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ABSTRACT

The ability to process long contexts is crucial for many natural language processing
tasks, yet it remains a significant challenge. While substantial progress has been
made in enhancing the efficiency of attention mechanisms, there is still a gap in
understanding how attention heads function in long-context settings. In this paper,
we observe that while certain heads consistently attend to local information only,
others swing between attending to local and long-context information depending
on the query. This raises the question: can we identify which heads require long-
context information to predict the next token accurately? We demonstrate that it’s
possible to predict which heads are crucial for long-context processing using only
local keys. The core idea here is to exploit a simple model for the long-context
scores via second moment approximations. These findings unveil simple properties
of attention in the context of long sequences, and open the door to potentially
significant gains in efficiency.

1 INTRODUCTION

The landscape of large language models (LLMs) is rapidly evolving, with modern architectures
capable of generating text from vast contexts. Recent advances have led to a significant increase in
context window sizes, with Llama 3 Dubey et al. (2024), DeepSeekv3 Liu et al. (2024), and Gemini
Team et al. (2024a) supporting windows of at least 128k. However, long context modeling still
poses significant challenges Hsieh et al. (2024) in terms of both accuracy and the substantial cost of
processing long contexts in terms of memory and run-time compute. In spite of their importance, our
current comprehension of the attention mechanism in long-context tasks remains incomplete. This
work aims to address some of these knowledge gaps.

Despite the overwhelming complexity of state-of-the-art models, certain simple behaviors in the
attention mechanism are strikingly consistent. In particular, many forms of sparse behaviors have
been consistently observed, and exploited by numerous methods for efficient inference (see Section E).
Among them, Xiao et al. (2023) showed that even when computing the attention only using tokens
close to the current token plus initial “sink” tokens, as illustrated in Figure 1, the model is still capable
of generating fluent text. We refer to these tokens as local window, and always implicitly include the
initial tokens as they play a crucial role as an attention “sink” (see also Chen et al. (2024); Gu et al.
(2024); Sun et al. (2024b)).

However, such a local window approximation, if applied to every attention head simultaneously,
necessarily harms the capabilities of LLMs to retrieve and process long-context information (see e.g.,
Xiao et al. (2024)). Instead, to overcome such limitations, we aim to identify the heads whose output
can be well-approximated via a local window attention, and apply the approximation to those only. If
a head can be approximated via a local approximation, we call it a local head, and otherwise it is a
long-context head. In particular, we ask: Which heads can be approximated using a local window
with minimal impact on downstream task performance?

∗Work done at Meta.
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Figure 1: Attention sparsity and its impact on efficiency. Left: Attention scores are split into bulk (Abulk)
for distant tokens and local window (Alocal) for nearby ones. A head is considered local if most of its attention
mass falls within the local window. The static criterion pre-assigns local heads, while the adaptive oracle
query-dependently compares bulk and local contributions but is computationally expensive. Our approximation
models Abulk using a Gaussian distribution for efficiency. Middle: Oracle-based classification with τ = 0.6
(see Figure 3 for the threshold) reveals three types of heads: consistently local (heads labeled more than 95%
of the times as local), often long-context (less than 50%), and varying, which switch behavior dynamically.
Right: Comparison of three methods: Static (green) removes a fixed fraction of heads, the adaptive oracle (blue)
dynamically selects heads but is costly, and our adaptive method (purple) achieves near-oracle performance with
significantly lower cost. As sparsity increases, static pruning degrades performance, while our adaptive method
remains robust. These results show that most attention heads do not need to attend to the entire context, enabling
significant efficiency gains with query-adaptive head classification.

Two approaches to this problem can be distinguished: Static criteria label the heads – local vs
long-context – once for all queries, while query-adaptive criteria change the labels from query to
query. Static criteria, as used by Xiao et al. (2024); Tang et al. (2024a), have the advantage that all
key-value pairs (except for the few in the local window) of local heads can be discarded, thus saving
memory. While recent works (Wu et al., 2024; Tang et al., 2024a; Hong et al., 2024) provide some
evidence that a fixed small subset of the heads are particularly relevant for processing long-context
information, the following question remains unclear:

How much sparsity (measured as the average percentage of local heads) can we gain using
query-adaptive criteria compared to static criteria?

Contribution 1. We present an extensive analysis comparing a query-adaptive oracle criterion,
which selects local heads independently for each token, with static criteria. We make two observations:
first, we find that static criteria can label up to 60% of the heads as local heads without impacting
downstream task evaluations, which confirms the intuition from Wu et al. (2024). Nevertheless, we
find that a query-adaptive oracle criterion allows to label a substantially higher percentage of heads
as local heads (up to 90%) without sacrificing performance (see Figure 1).

Unfortunately, the oracle requires the computation of the full attention scores. This leads to the
following question:

For each query, can we determine which heads are long-context and which are local without
computing the full attention scores?

The relevance of this question is twofold: on one hand, answering it helps guide further research
toward developing more compute-efficient attention mechanisms. On the other hand, it advances
our understanding of the inner workings of attention mechanisms, which is central to mechanistic
interpretability (see, e.g., Olsson et al. (2022)).

Contribution 2. We address this question by proposing a novel query-adaptive attention criterion
(QAdA) based on second-order statistics of the attention scores (briefly summarized in Figure 1).
Our experiments on three families of LLMs, Llama Dubey et al. (2024), Qwen Bai et al. (2023) and
Mistral Jiang et al. (2023) applied to a variety of standard long-context benchmarks, as well as hard
reasoning tasks embedded in long-context prompts, show that this relatively simple criterion allows to
efficiently identify long-context heads: our method increased sparsity at a smaller loss in downstream
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Figure 2: Examples of attention score distributions for each possible outcome with τapprox = τoracle =
0.6 with the oracle criterion as ground truth. We show histograms of scores from the local window
I (brown) and the bulk complement [T ] \ I (gray), along with the bulk Gaussian approximation
(black dashed line). The annotations above each plot indicate the values taken by the statistics used
for the oracle criterion and the adaptive criterion.

performance than oracle static approaches. Along with our other experiments, it sheds light onto
certain simple behaviors of attention heads in long-context settings.

2 METHOD

Given that many attention heads swing between being local and being long-context depending on
the input token (as illustrated in Figure 1 and further observed in Section C.3) , how can we identify
local heads in a query-adaptive manner while only computing the attentions scores from the local
window? Intuitively, we want a criterion that can distinguish between the two following cases:

• Case 1 (long-context head): The scores from the local window follow the same distribution
as the remaining scores (second plot in Figure 2), and thus tokens from the local window
cannot make up for most of the mass.

• Case 2 (local head): The scores from local tokens are significantly “out-of-distribution” on
the right-sided tail (first plot in Figure 2). While this does not guarantee that the attention
head assigns most of the mass to those tokens, as there might be outliers in the distribution
of the non-local scores (third plot in Figure 2), this motivates us to label the head as a local
head.

But how can we efficiently distinguish between the two cases? The key insight is that a Gaussian
approximation for the keys, which in turn yields a Gaussian approximation for the scores (black
dashed line in Figure 2), provides a good approximation for deciding what is “in-distribution” (Case
1) and what is “out-of-distribution” (Case 2). Such an approximation in turn allows us to construct an
efficient approximate version of the oracle criterion (with scores si = qk⊤i /

√
d):

choracle(s) = 1

{ ∑
i∈I exp(si)∑

i∈I exp(si) +
∑

i/∈I exp(si)
≥ τoracle

}
. (1)

Query-adaptive attention (QAdA) The computational bottleneck in the oracle criterion from
Equation equation 8 arises from the un-normalized mass Abulk :=

∑
i/∈I exp(si) of the tokens from

the bulk (see Figure 1). Let νbulk be the empirical distribution of the keys k⊤i , i ∈ [T ] \ I and let
T bulk = T − Tlocal. We can write the un-normalized mass as an expectation over νbulk:

Abulk = T bulk Ek⊤∼νbulk exp

(
qk⊤i√

d

)
. (2)

The main idea behind our method is to now approximate νbulk by a product of Gaussians distributions
with some mean µK and covariance ΣK (defined in Section B.2):

νbulk ≈ (N (µK ,ΣK))
T bulk

. (3)
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Figure 3: Comparison of QAdA against the adaptive and static oracles on the RULER benchmark. Left: For
Llama 3-8B, we show the average performance (top) over the selected RULER 16k tasks as a function of the
average sparsity for varying thresholds τ , along with the worst-case performance drop (%) compared to the
baseline performance among the selected tasks. Middle and Right: Average performance and worst-case drop for
a fixed sparsity level of 0.85 across three model families—Llama, Mistral, and Qwen—on RULER 8k (center)
and RULER 16k (right). Our adaptive criterion consistently matches or outperforms the static oracle criterion,
and in some cases (e.g., Mistral), even achieves performance comparable to the adaptive oracle.

Such an approximation clearly does not apply at the level of individual keys. Indeed, according to the
Gaussian approximation, all keys should be identically distributed. However, this is definitely not the
case as any two distinct keys store different positional information. Nevertheless, when averaged
over the keys, we can hope that on a macro distribution level the approximation is accurate. More
precisely, we propose to approximate:

E
k⊤∼νbulk

exp

(
qk⊤√

d

)
≈ E

k⊤∼N (µK ,ΣK)
exp

(
qk⊤√

d

)
. (4)

In fact, the RHS can be computed in closed form. Indeed, we note that exp(qk⊤/
√
d) follows a

log-normal distribution:

E
k⊤∼N (µK ,ΣK)

exp

(
qk⊤i√

d

)
= E

s∼N (µs,σ2
s)
exp(s)

= exp(µs + σ2
s/2) (5)

with µs = qµ⊤
K/

√
d and σ2

s = qΣKq⊤/d the mean and variance of the scores. Assuming that we
have access to the mean µK and covariance ΣK statistics (see Section B.1), we can therefore compute
an approximation of Abulk in constant run-time wrt. T !

In summary, given the moments µK and ΣK , the query q and the scores si obtained from the local
keys ki, i ∈ I, we propose to approximate the oracle criterion in Equation equation 8 via the
following query-adaptive criterion (QAdA) with Alocal =

∑
i∈I exp(si):

chapprox(s) = 1

{
Alocal

Alocal + T bulk exp (µs + σ2
s/2)

≥ τapprox

}
(6)

Experimental analysis We refer the reader to Section C and Section D for a detailed description of
the experimental settings and summarize our main findings in Figure 3.

3 CONCLUSIONS

Our first key finding shows that the attention head exhibits two distinct behaviors: local- it attends
to local tokens and long-context- it attends to tokens beyond local tokens. This behavior is query-
dependent, and perhaps surprisingly, a simple test QAdA (Query-Adaptive Attention) based on the
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second-order statistics of the keys and local scores is quite effective in predicting this behavior. We
tested the efficacy of QAdA through state-of-the-art models such as Llama, Qwen, and Mistral (7
to 8 billion parameters) and various important long-context benchmarks, including RULER and
Longbench. Through rigorous ablations, we present a deeper understanding of the inner workings of
the test and the attention mechanism.
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1 def adaptive_attention(q, k, v, mean_k, cov_k, Tl=128, log_thrs=0.6):
2 mean_s = einsum(’bhnd,hd->bhn’, q, mean_k),
3 var_s = einsum(’bhnd,hde,bhne->bhn’, q, cov_k, q)
4 numerator = lse(q @ k[:,:, local_indices]/sqrt(d), dim=-1)
5 log_bulk = log(seq_len - window_size) + var_s / 2 + mean_s
6 denominator = lse(stack([numerator, log_bulk]),dim=0)
7 mask = numerator - denominator > log(log_thrs)
8 out[mask], out[!mask] = local_attn_(q, k, v, mask), dense_attn_(q,

k, v, !mask)
9 return out

Listing 1: Query-adaptive attention (QAdA) with local window approximation

A PRELIMINARIES

We consider decoder-only transformer models (Vaswani, 2017), consisting of L-layers each containing
one attention and one feed-forward block, using the rotary positional encoding (RoPE, Su et al.
(2024)), which is commonly used in state-of-the-art open source LLMs, e.g., Llama3 Dubey et al.
(2024), Qwen Bai et al. (2023) or Gemma Team et al. (2024b). During inference, when predicting the
next token, every single attention head takes as input a vector of (already rotated) queries q ∈ R1×d

and the (updated and rotated) cached key-value pairs K,V ∈ RT×d, with sequence length T , and
returns the weighted average of the values:

o = softmax(s)V with scores s = qK⊤/
√
d (7)

Local window approximation. We are interested in long-context settings, where T is large.
For a given query and attention head, one can restrict the head’s attention to a local window:
instead of computing the head’s attention scores with respect to each of the T keys, only the
attention scores corresponding to the first Tsink input tokens (i.e. those closest to the start of the
sequence) and the last Tlocal − Tsink tokens are computed (as illustrated in Figure 1) and used to
produce the output, where Tlocal, Tsink ∈ N are fixed parameters. Though they may not contain
particularly relevant information, the first Tsink tokens are included to serve as “attention sink”
tokens, in line with the observations from Xiao et al. (2023). To summarize it more formally, we
call I := {1, . . . , Tsink} ∪ {T − Tlocal + Tsink + 1, . . . , T} ⊂ [T ] the set of local indices, and the
output of an attention head restricted to a local window is equal to olocal = softmax(sI)VI , with
sI = qK⊤

I /
√
d.

Query-adaptive oracle criterion To determine which heads are local, we need to define a criterion
that makes a decision for each query. We call the heads labeled by the criterion local head (for a
given input token) and the others long-context head. Assuming that we have access to all scores,
a natural way to define such a criterion is to compare the mass of attention scores from the local
window I to some threshold. That is, given a threshold τoracle, an attention head h, and its associated
attention scores si = qK⊤

i /
√
d, i ∈ [T ], we define the (query-adaptive) oracle criterion choracle

which takes the head’s scores s as input:

choracle(s) = 1

{ ∑
i∈I exp(si)∑

i∈I exp(si) +
∑

i/∈I exp(si)
≥ τoracle

}
. (8)

If the criterion is satisfied for a given query, that is, if choracle = 1, the head mostly attends to tokens
from the local window, and we call it a local head. On the other hand, if choracle = 0, the head assigns
at least 1− τoracle attention mass to tokens from the global context, and we call it long-context. Note
that our oracle criterion requires the computation of all the head’s attention scores–as such, it is a tool
of analysis, but it cannot be used as a practical way to increase compute efficiency.
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criterion criterion comp. attention comp.

none - O(Td)
oracle O(Td) O((1− ρ)Td+ ρTlocald)
QAdA O(Tlocald+ d2) O((1− ρ)Td+ ρTlocald)

Table 1: Run-time complexity of the oracle and adaptive criterion, as well as the cost of computing the resulting
approximate attention. ρ is the fraction approximated by a local window of size Tlocal.

B METHOD: CONTINUATION

B.1 COMPUTING µK AND ΣK

Option 1 (current prompt): After pre-filling and before generation, we can compute the moment
statistics from the current KV-cache. That is, we compute µK = 1

T bulk

∑
i∈[T ]\I Ki and ΣK =

1
T bulk

∑
i∈[T ]\I KiK

⊤
i − µKµ⊤

K . As a result, the moment statistics capture information from the
keys contained in the bulk. A key point to note is that while the definition of µK involves a
sum over all the bulk tokens, computing µK does not cost O(Td) operations per token, as it
can be updated at each step during decoding for a cost of O(d) operations by using the fact that
µK,T+1 = 1

T bulk+1

∑
i∈[T+1]\I Ki =

T bulk

T bulk+1
µK,T + KT+1

T bulk+1
. The same applies to Σk (for an update

cost of O(d2) operations).

Option 2 (other prompt): Maybe surprisingly, we show in Section C.4 and Appendix J that we obtain
more robust performances by computing the mean µK and covariance ΣK from keys generated
from a different prompt of similar length. We refer the reader to Appendix G for additional details.
While such an approach may appear counter-intuitive, we hypothesize that µK and ΣK benefit from
reflecting a “generic distribution of keys”, rather than that of the current prompt. While the underlying
reasons for this remain unclear, this intuition is supported by the fact that we show in Section C.4 that
using a random words prompt yields robust performance. While the distribution of keys becomes
independent of the current prompt, query-dependency still persists as inner product involves the
query.

B.2 SUMMARY OF INFERENCE PIPELINE AND RUN-TIME COMPLEXITY

We describe how our adaptive criterion can be applied in practice by decoding LLMs and explain
how this can lead to decreased run-time complexity.

Before starting generation, we calculate the moment statistics µK and ΣK . Then, during decoding,
before computing the attention output for a layer, we update the moment statistics µK and ΣK and
apply the query-adaptive criterion to every head in the layer, thus labeling a subset of them as local
heads. We approximate the output of those using a local window, and compute the output of the
others the usual way. We summarize the procedure in Listing 1.

Unlike the oracle criterion from Equation equation 8, our query-adaptive criterion achieves a constant
run-time complexity in T assuming that Tlocal ≪ T . Moreover, let ρ be the fraction of times a head
has been labeled as local head and d be the head dimension: then the average cost of computing the
next token using the (approximated) attention mechanism is O((1− ρ)Td+ ρTlocald), as opposed
to the O(Td) operations required by the standard attention mechanism. These computations are
summarized in Table 1.

C EVALUATION ON DOWNSTREAM TASKS

C.1 EXPERIMENTAL SETTING

Datasets. We evaluate on the two standard long-context benchmarks, RULER Hsieh et al. (2024)
and LongBench Bai et al. (2024). We also propose long-context variants of GSM8k Cobbe et al.
(2021) and MBPP Austin et al. (2021), where we “hide” informative few-shot examples in a long-
context prompt containing roughly ≈ 10k tokens. We refer the reader to Appendix F for further
details.
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Models. Our default model is the instruction fine-tuned Llama 3-8B model. We also use the two
models Mistral-7B-Instruct-v0.2 and Qwen2-7B-Instruct as provided by HuggingFace. To account
for longer contexts, we set our models’ RoPE parameter to θ = 2′000′000, which is approximately
the value from the NTK-aware interpolation Peng & Quesnelle (2023) for a context length of 32k.
For all evaluations, we choose a temperature of 0, i.e. use the greedy decoding strategy. We always
let Tlocal = 128 and use the first Tinit = 16 tokens as “attention sink” tokens, leaving 112 tokens from
the neighorhood closest to the current token (or sliding window).

Methods We implement the query-adaptive oracle criterion (Equation 8), alongside with two
query-independent static criteria, static oracle and static RULER. The static method, for a fixed
sparsity threshold of α (we ablate over intervals of 5%), permanently labels as local the α percentage
of heads that were most often labeled as local by the oracle criterion on prompts from the RULER
tasks. The oracle static method, for a fixed sparsity threshold of α, labels as local the α of heads
that are most often labeled as local by the oracle criterion on the prompts of the processed task. See
Appendix F for further details.

We implement QAdA from Section 2 for four choices of prompts (see Section B.1): The current
prompt, described as Option 1 in Section B.1, and three variants of Option 2: randomly sampled
independent words from Wikipedia (random words prompt), concatenated Wikipedia extracts (wiki
prompt), and repetitions of single word (single word prompt). Only the statistics µK and ΣK generated
from the current prompt contain information about the prompt, while the others are agnostic to the
current prompt. Our ablation in Subsection C.4 suggest that Option 2 (random words prompt) yields
the most robust performance.

Metrics We use the standard metrics for evaluation provided by the corresponding benchmarks,
which we refer to as the performance. For the LongBench benchmark, we compute the average
normalized performance (avg. norm. performance), which is obtained by dividing the performance
by the performance of the standard full attention model. We always plot the performance as a
function of the sparsity, that is the average percentage of heads labeled as local heads, and thus
approximated by a local window. For both our adaptive, as well as the static criteria, the sparsity
almost directly translates into a reduction of FLOPs used by the attention mechanism (minus a small
constant overhead to compute the local scores).

C.2 PERFORMANCE ON REASONING AND CODE TASKS

While both the RULER and LongBench benchmarks require only short answers (sometimes less
than 20 tokens), we also wonder how well our method is capable of selecting the “right” heads in
challenging reasoning and code generation tasks, where the expected answers tend to be longer.
We propose two long-context variants of the GSM8k and MBPP tasks (we provide examples in the
Appendix) where we hide a few relevant few-shot examples in a mostly irrelevant long prompt. As
instruction fine-tuned models do not require few-shot COT examples for solving the tasks, we instead
use the pre-trained version of Llama 3-8B which heavily relies on these examples.

We show in Figure 4c and Figure 4d the performances on the long-context variants of the two tasks
as a function of sparsity. We again observe that our adaptive criterion yields robust performance,
outperforming the static criteria. Particularly striking are the gains for the long-context MBPP task,
where both the oracle criterion and our query-adaptive criterion let us approximate almost all heads as
local heads (more than 95%), while the performance of the static approaches significantly decreases
beyond 80% sparsity.

C.3 PERFORMANCE ON RULER AND LONGBENCH

Oracle gains over static. We begin by comparing the adaptive oracle criterion against the static
oracle criterion. We observe significant gains in performance across all models on the RULER
benchmark in Figure 3, both in terms of the average performance, as well as the worst-case perfor-
mance drop. The same observation also holds for the experiments on the LongBench benchmark in
Figure 4a,4b. For instance, for the Llama model we see a 20% increase in sparsity on the RULER
tasks (from ≈ 70% to ≈ 90%) and a ≈ 5− 10% increase on LongBench tasks at fixed performance
level. These results underline the potential gains that are achievable by adaptive criteria for selecting
attention heads over static ones.
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QAdA outperforms static. We observe that our efficient adaptive criterion significantly outper-
forms the static criterion on the RULER task for sequence lengths of 8k in Figure 3, and also for
lengths 16k for the Llama model. Moreover, our adaptive criterion matches the performance of the
oracle static criterion and even slightly outperforms it on LongBench in Figure 4a and Mistral on
RULER 16k. The only situation where we see performance drops compared to the static method is
for Qwen on RULER 16k, where the score of the baseline model is itself very low. These results
demonstrate that our criterion is capable of exploiting the query-adaptivity of attention heads.

Outperforming the standard dense attention with Qwen Finally, we observe in Figure 3 that
both the oracle adaptive criterion and our adaptive criterion surpass the baseline performance of the
standard full attention for Qwen on RULER 8k (see Figure 14 in the Appendix). These gains are even
more visible for the oracle criterion on RULER 16k, where we find an average performance increase
of more than 15 points for a sparsity of 0.85. It is also worth noting that these gains are made possible
by a query-adaptive approach and do not occur for static methods. These improvements highlight the
fact that in long-context settings, models may attend to unnecessary parts of the context, which the
query-adaptive criterion can effectively prune. Consequently, in such settings, the query-adaptive
criterion can provide benefits beyond computational efficiency, also leading to enhanced performance.

C.4 ABLATIONS OVER MOMENT STATISTICS

In this section, we present ablations for the choice of the prompt used to generate the mean µK and
variance ΣK statistics, as described in Section B.1.

Prompt. We ablate in Figure 4e-4f over the content of the prompts used to generate the moments
statistics. We show the curves only for the two illustrative RULER tasks “variable tracing” (“vt”),
that has a highly repetitive structure, and “frequent word extraction” (“fwe”). Maybe surprisingly,
we find for the “vt” task that the best performance is attained when using randomly sampled words,
while repetitively using the same words results in the worst performance. Moreover, using the exact
moments (i.e., current prompt) also results in very poor performance. This is not the case for the
“fwe” task, where using the current prompt achieves the best performance. We believe that the failure
on the “vt” task is explained by the repetitive structure of the prompt, which resembles the structure
of the repeated single word prompt that also yields very poor performance. In summary, we find
that although using “current prompt” can sometimes yield strong performance (“fwe”) task, it is not
robust to the choice of task. In contrast, “random words prompt” using a distinct dataset yields more
robust performance. We present additional related experiments in Figure 9 in the Appendix.

Sequence Length. We compare in Figure 4g the performances of our query-adaptive method using
Option 2 (random words prompt) for different lengths of the prompt used to generate the mean µK

and covariance ΣK . We show the average normalized performance across all RULER 8k tasks. We
see drastic drops in performance when the prompt used to compute the statistics gets longer than
the length of the actual prompt (that is ≈ 8100 tokens long), whereas performance is surprisingly
robust to variations for shorter sequence lengths. This dependence to the length of the random words
prompt suggests that while the statistics µK and ΣK do not contain any information about the task
(as we use random words), they nevertheless contain positional information critical for the criterion
to identify the right set of local heads.

D DISCUSSION: ADAPTIVITY TO CONTEXTS

We saw in the previous section that QAdA is capable of selecting relevant heads for solving the
corresponding long-context tasks. In this section, we investigate which heads are selected by the
model, and to what extent the model selects heads based on the context. Besides prompts from the
RULER and LongBench tasks, we also study the behavior on a context-independent task where.
More precisely, we take the context from the “qa-2” task from the RULER benchmark but replace the
question with: Can you describe LLMs in a few sentences?. To solve this task, the model does not
need to attend on the context, and we show that the model indeed labels more heads as local heads.
This shows that the model is capable of adapting to the context.
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Figure 4: Top row: Similar to Figure 3, we show the average performance for the LongBench benchmark, the
pass@1 score for the MBPP task and the f1-score for the GSM8k task. Bottom row: Ablations for the content
of the prompt (e-f) and the length of the prompt (g) used to generate the mean µK and covariance ΣK for the
adaptive criterion from Section 2. We show the normalized performance as a function of sparsity (e) for the “vt”
task and (f) for the “fwe” task and (g) averaged over the RULER 8k tasks, respectively.

Query-wise sparsity. As a first question, we investigate whether QAdA is capable of changing
the sparsity (average fraction of heads labeled as local heads) on a query-wise basis. We provide
an illustrative example in Figure 5a, showing the average percentage of heads chosen by both the
oracle and the adaptive criterion as a function of the time-step (query). We choose the ”fwe” task, for
which all responses to the prompts follow exactly the same pattern, and plot the mean and standard
deviation as a function of the index of the generated token. We observe that the trend of our adaptive
criterion aligns closely with the trend of the oracle criterion, and both vary strongly from token to
token.

Sparsity vs. Threshold. We further plot in Figure 5b the average sparsity and the standard deviation
of QAdA and the oracle criterion as a function of the threshold τ . We make two findings: first, that
QAdA closely follows the sparsity of the adaptive oracle criterion but tends to label slightly more
heads as long-context. Second, that the standard deviation of the average sparsity (with respect to
different tasks) is non-negligible, meaning that the sparsity can vary from task to task. This indicates
that our adaptive criterion effectively adjusts the level of sparsity and is capable of adapting to
”difficult” tokens. Indeed, we further show in Figure 5c the average sparsities for each task for QAdA.
We also plot in green the average sparsity when asking the model to generate a response for a task
that does not require any knowledge from the context. As we can see, the QAdA uses significantly
fewer heads as long-context heads for this task than for the other tasks at the same threshold.

Distribution of local heads across layers. Finally, in Figure 6a and Figure 6b, we show the
average percentage of times each head has been labeled as long-context for the RULER tasks and
the context-independent tasks. For the RULER tasks, which require the model to look at the entire
context, we see that both criteria show matching patterns and long-context heads occur across all
layers. This demonstrates that our adaptive criterion successfully identifies long-context heads across
all layers. Moreover, for the context-independent task, we see that while the first layer still attends to
the full context, all layers are essentially always approximated by the local windows.
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Figure 5: a) The mean and standard deviation of the fraction of heads labeled as local heads as a function of
time-steps for prompts from the “fwe” task. b) The average sparsity and standard deviation as a function of
the threshold τ for Llama 3-8B over the RULER 8k and 16k, as well as the LongBench tasks. The annotations
show the mean and standard deviation of the normalized performances (with 1 being the performance of the
standard dense attention). c) The average sparsities as a function of the threshold τ , similar to those shown in b),
are presented for each task, specifically for the QAdA criterion. Additionally, we present the average sparsity for
a context-independent task. This task does not require context to be solved, and we observe that QAdA labels
significantly more heads as local heads for the same threshold.

E RELATED WORKS

There is an overwhelming body of work studying and exploiting sparsity in attention heads. We refer
the reader to Wan et al. (2023) for a survey and only discuss the most directly related works here.

Static classification of heads Wu et al. (2024) showed that a few attention heads, called “retrieval
heads,” are particularly critical in retrieving long-context information, with multiple follow-up works
Tang et al. (2024a); Hong et al. (2024); Xiao et al. (2024); Cai et al. (2024). Most related to this
paper is Xiao et al. (2024), who also proposed dividing the heads into long-context and local heads.
All these methods statically assign labels to the heads before generation. They do so by analyzing
attention patterns on selected tasks, or, as done in Xiao et al. (2024), learn the assignment using
gradient descent. Our paper crucially differs from these works as we explore the query-adaptive
nature of attention heads to their changing contexts and do not require an additional dataset to label
the heads.

Query-adaptive sparsity. Similar to this paper, there is an entire line of research that exploits query-
dependent sparsity in some way. For instance, numerous works propose efficient approximations that
retrieve per head the subset of tokens with the highest scores (Tang et al., 2024b; Ribar et al., 2023;
Chen et al., 2021; Sun et al., 2024a). For context, multiple works also propose static variants that
select the tokens for all queries Zhang et al. (2023); Li et al. (2024); Oren et al. (2024). These works
are complementary to this paper. More related to this paper is the approach taken by Liu et al. (2023);
Akhauri et al. (2024), where a classifier is trained to dynamically predict which attention heads can
be “dropped.” The classifier takes as input the residual of an earlier layer and thus also adapts to the
changing contexts. However, our paper crucially differs in two ways: first, we do not rely on any
additional dataset for labeling the heads, nor do we require training an additional classifier. Second,
we also distinguish between local and long-context heads, and do not simply drop heads.

F ADDITIONAL EXPERIMENTAL DETAILS

In this section we present additional details for the experiments.

Additional details for the methods The best way to select the “right” subset of attention heads
for the static criterion is still widely understudied. In particular, it poses the fundamental challenge
of which dataset should be chosen to select the heads in advance. Since we are primarily interested
in how much query-adaptivity helps to improve, we compare against a static oracle criterion, that
uses the prompts for evaluation to decide which heads are sued as static heads. Moreover, we also
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Figure 6: We show for both the oracle adaptive and the adaptive criterion the % of times each head has been
labeled as long-context head averaged over a) the six RULER 8k tasks with τoracle = τapprox = 0.6 and b) the
context-independent task based on the “qa-2” task from RULER.

implement static RULER, using the prompts from the RULER task. We present additional ablations
for the choice of the static criterion in Figure 7. Similar to Wu et al. (2024); Tang et al. (2024a), we
measure head patterns in a synthetic retrieval task, and select heads via the following simple static
criterion:

• Step 1: Generate responses for selected prompts using full attention (for LongBench, GSM8k
and MBPP tasks) or the approximate attention from the oracle criterion with τoracle = 0.6
(RULER tasks). Compute the percentage of times each head is labeled as local window by
the oracle criterion from Equation equation 8 with threshold τstatic.

• Step 2: Calculate the (1− α)-quantile of these percentages across all heads h. Label heads
below the threshold as long-context (chstatic = 0) and those above as local (chstatic = 1). These
labels are query-independent.

We further refer the reader to Appendix G for how we compute the moments used by QAdA, for
which we devote an entire section.

Choices for thresholds We ablate over the various thresholds τoracle, τapprox ∈ (0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 0.995), as well as α ∈ (0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45,
0.5, 0.55, 0.6) with τstatic = 0.6. We ran additional ablations in Figure 7b for τstatic confirming that
the choice τstatic = 0.6 yields robust performance across all tasks.

RULER tasks The RULER benchmark Hsieh et al. (2024) consists of a collection of synthetic
tasks with varying prompt sizes. These tasks are designed to challenge the model’s capabilities
in processing long-context information. We choose the two Q/A tasks, “qa-1” and “qa-2”, the
two aggregation tasks: common words extraction “cwe” and frequent words extraction “fwe”, the
variable tracing task “vt”, and the multiquery needle-in-a-haystack task “niah”. Especially, the two
aggregation tasks “fwe” and “cwe” are known to be difficult baselines for achieving accuracy using
efficient sparse attention mechanisms (see the discussion in Chen et al. (2024)).

LongBench tasks The LongBench benchmark contains a selection of challenging real-world and
synthetic tasks, including single-doc QA, multi-doc QA, summarization, and few-shot learning.
We use a selection of tasks from the LongBench dataset for which the standard model achieves
at least decent scores. We evaluate on the tasks: (Single-Document QA): “qasper”, “multifieldqa-
en”, “multifieldqa-zh”, “narrativeqa”; (Multi-Document QA): “2wikimqa”, “musique”, “hotpotqa”;
(Summarization): “qmsum”, “vcsum”; and (Few-shot Learning): “triviaqa”.

Long-context GSM8k and MBPP datasets In addition to the two standard benchmarks, RULER
and LongBench, we also construct our own long-context tasks based on the reasoning task GSM8k
Cobbe et al. (2021) and the code-generation task MBPP Austin et al. (2021). We use the standard
evaluation protocol, but instead of using only the “correct” few-shot examples, we select 55 few-shot
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(b) Ablation over datasets for static criterion

Figure 7: a) The Spearman rank correlation of the attention heads ordered by the fraction of times labeled as
Local Heads by the oracle criterion with τ = 0.6. We see a high correlation among all tasks. b) Ablations for
the static criterion using different datasets (LongBench, RULER and specific RULER task, called oracle) and
threshold τstatic to label the heads. We use Llama3-8B on RULER 8k.
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Figure 8: a) Accuracy and fraction of true/false positives/negatives for the 10% quantiles of the heads (labeled
as local heads) for the adaptive criterion with τoracle = τapprox = 0.6 on the RULER benchmark with sequence
length 8k. b,c,d) The recall values of long-context heads selected by the oracle criterion for various thresholds
τoracle when using the static and adaptive oracle criteria as a function of the average sparsity (percentage of
local heads). We adjust the thresholds α (with τstatic = τoracle) and τapprox to achieve matching sparsity levels.
Annotations indicate the specific oracle thresholds τoracle. We use Llama3-8B on RULER 8k.

examples in the same format generated from the SQUAD Rajpurkar (2016) dataset, as well as 5 actual
few-shot examples (highlighted in green). We provide fragments of the example prompts below. The
resulting context lengths are ≈ 10k for GSM8k and ≈ 11k for MBPP.

For these two tasks, we always use the pre-trained Llama3-8B parameter model Dubey et al. (2024),
instead of the instruction fine-tuned variant. The reason for choosing the pre-trained model is that
the instruction fine-tuned model can solve these tasks without the need for few-shot examples, while
the pre-trained model crucially depends on few-shot examples. Since these examples are hidden in
a long context, the task becomes challenging, and the model requires retrieving information from
tokens far away in order to achieve high accuracy on the task.

G COMPUTING THE MOMENT STATISTICS

We discuss in this section more formally how we obtain the moment statistics as sketched in
Section B.1.

Option 1 (current prompt): In this case, after pre-filling, we compute the moment statistics for
each head as described in Section B.1. Note that for grouped-query attention Ainslie et al. (2023), as
used by Llama, we naturally use the same moments for each query in the group since these heads
share the same keys. During generation, we keep the moment statistics fixed and do not update them
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after predicting each token. This is because we always generate sequences of length less than 256,
so updating the statistics has only a limited influence. However, when generating long sequences
consisting of thousands of tokens, we would expect that updating the moments during generation
becomes beneficial for performance.

Option 2 (other prompt): In this case, we perform a single forward pass using one of the three
choices as prompts: random word prompt, which simply permutes words from a Wikipedia article
(including the HTML syntax); wiki prompt, where we concatenate Wikipedia articles; and single
words prompt, where we repeat the word ”observation.” As we showed in Section C.4, the content
of the prompt is not important as long as there is enough ”diversity.” However, we found that the
length of the sequence is crucial. Therefore, we store all keys from the forward pass of this prompt.
During generation, when predicting the next tokens for a given prompt, we load the keys from
the specific other prompt and generate the moments using the first T − 1024 keys, where T is the
sequence length of the current prompt. The reason for choosing minus 1024 is because, as we saw in
Figure 4g, the performance is robust to keys generated from shorter prompts than the actual sequence
but suffers significantly in performance for longer ones. As an alternative implementation, one could
also pre-compute the moments for lengths of fixed intervals and load the corresponding moment after
pre-filling before starting the generation.

H RECALL OF ATTENTION HEADS

In this section, we analyze how well our adaptive criterion from Section 2 can recall the heads
selected by the oracle criterion; in other words, how effectively it serves as a proxy for the oracle. We
always use the current prompt (Option 1) to generate the moment statistics.

Accuracy We generate responses using standard dense attention and store the scores used to
compare the two criteria using the current prompt to generate the moments. For each task, we
group the heads into 10% quantiles based on the percentage of times the oracle criterion has been
satisfied. For each quantile (averaged over the six selected RULER tasks), we show the fraction of
true positives, true negatives, false positives, and false negatives, where a true positive means that
both the oracle and adaptive criteria labeled a head as a local head.

We find that the adaptive criterion always correctly identifies the top 50% of the heads that are
consistently local heads. Moreover, we find even higher accuracies for the lower quantiles where
heads vary between local and long-context. Interestingly, we see that the false negative rate is much
lower than the false positive rate for these heads. As a result, the adaptive criterion selects fewer
heads than the oracle criterion. This observation is counter-intuitive to the observations made in
Section D, where we observed that our adaptive criterion tends to select more heads than the oracle
criterion for the same threshold. The explanation here is that in this section we compare the criterion
on scores obtained when using standard full attention. This is necessary to allow a direct comparison
between the two criteria. In contrast, in Section D we compare the average sparsity when using the
approximate attention that approximates all labeled heads by a local window.

Recall of long-context heads. We further compare our adaptive criterion with the oracle static
criterion in their ability to identify long-context heads selected by the oracle criterion. We show
in Figure 8b-8d the recall value of long-context heads selected by the oracle criterion for different
oracle thresholds τoracle as a function of the sparsity (fraction of heads labeled as local heads by the
oracle criterion). To allow for a direct comparison between static and adaptive, we choose τapprox,
resp. quantile α (with τstatic = τoracle), such that the average sparsity is the same as the one of the
oracle criterion. We plot the curves for all (selected) RULER tasks, and find that our test achieves
consistently a higher recall value than the oracle static assignment (except for the “vt” task, for which
the current prompt choice for the moments breaks down, as discussed in Section C.4).

I DISCUSSION: GAUSSIAN APPROXIMATION

In this section, we further discuss the Gaussian approximation exploited by our criterion in Section 2.
We divide the discussion into multiple paragraphs.
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Method all top 20% top 10%
µ± σ µ± σ µ± σ

RULER 8k task “fwe”

Log error 0.41± 0.58 0.50± 0.98 0.57± 1.27
Dist. local 3.44± 1.73 1.78± 1.38 1.54± 1.23
Gaussian opt. 0.15± 0.18 0.14± 0.21 0.15± 0.25

RULER 8k task “Q/A-2”

Log error 0.37± 0.52 0.63± 0.75 0.74± 0.83
Dist. local 2.80± 1.55 1.17± 0.98 1.29± 1.08
Gaussian opt. 0.18± 0.22 0.25± 0.34 0.29± 0.40

Table 2: The mean and standard deviation for the terms log difference | logAbulk − (log(T bulk) +
µs + σ2

s/2)| (Log error) and | logAbulk − logAlocal| (Dist. local) for all heads (first column) and the
20% and 10% percentiles of heads most often labeled as local heads by the oracle criterion with
τoracle = 0.6. We further show the “Log error” when replacing the scores by i.i.d. Gaussian samples
instead with matching mean and variance. This indicates the achievable error assuming that the
Gaussian approximation holds true. We use Llama3-8B on RULER 8k.

Approximatin error We wonder what is the approximation error arising from Equation equation 4.
We show in Table 2 the average log difference | logAbulk − (log(T bulk) + µs + σ2

s/2)| (first row)
between the un-normalized mass of the bulk and our Gaussian approximation from Equation equa-
tion 4. Taking the exponent, we find that the Gaussian approximation is typically off by a factor of
≈ 2 − 5, and thus clearly imprecise. In comparison, in the third row, we show the same statistics,
when replacing the scores by i.i.d samples from a Gaussian distribution with matching mean and
variance. This error captures the “optimal” error given that Gaussian actually holds. As we can see,
this error is significantly smaller.

Nevertheless, we are effectively interested in whether the Gaussian assumption suffices to make an
accurate prediction on whether the head is a local or long-context head. To that end, we also compare
in the second row the average log difference | logAbulk − logAlocal|. Indeed, if this distance is much
larger than the average log error arising form the Gaussian approximation, we expect our criterion to
nevertheless be accurate. As we observe, this is the case. Taking again the exponent, we find that the
Abulk and Alocal typically differ by factors around ≈ 15− 50. Interestingly, however, we see that the
gap becomes more narrow when only considering the top 20% (resp. 10%) of heads most frequently
selected by the oracle criterion as long-context heads. Finally, we also show the average standard
deviation.

J ADDITIONAL EXPERIMENTS

Ablations for the choice of the prompts We show in Figure 9 the plots for the other RULER tasks
for the ablations for the choice of the prompt in Figures 4e,4f in Section C.4.

Performances for individual tasks We showed in Figures 3 and 4a the aggregated performances
over the tasks. For completeness, we further show in Figures 10-16 the performances for the individual
tasks. We further also show the performance of QAdA (current prompt). Interestingly, we observe
that the using the random words prompt (Option 2) for generating the keys overwhelmingly often
outperforms the use of the current prompt (Option 1). We leave an explanation for this intriguing
finding as a task for future work.
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(b) “qa-2” task
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(c) “niah” task
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(d) “cwe” task

Figure 9: Ablations for varying prompts. Same as Figure 4e and 4f for the additional RULER 8k tasks using
Llama 3-8B.
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Figure 10: Performances for individual tasks for RULER 8k using Llama-3 8B as in Figure 3
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Figure 11: Performances for individual tasks for RULER 16k using Llama-3 8B as in Figure 3
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Figure 12: Performances for individual tasks for RULER 8k using Mistral-7B as in Figure 3
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Figure 13: Performances for individual tasks for RULER 16k using Mistral-7B as in Figure 3
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Figure 14: Performances for individual tasks for RULER 8k using Qwen-7B as in Figure 3
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Figure 15: Performances for individual tasks for RULER 16k using Qwen-7B as in Figure 3
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Figure 16: Performances for individual tasks for LongBench as in Figure 4a
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Example Prompt for long-context MBPP

[...]
Q: Due to extreme variation in elevation, great variation occurs in the climatic conditions of
Himachal . The climate varies from hot and subhumid tropical in the southern tracts to, with
more elevation, cold, alpine, and glacial in the northern and eastern mountain ranges. The state
has areas like Dharamsala that receive very heavy rainfall, as well as those like Lahaul and
Spiti that are cold and almost rainless. Broadly, Himachal experiences three seasons: summer,
winter, and rainy season. Summer lasts from mid-April till the end of June and most parts
become very hot (except in the alpine zone which experiences a mild summer) with the average
temperature ranging from 28 to 32 °C (82 to 90 °F). Winter lasts from late November till mid
March. Snowfall is common in alpine tracts (generally above 2,200 metres (7,218 ft) i.e. in the
higher and trans-Himalayan region).
What is the climate like?
A: varies from hot and subhumid tropical The answer is varies from hot and subhumid tropical.

Q: James decides to buy a new bed and bed frame. The bed frame is $75 and the bed
is 10 times that price. He gets a deal for 20% off. How much does he pay for everything?
A: The bed cost 75*10=$750
So everything cost 750+75=$825
He gets 825*.2=$165 off
So that means he pays 825-165=$660 The answer is 660.

Q: Liz sold her car at 80% of what she originally paid. She uses the proceeds of that
sale and needs only $4,000 to buy herself a new $30,000 car. How much cheaper is her new car
versus what she originally paid for her old one?
A: If Liz needs only $4,000 to buy a new $30,000 car, that means she has $30,000-
$4,000=$26,000 from the proceeds of selling her old car
If she sold her car at 80% of what she originally paid for and sold it for $26,000 then she
originally paid $26,000/80% = $32,500 for her old car
If she paid $32,500 for her old car and the new one is $30,000 then, the new one is $32,500-
$30,000 = $2,500 cheaper The answer is 2500.

Q: Unlike in multicellular organisms, increases in cell size (cell growth) and reproduc-
tion by cell division are tightly linked in unicellular organisms. Bacteria grow to a fixed size and
then reproduce through binary fission, a form of asexual reproduction. Under optimal conditions,
bacteria can grow and divide extremely rapidly, and bacterial populations can double as quickly
as every 9.8 minutes. In cell division, two identical clone daughter cells are produced. Some
bacteria, while still reproducing asexually, form more complex reproductive structures that
help disperse the newly formed daughter cells. Examples include fruiting body formation by
Myxobacteria and aerial hyphae formation by Streptomyces, or budding. Budding involves a
cell forming a protrusion that breaks away and produces a daughter cell.
What are produced in cell division?
A: two identical clone daughter cells The answer is two identical clone daughter cells.

Q: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and
bakes muffins for her friends every day with four. She sells the remainder at the farmers’ market
daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers’
market?
A:
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Example Prompt for long-context GSM8k

[...] You are an expert Python programmer, and here is your task: Due to extreme variation in
elevation, great variation occurs in the climatic conditions of Himachal . The climate varies from
hot and subhumid tropical in the southern tracts to, with more elevation, cold, alpine, and glacial
in the northern and eastern mountain ranges. The state has areas like Dharamsala that receive
very heavy rainfall, as well as those like Lahaul and Spiti that are cold and almost rainless.
Broadly, Himachal experiences three seasons: summer, winter, and rainy season. Summer lasts
from mid-April till the end of June and most parts become very hot (except in the alpine zone
which experiences a mild summer) with the average temperature ranging from 28 to 32 °C (82 to
90 °F). Winter lasts from late November till mid March. Snowfall is common in alpine tracts
(generally above 2,200 metres (7,218 ft) i.e. in the higher and trans-Himalayan region).
What is the climate like? Your code should pass these tests:
empty
[BEGIN]
varies from hot and subhumid tropical
[DONE]

You are an expert Python programmer, and here is your task: Write a function to find
the similar elements from the given two tuple lists. Your code should pass these tests:
assert similar elements((3, 4, 5, 6),(5, 7, 4, 10)) == (4, 5)
assert similar elements((1, 2, 3, 4),(5, 4, 3, 7)) == (3, 4)
assert similar elements((11, 12, 14, 13),(17, 15, 14, 13)) == (13, 14)

[BEGIN]
def similar elements(test tup1, test tup2):
res = tuple(set(test tup1) & set(test tup2))
return (res)
[DONE]

You are an expert Python programmer, and here is your task: Unlike in multicellular
organisms, increases in cell size (cell growth) and reproduction by cell division are tightly
linked in unicellular organisms. Bacteria grow to a fixed size and then reproduce through binary
fission, a form of asexual reproduction. Under optimal conditions, bacteria can grow and divide
extremely rapidly, and bacterial populations can double as quickly as every 9.8 minutes. In cell
division, two identical clone daughter cells are produced. Some bacteria, while still reproducing
asexually, form more complex reproductive structures that help disperse the newly formed
daughter cells. Examples include fruiting body formation by Myxobacteria and aerial hyphae
formation by Streptomyces, or budding. Budding involves a cell forming a protrusion that
breaks away and produces a daughter cell.
What are produced in cell division? Your code should pass these tests:
empty
[BEGIN]
two identical clone daughter cells
[DONE]

You are an expert Python programmer, and here is your task: Write a python function
to remove first and last occurrence of a given character from the string. Your code should pass
these tests:
assert remove Occ(”hello”,”l”) == ”heo”
assert remove Occ(”abcda”,”a”) == ”bcd”
assert remove Occ(”PHP”,”P”) == ”H”

[BEGIN]
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