked) then we simply stay in the current unmasked state.

Listing 2 shows PyTorch code that implements this sampling loop.

Listing 2. Masking Sampling loop

import torch
import torch.nn.functional as F
from torch.distributions.categorical import Categorical

# Variables, B, D, S for batch size, number of dimensions and state space size
respectively

# Assume we have a model that takes as input xt of shape (B, D) and time of
shape (B,) and outputs x1 prediction logits of shape (B, D, S-1). We know
the clean data contains no masks and hence we only need to output logits
over the valid values.

t =00

dt = 0.001

mask_index = S-1

xt = mask_index = torch.ones((B, D), dtype=torch.long)

while t < 1.0:
logits = model(xt, t + torch.ones((B,))) # (B, D, S-1)
x1_probs = F.softmax(logits, dim=-1) # (B, D, S-1)
x1 = Categorical(x1_probs).sample() # (B, D)
will_unmask = torch.rand((B, D)) < (dt / (1-t)) # (B, D)
will_unmask = will_unmask * (xt == mask_index) # (B,D) only unmask currently
masked positions
xtfwill_unmask] = x1[will_unmask]

t += dt

F.1.1. DETAILED BALANCE

In order to expand our family of rate matrices that we can use at sampling time, we want to nd a detailed balance rate
matrix RPB that satis es the detailed balance equation

Pa(iix)RE® (i1 jx1) = pya (G ix1)RE® (ir i jxa)

We now have to make some assumptions on the forrRf5t. With this masking noise a process that is in detailed balance
will have some rate for transitions going from a mask state tower@sd some rate for transitions going fromback
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towards the mask state. Such a rate would have the following form
RP® (i jx1) = a fi;xig fiM g+ b fiMg fiix1g

for some constants andb, that we must nd. Substituting this into the detailed balance equation along with the masking
interpolation form forpyj; (XtjX1) gives

(t fi;xag+(@ t) fi;Mg)(a fi;x19 fMg+h fi;Mg fj;x10)=
(t fx9+(@ t) fEM g (a fj;x19 fi;Mg+h fj;Mg fi;x10)

ta; fi;xig fEMg+(1 th fiMg fiixig=tar fjix19 fiMg+(@ t)b fiM g fi;xag
This equation must be true for &lj . Picki = x; andj = M to get
tap = (1 t)h

If we picki = M andj = x; then we would obtain the same equation and if we pick any other valueg fasith i 6 j

then we wouldged = 0. Note that we will ndRP® fori 6 j and then the value fdRP® (i;i) is simply calculated using
RPB (i;i) = ;6 RP® (5 ). Since we will obtain no more constraints on the valuea @ndh, we will need to pick

a value for one of them. We can simply set=where is our stochasticity parameter since this value sets the rate at
which points that are already =i will come off x; and travel back to the mask state. This gildes 1‘—t and sofori 6 j,

RP® (ijjx) = fixig fiM g+ o fiMg fi;xg:

We now combine this rate witR, d that we calculated previously to nd a new unconditional rate matrix with a variable
amount of stochasticity.
i
d - d: d . d:
R A0x{ 9ixg) + RP® ((x{'sj “jxg
1 d.d

— id.yd d. . - d.
‘Epl,t(X?Jxxl’D) 11 ]5 X7 Xgs M+ Xt X1 j5M -+

d 1:D.;d
R (xi 51 %) Epljt(x‘jjx}:D)

t .
T oMo %

Py (4§ = §“x°) oy t g
T XM Py (= XXET) M g M (X = )
1+

t d. a- .
= T Pu A= I0GT) xGM o+ @ xEM )M

where on the nal line we have used the fact thgt (x{ = x{jx{'?) = 0 forx{ = M andp,;, (x{ = x{jx{"®) =1 when
x4 8 M because if a dimension is unmasked then it must be thexirwalue under our de nition ofj1(Xtjx1). We now
nd our transition probabilities

P ge(0AP) = ihxy + RAXEPY) t
Forjd 6 x¢,
Sdi 1Dy 1+1 d_ :di 1D d. d. S d.
P+ (70X ) = tﬁpljt(xl_ljxt ) XM o+t (1 X(; M) J5M

and forj 9 = x¢

. X s
Pt+ tjt(jd = X?jxtl'D)zl Pt+ tjt(kJth'D)
k6 x¢
X 1+t .y
=1 tﬁpljt(xtljzklxtl'D) xiM o+t (1 x;M ) fk;Mg

k6 xd
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+
=1 t—— x&M t (1 x&HM )

where again we have used the fact thgt(x{ = M jx{"®) = 0. Inspectingy, ;:(j *jx{*) forj* 6 x{, we see that if

xd = M then we have an overall probability of unmasking%% t and once we do unmask, the new value is drawn from
pljt(x‘{jx%:D ). This is like before but now there is a bonus probability of unmaskir@&?f Whenx{ 6 M then we have a
probability of  t of jumping back to the mask state. This creates a ux of states switching back and forth between masked
and unmasked for> 0 hence why these processes are more “stochastic'. However, because iwlh@reased we also
increase the rate at which we unmask, the desired conditionap;pxjx1) is maintained for any value of. Listing 3

shows PyTorch code that implements sampling with this extra stochasticity.

Listing 3. Masking sampling loop with noise

import torch
import torch.nn.functional as F
from torch.distributions.categorical import Categorical

# Variables, B, D, S for batch size, number of dimensions and state space size
respectively

# Assume we have a model that takes as input xt of shape (B, D) and time of
shape (B,) and outputs x1 prediction logits of shape (B, D, S-1). We know
the clean data contains no masks and hence we only need to output logits
over the valid values.

t =100

dt = 0.001

mask_index = S-1

N = 10 # Level of stochasticity

xt = mask_index  torch.ones((B, D), dtype=torch.long)

while t < 1.0:
logits = model(xt, t * torch.ones((B,))) # (B, D, S-1)
x1 _probs = F.softmax(logits, dim=-1) # (B, D, S-1)
x1 = Categorical(x1_probs).sample() # (B, D)

will_unmask = torch.rand((B, D)) < (dt * (1 +N = t)/ (11) # (B, D)

will_unmask = will_unmask * (xt == mask_index) # (B,D) only unmask currently
masked positions

will_mask = torch.rand((B, D)) < dt * N # (B, D)

will_mask = will_mask * (xt = mask_index) # (B, D) only re-mask currently

unmasked positions

xt[will_unmask] = x1[will_unmask]

t += dt

if t < 1.0: # Don't re-mask on the final step
xt[will_mask] = mask_index

Our method has similarities to other discrete diffusion models when using this formy,f@and we clarify these links in
App. H.2.

F.1.2. RIRITY SAMPLING

When using the masking form fqx;; we can also easily implement a purity sampling scheme (Tang et al., 2022). This
sampling method decides which dimensions to unmask based on an estimate of the model con dence in that dimension's
nal value. Currently, our sampling method will uniformly at random choose which dimension to unmask. To improve upon
this approach, purity sampling will instead rank dimensions based on which dimension has the highest model probability.
More speci cally, for each dimension we calculate a purity score for dimergide@ ned as

purityy = maxpy;, (xjx; )
1

For the next simulation step, we then decide how many dimensions should be unmasked. The number of dimensions to
unmask is binomially distributed with probability of success and number of trials equal to the number of dimensions
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that are currently masked. Once we have sampled a number of dimensions to unmask from this binomial distribution, we
then unmask that number of dimensions starting from the dimension with highest purity score, then the dimension with
second highest purity score and so on. We only consider dimensions that are currently masked to be eligible for unmasking.
When using > 0, the probability of success in our binomial distribution increasesttif—; and so on average more
dimensions get unmasked during each simulation step. At the end of each simulation step, we then remask a sample of
randomly chosen dimensions which are uniformly chosen at random each with a probability being chosen.

F.2. Uniform Example

In this section we walk through the derivation and implementation of DFM when using the uniform based interpolation
distribution. We start with the data conditional marginal distribution

V)
Pt ixiP) = py(xfixg
d=1
1
= t x&x$ +@1 )=
S
d=1

This distribution is all that is needed to train the denoising mpﬂ@Qfojx}:D ). We give PyTorch code for the training
loop with the uniform interpolant in Listing 4.

Listing 4. Uniform training loop

import torch
import torch.nn.functional as F

# Variables, B, D, S for batch size, number of dimensions and state space size
respectively

# Assume we have a model that takes as input xt of shape (B, D) and time of
shape (B,) and outputs x1 prediction logits of shape (B, D, S).

for x1 in dataset:
# x1 has shape (B, D)
optimizer.zero_grad()
t = torch.rand((B,))
xt = x1.clone()
uniform_noise = torch.randint(0, S, (B, D))
corrupt_mask = torch.rand((B, D)) < (1 - t[:, None])
xt[corrupt_mask] = uniform_noise[corrupt_mask]
logits = model(xt, t) # (B, D, S)
loss = F.cross_entropy(logits.transpose(1,2), x1, reduction="mean’)
loss.backward()
optimizer.step()

In order to sample our trained model, we will need to deRyé(i%; %jx$). The rststep is to nd@pyj1 (x{jx$),

, 1
@y (Xix) = @ t x{ix§ +(1 Dg
1
— d.,d
t 1 S

We will now nd R, d(x?i:j 9jx{). As before we will always assume' 6 j 9 and calculate diagonal entries as needed using
the relationR (i;i) = i6i Re(i;] ).

ReLU @p;j1(j%jxg)  @pyja(x{jx§)
Z Ty (x{jxg)
ReLU j%x§ & xhx§ + 2
St xhx¢ +@1 i

R, ‘(x¢;j 9jx¢
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_ ReLU  j9%x¢ xd; x§
Cost x&x§ +@ o)l

The only non-zero value is whefl = x¢ andx? 6 x¢ and soR, 4(x¢;j 4jx9) is

RGN = 1

G @ xdixg)
We can now nd the unconditional rate matrix, still assumifgé j ¢

i
d 1:D.;dy — dr.d.:d:,d
Ry (X751 = Epm(xfjx}”’) R (x¢5] ix1

= 1 id.yd d..d
=By ogixey 7 ¥ @ Xt;X1 )

1 Cds1
= ﬁpljt(xg = 9x¢P)
Our transition step is

P e OxEP) = Q%+ RGP
Forj9 & x{ thisis

4. 1 t . -
P e %ixiP) = ﬁpm(X‘i = j9x{P)

and forj ¢ = x¢ this is

X
P+ jit(j 4= X?jxtl'D) =1 P+ tjt(ijtl'D)

k6 xd

X d i, 1D
=1 1 tpljt(xl = Kjxy™)

k6 x¢

t 1.

=1 11t 1 pljt(x(lj = x{jx{P)

Listing 5 shows PyTorch code that implements this sampling loop.
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Listing 5. Uniform sampling loop

import torch
import torch.nn.functional as F
from torch.distributions.categorical import Categorical

# Variables, B, D, S for batch size, number of dimensions and state space size
respectively

# Assume we have a model that takes as input xt of shape (B, D) and time of
shape (B,) and outputs x1 prediction logits of shape (B, D, S).

t =100

dt = 0.001

xt = torch.randint(0, S, (B, D))

while t < 1.0:
logits = model(xt, t * torch.ones((B,))) # (B, D, S)
x1_probs = F.softmax(logits, dim=-1) # (B, D, S

# Calculate the off-diagonal step probabilities
step_probs = ((dt / (1-t) * x1_probs).clamp(max=1.0) # (B, D, S)

# Calculate the on-diagnoal step probabilities

# 1) Zero out the diagonal entries

step_probs.scatter_(-1, xt[:, :, None], 0.0)

# 2) Calculate the diagonal entries such that the probability row sums to 1

step_probs.scatter_(-1, xt[:, :, None], (1.0 - step_probs.sum(dim=-1,
keepdim=True)).clamp(min=0.0))

xt = Categorical(step_probs).sample() # (B, D)

t += dt

F.2.1. DETAILED BALANCE

Here we derive the form d®PB for the uniform interpolant case which we can use to vary the stochasticity of sampling.
RPB satis es the detailed balance equation

Pa(iix))RE® (i1 jx1) = pya (G ix)RE® (i5 jxa)

We now make some assumptions for the fornR@f . We will assume there will be some rate of transitions fronback
towards a random other state and a rate towagda order to cancel out this effect and achieve detailed balance. We note
there are other choices for detailed balance, some of which we explore in App. H.1. We will again be as&iriimgthe
following calculations.

RP® (i) jx1) = & fisxag+ b fiixag
We have parameterizeRP® with some time-dependent constaatsandb. Substituting this into the detailed balance
equation gives
. 1 . . . 1 . .
t fi;xg+ (2 t)g (a fi;xgg+ b fj;x10)= t fi;x.9+(21 t)g (a fi;x19+ b fi;x10)

Now, this equation must be true for ang j. Picki = x; andj 6 x; to get

t+@ Dg a=@ Dgh

t+(1 t)i

S
@ vl

:at
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St+1 t
—a—————— 34
At 1t (34)

We would obtain the same equation if we were to instead ip&k<; andj = x;. Therefore we have to x one &i; orb.
If we want a stochasticity level of then we can sed; = which is the rate at which points that are at the clean data come
back off the clean datapoirth, can then be found from equation (34). This gives a forrRBE of

St+1 t

RP® (i jx1) = fiixag+ = —— fiixig

This can now be combined wifR, ¢ to create a new unconditional rate matrix with a variable amount of stochasticity.

i
‘D.:dy — d - d: d i ds
RO (D519 = By eapmy Re“Ox 9jx) + RP8 (' ixg

_ 1 d.od d. o d d. o d St+1 t .y g
= Epl“(x?jx‘lzD) 11 i%xi @ X{ixy )+ XiiX] + — 1 jdxs
1+ + (S 1t .
= By, (xixt®) T 1 itxd @ xdixd )+ xdixg
1+ + (S 1t s L
= T 1 Py (X§ = J4xEP) + p gy (x§ = x{jx{P)

We can interpret this rate, with the rst term being the rate at which we should transition to states that are predicted to
correspond to the clean data. The second term is a "noise term' which creates transitions away from the current state if it
is predicted to correspond to the nal clean data. The rst term then has additional weighting asreased to counter

act this effect. The effect of the stochasticity is then to create a ux going on and off the predicted nal clean state during
generation. We now nd our transition probabilities

Pe e oxEP) = jhx! + RAE(X{FP;Y) t
Forjd 6 x¢,

1+ + (S it

Pr+  tjt (] GxiPy= t 1 1 pljt(xclj =j%x¢P)+ tp 1jt(X(i = x{jx)

We can ndps i (] djxP) forj9 = x¢ programmatically as before by requiring that the probability vector suin to
Listing 6 shows the implementation for the uniform interpolant with noise.
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Listing 6. Uniform sampling loop with noise

import torch
import torch.nn.functional as F
import torch.distributions.categorical import Categorical

# Variables, B, D, S for batch size, number of dimensions and state space size
respectively

# Assume we have a model that takes as input xt of shape (B, D) and time of
shape (B,) and outputs x1 prediction logits of shape (B, D, S).

t = 0.0
dt = 0.001
noise = 1

xt = torch.randint(0, S, (B, D))

while t < 1.0:
logits = model(xt, t * torch.ones((B,))) # (B, D, S)
x1_probs = F.softmax(logits, dim=-1) # (B, D, S)
x1_probs_at_xt = torch.gather(x1_probs, -1, xt[:, :, None]) # (B, D, 1)

# Don't add noise on the final step

if t + dt < 1.0:
N = noise
else:
N=0

# Calculate the off-diagonal step probabilities

step_probs = (
dt » (L+ N+ N = (S-1) = t)/ (1) * X1_probs +
dt = N * x1_probs_at xt

).clamp(max=1.0) # (B, D, S)

# Calculate the on-diagnoal step probabilities

# 1) Zero out the diagonal entries

step_probs.scatter_(-1, xt[:, :, None], 0.0)

# 2) Calculate the diagonal entries such that the probability row sums to 1

step_probs.scatter_(-1, xt[:, :, None], (1.0 - step_probs.sum(dim=-1,
keepdim=True)).clamp(min=0.0))

xt = Categorical(step_probs).sample() # (B, D)

t += dt

F.3. General Case

We now describe the trainingQand sampling loop for a general conditionappmix:jx1). We require this interpolant to be
factorizedpyjy (xFP jxEP) = 0, pya(xfixd), be differentiable and havg;j;(j%jx$) =0 =)  @pya (i %jx§) = 0. We
assume that we have access to functions that can samplepfrjx1), evaluatepj; (X¢jx1) and evaluate@p;ji (X¢jX1).
Our training loop consists of sampling data, samplag pj1(X¢jX1) and training with the cross entropy loss, see Listing
7.
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Listing 7. General training loop

import torch
import torch.nn.functional as F

# Variables, B, D, S for batch size, number of dimensions and state space size
respectively

# Assume we have a model that takes as input xt of shape (B, D) and time of
shape (B,) and outputs x1 prediction logits of shape (B, D, S).

def sample_p_xt_g_x1(x1, t):
# x1 (B, D)
# 1t (B)
# Returns xt (B, D)

for x1 in dataset:
# x1 has shape (B, D)
optimizer.zero_grad()
t = torch.rand((B,))
xt = sample_p_xt_g_x1(x1, t)
logits = model(xt, t) # (B, D, S)
loss = F.cross_entropy(logits.transpose(1,2), x1, reduction="mean’)
loss.backward()
optimizer.step()

Now for sampling we can programmatically calculapd(x?;j 94jx) using Eq. (27). It may not be possible to analytically
calculate the expectation with respecpgg(x%:Djx}:D) but we note that our Euler step is still valid if we instead take a
sample fromp,;, (x® jx{"°) and substitute int&{(x{; j %jx{), see App. G. We assume access further to a function that can
produce samples from the prior distributipfyse corresponding to the chosey);. We provide the general case sampling
loop in Listing 8.
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Listing 8. General sampling loop

def dt_p_xt g xt(x1, t):
# x1 (B, D)
# t float
# returns (B, D, S) for varying x_t value

def p_xt_g_x1(x1, t):
# x1 (B, D)
# t float
# returns (B, D, S) for varying x_t value

def sample_prior(num_samples, D):
# num_samples, D both integer
# returns prior sample of shape (num_samples, D)

t = 0.0

dt = 0.001

num_samples = 1000

xt = sample_prior(num_samples, D)

while t < 1.0:
logits = model(xt, t * torch.ones((num_samples,))) # (B, D, S)
x1_probs = F.softmax(logits, dim=-1) # (B, D, S)
x1 = Categorical(x1_probs).sample() # (B, D)

# Calculate R_t" *

# For p(x_t | x_1) > 0 and p( | x 1) > 0

# R_t" »(x_t, j | x 1) = Relu( dtp(j | x_1) - dtp(x_t | x_ 1)) / (Z_t * p(x_t
| x_1))

# For p(x_t | x 1) = 0 or p(j | x 1) = 0 we have R_t" * =0

# We will ignore issues with diagnoal entries as later on we will set

# diagnoal probabilities such that the row sums to one later on.

dt p vals = dt_p_xt_g_xt(x1, t) # (B, D, S)
dt_p_vals_at xt = dt_p_vals.gather(-1, xt[:, :, None]).squeeze(-1) # (B, D)

# Numerator of R_t° *
R_t numer = F.relu(dt_p_vals - dt p_vals_at xt[:, :, None]) # (B, D, S)

pt vals = p_xt g x1(x1, t) # (B, D, S)
Z_t = torch.count_nonzero(pt_vals, dim=-1) # (B, D)
pt_vals_at_xt = pt_vals.gather(-1, xt[:, :, None]).squeeze(-1) # (B, D)

# Denominator of R_t° *
R_t denom = Z_t = pt.vals_at xt # (B, D)

R t = R_t numer / R_t denom[;, :, None] # (B, D, S)

# Set p(x_t | x 1) = 0 or p(j | x 1) = O cases to zero
R_t[ (pt_vals_at xt == 0.0)[:, :, None].repeat(1, 1, S)] = 0.0
R_t[ pt_vals == 0.0] = 0.0

# Calculate the off-diagonal step probabilities
step_probs = (R_t + dt).clamp(max=1.0) # (B, D, S)

# Calculate the on-diagnoal step probabilities

# 1) Zero out the diagonal entries

step_probs.scatter_(-1, xt[:, :, None], 0.0)

# 2) Calculate the diagonal entries such that the probability row sums to 1

step_probs.scatter_(-1, xt[:, :, None], (1.0 - step_probs.sum(dim=-1,
keepdim=True)).clamp(min=0.0))

xt = Categorical(step_probs).sample() # (B, D)
t += dt
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F.3.1. DETAILED BALANCE

There are many ways one could solve the detailed balance equati®fifoas the choice will depend on what kinds of
noise are desirable to include in the generative process. A baseline example of how you could solve the detailed balance
equation for generatg;1 (X¢jx1) is to note

RO® (i ix)Pya(iixa) = RY® (551 jx2)pyja (i ixa)

RP® (i;j jx1) _ Pja(ijX1)
RPB(ijx1)  pya(iixa)

which gives a relation between the diagonal elemenRR5f. As a rst choice we could simply set the upper triangular
section ofRPE to 1 and set the lower triangular part to the r ”18’]23 which would satisfy detailed balance.

G. CTMC Sampling Methods

In the main text, our sampling algorithm Alg. 1 rst constructs the unconditional rate m#&yik;j) =
Epl-t(xljxt) [Rt(Xt;]jx1)] and then samples the next state from the Euler step,
J

Xe+ ¢ Cat X Xer 10+ Re(Xe;Xes t)

The form of this update means that we don't necessarily need to calculate the full expectatiBa(aygrjx,). We can
simply samplex; from pljt(leXt) and then plug this sample ini®; (x;;j jx1) which we then use in the Euler update.
To see that this strategy still samples from the same distributionx@ver, we can write the distribution ovet.,. ; as
Pt+ tjts

P+t (Xer t)Xe) = FXe X O+ Epljl(xlixt)[Rt(XUXH dxa)] t
i )E(pljt(xﬂxl)[ fXti X+ 19+ Re(Xe; Xew tjX1) ]

Pyje (X2 X0)Prs it (Xes tJX13Xt)

X1

where

Prv it (Xer tiX1Xe) == FXg Xer 19+ Re(Xe;jjxe) t

and sop+ jt(Xt+ tjX¢) can be seen as the marginal of joint distributpnm(xljxt)pH tjt (Xe+ tiX1;Xt). There-
fore, to produce a samplg.+ ¢ from pi, ¢ (Xe+ tjXt), we can instead sampig; X;+ ¢ from the joint distribution
pljt(xljxtliD)pH tjt (Xt+ tiX1;Xt), and take only the.  part of this joint sample.

Another method to simulate a CTMC isleaping, (Gillespie, 2001; Campbell et al., 2022) which allows multiple jumps

to be made both across dimensions and within each dimension. Multiple jumps within a single dimension does not make
sense for categorical data where there is no ordering, however, it can be useful for ordinal data such as a discretized image
where the -leaping update allows multiple jumps to be applied at once to cover a larger distance. To calctleapiag

update, a Poisson random variable needs to be drawn with the rate matrix giving the rate parameter. Therefore, for this type
of update, the full unconditiond, (X:;j) would need to be calculated.

We nally note that there is a body of work creating CTMC samplers for generative models (Sun et al., 2023b; Lou et al.,
2023) that may be faster to simulate than the standard Euler step. In this work, we focus on framework simplicity, not
optimizing for sampling speed and leave application of these approaches as future work.

H. Comparison with Discrete Diffusion Models

In this section we clarify the relationship between DFM and classical discrete diffusion models. In App. H.1 we compare
to continuous time models using the uniform corruption process as an example. In App. H.2 we compare to discrete time
models using the masking process as the example.
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H.1. Continuous Time Discrete Diffusion Models

Here we compare to continuous time discrete diffusion models (Campbell et al., 2022) using the uniform corruption process
as an example. In this section, we will assuime 0 is pure noise antl = 1 is clean data which we note is a ipped
de nition of time to classical diffusion models to aid in our comparison with DFMs.

For discrete diffusion, we rst specify a corruption process and then approximate its time reversal to give us the generative
process. Our corruption process will evolve from 1 back to timet = 0. It will be speci ed using a rate matriR;.

In order to make calculation @j;(x:jx1), Ry needs to be of a special form, nam&y = (t)R, where (t) is atime
dependent scalar function aRy is a base rate matrix that can be decomposed using the eigendecom®gitio® Q .

For uniform corruption, we can s, = 11> Sl wherel is a vector of alll's. We will now assume = 3 so we can

carry out all calculations explicitly.

We haveRp, = Q Q ! with

3 2 3 2, , ,3
1 11 3 00 i1 1z
Q=40 1 B =40 3 06 Ql=41 B
1 0 1 0 0 O : 3 3
To calculatepj1(x¢jx1) we can use the equation
z t
P, = Qexp (s)ds Q1!

1

where(Py)j = pji(Xe = jjx1 = i) andexpis the element wise exponential. By the symmetry of the problem, we can
infer thatpyj (x¢ = jjx1 = i) will have only two possible values. Eithgr= i and we are nding the probability of staying
ati, orj 6 i and we are nding the probability of having lgftand since uniform corruption treats all states equally, these
will be same quantities for any starting state and any $t&ei. So to nd our schedule we just need to consider one
element of the matri®;. Let us consider an off-diagonal elemér& | of P, which will have probability
1 Z
(P = 3 1 exp 3 . (sds ; 6]

We will try and match this to the simple linear schedule that we have had as our running example in the explanation of DFM.
z
1 ! 1
-1 e 3 d =1 t
3 L e 3 (s =309

9 0=,

Therefore, we have found that a corruption rate matrikR of 3—1t 11> 3l gives a conditional ow ofpjq(X¢jX1) =
t fx;xig+ (1 t)1.
The next step in a discrete diffusion model is to nd the time reversed rate nitrixhich gives a CTMC that runs in the

opposite direction t&®; and generates novel data from noise. H&rés running from timet = 0 at noise towards clean
data at = 1. From Campbell et al. (2022), we have

P jx1)

X
Re(isj ) = Rt(J?')ptjl(inl)

X1

Paje(X1ji) 6]

We notice a similarity to the DFM equations, where the generative rate is the expectation of a quantity with respect

to Pyj¢ (X1ji). Indeed we now show tha&(j; i )';“‘i(('lj:ll; is ax; conditioned rate matriR{ (i; j jx;) that achieves the
]

conditional ow pj1(ijx1). Consider the Kolmogorov equation

X ) X )
@pyj1(ijx1) = R (i jx1) P (j iX1) R (i;j jx1)pya(ijx)
igi i6i
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Substitute in our form foR

X (i X (i
B o Pa(ijxa) . P (jixa) .
RHS= Ri(i;] ) ————<pxi X Ri(j;1) —————=pi1(ijx
N t( J)pm(uxl)p‘”(” 1) N t( )ptjl(uxl)p“l(' 1)
kﬁl X j6i
= Re(is] )pa(ijxa) Re(J:1)ptja( jX1)
js'é j6i 3
X . . - . X . . .
= 4 R(i)pya(iixe) Re(i;j )pya(iix1)®
igi i6i
= @pj1(ijX1)
= LHS

where on the second to last line we have used the fact that the corruption Rdtrix) when started gb=; (X¢jX1) =
fx¢; x1g will evolve the marginals according f®;1(Xtjx1) because this is how we derived: (x:jx1) in the rst place.
NoteR; runs in the reverse direction hence the negative sign.

Therefore, the diffusion framework has made an implicit choiceRidf; j jx1) = R (i;j jx1) and this choice is made at
training time. We now show on our uniform noise example & is simplyR, + RP® for a speci ¢ choice oRPE .

Firstly, we write out the explicit form foR¥ using R (i;j jx1) = R(j;i )’;"i(({::lli Rt = # 11> 3l and
tj
pe(ijx1) = t fxgxig+ (1 t)i.
2 1+2t 1+2t 3
RO = 1, lltlt 211tt llt 5
3t 142 € 152t 142
1 1+2t 1 1+2t
1t 1t

We will now nd RPB such thaR¥" = R, + RPEB . We will need a slightly more general form fR&°8 than was previously
derived for the uniform noise case. We will have

RPE(i;jjx1) = a fi;x10+ by fl;x10+ (1 fi;x19)(1  fj;x10)
Using the detailed balance equatipy (ijx1)RP® (i;j jX1) = pj1(i jx1)RPE (j; i jx1), we nd that we need
_ @ v3b
a= ——3
t+@ 12

with by andc; being fully exible (provided they are positive). Using the form 8¢ (i;j jx1) = 1—1t fi;x10(1  fi;x10)
that we derived in Appendix F.2 we have

2 3
7t b o g+h C
DB _ @ t)3h (1 t)3hb (1 )b
R+ Ry~ = g t+(1 t)1 2 t+(1 ? i t+(1 i)% g
C 1—1t b ¢« 7 b

which is equal tR{ if we havel = ¢, = .

In summary, we have found that classical discrete diffusion models make an implicit chdi€ifgrjx,) which corresponds

to a certain level of stochasticity in the CTMC and that the choice is made at training time because the rate matrix is used in
the ELBO objective. Further, we have seen it is much harder to derive the noise sqhypdumigx ) in classical discrete
diffusion models due to the need to be able to apply the matrix exponenRal o DFM, we can simply write down the
Ptj1(Xtjx1) noise schedule we want and we are not restricted in having tdhitkat are amenable to matrix exponentiation.

We also get to choose ai (i; j jx1) at test time rather than being xed to the implicit choiceRfff".

H.2. Discrete Time Discrete Diffusion Models

In this section we will clarify the link to the discrete time diffusion method D3PM (Austin et al., 2021) when using the
masking process for both methods. Here, we will use the convention from Austin et al. (2021) of adinfpr clean data
andt = T for noise.
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We will rst summarize the key results from (Austin et al., 2021) when using the absorbing state process which is a different
name for a masking type process (the mask is the absorbing $tate) take on any discrete valueti@ f 0;1;:::;Tg.
The diffusion model is rst de ned using a noising transition kernel

8

21 ith Xt 1:M
p(xtjxt l): >1 t if Xt = Xt 16 M

T ith:M;Xt 16M

From this transition kernel, we can then calculate the noise margp{aigxo)
0 1 0 1

Y Y
p(xijXo) = @1 T WA fxgMg+ @ (1 DA fx;Xeg
Kt Kt

We then de ne our generative reverse process as
X
P (Xt 2jxt) = P(Xt 1]Xt;X0)P (XojXt)

Xo

wherep (XojX;) is the learned denoising model. Note how this is similar to our generative prdRebs.;j) =
Ep (x1jx) [Rt(Xt;]x1)] where nowp(x; 1jXt;Xp) is the transition kernel for the clean data conditioned process. We
then create our generative model by taking the expectation of this conditional kernel with respect to our denoising model.

Continuing with the D3PM example using the absorbing state process, we obtain the following farrixor; jx;)

8, 0Q
1 @ %) .
t = =
g—Q‘—lQ - t(ll ™ ifxXi =%t 1= M
P (xe aix) = o %p (Xo = Xt 1jxt) if Xt = M;x; 16 M
fX¢ 1;%t0 if x; 8 M
When we set = ﬁ we obtain a linear noise schedule giving
8
2 1 tl if Xt = Xt 1= M
p (Xt ajxi)= P (Xo = Xt 1jXt) X = Mix; 16 M
fX¢ 1;%t9 if Xy 68 M

Now, let us de ne := }— to be the proportion that the process is through the total number of time st2g€; 1] and if we
consider it to be an analogue of our continuous time variable, we can see that the original discretization steps of D3PM
correspond to a discretization of tf@& 1] interval with timesteps of t = Tl Substituting these de nitions into our update

step gives, )
E 1 —t ith =Xt 1= M
P (Xt 1jX¢) = 3 L tp (xo= X 1jXt) ifxi=M;X;y 16 M
fX¢ 1;%t0 if x; 6 M

Now we can see a clear comparison to Eq. (33) noting the ipped de nition of time. With our method we can pick any
time discretization at test time because our method has been trained on all pp&sjdjd]. We also deriverP® for the

masking case which is not included in the prior D3PM framework. For training we note that the ELBO also simpli es down

to a weighted cross entropy term for D3PM as noted by (Austin et al., 2021) and is also the case in our framework, see
Appendix C.2.1.

|. Text Experiment Details

Code for our text experiments can be foundhips://github.com/andrew-cr/discrete_flow_models

For our denoising network we use the transformer architecture (Vaswani et al., 2017) as implemented in the nanoGPT
repository, https://github.com/karpathy/nanoGPT . We generally follow the smallest GPT2 architecture
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(Radford et al., 2019). At the input we have our input tokensf shapeB; D whereB is the batch size anD is the
number of dimensions i.e. the sequence length, our tiofeshapeB , and, if we are self-conditioning, prior; prediction
tokens of shap8; D . We embed the; andx; tokens using the same learned embedding, and use a model embedding
size of768resulting in tensors of shajiiz D; 768 We embed the position of each token using a learned embedding for
each possible position. We embed the timesing Transformer sinusoidal embeddings following (Ho et al., 2020). We
train all our diffusion models with self-conditioning (Chen et al., 2023a). To input the priprediction, we stack the;
embedded tensd®; D; 768with thex, prior prediction token tensd; D; 768to obtain a tensor of shafie D; 768 2.

We then apply a linear layer to project down to the model embedding dimension resulting in a tensor & ;¥hapé8
Before applying transformer blocks, we add togethemth@ndx ;) embedding tensor, the position embedding and the
time embedding to obtain the n&; D; 768input tensor.

The transformer stack consiststit transformer blocks, each block consisting of a LayerNorm, SelfAttention, LayerNorm,
MLP stack. Within our SelfAttention block, we ud2 heads and apply Qk-layernorm (Dehghani et al., 2023) to our query
and key values as we observed this improved convergence. Our MLP blocks consi®f a768 4 linear layer,
followed by a GELU activation, followed by @68 4! 768linear layer. We do not apply dropout. Our output layer
consists of a linear head with output dimensi# We use28token categorie6 lower case letters, a whitespace character
and a mask token. The model outputs logits of shape; 28 which we then apply a softmax to, to obtgin(x1jx;)
probabilities.

The dataset text8 i500MB of text data from English Wikipedia. The text is all converted to lower case letters, i.e. capital
letters are converted to lower case and numbers are written as tegtbeeomes “eight'.

During training, we use a batch size 266 with 8 gradient accumulation steps. We train on sequences of |&%gth

The model is therefore trained &24; 288 tokens per gradient update. To train self-conditioning 5686 of training

iterations, we input priox; prediction tokens as all masks so that the model learns to be able to pregithout any prior
information. On the otheB0%of training iterations, we perform two model forward passes. We rst prediatsing masks

as the prioix; tokens to obtain an initial set @f (x1jx;) logits. We then sample from the initipl (x1jx;) distribution to

obtain predictec; tokens. We then feed these tokens back into the model through the self-conditioning input and predict
thex, logits once more. These logits are then used in the loss. We only back propagate through the second forward pass of
the model.

When training the D3PM model, we found that the default cross entropy weightibret ¢ivith a ipped de nition of time)
resulted in poor convergence and so we applied an equal weighting of the cross entropy across time to be consistent with the
DFM loss.

We train our D3PM and DFM models f@5X iterations on 4 Nvidia A40 GPUs using a learning ratd ®f* and1000

linear warm up steps. We use a cosine decay schedule after the initial warm up towards a minimum learniri@réte of
which would be reached aiM iterations. We use the AdamW optimizer (Loshchilov & Hutter, 2017) with weight decay
parameted:1. We monitor the validation loss throughout training. Validation loss continues to drop throughout training and
we evaluate the nar50k model in our experiments. When training the autoregressive model, we use the same architecture
but nd that it begins to over t the data much faster than the diffusion based models. 3g@iterations the validation loss

begins to increase and so we use the model with minimum validation loss in our evaluations. This is consistent with ndings
that autoregressive models require much less compute to converge than diffusion based models (Gulrajani & Hashimoto,
2023).

We use the masking interpolant in our DFM with linear interpolant, as described in Appendix F.1. For D3PM, we use the
absorbing state corruption process, the links to the DFM process are described in Appendix H.2.

For the SEDD baseline, we train two models from scratch using the provided cod&Ootraining iterations with an
effective batch size d2048to be consistent with the DFM and D3PM training runs. All other parameters are left at their
default values with the transformer using the same hidden size, number of blocks and number of layers as our other runs.

For evaluation, we sample the DFM witht = 0:001 We simulate up té = 0:98 and then for any remaining tokens that
are still mask, we set them to the most likely token under the model's denoising distriqut{@ajx;). We stop simulating
att = 0:98to avoid any singularities similar to how diffusion models stop rtear0. For D3PM we train withl000
timesteps to match DFM.

For each temperature setting applied tophgx1jx:) logits, we sampl®&12sequences all of leng@®b6tokens. We then
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Figure 4.Curves in Entropy-NLL space for varying noise levels used during sampling. For each noise level, the temperature applied to the
logits of thep (x1jx:) prediction is varied over valuds5; 0:6; 0:7; 0:8; 0:9; 1.0.

Method BPC
DFM =0 1:41
Multinomial Diffusion (Hoogeboom et al., 2021) 1:72
MAC (Shih et al., 2022) 1:40
BFN (Graves et al., 2023) 1:41
D3PM Uniform (Austin et al., 2021) 1:61
D3PM Absorb (Austin et al., 2021) 1:45
SEDD Uniform (Lou et al., 2023) 1:41
SEDD Absorb (Lou et al., 2023) 1:32

Table 5.Model log-likelihoods computed on the test set of text8 in bits-per-character (BPC).

calculate the negative log-likelihood assigned to each sequence using GPT-J-6B (Wang & Komatsuzaki, 2021) and the BPE
tokenizer (Radford et al., 2019). We then average the negative log-likelihoods oﬁélrﬁbgquences. The sample entropy

is calculated by rst tokenizing with the BPE tokenizer and then calculating the entropy agy log pi wherep; is the

empirical probability of tokem estimated using the full set &fL2samples. Tokens for whigh = 0 are not included in the

sum. For reference, the dataset achieves a negative log-likelihood of 4.2 as measured by GPT-J-6B.

I.1. Stochasticity Sweep

Here we examine the effect of the noise levaln the sample quality of generations from our DFM method. We follow the
follow the same procedure as before but varyith values = 0;1;2;5; 10; 15; 20; 30; 50. We plot the results in Figure 4.

We nd that generally, as the noise level increases, we lower our negative log-likelihood. However, we nd that if the noise
level is increased too much, then degenerate behaviour can occur, for example wb@n at high logit temperatures the
negative log-likelihood increases and the sample entropy decreases away from the dataset. Observing the samples, we nd
that the model generates incoherent text at this point. We nd that the intermediate noise+etbl provides good sample

quality whilst avoiding this behaviour.

[.2. Model Log-Likelihoods

Here we calculate bounds on the log likelihdod p (x1) that the model assigns to the test set of text8. We use Eqg. (24) to
calculate this bound. We compare our log-likelihoods to other discrete diffusion style methods in terms of bits-per-character
in Table. 5, reporting the numbers from Lou et al. (2023). We nd that DFM achieves a similar BPC to previous masking
style diffusion models with the recent work of Lou et al. (2023) achieving the lowest BPC.
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Figure 5.The temperature settings for each model for which we will examine sample generations. The selected temperature setting is
highlighted with a black circle.

I.3. Example Text Generations

In this section we provide non cherry picked generations from the text models. For each model we have swept over the
temperature applied to the logits and it would be impractical to include examples for all models for all temperature settings.
Instead, we select one temperature setting for each model such that the samples have similar entropy but vary in negative
log-likelihood. We show the selected temperature settings in Figure 5. For SEDD the method does not have a temperature
setting and we select the corruption style that is closest in entropy-NLL space to the other methods.

SEDD Uniform
Samples:

change status regional courses and markets especially canada sport in canada and tennessee in ¢anada
the of cial light offered an newspaper licence named liu beijing world s main neighbouring fan site
was sugar the only man with major historical works lic

ions of extension one or at least four subsets of a unique value of one example all these extensjions
heard of the function is called real line the implementation comes distributed with a continuous ingut
extension to input and two classes the diagram emplo

of physics the radio atomic institutions independently the eastern united states followed into fqur
six countries norway thus was the father of the university of gloucester but while also the father|of
germany can we also announce the coexistence of limit

D3PM Temperature 0.8
Samples:

ved as a personal area to form the ve counties of the area and a country with their own which|is
usually called paris gietgothic can also lead an area to work in divisions over a pileur as in the name
of man the bears have over the last two years from th

one ve zero zero zero zero press money to present this to a meschasel linear industrial base ulse
sudan expanded its economy and accounts for car prices and two eight ve more than one zero zero
of the largest industrial inventions over the world were

eed alternatively as human being and the anti constitutionalay doctrines a particular example of the
concept is one reason for human rights or as in certain regions there is a double constitution more
recognized region of europe in this region the glass an
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DFM =0 Temperature 0.8
Samples:

ed era vol seven one nine one one december one nine six one junju that s one of nine one one country
page of love footnote pages charles s feadman history of the red sea corea one nine nine one red sea
vol one january one nine nine seven ying pro les ch

allowes the vectores to be composed as systems of data for example no machine is a computer one
would do not know where there are undirected storage of other data storage particularly the computer
science eve to substitute such a based data that is one of

me io the plate n and feminine along the trail to change the amount of naturated information in the
start tape selective gurative memory the mind is determined by the second net on the string ¢ with
two buttons the tag retes the header when queued the se

Autoregressive Temperature 0.9
Samples:

licklyn american football coach to holy roman emperor and roman stories radio and facilities in the
u s civil rights movement the dc circuit collection of the witches leading the transissario times and
spinoffs to american cartoonists cartoonist kyle marci

the british one one eight four minamoto minister or al di nortello ministries son of monte oise klepe
which chose to give up its character on the go he was known to publish a wade of white performances
started in one eight ve one kleine married the gigan

mausoleum in one eight one six alabama was engaged by a large scale as we know alabama migration
the palace of westminsters and proceeded to father she also learned to speak with the abramic mouth
of the space the replica was apparently built de provence g

DFM =15 Temperature 0.8
Samples:

e curous greek by alexander van hep ven see archaic origin of the word cupola another meaning
suggests that the word kupola is the latin word cupei kupolum old german derived from the latin word
for the river the name comes from a latin word for tree with

es so balloonists re ne this combination speci cally to preserve your own land in the runner both
examples of clean steering creating agout like rods that produced successful rods and for the end the
rst few pistols compact stunt a musical setting mult

by reign over agassi is considered a greatest match by the day he will never play and will continue
to be imitated agassi can play determinedly but agassi would always look to the victorious build he
should not nish years going up to then that he would b

J. Protein Generation Experiment Details
We present additional experiment details and results for protein generation with Multi ow.

Code for Multi ow and experiments can be foundhdtps://github.com/jasonkyuyim/multiflow

J.1. Experimental Details

Model Architecture. We use an architecture modi ed from the FrameDiff architecture from Yim et al. (2023b). This
architecture consists of Invariant Point Attention (Jumper et al., 2021) combined with transformer blocks, we refer to Yim
et al. (2023Db) for in-depth details. We modify this network architecture by increasing the number of network blocks to 8,
increasing the number of transformer layers within each block to 4, decreasing the number of hidden channels used in the
IPA calculation to 16, removing skip connections and removing psi-angle prediction. To enable our model to output logits
for the discretepljt(xljxt) distribution, we add an output 3 layer MLP with the same embedding size as the main trunk.
This results in a network with 21.8M parameters.
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In Yim et al. (2023b), psi-angle prediction is used to infer the location of oxygen atoms, however, this position can be
inferred to high accuracy using prior knowledge of the backbone structure of proteins, following (Yim et al., 2023a).

When training with out; t-objective that enables the model to learn over different relative levels of corruption between
structure and sequence, 10% of the time we sef. and drawt~ U (0; 1) and 10% of the time we s&t= 1 and draw
t U (0;1). The remaining 80% of the time we draw batandtindependently front; t U (0; 1).

J.2. Additional Multi ow Results

We show results of Multi ow across more lengths than done in Sec. 6.2.1 and show that using the ESMFold oracle for data
distillation still gives improved performance when we switch the evaluation oracle to AlphaFold2.

Main metrics with standard error.  Table. 6 presents results of Table. 3 with standard error. We see our interpretation of
the results do not change.

Larger length range. Our results in Sec. 6.2.1 only evaluated 4 lengths (70, 100, 200, 300) to match the benchmark in
RFdiffusion. However, other works have evaluated designability across all the lengths the method was trained on. We follow
Protpardelle (Chu et al., 2023) to use Multi ow in generating 8 samples per length in thefradggl,: : :, 400g. Fig. 6

shows the results in the same format as Figure 2B in Protpardelle. We see Multi ow achieves near perfect designability
up to around length 350 at which point designability starts to drop. This is expected since Multi ow was only trained on
lengths up to 384, but also demonstrates the ability to generalize beyond the lengths it was trained on. We see Multi ow
also achieves a desirable spread of secondary structure. We show samples above length 370 with the highest and lowest
Co-design 1 RMSD in Fig. 7.

Figure 6. Multi ow results on Protpardelle benchmark. (Left) PMPNN 8 scRMSD and designability versus length. Designability is
computed as the proportion of samples that lebRMSD< 2A within a sliding window of size 11. Average pLDDT as computed by

ESMFold for each sample is plotted as the colour of the scatter p&ligh{) Secondary structure distribution. For each sample the
proportion of residues as part of an alpha helix or beta strand is measured giving an xy scatter point coordinate.

Figure 7. Multi ow samples. (Left) 2 undesignable Multi ow samples with the highest scRMSD from the benchm&ight) 2
designable Multi ow samples with the lowest sScRMSD from the benchmark.

AlphaFold2 evaluation oracle.In Sec. 6.2.1, we presented a distillation technique of Itering out training examples that did
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not pass the designability criterion. This also involved adding more proteins to the training set after sampling structures with
Multi ow and Itering with designability using ProteinMPNN and ESMFold. A potential risk of distillation is our model

may over t to ESMFold since this model is used to Iter training data and also for evaluation. We show this is not the case in
Table. 7 by presenting the Co-design 1 results using AlphaFold2 (AF2) as an alternative oracle. Our main results do not use
AF2 since it is very slow and cumbersome to run and evaluate all our baselines. We evaluated Multi ow with and without
distillation to testf distillation with ESMFold provides an improvement regardless of the oracle used at evalu@tienall
designability numbers are lower with AF2; however, in both columns we see there is a two fold improvement regardless of
the evaluation oracle. This demonstrates distillation is not over tting to the oracle used at evalution.

Table 7.Co-design 1 designability results based on oracle.
Designability with ESMFold, Designability with AF2

Multi ow wi/o distillation 0.41 0.38
_ Multi ow w/ distillation _ | _ 088 _____|_____ 083 ____.
Net improvement +0.47 +0.45

J.3. Uniform Conditional Flow Ablation

We ablate our use of the masking conditional ow and train a version of our Multi ow model using the uniform conditional

ow ( see App. F.2). We assessed the model's co-design performance by measuring the Co-Design 1 designability and
diversity versus stochasticity level used at inference time. We also measure the secondary structure composition of the
generated samples versus stochasticity level. Our results are given in Fig. 8. We nd that in general, the Co-Design 1
designability increases with increasing stochasticity whilst the diversity as measured by the number of structural clusters
decreases. We can see the reason when examining the secondary structure statistics versus stochasticity. We see that at
high stochasticity levels, the model heavily favours generating alpha helices at the expense of beta strands thus reducing
the overall structural diversity. This will be due to interactions between errors in the model and the “churn' induced by
extra stochasticity. It may be counter-intuitive that extra stochasticity reduces model diversity however we hypothesize that
this is linked to the stochasticity inducing the model to converge on local optima in the likelihood landscape. When the
model is generating a sample that it is con dence about, extra stochasticity will not shift it away from continuing down this
simulation trajectory. However, when the model is exploring lower likelihood regions, the stochasticity can shift the models
trajectory until it becomes stuck in a local optima again.

We nd an overall worse trade-off between diversity and designability when using the uniform interpolant and so opt to use
the masking interpolant in our main models.

Figure 8.Sample metrics for Multi ow trained with the uniform interpolant on the discrete sequence modakff) Co-Design 1
designability and diversity versus stochasticity level used when simulating the discrete CTMC. Higher is better for both designability
and diversity.(Right) Average proportion of residues that are part of an alpha helix or beta strand versus the stochasticity level used to
simulate the CTMC. Each point corresponds to the mean over 400 samples, 100 samples each for lengths 70, 100, 200, 300. Error bars
show the standard error of the mean.
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J.4. Forward and Inverse Folding Experiments

The goal of our work is to develop the missing piece for a general-purpose framework for protein generation — namely DFM
to integrate discrete data generation with a flow model. We combined DFM and FrameFlow to develop Multiflow where we
have flexibility at inference time to choose which modality to provide and which to generate. The task we focus on in this
work is co-generation where the structure and sequence are jointly sampled rather than one after the other as done in prior
works. The other useful tasks in protein modeling are forward and inverse folding. The two tasks are briefly described as
follows; more in-depth description can be found in Gao et al. (2020).

1. Forward folding: the task is to take the sequence as input and predicts the most thermodynamically plausible structure
of the sequence. During evaluation, the ground truth structure is known, so we calculate the aligned structure erorr
between the prediction and the ground truth. Several metrics exist to compute structure error, such as the Global
Distance Test (GDT) commonly used in biophysical modeling (Pereira et al., 2021). We choose to use the aligned
backbone RMSD error to keep our analysis simple and intuitive. The most well-used methods are AlphaFold2 (Jumper
et al., 2021), RosettaFold (Baek et al., 2021), and ESMFold (Lin et al., 2023). AlphaFold2 and RosettaFold rely on
using evolutionary information which our model does not have access to (though can be extended to use). We compare
against ESMFold, which does not use explicit evolutionary information, and due to its speed.

2. Inverse folding: the task is to use the structure as input and predict the most likely sequence that would forward fold
into the structure. By this definition, the most sensible metric is the designability metric also used for co-generation.
Specifically, the inverse folding model generates a sequence and we use ESMFold to predict the structure given this
generated sequence. We call the self-consistency RMSD (scRMSD) as the RMSD between the structure predicted by
ESMFold and the original input structure (Trippe et al., 2022). The objective is to minimize scRMSD. The de facto
method for inverse folding is ProteinMPNN (Dauparas et al., 2022). Hence we compare against ProteinMPNN.

It is important to emphasize that different deep learning models have been specifically developed for forward and inverse
folding, but no method can accomplish both tasks nor co-generate both sequence and structure. Multiflow is unique in this
regard to be able to perform co-generation, forward folding, and inverse folding. We leave improving forward and inverse
folding performance as a future work. Qur aim is to demonstrate baseline performance of using a co-generation method
to perform forward and inverse folding. We hope others can aid in advancing general purpose protein generative models.

Test set. ESMFold and ProteinMPNN have their own training and test sets which makes rigorous comparison impossible.
Re-training ESMFold and ProteinMPNN with the same training set of Multiflow is beyond the scope of our work. Our
results are a initial baseline of how Multiflow generally fares to specialized models on forward and inverse folding.

Our test set is based on a time-based split of the PDB. We downloaded structures and sequences from the PDB that were
released between 1st September 2021 and 28th December 2023. This time-based split ensures that none of the test set
proteins are present in the training data for Multiflow, ProteinMPNN or ESMFold. We then select all single chain monomeric
proteins with length between 50 and 400 inclusive. We further filter out proteins that are more than 50% coil residues and
proteins that have a radius of gyration in the 96th percentile of the original dataset or above. We also filter out structures that
have missing residues. We cluster proteins using the 30% sequence identity MMSeqs2 clustering provided by RCSB.org.
We take a single protein from each cluster that matches our filtering criteria. This gives us a test set of 449 proteins with
minimum length 51 and maximum length 398.

J.4.1. FORWARD FOLDING RESULTS

As described in Table. 2, forward folding with Multiflow is performed by fixing the sequence time to = 1, providing the
ground truth sequence as input, and running DFM from¢ =0to ¢ = 1.

In Fig. 9 we examine the distribution of errors on our test set for both ESMFold and Multiflow. We find that generally
Multiflow can have some success with proteins of smaller length but struggles with longer proteins. We investigate salient
test examples from the plot to understand success and failure modes of our model. Multiflow is generally able to predict
realistic protein structures with often similar secondary structure distributions as to the ground truth example seen by having
similar proportions of non-loop residues between the ground truth and predicted structure. However, Multiflow often fails to
predict the exact folded structure with high accuracy.

We quantify the secondary structure prediction accuracy in Fig. 10 by comparing the secondary structure present in the
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