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ABSTRACT

We study inferring 3D object-centric scene representations from a single image.
While recent methods have shown potential in unsupervised 3D object discovery
from simple synthetic images, they fail to generalize to real-world scenes with visu-
ally rich and diverse objects. This limitation stems from their object representations,
which entangle objects’ intrinsic attributes like shape and appearance with extrinsic,
viewer-centric properties such as their 3D location. To address this fundamental
bottleneck, we propose unsupervised discovery of Object-Centric neural Fields
(uOCF). uOCF focuses on learning the intrinsics of objects and models the extrin-
sics separately. Our approach significantly improves systematic generalization,
thus enabling unsupervised learning of high-fidelity object-centric scene repre-
sentations from sparse real-world images. To evaluate our approach, we collect
three new datasets including two real kitchen environments. Extensive experiments
show that uOCF enables unsupervised discovery of visually rich objects from a
single real image, allowing applications such as 3D object segmentation and scene
manipulation. Impressively, uOCF even demonstrates zero-shot generalizability to
unseen, more difficult objects. We attach an overview video in our supplement.

1 INTRODUCTION

Creating factorized, object-centric 3D scene representations is a fundamental ability in human
vision and a long-standing topic of interest in computer vision and machine learning. Some recent
works have explored unsupervised learning of 3D factorized scene representations from images
only (Stelzner et al., 2021; Yu et al., 2022; Smith et al., 2023; Jia et al., 2023). These methods have
delivered promising results in 3D object discovery and reconstruction from a simple synthetic image.

However, difficulties arise when attempting to generalize these approaches to complex real-world
scenes. The bottleneck lies in their object representations: they represent each object in the viewer’s
frame, entangling intrinsic object attributes such as shape and appearance with extrinsic properties
such as the object’s location. This paradigm means a slight shift in the object’s location or a subtle
camera adjustment can significantly alter its latent representation. Intuitively, an object’s intrinsic
attributes should remain consistent irrespective of its location, yet this invariance is ignored in
existing 3D object-centric learning models. As demonstrated by convolutional networks (Zhang,
2019), accounting for this invariance is crucial for generalization (Chattopadhyay et al., 2020; Deng
et al., 2022). Thus, the entanglement of object intrinsics and extrinsics substantially reduces the
sample efficiency and hinders systematic generalization.

In this work, we propose unsupervised discovery of Object-Centric neural Fields (uOCF). uOCF
learns to infer 3D object-centric scene representations from a single image. Unlike existing methods,
uOCF focuses on learning the intrinsics of objects and models the extrinsics separately. As shown
in Figure 1, this design enables uOCF to generalize to real-world scenes using our object-centric
prior learning and object-centric sampling techniques. We train uOCF on sparse multi-view images
without annotations. During inference, uOCF generates object-centric neural radiance fields with
their 3D locations explicitly estimated, as well as a background radiance field.

To evaluate our approach, we introduce new challenging datasets for 3D object discovery, including
two real kitchen datasets and a synthetic room dataset. The two real datasets feature varied kitchen
backgrounds and objects from multiple categories. The synthetic room dataset features chairs with
diverse, realistic shapes and textures. Across all these datasets, uOCF offers high-fidelity discovery

1



Under review as a conference paper at ICLR 2024

Reconstruction (ours)

Unseen
input image

Rearrangement (ours)Reconstruction (uORF) Insertion (ours)

Figure 1: We propose unsupervised discovery of Object-Centric neural Fields (uOCF), which infers factorized
3D scene representations from an unseen real image, thus enabling scene reconstruction and manipulation from
novel views. We compare uOCF to the state-of-the-art method uORF (Yu et al., 2022).

of object-centric neural fields, allowing applications such as unsupervised 3D object segmentation
and scene manipulation from a real image. Remarkably, uOCF’s generalizability even facilitates
zero-shot 3D object discovery on images with unseen objects.

In summary, our contributions are threefold: First, we highlight the previously overlooked role of
object-centric modeling in unsupervised 3D object discovery and introduce unsupervised discovery
of Object-Centric neural Fields (uOCF), a novel approach that effectively disentangles object intrinsic
properties from their 3D locations. Second, to achieve such disentanglement and perform high-fidelity
reconstruction, we propose object-centric prior learning and object-centric sampling techniques.
Finally, we collect three challenging datasets, namely Room-Texture, Kitchen-Easy, and Kitchen-
Hard. Our uOCF demonstrates its exceptional performance compared with existing methods on these
datasets, even unlocking zero-shot single-image object discovery on unseen objects.

2 RELATED WORKS

Unsupervised Object Discovery. Prior to the rise of deep learning, traditional methods for object
discovery (often referred to as co-segmentation) primarily aimed at locating visually similar objects
across a collection of images (Sivic et al., 2005; Russell et al., 2006), where objects are defined as
visual words or clusters of patches (Grauman & Darrell, 2006; Joulin et al., 2010). This clustering
concept was later incorporated into deep learning techniques for improved grouping results (Li et al.,
2019; Vo et al., 2020). The incorporation of deep probabilistic inference propelled the field towards
factorized scene representation learning (Eslami et al., 2016). These methods decompose a visual
scene into several components, where objects are often modeled as latent codes that can be decoded
into image patches (Kosiorek et al., 2018; Crawford & Pineau, 2019; Jiang et al., 2020; Lin et al.,
2020), scene mixtures (Greff et al., 2016; 2017; 2019; Burgess et al., 2019; Engelcke et al., 2019;
Locatello et al., 2020; Biza et al., 2023; Didolkar et al., 2023), or layers (Monnier et al., 2021).
Despite their efficacy in decomposing visual scenes, they do not model the objects’ 3D nature.

To model the 3D nature of scenes and objects, several methods have tried to learn 3D-aware rep-
resentations from multi-view images of a single-scene (Liang et al., 2022) or of large datasets for
generalization (Eslami et al., 2018; Chen et al., 2020; Sajjadi et al., 2022). The latest research empha-
sizes the single-image inference of object-centric factorized scene representations (Stelzner et al.,
2021; Yu et al., 2022; Smith et al., 2023). Notably, Yu et al. (2022) propose unsupervised discovery
of object radiance fields (uORF) from a single image. Later works improve the efficiency (Smith
et al., 2023) and segmentation (Jia et al., 2023). However, their object representations suffer from
entangled extrinsic properties and limited generalizability to complex real scenes. Contrasting these,
our approach allows high-quality inference on real images by introducing object-centric modeling.

Scene Decomposition. Decomposing visual scenes on an object-by-object basis and estimating their
semantic/geometric attributes has been explored in several recent works (Wu et al., 2017; Yao et al.,
2018; Kundu et al., 2018; Ost et al., 2021). Some approaches, like AutoRF (Müller et al., 2022),
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Figure 2: With a single forward pass, uOCF processes a single image input to infer a set of object-centric
radiance fields along with their 3D locations, as well as a background radiance field. uOCF is trained on sparse
multi-view images of a collection of scenes and uses a single image as input during inference.

successfully reconstruct specific objects (e.g., cars) from annotated images. Others decompose visual
scenes into the background and individual objects represented by neural fields (Yang et al., 2021;
Wu et al., 2022). Though our study is relevant to these works, we emphasize unsupervised learning,
negating the requirement for object annotations.

Neural Fields. Neural fields have revolutionized 3D scene modeling. Early works have shown
promising geometry representations (Sitzmann et al., 2019; Park et al., 2019). The seminal work by
Mildenhall et al. (2020) on neural radiance fields has opened up a burst of research on neural fields.
We refer readers to recent survey papers (Tewari et al., 2020; Xie et al., 2022) for a comprehensive
overview. Particularly, compositional generative neural fields such as GIRAFFE (Niemeyer &
Geiger, 2021) and others (Nguyen-Phuoc et al., 2020; Wang et al., 2023b) also allow learning object
representations from image collections. Yet, they target unconditional generation and cannot tackle
inference (Yu et al., 2022).

3 APPROACH

Given a single input image, our goal is to infer object-centric neural radiance fields (i.e., each
discovered object is represented in the local object coordinate frame rather than the world frame or
the viewer frame) and the positions of the objects in the 3D scene. The object-centric design not
only promotes generalizability due to representation invariance but also facilitates the incorporation
of two novel techniques, namely object-centric prior learning and object-centric sampling. These
techniques further enhance generalization to complex scenes and improve reconstruction fidelity. In
the following, we provide an overview of our approach and then introduce the technical details.

3.1 OVERVIEW

As shown in Figure 2, our model consists of an encoder, a latent extraction module, and a decoder.

Encoder. From an input image I, the encoder extracts two sets of feature maps fg ∈ R(H·W )·C1 and
fl ∈ R(H·W )·C2 using two sub-modules, E1 and E2, where H and W are the height and width of
the feature maps, and C1 and C2 represent the number of channels. Specifically, E1 extracts global
features using a frozen DINOv2-ViT (Oquab et al., 2023) followed by two convolutional layers, while
E2 is a shallow U-Net that emphasizes local features, i.e., fg = E1(I) and fl = E2(I).

Latent Extraction Module. The latent extraction module infers the latent representations and
positions of objects in the underlying 3D scene from the obtained feature map. We assume the
scene is composed of a background environment and no more than K foreground objects. Therefore,
the output consists of a background latent z0 and a set of paired foreground latents and positions
{zi, pwd

i }Ki=1, where pwd
i ∈ R3 denotes a position in the world frame.

Decoder. Our decoder employs the conditional NeRF formulation g(x|z), comprising two MLPs: gb
for the background environment and gf for foreground objects. We render each foreground object
within its object-centric frame and then compose them into a holistic scene.

3.2 OBJECT-CENTRIC MODELING

Our latent inference module is built upon the Slot Attention (SA) (Locatello et al., 2020) framework
enhanced with background awareness (Yu et al., 2022) (B-SA). B-SA features an iterative competition
between a set of slot latent (slotb ∈ R1×Ds , slotsf ∈ RK×Ds) over the input queries (inputs ∈
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RN×Di , N = H ·W ). In each training step, B-SA begins by sampling the background and foreground
slot latents from two Gaussian distributions, each with a learnable mean and variance:

slotb ∼ N (µb, diag(σb)), slotfi ∼ N (µf , diag(σf )), and slotsf =

 slotf1
· · ·

slotfK

 . (1)

The competition between slots is then represented via the attention mechanism:

attni,j =
exp(Mi,j)∑
k exp(Mi,k)

, where M =
1√
Ds
K(inputs) ·

[
Qb(slotb)

Qf (slotsf )

]T
∈ RN×(K+1), (2)

and with K,Qb,Qf being learnable linear functions. Based on the attention weights, the update
signals for the slots are set as a weighted mean of the input tokens, i.e.,

updatesb = (W [:, 0])T ·V(inputs) ∈ R1×Ds , updatesf = (W [:, 1:])T ·V(inputs) ∈ RK×Ds , (3)

where Wi,j =
attni,j∑
l attnl,j

is the attention map normalized over the spatial dimension, and V is a
linear function. Finally, slots are updated via the Gated Recurrent Unit (GRU) (Cho et al., 2014):
slotb ← GRU(slotb,updatesb) and slotsf ← GRU(slotsf ,updatesf ). This procedure is repeated
for T iterations, finally delivering the background latent z0 and foreground latents {zi}Ki=1.

Object-Centric Latent Inference. We assign a normalized image coordinate pimg
i ∈ [−1, 1]2 with

learnable initialization to each slot, then iteratively update them to obtain the final slot positions.
To better exploit the position information, we leverage the slot-specific positional encoding as
proposed by Biza et al. (2023), which is defined as Eposi := concat([Eabs− pimg

i , pimg
i −Eabs]), with

Eabs ∈ RN×2 being the normalized 2D grid. Then, we re-write M in Eq. (2) as:

M =
1√
Ds


Qb(slotb) · Kb(inputs + g(Eabs))T
Qf (slotf1 ) · Kf (inputs + g(Epos1 ))T

· · ·
Qf (slotfK) · Kf (inputs + g(EposK ))T


T

∈ RN×(K+1), (4)

where Kb,Kf are linear functions and g is an MLP. In this formulation, queries (slotb and slotsf ) are
attended by slot-specific keys and values with position information included.

We compute the update signals following Eq. (3). Then, the slot’s position on the image is formulated
as the weighted mean of attention over the Eabs, complemented by a bias term to handle occlusion:

pimg
i = Eabs · attn[:, i] + tanh(h(attn[:, i])) ∗ α, i = 1, · · · ,K (5)

where h : RN → R2 is a linear function, and α = 0.2 serves as a scaling hyperparameter.

In each iteration, we first compute the positional encoding and the attention map, then update the slot
latent and location. Finally, we project the slot location from the input image (pimg

i ) onto the ground
plane of the world coordinates to obtain pwd

i . We provide more details in Appendix C.1.

Compositional Neural Rendering. With the positions of foreground slots, we put objects in
the object-centric rather than the viewer-centric frame, thereby obtaining the object-centric neural
fields. Technically, for each query point x in world coordinates, we translate it to the ith slot’s
object-centric frame by first subtracting the slot position and then rotating it by the input camera
view’s rotation matrix R, i.e., xi = R · (x − pwd

i ). We then retrieve the color and density of x
in the foreground radiance fields as (ci, σi) = gf (xi|zi) and in the background radiance field as
(c0, σ0) = gb(x|z0). These values are aggregated into the scene’s composite density and color (c, σ)
using density-weighted means, defined as:

σ =
∑
i≥0

ωiσi, c =
∑
i≥0

ωici, where ωi =
σi∑
j≥0 σj

. (6)

Finally, the color C(r) of a camera ray r(t) = o+ r(t) is determined using the discretized volume
rendering technique introduced by Mildenhall et al. (2020). Our pipeline is trivially differentiable,
allowing backpropagation through all parameters simultaneously.
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Figure 3: (a): The object-centric prior learning. We first train our model on single-object synthetic scenes to
learn object intrinsic priors, then on multi-object synthetic scenes to learn to discover objects and their positions,
and finally train it on real scenes. (b): The object-centric sampling. We drop out the samples distant from the
object position for efficient sampling.

Discussion on Extrinsics Disentanglement. An object’s canonical orientation is ambiguous without
assuming its category (Wang et al., 2019). Thus, we choose not to disentangle objects’ orientation
since we target category-agnostic object discovery. Moreover, we empirically find that our model
effectively learns objects’ scale and orientation after disentangling their position (detailed below and
in Appendix B). Therefore, we choose only to disentangle the position for generality.

Proof of Concept. We conduct a toy experiment to validate uOCF’s invariant object representations.
Further, we observe that uOCF has learned objects’ scale and orientation, as demonstrated by
interpolating the representations of two identical objects with different orientations and scales to
obtain transitional results. Please refer to Appendix B for visualization and detailed analysis.

3.3 OBJECT-CENTRIC PRIOR LEARNING AND SAMPLING

This section introduces object-centric prior learning to enhance generalizability to complex real
scenes and object-centric sampling to improve reconstruction fidelity. Both techniques are enabled by
object-centric modeling. Please refer to Appendix E.1 for ablation studies and detailed discussions.

Object-Centric Prior Learning. The lack of inherent object priors complicates unsupervised object
discovery in complex real-world scenes. To address this, we have developed a three-stage training
pipeline that acquires object priors from synthetic images, as illustrated in Figure 3(a). Initially,
the model learns the fundamentals of object-centric NeRFs, focusing on principles such as physical
coherence (Spelke, 1990), which is vital for unsupervised segmentation (Chen et al., 2022). The next
stage enhances the model’s ability to predict object positions and segregate them into individual slots,
preparing it for complex real-world scenarios. The final stage involves training on real-world scenes.

Notably, during the first two stages, the model is trained on synthetic datasets (which can be easily
synthesized) to learn general object priors agnostic to the real-world dataset’s object categories. For
example, as detailed in Section 4, object priors learned from synthetic chairs effectively apply to
dinnerware in real kitchen scenes. Further supporting this approach, in Appendix E.1, we demonstrate
that using the simplistic CLEVR dataset (colored primitives like cubes and spheres) for object prior
learning still yields satisfactory results.

Object-Centric Sampling. To further improve the reconstruction quality, we leverage the object-
centric frame to concentrate the sampled points in proximity to objects, as illustrated in Figure 3(b).
Specifically, after a few training epochs, we start dropping distant samples from the predicted object
positions when the model learns to distinguish the foreground objects and predict their positions.
This straightforward approach enables us to quadruple the number of samples with the same amount
of computation, leading to significantly improved background reconstruction quality.

3.4 MODEL TRAINING

Input Features. Recall that our encoder produces two sets of feature maps: fg and fl. Given that fg
is extracted by a pre-trained ViT and contains more global information, we employ fg as the “inputs”
for the latent extraction module. Then, we concatenate the output of the latent extraction module
with the attention-weighted mean of fl to derive the final slot latents {zi}Ki=0. This design balances
the global and local features while maximizing the utility of pre-trained models.
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(a) Room-Texture (b) Kitchen-Easy (c) Kitchen-Hard
Figure 4: Samples from our datasets.

Table 1: Scene segmentation and novel view synthesis result on Room-Texture. Comparison methods are
uORF (Yu et al., 2022), QBO (Jia et al., 2023), and COLF (Smith et al., 2023).

Method Scene segmentation Novel view synthesis
ARI↑ FG-ARI↑ NV-ARI↑ PSNR↑ SSIM↑ LPIPS↓

uORF 0.649 0.108 0.587 24.37 0.688 0.251
QBO 0.674 0.399 0.585 25.07 0.713 0.222
COLF 0.202 0.373 0.024 22.17 0.630 0.555
uOCF (ours) 0.802 0.785 0.747 28.96 0.803 0.121

Loss Functions. In all training stages, we train our model across a collection of scenes, each with
sparse multi-view images. Specifically, the model receives an image as input, infers the objects’ latent
representations and positions, renders multiple views from the reference poses, and compares them to
the reference images to calculate the losses. Model supervision is achieved using the reconstruction
loss ℓrecon = ||I − Î ||22 and the perception loss ℓperc (Johnson et al., 2016) between the input image
I and the reconstructed image Î .

To minimize inconsistencies between the inferred positions of the same object when viewed from
different directions, we introduce a position loss ℓpos = ||x−x′||22 during the first training stage, where
x and x′ denote the inferred positions of the foreground object from two different viewing directions.
In addition, we incorporate optional depth ranking (Wang et al., 2023a) and occlusion (Yang et al.,
2023) regularizers to mitigate the commonly observed floating artifacts in few-shot NeRFs.

The overall loss function is formulated as follows:

Lfirst = ℓrecon + λpercℓperc + λposℓpos (first stage) (7)
Lsecond = ℓrecon + λpercℓperc (second stage) (8)
Lthird = ℓrecon + λpercℓperc + λregℓreg (third stage) (9)

4 EXPERIMENTS

We evaluate our method on object segmentation, novel view synthesis, and scene manipulation.
Please refer to Appendix D for limitation analysis and Appendix E for more experimental results.

Data. We curate one synthetic and two real-world datasets. Each synthetic scene contains multiple
objects with random sizes, positions, and orientations, rendered from 4 directions toward the center.
Each real-world scene contains multiple objects at random positions and is captured from 3 poses
(for tabletop scenes) or 2 poses (for kitchen backdrops) using mirrorless cameras.

Room-Texture. This synthetic dataset includes 324 chair models from the ABO dataset. Each scene
contains four objects set against a background randomly chosen from a collection of floor textures.
There are 5000 scenes for training and 100 scenes for evaluation.

Kitchen-Easy. This dataset features scenes with single-color, diffuse dinnerware. Scenes are divided
into two categories: the first has a plain tabletop background, and the second introduces a more
complex kitchen backdrop. There are 730 scenes for training and 100 for evaluation.

Kitchen-Hard. This dataset comprises scenes featuring textured, specular dinnerware. Similar
to Kitchen-Easy, the first half presents a plain backdrop, while the latter has a complex kitchen
background. There are 324 scenes for training and 56 for evaluation.

Figure 4 shows some samples drawn from our datasets and more details are provided in Appendix C.2.

Qualitative Metrics. We use three variants of the Adjusted Rand Index (ARI) for scene segmentation:
the conventional ARI (calculated on all input image pixels), the Foreground ARI (FG-ARI, calculated
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Table 2: Novel view synthesis results on Kitchen-Easy and Kitchen-Hard.

Method Kitchen-Easy Kitchen-Hard
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

uORF 26.38 0.816 0.089 19.23 0.602 0.336
QBO 27.30 0.826 0.073 19.78 0.639 0.318
COLF 20.96 0.662 0.333 18.30 0.561 0.397
uOCF (ours) 28.68 0.856 0.051 28.29 0.842 0.069

Input 
view

Novel 
view

Input 
view

Novel 
view

uOCF (ours)GT image uORF QBO COLF

N/A

N/A

GT segment.

Figure 5: Scene segmentation qualitative results. Novel view images are for reference only.

on foreground input image pixels), and the Novel View ARI (NV-ARI, calculated on novel view
pixels). We report the PSNR, SSIM, and LPIPS metrics for novel view synthesis. All scores are
computed on images of resolution 128× 128.

Baselines. We compare our method with uORF (Yu et al., 2022), QBO (Jia et al., 2023), and
COLF (Smith et al., 2023). We train one model for each dataset. During testing, the model uses a
single image with known camera intrinsics as input and outputs reconstruction/segmentation results
from target poses. Further details are provided in Appendix C.3. We increase the latent dimensions
and training iterations for the baselines for fair comparisons, thus maintaining similar computational
costs across all models. We choose the number of foreground slots K = 4 across all methods.

4.1 OBJECT SEGMENTATION IN 3D

We begin our evaluation by object segmentation. We render a density map di for each slot i, and then
assign each pixel p a segmentation label sp = argmaxKi=0d

i
p.

The results are presented in Table 1 and Figure 5. Notably, none of the previous methods could
produce reasonable segmentation results in these complex scenes, resulting in extremely low FG-ARI
scores. Specifically, uORF binds all objects to the background on Kitchen-Hard, resulting in empty
foreground segmentation; COLF produces meaningless results on novel views as the light field does
not guarantee multi-view consistency. In contrast, uOCF renders different slots in distinct object-
centric frames, making it better distinguish the foreground objects. As a result, uOCF consistently
produces satisfactory scene segmentation results, demonstrating its effectiveness in learning object-
centric representations. Moreover, uOCF can even handle scenes where objects occlude each other.
Please see Appendix E.7 for more results.
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Table 3: Quantitative object translation and removal results on Room-Texture.

Method Object translation Object removal
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

uORF 23.65 0.654 0.284 23.81 0.664 0.282
QBO 25.21 0.700 0.226 24.58 0.698 0.247
uOCF (ours) 28.74 0.805 0.126 30.04 0.829 0.109

Object removalObject translation

Input image

Input 
view

Novel 
view

uOCF (ours)

Input image

Input 
view

Novel 
view

uORF QBO uORFuOCF (ours) QBO
Figure 6: Qualitative results of single-image 3D scene manipulation.

4.2 NOVEL VIEW SYNTHESIS

We further evaluate our approach through novel view synthesis. For this evaluation, we input a single
image from each test scene while the remaining images serve as references.

The results can be found in Tables 1, 2, and Figure 7. Our method outperforms them by a large margin
across all metrics compared to existing approaches. Importantly, while previous methods often fail to
recover foreground objects, our approach consistently provides accurate scene reconstructions.

4.3 SCENE MANIPULATION IN 3D

This section evaluates uOCF’s ability in scene manipulation. Being able to infer objects’ positions,
uOCF readily supports the following scene editing functions: 1) object translation, achieved by
modifying the object’s position sent to the decoder, and 2) object removal, achieved by excluding
certain objects during compositional rendering. In the following, we first quantitatively evaluate
uOCF on the Room-Texture dataset, followed by qualitative evaluations on the kitchen datasets.

Quantitative Evaluation. For quantitative evaluation, we randomly select an object within the
scene and relatively shift its position (object translation) or remove it (object removal). We render
images from four viewpoints for every scene, along with the ground truth mask of the altered object.
During testing, we determine the object to manipulate by selecting the object that has the highest IoU
score with the ground truth mask. Note that, while existing methods are limited to relative position
adjustment, our approach uniquely allows absolute translations due to the disentanglement of object
positions and representations. As shown in Table 3, uOCF outperforms all compared methods across
all metrics, justifying its effectiveness in scene manipulation.

Qualitative Evaluation. Figure 6 offers the qualitative scene manipulation results. As shown, uORF
merges all objects into the background, making scene manipulation unfeasible (hence, we display the
un-manipulated images); QBO fails to distinguish foreground objects correctly, resulting in messy
manipulation results (see Figure 22 for a visual breakdown of each slot). In contrast, uOCF delivers
much more reasonable and visually satisfactory results compared to prior methods. For additional
visualization results, please refer to the supplementary video.
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Figure 7: Novel view synthesis qualitative results on Kitchen-Easy (top rows) and Kitchen-Hard (bottom rows).
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QBO

uORF

Reconstruction

Figure 8: Ablation study on the zero-shot settings. We load the model trained on Kitchen-Easy and perform
inference on an image from Kitchen-Hard after a fast test-time optimization.

4.4 GENERALIZABILITY: FEW-SHOT AND ZERO-SHOT OBJECT DISCOVERY

We finally explore the generalizability of uOCF. Unlike prior experiments where the entire dataset
was used for training, we now consider two more challenging scenarios: 1) Few-shot object discovery,
where we train the model using 10/50/100 scenes and evaluate on unseen scenes, and 2) Zero-shot
object discovery, where we load the model trained on Kitchen-Easy and perform inference on an
image from Kitchen-Hard after a fast test-time optimization for 500 iterations.

We present the zero-shot results in Figure 8 and defer further results and analysis on few-shot settings
to Appendix E.2. Notably, whereas previous methods struggle to generalize to unseen objects,
uOCF demonstrates outstanding generalizability, only requiring a very fast test-time optimization to
generalize from one dataset to new, more complex objects.

5 CONCLUSION

In this paper, we identify the significance of object-centric modeling for unsupervised 3D object
discovery, especially when generalizing to complex real-world scenarios, and propose unsupervised
discovery of Object-Centric neural Fields (uOCF) to instantiate this concept. To evaluate our
approach, we collect three datasets, each with scenes containing objects of multiple categories set
against complex backgrounds. Our results indicate that the object-centric design, when combined
with appropriate training strategies, can substantially improve the generalizability of unsupervised
representation learning.
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REPRODUCIBILITY STATEMENT

To promote reproducibility, upon the acceptance of this paper, we will make available a comprehensive
suite of resources. This includes the repository containing both training and test code, the entirety of
the three datasets, as well as the pre-trained models on these datasets. Additionally, we will provide
detailed guidelines for utilizing our code on new datasets. For further in-depth understanding and
ease of re-implementation, we have elaborated on the details for re-implementation in Appendix C.3.
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Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Christopher Burgess, Daniel
Zoran, Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object representation
learning with iterative variational inference. In ICML, 2019. 2

Baoxiong Jia, Yu Liu, and Siyuan Huang. Improving object-centric learning with query optimization.
In ICLR, 2023. 1, 2, 6, 7, 24

Jindong Jiang, Sepehr Janghorbani, Gerard de Melo, and Sungjin Ahn. Scalor: Generative world
models with scalable object representations. In ICLR, 2020. 2

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
super-resolution. In ECCV, 2016. 6

Armand Joulin, Francis Bach, and Jean Ponce. Discriminative clustering for image co-segmentation.
In CVPR, 2010. 2

Adam R Kosiorek, Hyunjik Kim, Ingmar Posner, and Yee Whye Teh. Sequential attend, infer, repeat:
Generative modelling of moving objects. In NeurIPS, 2018. 2

Abhijit Kundu, Yin Li, and James M Rehg. 3d-rcnn: Instance-level 3d object reconstruction via
render-and-compare. In CVPR, 2018. 2

Bo Li, Zhengxing Sun, Qian Li, Yunjie Wu, and Anqi Hu. Group-wise deep object co-segmentation
with co-attention recurrent neural network. In CVPR, 2019. 2

Shengnan Liang, Yichen Liu, Shangzhe Wu, Yu-Wing Tai, and Chi-Keung Tang. Onerf: Unsupervised
3d object segmentation from multiple views. arXiv:2211.12038, 2022. 2

Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei Deng, Jindong
Jiang, and Sungjin Ahn. Space: Unsupervised object-oriented scene representation via spatial
attention and decomposition. In ICLR, 2020. 2

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot attention.
In NeurIPS, 2020. 2, 3

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020. 3,
4

Tom Monnier, Elliot Vincent, Jean Ponce, and Mathieu Aubry. Unsupervised layered image decom-
position into object prototypes. In ICCV, 2021. 2

Norman Müller, Andrea Simonelli, Lorenzo Porzi, Samuel Rota Bulo, Matthias Nießner, and Peter
Kontschieder. Autorf: Learning 3d object radiance fields from single view observations. In CVPR,
2022. 2

11



Under review as a conference paper at ICLR 2024

Thu H Nguyen-Phuoc, Christian Richardt, Long Mai, Yongliang Yang, and Niloy Mitra. Blockgan:
Learning 3d object-aware scene representations from unlabelled images. In NeurIPS, 2020. 3

Michael Niemeyer and Andreas Geiger. Giraffe: Representing scenes as compositional generative
neural feature fields. In CVPR, 2021. 3
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A SUPPLEMENTARY DOCUMENT OVERVIEW

This supplementary document is structured as follows: We commence with the proof of concept
in Appendix B. Subsequently, Appendix C provides comprehensive implementation details. Our
discussion then progresses to our approach’s limitations and potential failure modes in Appendix D.
Finally, we present additional experiments in Appendix E. Accompanying this document is an
overview video attached in the supplementary file.

B PROOF OF CONCEPT

We conduct a toy experiment (Figure 9) to demonstrate that our model has successfully learned object
position, rotation, and scale. In this experiment, we begin with two images (input 1 and input 2) of a
chair placed at the scene’s center, exhibiting different sizes (on the left) or rotation angles (on the
right), all captured from the same viewing direction.

We extract the object latents from these images, interpolate them, and then send the interpolated
latents to the decoder. As shown between the two input images, we observe a smooth transition in
both object size and rotation, indicating that the latent representation has effectively captured the
scale and rotation of objects.

In the second row, we placed the chairs in different positions. As shown on the right, we obtained a
smooth transition again, proving that our model could disentangle object positions from the latent
representation.

Input 1 Input 2Latent interpolation 

size: big → small rotation:  0 → 𝜋/2

Input 1
Rotation: 𝜋/2

Position≠(0, 0)

Input 2
Rotation: 0

Position≠(0, 0) Latent linear interpolation & position translation

Input 1 Input 2Latent interpolation 

Figure 9: Proof of concept.

C IMPLEMENTATION

C.1 MODEL ARCHITECTURE

Dual-Route Feature Map Extraction. We employ a dual-route encoder to extract both global and
local features jointly. As shown in Figure 10(c), the local route is a trainable U-Net, while the global
route incorporates a frozen DINOv2 ViT, followed by two convolutional layers. A ReLU activation,
except the last one, follows each convolutional layer. Note that we use fg as the “inputs” to the latent
extraction module, and then concatenate the output of the latent extraction module with the attention
weighted-mean of fl to derive the final slot latents {zi}Ki=0.

Latent Extraction Module. We provide an illustration of our latent extraction module in Figure 10(a).
Note that we assume all objects are on a ground plane in the world frame. Thus, the object’s position
on the image plane can be directly mapped to its position in the world coordinates. See an illustration
in Figure 10(b). This assumption is reasonable in many cases, such as outdoor scenes, indoor
navigation scenes, and robotic tabletop manipulation scenes. Additionally, one may employ depth
sensors or monocular metric depth estimators (Bhat et al., 2023) to predict the distance between the
object and the camera, thus eliminating this assumption.

C.2 DATA COLLECTION

This section introduces the details of our datasets.
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(c) Encoder architecture

Figure 10: (a): Illustration of our slot attention module. (b): Compute the object’s position in the world
coordinates based on its position on the image. (c): Detailed architecture of our dual-route encoder module.

Room-Texture. In Room-Texture, objects are chosen from 324 ABO objects (Collins et al., 2022)
from the “armchair” category. In the single-object dataset, we create 4 scenes for each object,
resulting in a dataset of 1296 scenes. The multiple-object dataset includes 5,000 scenes for training
and 100 for evaluation, each containing 4 different objects.

Kitchen-Easy. In Kitchen-Easy, objects are diffuse and have no texture. The dataset comprises 16
objects and 6 tablecloths in total. We captured 3 images for each tabletop scene and 2 for each kitchen
scene. This dataset contains 730 scenes for training and 100 for evaluation, with each containing 4
objects. We calibrate the cameras using the OpenCV library.

Kitchen-Hard. In Kitchen-Hard, objects are specular, and the lighting is more complex. The dataset
comprises 12 objects and 6 tablecloths, and the other settings are identical to Kitchen-Easy. This
dataset contains 324 scenes for training and 56 scenes for evaluation.

C.3 TRAINING CONFIGURATION

This section briefly discusses the training configuration of uOCF.

We employ Mip-NeRF (Barron et al., 2021) as our NeRF backbone and estimate the depth maps by
MiDaS (Ranftl et al., 2022). An Adam optimizer with default hyper-parameters and an exponential
decay scheduler is used across all experiments. The initial learning rate for all stages is set to
0.0003. Loss weights are set to λperc = 0.006, λpos = 0.1, λdepth = 1.5, and λocc = 0.1, where
λregℓreg = λdepthℓdepth + λoccℓocc.

Coarse-To-Fine Progressive Training. We employ a coarse-to-fine strategy in our second training
stage to facilitate training at higher resolutions. Reference images are downsampled to a lower
resolution during the coarse training stage and replaced by image patches randomly cropped from the
original high-resolution images. Additionally, to stabilize the training procedure, we introduce ℓperc
and ℓdepth progressively to the training objective instead of incorporating them from the beginning.

Training Configuration on Room-Texture. During stage 1, we train the model for 200 epochs
directly on images of resolution 128× 128. We enforce the locality constraint (a bounding box for
foreground slots) (Yu et al., 2022) during the first 50 epochs. We start with the reconstruction loss
only, then add the perceptual and position losses at the 50th, 100th epoch, respectively. During stage
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Input
view

Novel
view

(a) Failure on reconstruct texture (b) Error in position prediction

GT Recon. GT Recon.

Figure 11: Failure case visualizations. Our method may fail to reconstruct intricate object texture (a) or predict
biased object position.

2, we train the model for 40 epochs on the coarse stage and another 40 on the fine stage. The two
stages use input images of resolution 64× 64 and 128× 128, respectively, and both stages use patch
size 64× 64. We start with the reconstruction loss only, then add the perceptual loss at the 10th epoch,
and start the object-centric sampling from the 20th epoch.

Training Configuration on Kitchen-Easy and Kitchen-Hard. On both kitchen datasets, we follow
the three-stage pipeline i.e., load the model pre-trained on Room-Texture. We train the model for
1250 epochs, where the fine stage starts at the 250th epoch. The coarse stage uses images of resolution
64× 64. For the fine stage, we use an input resolution of 128× 128 and a patch size of 64× 64 for
the first 750 epochs. Subsequently, we use a resolution of 256× 256 and a patch size of 80× 80 for
the next 250 epochs. We add the perceptual loss at the 100th epoch, start the object-centric sampling
from the 200th epoch, and add the depth loss at the 1000th epoch.

D LIMITATIONS AND FAILURE CASES

Limitation of Real Datasets. The kitchen datasets we have collected are still not complex enough
compared to in-the-wild scenes, as they all have a clean background with minimal noise. Besides,
the real objects have relatively simple textures and shapes. To address these drawbacks, future work
may incorporate more advanced 3D object representations to represent the objects in a more compact
and memory-friendly way. Generalizing our method to more complicated scenes is an interesting
research direction.

Limitation on Reconstruction Quality. Scene-level generalizable NeRFs (Yu et al., 2021; Sajjadi
et al., 2022; Yu et al., 2022) commonly face challenges in accurately reconstructing detailed object
textures. To address this limitation, we integrated the MipNeRF (Barron et al., 2021) backbone into
our approach and included the perceptual and depth losses. However, despite these enhancements,
our approach still encounters difficulty capturing extremely high-frequency details. As shown in
Figure 11(a), our method fails to replicate the mug’s detailed texture. Future research may benefit
from exploring more advanced NeRF backbones to further improve texture detail reconstruction.

Failure in Position Prediction. Our three-stage training pipeline, despite its robustness in many
situations, is not immune to errors, particularly in object position prediction. Complexities arise
due to occlusions between objects, where using the attention-weighted mean for determining object
positions can lead to inaccuracies. Although a bias term can rectify this in most instances (Figure 7),
discrepancies persist under a few conditions, as depicted in Figure 11(b).

E ADDITIONAL EXPERIMENTS

E.1 ABLATION STUDIES

Encoder Design. In this ablation study, we address two questions concerning our encoder design: (1)
Is the modification of the encoder (replacing the shallow U-Net with DINO) adequate for unsupervised
object discovery in complex real-world scenes? (2) Given the integration of the powerful DINO
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Method Scene segmentation Novel view synthesis
ARI↑ FG-ARI↑ NV-ARI↑ PSNR↑ SSIM↑ LPIPS↓

uORF 0.649 0.108 0.587 24.37 0.688 0.251
uORF-DINO 0.688 0.677 0.656 25.33 0.739 0.240
uORF-DR 0 0 0 25.38 0.698 0.322

uOCF-DINO 0.652 0.346 0.621 26.06 0.723 0.251
uOCF-IM 0.806 0.749 0.752 27.77 0.753 0.182
uOCF (ours) 0.802 0.785 0.747 28.96 0.803 0.121

Table 4: Ablation study for different encoder designs on Room-Texture. uORF-DINO and uORF-DR modify
the standard uORF by replacing its shallow U-Net encoder with the DINO encoder and our dual-route encoder,
respectively. The uOCF-DINO drops the U-Net route and utilizes the DINO encoder only, and uOCF-IM
incorporates DINO’s intermediate layer features instead of uOCF’s shallow encoder. Note that uORF-DR binds
all foreground objects to the background, leading to an ARI score of zero.

Method PSNR↑ SSIM↑ LPIPS↓
uORF (baseline) 19.23 0.602 0.336

Omit stage 1&2 19.67 0.565 0.568
Omit stage 2 24.52 0.769 0.157
Omit object-centric sampling 27.89 0.843 0.083

Adapt from CLEVR 27.32 0.833 0.092

uOCF (full) 28.29 0.842 0.069

Table 5: Ablation study for the training pipeline on Kitchen-Hard.

encoder, what is the rationale behind retaining a U-Net route? The answers to these questions are
presented in Table 4 and Figure 12.

Addressing the first question, our findings show that despite DINO’s efficacy in feature extraction,
merely replacing the shallow U-Net with DINO does not overcome the inherent limitation of uORF
in entangling the foreground from background elements. This is exemplified in uORF-DINO,
which tends to mix different objects’ parts into a single foreground slot akin to the original uORF.
Meanwhile, uORF-DR, featuring our dual-route encoder, incorrectly binds all foreground objects into
the background, leading to zero ARI scores. These results highlight the necessity of disentangling
object position from its intrinsic properties proposed in our method.

As for the second question, employing DINO exclusively for feature extraction (uOCF-DINO)
degrades both scene segmentation performance and scene reconstruction quality. This can be
attributed to the loss of object-specific details in the final DINO features, which fails to provide the
decoder with sufficient information about intra-category object differences. We also experimented
with substituting the U-Net route in our encoder with DINO’s intermediate features (uOCF-DR) but
still obtained comparably inferior results. As depicted in the third and fourth columns of Figure 12,
these approaches resulted in degraded object reconstruction visual qualities.

Training Pipeline. We then validate the efficacy of our three-stage object-centric training pipeline.
The first stage instructs the model on the fundamentals of an object-centric NeRF, such as the physical
coherence (Spelke, 1990)–a crucial aspect in unsupervised segmentation (Chen et al., 2022). The
subsequent stage refines the model’s ability to predict object positions and segregate them into
individual slots, thereby equipping it for handling complex real-world scenes.

In other words, although the objects in the two datasets might share a large domain gap, the learned
object priors are transferable. The main paper already presents the model’s adaptability from synthetic
chairs to actual dinnerware. To further validate this concept, we consider using the simple CLEVR
shapes (balls, cubes, and cylinders) for object prior learning, which maintains fairly good results, as
shown in Table 5.
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Figure 12: Ablation study for the encoder design. Results show that merely integrating DINO fails to address
the limitations of existing methods in complex scenes.
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Figure 13: Qualitative ablation study for the training pipeline on Kitchen-Hard. Removing either training stage
on the synthetic dataset significantly impairs performance, while omitting the object-centric sampling technique
results in a noticeable decline in visual quality.

As illustrated in Table 5 and Figure 13, omitting both synthetic stages leads to the model erroneously
associating the entire scene with the background slot, yielding significantly poorer results. Similarly,
excluding the second stage hampers the model’s ability to accurately identify all objects in a scene,
resulting in a substantial performance decline. We also present results from eliminating the object-
centric sampling strategy, which slightly negatively impacts the visual quality.

E.2 GENERALIZABILITY: FEW-SHOT AND ZERO-SHOT OBJECT DISCOVERY

Extending the discussions from Sec. 4.4, this section delves into the generalizability of uOCF. In
contrast to previous experiments that utilized the full Kitchen-Harddataset for training, we now
embark on a more challenging scenario. Here, the model is trained with a limited number of
scenes—specifically, 10, 50, or 100—and then evaluated on unseen scenes.

Figure 14 illustrates a notable trend: the reconstruction quality of uOCF deteriorates in correlation
with the reduction in the number of training scenes. Particularly, with an extremely limited training set,
the model struggles to differentiate objects from the background. This underscores the significance
of a substantial dataset size for effective unsupervised object discovery.

Furthermore, to assess the zero-shot generalizability of our model, we render images from the
complex indoor scene dataset HM3D (Ramakrishnan et al., 2021) and conduct zero-shot inference
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Figure 14: Ablation study on the few-shot settings. We decrease the number of scenes available during training.
The LPIPS values are computed between images of resolution 256× 256.
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Figure 15: Zero-shot inference on the HM3D (Ramakrishnan et al., 2021) dataset. Our method can discover and
segment the chair instances in the scene, thereby delivering plausible reconstruction results.

using the model pre-trained on Room-Texture. The results, as depicted in Figure 15, show that our
method can accurately identify and segment the chair instances in the scene and deliver plausible
reconstruction results.

E.3 RESULTS ON ROOM-DIVERSE

To comprehensively compare established methods, we further include results on the Room-
Diverse dataset as introduced in (Yu et al., 2022). This dataset is comprised of synthetic scenes
featuring a variety of foreground object shapes against diverse background visuals. Each scene
is constructed with four distinct chairs, whose shapes are randomly selected from a pool of 1,200
ShapeNet chair models (Chang et al., 2015). These chairs vary in size, position, and orientation.
The backgrounds are sampled from 50 different floor textures sourced from the web. The dataset
encompasses 5,000 scenes for training and 100 for testing. While we follow the official rendering
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Table 6: Scene segmentation and novel view synthesis result on Room-Diverse. Comparison methods are uORF,
uORF with DINO encoder (uORF-D), uORF with our dual-route encoder (uORF-DR), and QBO.

Method Scene segmentation Novel view synthesis
ARI↑ FG-ARI↑ NV-ARI↑ PSNR↑ SSIM↑ LPIPS↓

uORF 0.638 0.705 0.494 25.11 0.683 0.266
uORF-DINO 0.692 0.555 0.633 25.50 0.698 0.239
uORF-DR 0.742 0.653 0.680 26.00 0.707 0.209
QBO 0.724 0.716 0.618 24.49 0.680 0.182
uOCF (ours) 0.769 0.828 0.688 27.31 0.751 0.141

Input 
view

Novel 
view

GT uOCF (ours) uORF uOCF-DINO QBOuOCF-DR

Figure 16: Qualitative comparison results on Room-Diverse.

script provided by Yu et al. (2022), we introduce a greater degree of variation in the sizes of the
objects.

The quantitative results in Table 6 and the qualitative results in Figure 16 clearly demonstrate that
our method significantly surpasses current approaches, further justifying the effectiveness of our
approach.

E.4 ADDITIONAL EVALUATION METRICS

Following the analysis by Yang & Yang (2022), we extend our evaluation of scene segmentation by
employing the Average Precision (AP) metric. Specifically, we consider two kinds of APs: Input
view-AP for the input view and Novel view-AP for novel views, with the results detailed in 7. In
contrast to existing methods like uORF, which demonstrate notably low AP scores due to their
inability to accurately segregate foreground objects (as visualized in Figure 5), our method achieves
notably higher scores, highlighting the efficacy of our approach.

E.5 DISCUSSION ON THE NUMBER OF SLOTS

The above experiments are all conducted on scenes with exactly 4 objects for both training and
evaluation, with the number of slots K also set to 4. In this section, we first explore how uOCF
trained on scenes with 4 objects behaves on test scenes with less than 4 objects. Then, we discuss
the effect of K (the number of slots) in uOCF. Specifically, we consider randomizing the number
of objects in stage 2 (each scene contains 2∼4 chair instances) and setting the number of slots K
exceeds the maximum number of objects in the scene (K = 5). We use a new Room-Texture test set
for the latter two configurations for evaluation, with each scene containing 2∼4 objects.

Testing on Scenes with Fewer Objects. We train our model on scenes with exactly 4 objects and try
testing it on scenes with 3 objects. As depicted in Figure 17, in scenarios where the scene comprises
3 objects, it is observed that multiple slots may bind to a single object. This might be attributed to
all training scenes containing exactly 4 objects. However, the reconstructions maintain notably high
fidelity.

Randomized Number of Objects in Training Scenes. As shown in Tables 8, 9 and Figure 18,
uOCF performs reasonably well when trained on scenes with ≤ K(= 4) objects, justifying that the
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Figure 17: Qualitative results of uOCF on scenes with less than four objects.
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Metric uORF QBO COLF uOCF (ours)

Input view-AP 0.005 0.359 0.315 0.782
Novel view-AP 0.001 0.195 0.015 0.770

Table 7: Quantitative scene segmentation results using the AP metric on Room-Texture.

outstanding performance of uOCF in real-world scenes is not because of the identical number of
objects between stages 2/3. In other words, applying the “object prior” learned from synthetic scenes
to real-world scenes neither requires two datasets to have the same number of objects nor K to equal
the number of objects in the scene. We can still assume a shared maximum number of objects of the
two datasets, similar to previous unsupervised object discovery literature.

Moreover, empty slots now appear after using a training set consisting of a randomized number
of objects (please see Figure 18), overcoming the over-segmentation problem. Regarding under-
segmentation, in Figure 12, we observe that only our model (both the previously trained model
and the newly trained model) can overcome under-segmentation, whereas previous methods fail to
segment all the chair details.

Table 8: Quantitative scene segmentation and novel view synthesis result on Room-Diverse with a different
number of slots (K) and a random number of objects in the scene. The line with gray denotes the original
configuration. Each scene for evaluation contains 2∼4 objects. We compare the training results of 15 epochs
(75000 iterations), where coarse and fine training stages last 10 and 5 epochs, respectively.

Method Scene segmentation Novel view synthesis
ARI↑ FG-ARI↑ NV-ARI↑ PSNR↑ SSIM↑ LPIPS↓

K = 4,n obj = 4 0.819 0.643 0.743 28.68 0.803 0.139
K = 4,n obj ∈ {2, 3, 4} 0.828 0.743 0.756 30.11 0.831 0.112
K = 5,n obj ∈ {2, 3, 4} 0.819 0.559 0.769 28.72 0.805 0.132

Table 9: Quantitative scene segmentation and novel view synthesis result on Kitchen-Hard with a different
number of slots (K) and a random number of objects in the synthetic scenes of stage 2. The line with gray
denotes the original configuration. We compare the training results of 150 epochs (48600 iterations) of the
coarse training stage.

Method PSNR↑ SSIM↑ LPIPS↓
K = 4,n obj = 4 27.36 0.820 0.140
K = 4,n obj ∈ {2, 3, 4} 27.10 0.825 0.131
K = 5,n obj ∈ {2, 3, 4} 28.26 0.837 0.120

E.6 ADDITIONAL REAL-WORLD RESULTS

Besides Kitchen-Easy and Kitchen-Hard, we gather an additional real-world dataset of relatively low
difficulty, namely “Planters”. Sample images of this dataset are shown in Figure 19.

Planters. This dataset includes scenes with four plant pots or vases arranged on a tabletop decorated
with tablecloths. We gathered 9 plant pots, 8 vases, and 6 tablecloths and captured 745 scenes for
training and 140 for evaluation, each with 3 images from different poses. We train the model for 750
epochs, where the fine stage starts at the 250th epoch. The coarse stage and fine stage use images of
resolution 64× 64 and 128× 128, respectively, and both stages use patch size 64× 64. We add the
perceptual loss from the 100th epoch and start the object-centric sampling from the 200th epoch.

As shown by the quantitative in Table 10 and qualitative results in Figure 20, our method significantly
surpasses previous methods and delivers scene reconstruction and novel view synthesis results with
much higher visual quality.

E.7 ADDITIONAL QUALITATIVE RESULTS

Transparent Objects. We first apply our model to handle (semi-)transparent objects during test time.
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Figure 18: Qualitative scene segmentation and novel view synthesis result on Room-Texture and Kitchen-
Hard with a different number of slots (K) and a random number of objects in the synthetic dataset.
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Method PSNR↑ SSIM↑ LPIPS↓
uORF 24.49 0.748 0.163
uORF-QBO 28.09 0.847 0.108
COLF 19.22 0.588 0.464
uOCF (ours) 29.00 0.864 0.062

Table 10: Quantitative results on the Planters dataset.

Figure 19: Sample images of the Planters dataset.

As shown in Figure 21, our model ignores transparency due to the absence of transparent objects in
its training dataset. However, it still demonstrates reasonable object segmentation and reconstruction
capabilities.

Single-Slot Visualizations. Next, we present the single-slot visualization for our scene manipulation
experiment (Sec. 4.3) in Figure 22. Notably, uORF (Yu et al., 2022) puts all objects within the
background slot, whereas QBO (Jia et al., 2023) produces identical results across all foreground
slots. Contrasting these, uOCF accurately differentiates between the foreground objects and the
background.

Scene Segmentation Visualizations. Afterward, we provide scene segmentation results on the
kitchen datasets in Figure 23. Unlike previous methods that merge all objects into the background
(uORF) or yield cluttered outcomes (QBO and COLF), uOCF consistently yields high-fidelity
segmentation results.

Novel View Synthesis Visualizations. Finally, we offer more qualitative results for novel view
synthesis in Figures 24 and 25. Our method produces much better results than previous methods
regarding visual quality.
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Figure 20: Qualitative comparison results on the Planters dataset.
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Figure 21: Reconstruction results of uOCF for transparent objects.
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Figure 22: Single slot reconstruction comparison results on Kitchen-Hard.
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Figure 23: Scene segmentation comparison results on the Room-Texture and Kitchen-Hard datasets.
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Figure 24: Additional qualitative comparison results on the Room-Texture dataset.
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Figure 25: Additional qualitative comparison results on the Kitchen-Hard dataset.
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