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ABSTRACT

Consider the problem of clustering n objects. One can apply multiple algorithms to
produce N potentially different clustersings of the same objects, that is, partitions
of the n objects into K groups. Even a single randomized algorithm can output
different clusterings. This often happens when one samples from the posterior of a
Bayesian model, or runs multiple MCMC chains from random initializations. A
natural task is then to form a consensus among these different clusterings. The
challenge in an unsupervised setting is that the optimal matching between clusters
of different inputs is unknown. We model this problem as finding a barycenter
(also known as Fréchet mean) relative to the misclassification rate. We show
that by lifting the problem to the space of association matrices, one can derive
aggregation algorithms that circumvent the knowledge of the optimal matchings.
We analyze the statistical performance of aggregation algorithms under a stochastic
label perturbation model, and show that a K-means type algorithm followed by
a local refinement step can achieve near optimal performance, with a rate that
decays exponentially fast in N . Numerical experiments show the effectiveness of
the proposed methods.

1 INTRODUCTION

Clustering is a fundamental task in machine learning and data analysis. Given data on each of the n
objects in a set, there are numerous algorithms to produce a clustering of these n objects, which is
formally a partitioning of {1, . . . , n} into K disjoint sets. A natural problem that arises in practice
is how to form a consensus among these clusterings. This is especially important if the different
clusterings are produced by a single randomized algorithm. This situation often arises in Bayesian
modeling, where the posterior naturally encodes the variability of the clustering problem. Finding a
consensus clustering then corresponds to finding the center of the posterior, from which we can also
obtain estimates of the variability of the posterior.

A clustering of n objects can be viewed as a label vector in [K]n where [K] = {1, . . . ,K}. We
assume that we are given N label vectors zj ∈ [Kj ]

n for j = 1, . . . , N , with potentially different
number of clusters each. Let K = maxj Kj and note that we can view all zj as vectors in [K]n.
The task is to obtain a consensus K-clustering, that is, a label vector z ∈ [K]n which is close to all
z1, . . . , zN at the same time. We also refer to this task as the label aggregation problem.

In the context of clustering, there is no meaning to the label of each cluster, that is, the label
aggregation problem is unsupervised, in the sense that there is no natural correspondence between
labels of different clusterings. This is in contrast to label aggregation in classification in which the
labels have a common meaning among different input classifications. We refer to the latter task as
supervised label aggregation.

In the unsupervised setting, forming a consensus label is a nontrivial task due the label-switching
problem. Consider for example, the case n = 5 and the two label vectors z1 = (1, 1, 1, 2, 2) and
z2 = (2, 2, 2, 1, 1). These two vectors are different in all 5 positions but they define the same
clusterings of the objects. In this case, the consensus label ẑ can be taken to be either z1 or z2.
More generally, for every zj , there could be a permutation πj on [K], such that the permuted vectors
πj ◦ zj := (πj(zji))

n
i=1, are closer to each other than the original zjs.
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To formalize the above idea, we recall the definition of the misclassification rate between two label
vectors, z, y ∈ [K]n:

Mis(z, y) = min
π

1

n

n∑
i=1

1{zi ̸= π(yi)} (1)

where the minimum is taken over all the permutations π : [K] → [K]. Mis(·, ·) is a proper metric
on the space of K-clusterings of n objects. It is also a metric on [K]n if we identify vectors that are
obtained from each other by label-switching. We can now define the consensus label as the barycenter
of z1, . . . , zN in Mis(·, ·) metric, that is,

ẑ ∈ argmin
z∈[K]n

N∑
j=1

wj Mis(z, zj) (2)

where wj ≥ 0 are a given set of weights. We often assume uniform weights: wj = 1 for all j. The
barycenter ẑ is also known as the Frechét mean. Solving (2) is complicated by the presence of the
permutation in the definition of Mis function. More explicitly, we need to solve

ẑ ∈ argmin
z ∈ [K]n

min
π1,...,πN

N∑
j=1

n∑
i=1

wj1{zi ̸= πj(zji)} (3)

showing that in addition to z, we have to optimize over N permutations πj , j = 1, . . . , N . In this
paper, we provide alternative solutions that avoid optimizing over these permutations.

Our contributions The unsupervised version of the label aggregation problem is the realistic and
practical one when dealing with aggregating labels from Bayesian clustering algorithms, since the
posterior has K! modes corresponding to all possible label permutations, and the output will be near
an arbitrary mode in each run of the algorithm. The main contributions of this paper to unsupervised
aggregation are the following:

1. We show that by lifting the barycenter problem to the space of association matrices, one can
derive algorithms that avoid optimizing over the unknown permutations (Section 2.1). In
particular, we propose both a basic and a spectral K-means type aggregation algorithm.

2. We propose a random perturbation model (RPM) under which we can study the theoretical
performance of both supervised and unsupervised aggregation algorithms. We prove the
statistical consistency of the basic aggregation algorithm under RPM (Section 2.2).

3. Under RPM, the supervised setting corresponds to an oracle that knows the true matching
permutations. By studying this oracle, we derive the optimal statistical misclassification rate
for supervised aggregation (Section 3.1).

4. We propose an efficient local refinement step on the output of any consistent aggregation
algorithm in the unsupervised setting, and show that the updated labels achieve nearly the
same misclassification rate as the above oracle (Section 3.2).

Our theoretical analysis illustrates how different parameters affect the difficulty of the label aggrega-
tion problem. In Section 4, we provide numerical experiments comparing the performance of the
proposed algorithms against each other and existing methods.

Related work In the supervised setting, the problem of label aggregation is to combine multiple
annotated dataset. The label inferred for each item from those produced by multiple annotators acts
as the ground truth for the classification task. Various probabilistic models have been proposed for
aggregating annotations, with parameters to account for the expertise of the annotators and the noise
in the labeling process (47; 37). The unsupervised setting is more challenging as there is no meaning
to the cluster labels (the label-switching issue) and the clusterings can have potentially different
number of clusters. The idea of passing to association matrices to get around the label-switching issue,
has been leveraged in several existing approaches (13; 24; 43; 13; 21; 29), although the connection
we make to the lifted barycenter problem and the resulting spectral methods is new to the best of
our knowledge. In (24; 43), the authors employ an Expectation-Maximization strategy to obtain a
nonnegative matrix factorization of the combined association matrix. The authors of (41) provide
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several approaches, using the hypergraph representation of the clusterings, that have shown promising
results in the context of image segmentation (22). A set of fuzzy consensus algorithms is proposed
in (40) that generate soft consensus partitions by combining a collection of fuzzy clusterings.

What we referred to as unsupervised label aggregation problem has appeared under many differ-
ent names in the literature, including but not limited to, cluster ensembles (41), clustering/cluster
ensemble problem (44; 10), ensemble clustering (1), clustering aggregation (17), combining cluster-
ings (42; 14; 27), consensus clustering (48; 18) and the median partition problem (12; 46; 18). As can
be surmised from the variety of names, there is a copious literature on the subject, spanning over multi-
ple fields, with many ideas rediscovered time after time. We refer to the excellent surveys (48; 44; 18)
for a more exhaustive list of references and historical discussions. There is also a parallel line of work
in the Bayesian clustering literature on aggregating the posterior clusterings (31; 7; 9; 25; 15; 45; 8).

The barycentric view to aggregation that we take in (2) has appeared in many previous work, but often
with a different distance in place of Mis, including but not limited to the symmetric difference distance
(SDD), a.k.a. the Mirkin metric (up to a constant), in the median partition problem (39; 23; 12; 17; 18),
the Binder loss and variational information (VI) in (45; 15), the normalized mutual information (NMI)
in the pioneering work of (41), the adjusted Rand index (15) and the category utility function (42; 35).
After introducing our methods, in Section 2.3, we give a more detailed comparison with the literature.
We choose Mis as the distance in the present work for a better comparison with the oracle problem in
Section 3.1. We also show in Appendix B.1 that consistency in Mis implies the consistency in other
distances.

Despite the voluminous literature on the subject, statistical analysis of the methods under a statistical
model for the input clusterings has not been undertaken before. This is the gap that we fill in this
paper, by providing the first consistency and optimality results under a statistical model (the RPM)
for a method of clustering aggregation that we propose. To the best of our knowledge, the question
of consistency, let alone optimality, has not been considered for any method of aggregation before.
We also shed more light on the relation between the barycenteric approach and those based on
association matrices (Section 2.3), and how convex relaxation leading to a spectral method can be
used to approximate the median partition. To illustrate the importance of statistical analysis, we also
show that a simple common approach to the median partition problem, known as the BestOfK (18), is
in general inconsistent under RPM, despite being shown to be a 2-factor approximation of the median
partition problem (12). This further highlights the key insights that statistical analysis under a model
can provide which is not possible to obtain by CS-type theory on approximation algorithms.

2 LIFTED AGGREGATION ALGORITHMS

We start by introducing some notation. Let EK = {ek}Kk=1 be the set of standard basis vectors of
RK . The elements of EK can be considered one-hot encodings of the labels from [K]. From now on,
instead of encoding labels as element of [K], we encode them as element of Ek. We can then view
labelings of n objects as elements of the following set

En
K = {z = (z1, . . . , zn) : zi ∈ EK ∀i ∈ [n]}. (4)

Each zi is viewed as a K × 1 vector and each element of En
K as K × n matrices, which we refer to

as label matrices. For Z ∈ EK , permuting the cluster labels is equivalent to pre-multiplication by a
K ×K permutation matrix P , that is, PZ.

The label aggregation problem can be restated as follows: Given label matrices Z1, . . . , ZN ∈ En
K ,

find a consensus label matrix Z ∈ En
K , by solving the barycenter problem:

Ẑ ∈ argmin
Z ∈En

K

min
P1,...,PN

N∑
j=1

wj∥Z − PjZj∥2F (5)

where P1, . . . , PN are K ×K permutation matrices and ∥X∥F :=
(∑

i,j X
2
ij

)1/2
is the Frobenius

norm of matrix X . One can verify that problem (5) is equivalent to (3). The following result shows
that if we know the optimal permutations Pjs, we can easily find the barycenter Ẑ:

Proposition 1. Let {P̂1, . . . , P̂N} be an optimal set of permutation matrices in (5). Then, the optimal
solution Ẑ of (5) is the columnwise “argmax” of

∑
j wjP̂jZj .
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Algorithm 1 Basic label aggregation algorithm.
1: Form association matrices Xj = ZT

j Zj .
2: Form the average association matrix X̄ =

∑N
j=1 wjXj .

3: Perform K-means on the rows of X̄ .

Algorithm 2 Spectral label aggregation algorithm.
1: Define the same average association matrix X̄ as in Algorithm 1.
2: Perform K-truncated eigendecomposition of X̄ = UΛUT , where Λ ∈ RK×K contains top-K

eigenvalues on the diagonal and the columns of U ∈ Rn×K are the corresponding eigenvectors.
3: Perform K-means on the rows of U .

2.1 LIFTING TO ASSOCIATION MATRICES

The difficulty in the unsupervised setting is that the optimal permutations {P̂j} are unknown. To get
around this issue, we lift the barycenter problem to the space of association matrices. For a label
matrix Z ∈ En

K , we define the corresponding association matrix as X = ZTZ ∈ {0, 1}n×n. Note
that Xij = 1 iff i and j are in the same cluster according to Z, otherwise Xij = 0. The advantage of
X is that it is invariant to label switching: X = ZTZ = (PZ)TPZ for any permutation matrix P .
This suggests solving the following lifted barycenter problem instead of (3):

X̂ ∈ argmin
X∈XK

N∑
j=1

wj∥X −Xj∥2F (6)

where Xj = ZT
j Zj and XK = {ZTZ : Z ∈ En

K}, that is, the set of (binary) association matrices
with at most K clusters.

Semidefinite relaxation Problem (6) is still hard to solve due to the combinatorial nature of XK .
An approach to solving problems over XK is to relax to a semidefinite program, an idea that has
been applied before to community detection in networks (4). In particular, XK is inside the doubly
nonnegative cone {X : X ⪰ 0, X ≥ 0}, where X ⪰ 0 and X ≥ 0 mean X is positive semidefinite
and elementwise nonnegative. We note that Xii = 1 for all i. This suggests relaxing to the following
problem

X̂ ∈ argmin
X

{ N∑
j=1

wj∥X −Xj∥2F : X ⪰ 0, X ≥ 0, Xii = 1∀i
}
. (7)

Problem (7) has a simple solution. The solution of the unconstrained version of (7) over Rn×n is
X ′ :=

∑n
j=1 wjXj/

∑n
j=1 wj . Since {Xj} belong to the constraint set of (7) and this set is convex,

X ′ too belongs to the constraint set. Hence, X ′ is the solution of (7), that is, X̂ = X ′. It remains to
translate X̂ back to labels, for which we can preform rowwise K-means, leading to Algorithm 1.

Since elements of XK are of rank at most K, to get a solution which is closer to that of the lifted
barycenter problem (6), we can perform a spectral truncation of X̂ to its K top eigenvectors, before
applying the rowwise K-means. This leads to the spectral aggregation Algorithm 1. Other variants of
spectral clustering on X̂ are also possible, e.g., using the normalized Laplacian, etc. In the K-means
step of Algorithm 1 and 2, any constant-factor approximation to the K-means problem can be used.

2.2 CONSISTENCY

In order to study the statistical performance of different aggregation algorithms, we propose a random
perturbation model (RPM), where both the clusters and the labels of the clusters can undergo random
perturbations, allowing us to study the difficulty of the unsupervised aggregation problem. Let
Z∗ ∈ En

K be the “true” label matrix with columns z∗i ∈ EK , i = 1, . . . , n.
Definition 1 (RPM). We write Z ∼ L(Z∗, p) if Z = (z1, . . . , zn) ∈ En

K with columns zi drawn
independently as follows:

zi = Pz′i, z′i ∼ (1− p)δz∗
i
+ pUnif(EK) (8)

where δz∗
i

is the point mass at z∗i and P is an independent K ×K permutation matrix.
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Under RPM, the observed label matrices Z1, . . . , ZN are i.i.d., so it is reasonable to let w1 = · · · =
wN = 1 in Algorithms 1 and 2. We will discuss the algorithm for weighted samples in Section 5. Let
nk(Z

∗) be the number of objects in cluster k according to Z∗. We make the following assumption:

nk(Z
∗) ≤ βn/K, k ∈ [K] (9)

for some β ∈ [1,K]. Here, β measures how much the true clustering deviates from being balanced.
For β = 1, we have nk(Z∗) = n/K for all k, while β = K corresponds to no restriction on the sizes
of the true clusters. The following result shows that the basic aggregation algorithm is statistically
consistent under the RPM:

Theorem 1 (Consistency). Let Z∗ ∈ En
K be a label matrix satisfying (9). Assume that Z1, . . . , ZN

are i.i.d. draws from L(Z∗, p) and let ξ := p(2− p). Let Mis be the misclassification rate between
the true label matrix Z∗, and the output of Algorithm 1 with wj = 1 for all j ∈ [N ]. Then, there
exists a universal constant C > 0, such that

E[Mis] ≤ Cξβ2K

(1− ξ)2

(2β2

N
+
ξK

n

)
. (10)

Consistency of Algorithm 1 follows from (10) and the Markov inequality: For any δ > 0, we have
P(Mis ≥ δ) ≤ δ−1E[Mis] → 0 as n,N → ∞ and p is bounded away from 1. We note that in this
and subsequent results all the parameters, such as K and p, are allowed to change as n,N → ∞,
subject to the conditions of the theorems.

The first term inside the parentheses in (10) is the dominant one. Assume for simplicity that β ≍ 1. If
the model has low noise, then p is small and so is ξ since ξ ≍ p. Then, the dominant term isO(pK/N),
that is, a smaller number of clusters, K, and a larger sample size, N , improve the performance. The
second term is independent of of the sample size, but vanishes at the rate O(p2K2/n) in the low
noise setting, as the number of objects, n, grows.

2.3 LITERATURE COMPARISON

The relation between the metrics on clusterings is discussed in (34; 33). Let d′M (Z,Zj) be the Mirkin
metric between clusterings Z and Zj (34, Eqn (6)). As we show in Appendix B, it turns out that
d′M (Z,Zj) = ∥X −Xj∥2F = ∥X −Xj∥ℓ1 leading to d′M/2 = SDD = Binder =

(
n
2

)
(1 − Rand)

where Binder denotes the Binder loss (5) and Rand, the Rand index (36). It follows that the
lifted barycenter (6) that we derived is equivalent to the median partition (12) and the Binder loss
barycenter of (45) as well as the Rand barycenter (15). This problem is often solved by greedy
search starting from a random initialization (45; 8). Our Algorithm 2 then provides a fast scalable
spectral method of obtaining an approximate solution to this ubiquitous problem. A lot of algorithms
proposed for consensus clustering operate on the average association matrix X̄ , by treating it as a
similarity matrix and performing usual clustering on it, for example, by performing agglomerative
clustering (31; 18; 14; 28). Wade and Ghahramani (45) criticize these approaches as being ad-hoc
compared to the decision-theoretic approach of finding a barycenter. However, we show X̄ is indeed
a solution to the relaxed version (7) of the barycenter (6) which is the same as the Binder barycenter
in (45), hence clustering X̄ is effectively solving the same problem with a different method.

A k-means based aggregation algorithm, called KCC, has been proposed in (48). In our notation,
this is equivalent to concatenating Zjs row-wise to form an NK × n matrix and running k-means
on the columns. This is different from our Algorithm (1) that operates on X̄ . We compare with
KCC in Section 4. Unlike KCC, Algorithm (1) comes with a consistency guarantee under our
model assumptions. The BestOfK (12) essentially solves (6) by restricting the feasible region to
{X1, . . . , XN}, hence picking the lowest-scoring input clustering. The approach proposed in (7; 9)
(see also (15)) is to find the input clustering that minimizes the cost X 7→ ∥X − X̄∥F . It is not hard
to see that the barycenter cost (6) is equal to ∥X − X̄∥2F plus a constant (essentially a bias-variance
decomposition; see (26)). Hence, the approach of (7; 9) is equivalent to the BestOfK. As we show in
Appendix A, BestOfK is, in general, inconsistent under RPM unless N grows exponentially in n, a
very strong condition not needed by our algorithms.

The K-means step 3 in Algorithm (1) can be replaced by other clustering algorithms, e.g. average-
linkage clustering, BestOfK and CC pivot algorithm of (18; 12). Besides global clustering algorithms,
many authors, including (41; 17; 18; 45; 8) also propose local search, a.k.a. greedy, algorithms which
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Figure 1: Left: Chernoff divergence I in equation (11) as a function of p, the label perturbation
probability. Right: How fast −(logPN )/N converges to the Chernoff divergence for K = 2.

update one label at a time to minimize the barycenter loss, based on any number of metrics discussed
earlier, including the information-theoretic ones (NMI and VI (32)). In (26), after reducing (6) to
minimizing X 7→ ∥X − X̄∥2F , they write X = ZTZ (in our notation) and then relax Z to a general
nonnegative matrix and solve the problem with nonnegative matrix factorization. Their work has the
flavor of our Algorithm 2, although our approach, being based on regular spectral decomposition, is
highly robust and scalable.

The RPM, with P set equal to the identity, is closely related to the artificial data model considered
in (18), with the difference that RPM does not potentially create a new cluster after perturbation, and
introduces a random permutation of the clusters labels after perturbation (via P ). In Appendix E,
we argue that RPM is a good model of a concentrated posterior, hence consistency under RPM is
relevant to Bayesian aggregation problems for which posterior consistency has been shown.

3 OPTIMAL RATE

Theorem 1 guarantees an O(N−1) rate of misclassification for Algorithm 1. A natural question
is whether we can do better. To answer this question, we first consider what is the best an oracle,
with the knowledge of the random permutations in (8), can do. This oracle is effectively solving the
supervised version of the problem. We then show that a refinement step allows us to achieve nearly
the same as the optimal oracle rate, without knowing the matching permutations.

3.1 SUPERVISED ORACLE

Let Z ′ be a label matrix with the ith column z′i ∼ (1 − p)δz∗
i
+ pUnif(EK), and let Z1, . . . , ZN

be independent copies of Z ′. We would like to recover the true label matrix Z∗. This is the oracle
version of model (8), since Zjs are label matrices without random permutations. In this case, the
problem decouples to n independent label recovery problems. We further simplify the problem to
that of deciding between z∗1 = e1 and z∗1 = e2. This problem is equivalent the hypothesis testing:

H0 : Multinomial(N, (1− p̃, q, . . . , q)) versus H1 : Multinomial(N, (q, 1− p̃, . . . , q)),

where q := p/K and p̃ := (K−1)q := p−q. A classical result from information theory (6, Theorem
11.9.1) allows us to determine the optimal performance in this case:
Proposition 2. The Bayesian error probability, PN , for testing H0 against H1, with positive prior
probabilities, is bounded by e−NI , where

I := − log
(
2
√
(1− p̃)q + (K − 2)q

)
(11)

is the best achievable error exponent in the sense that − 1
N logPN → I as N → ∞.

The left panel in Figure 1 shows plots of I as a function of p, for various K, and the right panel
shows the convergence of the exponent of PN for K = 2. The Bayesian error probability PN can be
achieved by performing a likelihood ratio test between the two hypotheses. We can generalize this
result to testing between K hypotheses, in which case the Bayesian error probability is bounded by
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Algorithm 3 Local Refinement

1: Input: Average association matrix X̄ , initial label matrix Z̃.
2: Output: An updated label matrix Ẑ.
3: for i = 1 to N do
4: Let X̄i be the ith column of X̄ =

∑
j wjXj .

5: Replace the ith column of Z̃ by zeros and denote this matrix by Z̃−i.
6: Let (n1, . . . , nK) be the row sums of Z̃−i.
7: Let (b1, . . . , bK) = Z̃−iX̄i.
8: Update the ith label by argmaxk (bk/nk).
9: end for

(K − 1)e−NI . The oracle algorithm that achieves this bound is the one that finds the columnwise
“argmax” of the average of Zjs. In light of Proposition 2, the bound in Theorem 1 is far from optimal
since it guarantees a linear decay of the error in N , that is O(N−1), rather than the exponential decay
e−NI . The question is whether this gap can be filled by a non-oracle algorithm.

3.2 LOCAL REFINEMENT

To approach the oracle rate, we propose a fast local refinement on the label of each object, as outlined
in Algorithm 3. This refinement can be performed on the output of any reasonable aggregation
algorithm. The idea of performing a local refinement to boost the performance of clustering algorithms
has been employed in various settings, including clustering of sub-Gaussian mixtures (30) and
community detection in stochastic block models (SBM) (3; 16; 50; 51). A more detailed comparison
with the SBM appears in Appendix F.

Algorithm 3 requires a good initial label matrix Z̃, with a small number of mismatches relative
to the true matrix Z∗. The algorithm focuses on the local information of the ith object. With X̄
the average of the association matrices, X̄ij is the sample proportion of objects i and j appearing
in the same cluster. Viewing X̄ as the adjacency matrix of a weighted graph, one can verify that
bk =

∑
j ̸=i wjXji1{Z̃j = k} is the weighted number of connections between object i and objects in

cluster k. The algorithm then normalizes the number of connections by the cluster size nk. Thus,
bk/nk estimates the probability that object i is connected to another object in cluster k. The higher
this probability is, the higher the chance that object i belongs to cluster k. The last step in the for
loop, updates the ith label according to these statistics.

It is possible to repeat the local refinement procedure, by feeding its output Ẑ back as an initial
label matrix. Given a good initialization, local refinements usually converge in constant or O(log n)
number of steps (30).

3.3 ACHIEVING THE SUPERVISED RATE WITHOUT SUPERVISION

From the oracle result (Proposition 2), we expect the optimal misclassification rate to be close to
e−NI . This is verified by the next result, showing that a single local refinement step applied to a
consistent aggregation algorithm, such as Algorithm 1, can get us nearly to the optimal rate:
Theorem 2. Assume that Z1, . . . , ZN are i.i.d. draws from the random perturbation model (8).
Let Ẑ be the output of Algorithm 3 initialized by some, possibly data-dependent, Z̃. Let nmin =
mink∈[K] nk(Z

∗) be the smallest true cluster size and recall the definition of I in (11). Assume that

(a) nminp(1 ∧ I)/K → ∞ and NI
logK → ∞,

and there exists δ satisfying Knδ/(nminpI) = o(1) such that one of the followings holds:

(b1) P(Mis(Z̃, Z∗) ≤ δ) = 1− o(1), or (b2) E[Mis(Z̃, Z∗)] ≤ δ.

Then, for some η = o(1), the misclassification rate satisfies

P
(
Mis(Ẑ, Z∗) ≤ e−(1−η)NI

)
= 1− o(1). (12)
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The assumptions of Theorem 2 are mild. Suppose that p is bounded away from 0 or 1, say p ∈
[0.01, 0.99], K = O(1) and the cluster sizes are similar. Then, the assumptions can be simplified to
nmin, N → ∞ and δ = o(1). The theorem is most interesting when p → 1 and K is large. In this
case, I → 0 and the first requirement of assumption (a) becomes nminI/K → ∞. This assumption
guarantees that the samples provide sufficient information to recover the permutations, although we
have not attempted to do so in our algorithm. The second requirement of assumption (a) provides
evidence to distinguish the true labels from the other K − 1 labels.

Under the assumptions of Theorem 2, Algorithm 3 initialized with input satisfying (12), will have an
output satisfying (b1). Hence, Theorem 2 also guarantees rate-optimality of an iterative Algorithm 3.

4 EXPERIMENTAL RESULTS

We now present empirical results comparing the performances of the proposed aggregation algorithms,
with additional results provided in Appendix C. The ground truth label matrix Z∗ is generated by
randomly assigning each of the n objects to one of the K labels. The N input clusterings Zj , j ∈ [N ]
are generated from model (8). We measure the performance of an algorithm by the adjusted Rand
index (ARI) of its output against the ground truth. We consider seven different aggregation algorithms:
(1) Our Algorithm 1, referred to as “Basic” in the plots; (2) Our Algorithm 2, referred to as SC;
(3) KCC algorithm (48); (4) CC Pivot algorithm (2; 18) with threshold 0.25; (5) Best One Element
Move (BOEM) algorithm (11; 18); (6) the EM algorithm of (24); and (7) BestOfK algorithm (12; 18).
In addition, we consider variants of algorithms (1)–(5) where we apply our refinement step to their
output. This gives us a total of 12 methods. In the plots, the refined version is denoted with a solid
line and the original version (without refinement) with a dotted line. We also use the average ARI of
the N input clusterings, denoted by the INPUT, as a baseline.

Balanced setting with varying n and N . Figure 2 depicts plots of ARI versus the noise probability
p in model (8), for various methods. The results are averaged over 40 replications. The settings in
Figure 2 all correspond to balanced cluster sizes. Generally, our proposed Basic and SC algorithms
outperform the EM, KCC, CCPivot and BOEM algorithms, with the failure thresholds occurring at
larger values of p (harder problems). In some settings, the refinement shows some improvement, but
in others, the output of the refinement applied to Basic and SC nearly coincides with the original
algorithm. This shows that in some settings the original algorithm implicitly performs the refinement
itself. We note that increasing N shifts the failure thresholds to the right as expected, as does the
increasing of n, both consistent with our theory. Note that BestOfK performs no better than INPUT.
Moreover, refined versions of KCC and BOEM outperform their original versions.

Unbalanced setting. Figure 3 depicts the results obtained with disproportionate cluster sizes,
specifically with p1 proportion of the objects in one cluster and the rest distributed uniformly to the
remaining clusters. Local refinement over Basic and SC performs significantly better as we deal with
input clusterings of disproportionate cluster sizes, especially at lower noise probabilities.

5 CONCLUSION AND DISCUSSION

In the present paper, we defined the random perturbation model to study the label aggregation problem.
We developed a K-means type algorithm followed by an efficient local refinement step to achieve the
optimal misclassification rate under the assumptions of the model. Numerical experiments also show
the effectiveness of our proposed methods. Let us also discuss possible avenues for future work.

A single-stage algorithm. Two-stage algorithms have been popular in many clustering problems (3;
30; 16). Numerical experiments show that, in many cases, a K-means type algorithm performs
sufficiently close to the local refinement with good initialization (Section 4). The K-means type
algorithm assigns labels based on the distances between the objects and the centers. This criterion
is different from the likelihood ratio test in many cases, and so the output of the algorithm will
not achieve the misclassification rate of the oracle problem. It will be a novel improvement if the
K-means type algorithm can be generalized to an EM-type algorithm so that the “distance" between
the parameter and the object is defined by the likelihood. Whether such an algorithm exists, and how
efficient it is statistically and computationally, are interesting open questions.

A robust algorithm. We observe i.i.d. label matrices from the random perturbation model defined
in Definition 1. As long as p < 1, every label matrix from this model provides the same amount
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(c) n = 500, N = 20,K = 6
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Figure 2: Performance impact with the increase in n and N
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Figure 3: Significant improvements due to local refinement in the case of unbalanced cluster sizes.

of information in expectation, so there is no reason to assign different weights to label matrices.
However, in practice, the samples may not be i.i.d.
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Supplementary material for
“Statistical Guarantees for Consensus Clustering”

This supplement contains the detailed proofs of the results and some extra simulations.

A INCONSISTENCY OF BESTOFK

Using the notation of the present paper, the name “BestOfK" should be “BestOfN". We will use our
notation in the following proposition and keep the name “BestOfK".
Proposition 3. BestOfK is not consistent unless N grows exponentially fast in n.

Proof. We will prove this proposition by providing a counterexample. Suppose K = 2, 1− p̃ = 0.6
and q = 0.4. Then for a label vector z from the RPM, by the Hoeffding inequality,

P(Mis(z, z∗) ≥ 0.1) ≥ 1− exp(2(0.4− 0.1)2n)− exp(2(0.6− 0.1)2n) ≥ 1− 2 exp(−0.18n)

where we have accounted for the two permutations in the definition of Mis. Suppose we observe N
i.i.d. label vectors z1, . . . , zN from the RPM. Then

P(min
i∈[N ]

Mis(zi, z∗) ≥ 0.1) ≥ (1− 2 exp(−0.18n))N ≥ 1− 2N exp(−0.18n).

This probability (of missing the target) approaches 1 unless N grows exponentially fast in n.

B RELATIONS AMONG CLUSTERING DISTANCES

Let nk be the size of the kth cluster of Z ∈ En
K and, n∗ℓ the size of the ℓth cluster of Z∗ ∈ En

L , and let
X and X∗ be the corresponding association matrices. The Mirkin distance (34, Eqn (6)) is given by

d′M (Z,Z∗) =
∑
k

n2k +
∑
ℓ

(n∗ℓ )
2 − 2

∑
k,ℓ

n2kℓ (13)

where nkℓ is the number of objects that are in cluster k according to Z and cluster ℓ according to
Z∗. It is not hard to see that

∑
k n

2
k = ∥X∥2F and similarly

∑
ℓ(n

∗
ℓ )

2 = ∥X∗∥2F . We also have
Z(Z∗)T = (nkℓ), hence, using ∥A∥2F = tr(AAT ),∑

k,ℓ

n2kℓ = ∥Z(Z∗)T ∥2F = tr(Z(Z∗)TZ∗ZT ) = tr((Z∗)TZ∗ZTZ) = tr(X∗X).

Combining these facts, we obtain the first equality below

d′M (Z,Z∗) = ∥X −X∗∥2F = ∥X −X∗∥ℓ1 . (14)

The second equality follows from X −X∗ having elements in {−1, 0, 1}. Here ∥ · ∥ℓ1 denotes the ℓ1
norm of a matrix viewed as a vector. The equality d′M (Z,Z∗) = ∥X −X∗∥ℓ1 immediately shows
that d′M is indeed a distance on the space of clusterings. It also connects the Mirkin distance with the
Rand index.

To see the connection with the Rand index, let Ndisagree be the number of pairs of objects for which
Z and Z ′ disagree about their co-clustering, that is, whether the two objects are in the same cluster
or not. Similarly, let Nagree be the number of pairs of objects for which Z and Z ′ agree about their
co-clustering. We have Ndisagree +Nagree =

(
n
2

)
. The Rand index is defined as the proportion of the

agreements, that is,

Rand =
Nagree(

n
2

) .

It is easy to see that ∥X −X∗∥ℓ1 = 2Ndisagree where the factor of 2 is due to the double-counting
caused by the symmetry of X −X∗. This proves the relation

1

2
d′M =

(
n

2

)
(1− Rand). (15)

The symmetric difference distance (SDD) is another name for Ndisagree, hence d′M/2 = SDD. The
Binder loss is defined as half the expression in (13), that is, d′M/2 = Binder.
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B.1 CONSISTENCY IN Mis IMPLIES CONSISTENCY IN MIRKIN DISTANCE

Let us now show that the consistency in Mis implies consistency in the normalized Mirkin distance
defined as dM := d′M/n

2. See (34, Eqn (9)). It then follows that consistency in Mis implies
consistency in the normalized SDD, normalized Binder loss and the Rand index, as discussed above.
This claim follows from the following inequality:
Proposition 4. We have dM ≤ 2 ·Mis.

Proof. Let X and X∗ be the association matrices corresponding to label vectors z and z∗. Then
d′M (z, z∗) = ∥X − X∗∥ℓ1 as shown in (14). The entries of X − X∗ take values in {−1, 0, 1}.
Assume, WLOG, that the optimal permutation between z and z∗ is the identity. Then:

1. If the label zi = z∗i , then the ith row of X − X∗ has at most “n · Mis” nonzero entries.
There are at most n such rows.

2. If the label zi ̸= z∗i , then the ith row of X −X∗ has at most n nonzero entries. There are at
most “n ·Mis” such rows.

Therefore, d′M = ∥X −X∗∥ℓ1 ≤ n · (n ·Mis)+ (n ·Mis) ·n = 2n2 ·Mis and the result follows.

C EXTRA SIMULATION RESULTS
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(a) n = 100, N = 20,K = 6, p1 = 0.8
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(b) n = 100, N = 20,K = 6, p1 = 0.9

Figure 4: Significant improvements due to local refinement in the case of unbalanced cluster sizes.

Figure 4 shows some extra cases of unbalanced cluster sizes (various values of p1 as defined earlier),
showing the significant improvement of the refinement step in such cases. All the results for the
unbalanced case (including those in the main text) are averaged over 120 runs.

Tables 1, 2 and 3 show the average ARI in all the eight settings (abbreviated Set in the tables)
shown in Figures 2, 3 and 4. The tables show the performance of the methods at noise probabilities
p = 0.45, 0.55 and 0.65 respectively—corresponding to a cross-section of each plot at a line parallel
to the y-axis, crossing the x-axis at the respective value of p. The settings are as follows:

1. Set 1: Balanced, n = 100, N = 20.
2. Set 2: Balanced, n = 100, N = 200.
3. Set 3: Balanced, n = 500, N = 20.
4. Set 4: Balanced, n = 500, N = 200.
5. Set 5: Unbalanced, n = 100, N = 20, p1 = 0.5.
6. Set 5: Unbalanced, n = 100, N = 20, p1 = 0.75.
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Method Refined Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8

Basic FALSE 1.00 1.00 1.00 1.00 0.82 0.35 0.24 0.093
Basic TRUE 1.00 1.00 1.00 1.00 0.98 0.91 0.86 0.690
BestOfK FALSE 0.32 0.30 0.29 0.31 0.33 0.28 0.24 0.150
BOEM FALSE 0.50 0.48 0.57 0.69 0.38 0.41 0.33 0.310
BOEM TRUE 0.65 0.59 0.94 1.00 0.60 0.70 0.52 0.430

CCPivot FALSE 0.77 1.00 0.77 1.00 0.81 0.78 0.77 0.670
CCPivot TRUE 0.84 1.00 0.81 1.00 0.81 0.75 0.70 0.570
EM FALSE 0.97 0.98 0.97 0.99 0.72 0.41 0.36 0.220
Input FALSE 0.30 0.30 0.30 0.30 0.33 0.28 0.25 0.160
KCC FALSE 1.00 1.00 1.00 1.00 0.91 0.44 0.34 0.130

KCC TRUE 1.00 1.00 1.00 1.00 0.93 0.50 0.41 0.180
SC FALSE 0.99 1.00 1.00 1.00 0.96 0.65 0.65 0.430
SC TRUE 1.00 1.00 1.00 1.00 0.99 0.98 0.97 0.880

Table 1: Mean adjusted rand index (ARI) for all settings at noise probability p = 0.45.

Method Refined Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8

Basic FALSE 0.96 1.00 0.98 1.00 0.66 0.26 0.19 0.077
Basic TRUE 0.97 1.00 0.98 1.00 0.89 0.64 0.57 0.370
BestOfK FALSE 0.20 0.21 0.20 0.20 0.23 0.19 0.17 0.096
BOEM FALSE 0.21 0.21 0.23 0.29 0.33 0.39 0.31 0.240
BOEM TRUE 0.46 0.36 0.56 0.65 0.55 0.62 0.48 0.280

CCPivot FALSE 0.51 0.99 0.51 0.99 0.57 0.52 0.44 0.360
CCPivot TRUE 0.61 0.98 0.54 0.94 0.52 0.36 0.32 0.200
EM FALSE 0.87 0.95 0.91 0.97 0.64 0.33 0.27 0.140
Input FALSE 0.20 0.20 0.20 0.20 0.23 0.18 0.16 0.098
KCC FALSE 0.94 1.00 0.98 1.00 0.67 0.28 0.21 0.081

KCC TRUE 0.97 1.00 0.98 1.00 0.74 0.36 0.27 0.130
SC FALSE 0.95 1.00 0.98 1.00 0.75 0.41 0.35 0.170
SC TRUE 0.97 1.00 0.98 1.00 0.95 0.86 0.79 0.550

Table 2: Mean adjusted rand index (ARI) for all settings at noise probability p = 0.55.

7. Set 6: Unbalanced, n = 100, N = 20, p1 = 0.8.

8. Set 7: Unbalanced, n = 100, N = 20, p1 = 0.9.

D PROOFS

D.1 PROOF OF PROPOSITION 1

For any Z ∈ En
K , we have ∥Z∥2F =

∑
k,i Z

2
ki =

∑
k,i Zki = n. Thus, ∥Z∥2F = ∥P̂jZj∥2F = n for all

j ∈ [N ]. Hence, solving (5) is equivalent to maximizing f(Z) :=
∑N

j=1 wj tr(Z
T P̂jZj) = tr(ZT Z̄)

over En
K , where Z̄ :=

∑
j wjP̂jZj . Let Z = (z1, . . . , zn) and Z̄ = (z̄1, . . . , z̄n). Maximizing

f(Z) =
∑n

i=1⟨zi, z̄i⟩ is a separable problem over i, and maximizing z 7→ ⟨z, z̄i⟩ over EK amounts
to finding the index of the maximum element of z̄i, that is, the “argmax” of z̄i, as claimed.

D.2 PROOF OF THEOREM 1

We have Zj = PjZ
′
j where Z ′

j = (z′j1, . . . , zjn) and z′ji are i.i.d. draws as in (8). Since the algorithm
is invariant to permutations Pj , without loss of generality we assume Pj = In, hence Zj = Z ′

j . We
write X∗ = (Z∗)TZ∗ for the true association matrix. Let En be the all-ones n× n matrix.
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Method Refined Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8

Basic FALSE 0.790 1.000 0.88 1.00 0.47 0.17 0.120 0.061
Basic TRUE 0.810 1.000 0.89 1.00 0.60 0.33 0.280 0.160
BestOfK FALSE 0.120 0.130 0.12 0.12 0.13 0.11 0.098 0.062
BOEM FALSE 0.085 0.098 0.12 0.11 0.24 0.29 0.320 0.270
BOEM TRUE 0.130 0.150 0.21 0.22 0.36 0.33 0.290 0.150

CCPivot FALSE 0.250 0.690 0.22 0.67 0.28 0.24 0.210 0.140
CCPivot TRUE 0.280 0.540 0.21 0.37 0.22 0.12 0.088 0.051
EM FALSE 0.600 0.920 0.74 0.95 0.46 0.23 0.180 0.078
Input FALSE 0.120 0.120 0.12 0.12 0.14 0.11 0.096 0.059
KCC FALSE 0.590 1.000 0.89 1.00 0.39 0.16 0.100 0.045

KCC TRUE 0.740 1.000 0.89 1.00 0.52 0.24 0.180 0.083
SC FALSE 0.750 1.000 0.88 1.00 0.47 0.19 0.140 0.076
SC TRUE 0.810 1.000 0.89 1.00 0.65 0.40 0.330 0.190

Table 3: Mean adjusted rand index (ARI) for all settings at noise probability p = 0.65.

Lemma 1. Let Z ∼ L(Z∗, p) and let X = ZTZ be the corresponding association matrix. Then,

M := E[X] = (1− ξ)X∗ + ξ
( 1

K
En + (1− 1

K
)In

)
(16)

where ξ = p(2− p).

Proof of Lemma 1. We have Xij = (ZTZ)ij = ⟨zi, zj⟩ and E[zi] = (1− p)z∗i + p 1
K 1K . For i ̸= j,

zi and zj are independent, hence

EXij = ⟨Ezi,Ezj⟩ = ⟨(1− p)z∗i + p
1

K
1K , (1− p)z∗j + p

1

K
1K⟩

= (1− p)2⟨z∗i , z∗j ⟩+ 2p(1− p)
1

K
+ p2

1

K
For i = j, we have E[Xii] = 1. The above shows that

E[X] = (1− p)2X∗ + p(2− p)
1

K
En + p(2− p)

(
1− 1

K

)
In

which simplifies to the desired expression.

Let Z1, . . . , ZN , Z ∼ L(Z∗, p) be independent draws, and let Xj = ZT
j Zj and X = ZTZ be the

associated association matrices. Setting X̄ = 1
N

∑N
t=1Xt, we obtain

E∥X̄ −M∥2F =
∑
ij

E(X̄ij −Mij)
2 =

∑
ij

var(X̄ij) =
1

N

∑
ij

var(Xij).

We have var(Xij) = 0 for i = j. For i ̸= j, one has Xij ∼ Ber((1− ξ)X∗
ij + ξ/K), hence

var(Xij) = (1− ξ)X∗
ij +

ξ

K
−

(
(1− ξ)2X∗

ij + 2
ξ

K
(1− ξ)X∗

ij +
ξ2

K2

)
= ψ(ξ)

(
1− 2

K

)
X∗

ij + ψ(ξ/K)

where ψ(x) = x(1− x). Note that ξ = p(2− p) ∈ (0, 1). It follows that

N · E∥X̄ −M∥2F ≤ ψ(ξ)
(
1− 2

K

)∑
ij

X∗
ij + n2ψ(ξ/K)

where the inequality is due to bounding var(Xii) by the same formula used for var(Xij), i ̸= j.
Let n∗k be the number of entities in cluster k of Z∗, that is, n∗k = (Z∗1n)k. We have

∑
ij X

∗
ij =

∥Z∗1n∥2 =
∑

k(n
∗
k)

2. Using the assumption n∗k ≤ βn/K, we have

N · E∥X̄ −M∥2F ≤ ψ(ξ)
(
1− 2

K

)β2n2

K
+ n2ψ(ξ/K).
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Calculating the center separations. Let M̃ = (1− ξ)X∗ + (ξ/K)En. We note that M − M̃ is
diagonal and

∥M − M̃∥2F = ∥ξ(1− 1/K)In∥2F = ξ2(1− 1/K)2n ≤ ξ2n.

It follows that

E∥X̄ − M̃∥2F = E
∑
i ̸=j

(X̄ij − M̃ij)
2 + E

∑
i

(X̄ii − M̃ii)
2

≤ E∥X̄ −M∥2F + ξ2n.

We obtain

1

n2
E∥X̄ − M̃∥2F ≤ 2

N

[
ψ(ξ)

(
1− 2

K

)β2

K
+ ψ(ξ/K)

]
+

2ξ2

n
.

The matrix M̃ is a K-means matrix with K distinct rows. If zi = r ̸= k = zi′ , then

∥M̃i∗ −Mi′∗∥2 = (1− ξ)2∥X∗
i∗ −X∗

i′∗∥2 = (1− ξ)2(n∗r + n∗k) ≥ 2(1− ξ)2
n

βK

using n∗k ≥ n/(βK), which holds by assumption (9). We have nrδ2r ≥ 2(1− ξ)2( n
βK )2 which gives

the following bound, using (49, Proposition 1),

E[Misr] ≲
1

N(1− ξ)2

[
ψ(ξ)(K − 2)β4 + β2K2ψ(ξ/K)

]
+

ξ2

(1− ξ)2
β2K2

n
.

Here, Misr is the misclassification rate over true cluster r. The dependence on β of the first term is
O(β2) when K = 2 and O(β4) when K > 2. Ignoring this difference, we can simplify the bound,
by noting that K2ψ(ξ/K) = Kξ(1− ξ/K) ≤ Kξ and β2 ≤ β4. Then,

E[Misr] ≲
ξ

(1− ξ)2
2Kβ4

N
+

ξ2

(1− ξ)2
β2K2

n
,

from which the bound in the theorem follows since Mis =
∑

r(n
∗
r/n)Misr.

D.3 PROOF SKETCH FOR THEOREM 2

For the benefit of the readers, we first give a proof sketch for Theorem 2 and its key lemma. A
detailed proof is given in Appendix D.4. The proof of Theorem 2 relies on the following key lemma:

Lemma 2. Let B(δ) denote the set of label matrices Z with at most nδ labels different from Z∗,
and let Ẑ(Z) be the output of Algorithm 3 with initial label matrix Z. If nminp(1 ∧ I)/K → ∞ and
logK
NI → 0, then

P
(
∃Z ∈ B(δ) such that ẑi(Z) ̸= z∗i

)
≤ e

−(1−η′)NI+ 3KnδN
2pnmin (17)

for some η′ = o(1).

The first step is to prove the case δ = 0 in Lemma 2, corresponding to the initial label matrix in
Algorithm 3 being Z∗. If z∗i = e1, then the algorithm fails to recover z∗i if there exists k ̸= 1 such
that Yk := n1bk−nkb1 ≥ 0. Yk is the average of i.i.d. samples, where each sample follows a mixture
model depending on which events among zi = e1, zi = ek, or zi ̸∈ {e1, ek} happens. We compute
the MGF of Yk and obtain the bound

E
[
exp(tNYk/(n1n2(1− p)))

]
≤

[
(1− p̃) e−t(1+o(1)) + q et(1+o(1)) + (K − 2)q e

2qt2

nmin(1−p)2
]N
.

The choice of t has little affect on the last term since nmin is large, so we set t = 1
2 log[(1− p̃)/q] to

minimize (1− p̃)e−t + qet. Under the regularity conditions of the lemma and the definition of I in
(11), we have

E
[
exp(tYk/(n1n2(1− p)))

]
≤

[
2
√
(1− p̃)q + (K − 2)q

](1−o(1))N
= e−(1−o(1))NI .
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Applying the Chernoff inequality, it follows that

P(ẑi(Z∗) ̸= z∗i ) ≤
K∑

k=2

P (Yk ≥ 0) ≤
K∑

k=2

E
[
exp(tYk/(n1n2(1− p)))

]
≤ (K − 1)e−(1−o(1))NI .

Using the assumption logK
NI → 0, we obtain P(ẑi(Z∗) ̸= z∗i ) ≤ e−(1−η)NI . This proves the

case δ = 0. Now we compare Yk’s obtained from Algorithm 3 initialized with label matrices
Z∗ and Z, and denoted by Yk(Z∗) and Yk(Z), respectively. For all Z ∈ B(δ), we show that
|Yk(Z∗)− Yk(Z)| ≤ 3(n1 ∨ nk)nδ if z∗i = e1, giving

P
(
∃Z ∈ B(δ) such that ẑi(Z) ̸= z∗i

)
≤

K∑
k=2

P
(
Yk ≥ −3(n1 ∨ nk)nδ

)
.

We apply the Chernoff inequality with the same choice of t to obtain (17). We arrive at the proof of
Theorem 2. Let Ẑ(Z) be the output of Algorithm 3 with initial label matrix Z. Consider the event
Aδ = {Mis(Z̃, Z∗) ≤ δ}. For any ε > 0,

P
(
Mis(Ẑ(Z̃), Z∗) > ε

)
≤ P

(
Ac

δ

)
+ P

(
∃Z ∈ B(δ′), Mis(Ẑ(Z), Z∗) > ε

)
.

We have P
(
Ac

δ

)
= o(1) under assumption (b1). Letting ε = NIe

−(1−η′)NI+ 3KnδN
2pnmin , one can

verify that the second probability also converges to 0 under the conditions of the theorem and
ε = e−(1−o(1))NI . This proves (20) under assumption (b1). For the proof under assumption (b2),
please see Appendix D.4

D.4 DETAILED PROOF OF THEOREM 2

Let Ẑ(Z) be the output of Algorithm 3 with initial label matrix Z. Consider the event Aδ′ =

{Mis(Z̃, Z∗) ≤ δ′}. For any ε > 0,

P
(
Mis(Ẑ(Z̃), Z∗) > ε

)
≤ P

(
Ac

δ′
)
+ P

(
∃Z ∈ B(δ′), Mis(Ẑ(Z), Z∗) > ε

)
. (18)

If assumption (b1) holds, then let δ′ = δ so that P(Ac
δ) = o(1). If assumption (b2) holds, Then we

let δ′ =
√
nminpIδ/(Kn) so that

Knδ′

nminpI
=

√
Knδ

nminpI
= o(1)

and by Markov’s inequality,

P(Mis(Z̃, Z∗) > δ′) ≤ 1

δ′
E[Mis(Z̃, Z∗)] ≤ δ

δ′
=

√
Knδ

nminpI
= o(1).

Then, (b1) is satisfied with δ = δ′. Therefore, it is enough to only consider assumption (b1) and let
δ′ = δ for the rest of the proof.

Let π∗ be the permutation corresponding to Mis(Z̃, Z∗) in assumption (b1), that is, π∗ =
argminπ

∑n
i=1 1{z̃i ̸= π(z∗i )}. Since we can always assume π∗(z∗) to be the true label, with-

out loss of generality, we can assume π∗ = identity. Writing T2 for the second term in (18),

T2 ≤ P
(
∃Z ∈ B(δ),

n∑
i=1

1{ẑi(Z) ̸= z∗i } > nε
)
≤ P

( n∑
i=1

1
{
∃Z ∈ B(δ), ẑi(Z) ̸= z∗i

}
> nε

)
.

By Markov’s inequality, we obtain

T2 ≤ 1

nε

n∑
i=1

P
(
∃Z ∈ B(δ), ẑi(Z) ̸= z∗i

)
≤ 1

ε
e
−(1−η′)NI+ 3KnδN

2pnmin . (19)

where the second inequality follows from Lemma 2, given assumption (a) of the theorem.
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Assumption (a) of the theorem also implies 3KnδN
2pnmin

= o(NI), so this term can be absorbed into

η′NI , giving T2 ≤ 1
εe

−(1−η′′)NI for some η′′ = o(1). Let

ε = NIe−(1−η′′)NI = e−(1−η)NI ,

where η = η′′ + log(NI)
NI = o(1). It follows from (19) that

T2 ≤ 1

ε
e−(1−η′′)NI =

1

NI
= o(1).

Hence, we obtain (12) as desired.

D.4.1 AN AUXILIARY LEMMA

We state the case δ = 0 in Lemma 2 as a separate lemma and prove it first. Recall that nmin =
mink∈[K] nk where nk is the size of the kth cluster. We have the following lemma.
Lemma 3 (Local refinement with Z∗). Suppose the initial label matrix in Algorithm 3 is Z∗, and
assume nminp(1 ∧ I)/K → ∞ and logK

NI → 0, then

P(ẑi ̸= z∗i ) = e−(1−η)NI (20)

for some η = o(1). As a direct consequence, E[Mis(Ẑ, Z∗)] ≤ e−(1−η)NI .

Proof of Lemma 3. Let q := p/K and p̃ := (K − 1)q := p − q. We first focus on the probability
P(ẑ1 ̸= z∗1). Let C∗

k = {i ≥ 2 : z∗i = ek}. We have bk =
∑

i∈C∗
k
⟨zi, z1⟩. Since z∗1 = e1 by

assumption, z1 takes values e1 and any of eℓ, ℓ ̸= 1 w.p. 1 − p̃ and q. For i ∈ C∗
1 , zi has the same

distribution as z1. For i ∈ C∗
2 , zi takes values e2 and any of eℓ, ℓ ̸= 2 w.p. 1− p̃ and q respectively.

Note that (b1, b2) is independent of z1. It follows that

(b1, b2) | z1 ∼


Bin(n1, 1− p̃)⊗ Bin(n2, q), if z1 = e1
Bin(n1, q)⊗ Bin(n2, 1− p̃), if z1 = e2
Bin(n1, q)⊗ Bin(n2, q), if z1 /∈ {e1, e2}

(21)

where ⊗ is the notation for the product measure, that is, b1 and b2 are independent in each case. The
three possibilities above hold with probability 1−p̃, q and (K−2)q respectively. Let Y = n1b2−n2b1
and let MY (λ) be the moment-generating function (MGF) of Y .

Let ψ(λ; p) = 1−p+peλ be the MGF of a Ber(p) variable. Then, the MGF of Bin(n, p) is ψ(λ; p)n
and hence

E[eλY | z1] = E[eλn1b2 | z1] · Ee−λn2b1 | z1]

=


ψ(λn1; q)

n2 · ψ(−λn2; 1− p̃)n1 if z1 = e1
ψ(λn1; 1− p̃)n2 · ψ(−λn2; q)

n1 if z1 = e2
ψ(λn1; q)

n2 · ψ(−λn2; q)n1 if z1 /∈ {e1, e2}.

Let ϕ(λ;µ) = exp(µ(eλ − 1)) be the MGF of Poi(µ) and note that ψ(λ; p)n ≤ ϕ(λ;np). Then, for
example, we have

E[eλY | z1 = e1] ≤ ϕ(λn1;n2q) · ϕ(−λn2;n1(1− p̃)).

Since ϕ(λ;µ) = exp[µ(λ+ o(λ))] = exp[µλ(1 + o(1))] for λ = o(1), we obtain

E[eλY | z1 = e1] ≤ exp
[
n1n2λq(1 + o(1))− n1n2λ(1− p̃)

(
1 + o(1)

)]
assuming that λ(n1 + n2) = o(1). Then,

E[eλY | z1 = e1] ≤ exp
[
n1n2λ(q − 1 + p̃)

(
1 + o(1)

)]
Take λ = t [n1n2(1− p)]

−1 for some t ≥ 0 to be determined below. Noting q − 1 + p̃ = −(1− p),

E[eλY | z1 = e1] ≤ exp
[
−t

(
1 + o(1)

)]
.
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The case z1 = e2 is argued similarly and we obtain the bound E[eλY | z1 = e2] ≤ exp
[
t
(
1+o(1)

)]
.

For z1 /∈ {e1, e2}, we perform a second-order expansion, assuming λ = o(1):

ϕ(λ;µ) = exp
[
µ
(
λ+

1

2
λ2 + o(λ2)

)]
≤ exp

[
µ
(
λ+ λ2

)]
and obtain

ψ(λn1; q)
n2 · ψ(−λn2; q)

n1 ≤ exp
[
λ2n1n2(n1 + n2)q

]
.

Let γ := 2q/(1− p)2 and let nhar := 2n1n2/(n1 + n2) be the harmonic mean of n1 and n2. Note
that nhar ≥ nmin. We have

λ2n1n2(n1 + n2)q =
t2(n1 + n2)q

n1n2(1− p)2
= γt2/nhar.

To summarize, the conditional MGF satisfies

E[etY/(n1n2(1−p)) | z1] ≤


exp

[
−t

(
1 + o(1)

)]
if z1 = e1

exp
[
t
(
1 + o(1)

)]
if z1 = e2

exp(γt2/nhar) if z1 /∈ {e1, e2}.

Recall that the events z1 = e1, z1 = e2 and z1 /∈ {e1, e2} happen with probability 1 − p̃, q and
(K − 2)q respectively. It follows that

MY (t/(n1n2(1− p))) ≤ (1− p̃) e−t(1+o(1)) + q et(1+o(1)) + (K − 2)q eγt
2/nhar . (22)

Let us set

t =
1

2
log((1− p̃)/q) =

1

2
log

(
1 +

K

p
(1− p)

)
, (23)

so that (1− p̃)e−t = qet =
√
(1− p̃)q. Then, t ≥ 0 and since log(1 + x) ≤ x, we have

t ≤ K(1− p)/(2p). (24)
The condition λ(n1 + n2) = o(1) is satisfied under assumption nminp/K → ∞, since

λ(n1 + n2) =
(n1 + n2)t

n1n2(1− p)
=

2t

nhar(1− p)
≤ K(1− p)/p

nhar(1− p)
≤ K

nminp
= o(1).

Recalling that q = p/K, the exponent of the last term in (22) satisfies
γt2

nhar
≤ γK2(1− p)2

4p2nhar
=

2qK2

4p2nhar
=

K

2nharp
≤ K

2nminp
= o(I)

under the assumption of the lemma. It follows that

MY (t/(n1n2(1− p))) ≤ 2
√
(1− p̃)q eo(t) + (K − 2)qeo(I)

= 2(
√
(1− p̃)q)1+o(1) + (K − 2)qeo(I)

=
[
(
√
(1− p̃)q)o(1) ∨ eo(I)

]
e−I

where the first equality is by eo(t) = (et)o(1) = (
√
(1− p̃)q)o(1) for our choice of t, and the second

equality by the definition (11) of I . Since
√

(1− p̃)q ≤ e−I , we have (
√

(1− p̃)q)o(1) = eo(I),
hence

MY (t/(n1n2(1− p))) ≤ eo(I)e−I = e−(1−o(1))I = e−(1−η)I .

Let Y1, . . . , YN be the i.i.d. copies of Y . By Markov’s inequality,

P
( N∑
j=1

Yj ≥ 0
)
= P

(
eλ

∑N
j=1 Yj ≥ 1

)
≤ Eeλ

∑N
j=1 Yj =MY1(λ)

N ≤ e−(1−η)NI .

The above argument shows that P
(
b2
n2

≥ b1
n1

)
≤ e−(1−η)NI . Repeating the argument for the ith label,

it shows that

P(ẑi(Z∗) ̸= z∗i ) ≤ P
(

max
k=2,...,K

bk
nk

≥ b1
n1

)
≤

K∑
k=2

P
(
bk
nk

≥ b1
n1

)
≤ (K − 1)e−(1−η)NI .

If K = 2, then we have already obtained (20). If K > 2, then

(K − 1)e−(1−η)NI = e−(1−η)NI+log(K−1) = e−(1−η)NI+o(NI).

The term o(NI) can be absorbed into ηNI , so we can still obtain (20).
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D.4.2 DETAILED PROOF OF LEMMA 2

Let i = 1 without loss of generality, and let Z ∈ B(δ), and n̂k = nk(Z), the size of the kth cluster in
the label matrix Z. Let bk(Z∗) = (Z∗

−1X̄1)k and bk(Z) = (Z−1X̄1)k where X̄1 is the first column
of X̄ in the algorithm. Suppose Z has at most nδ labels different from Z∗, then∣∣[n1b2(Z∗)− n2b1(Z

∗)]− [n1b2(Z)− n2b1(Z)]
∣∣ ≤ (n1 ∨ n2)nδ.

and ∣∣[n1b2(Z)− n2b1(Z)]− [n̂1b2(Z)− n̂2b1(Z)]
∣∣ ≤ |n1 − n̂1| · b2(Z) + |n2 − n̂2| · b1(Z)
≤ nδ (n1 + n2).

Let Y (Z∗) = n1b2(Z
∗)− n2b1(Z

∗) and Y (Z) = n̂1b2(Z)− n̂2b1(Z). Combining the two by the
triangle inequality, we obtain

|Y (Z∗)− Y (Z)| ≤ 3(n1 ∨ n2)nδ =: h(δ).

By Markov’s inequality, for λ ≥ 0,

P
(

max
Z∈B(δ)

Y (Z) ≥ 0
)
≤ P

(
Y (Z∗) ≥ −h(δ)

)
= P

(
eλNY (Z∗) ≥ e−λNh(δ)

)
≤ eλNh(δ)E[eλNY (Z∗)]

As in the proof of Lemma 3, we take λ = t [n1n2(1− p)]
−1, with t given by (23). Using the upper

bound (24), we have

λNh(δ) =
3(n1 ∨ n2)nN
n1n2(1− p)

δt ≤ 3KnδN

2pnmin
.

The result follows as in Lemma 3.

E RPM AND BAYESIAN AGGREGATION

One might ask whether RPM is a useful model in practice. For the applications in which all the label
vectors are perturbations of a common true “center”, and our goal is to recover this center, RPM is a
good first approximation. This is the case for Bayesian label aggregation as we argue below. In such
settings, the RPM is like the i.i.d. noise model used in classical regression. Although one can imagine
more complex regression models (like those with heteroscedastic noise, or mixtures of regressions,
etc.), the i.i.d. setting still provides a lot of insights for understanding the more complex models.

E.1 RPM IS A GOOD MODEL FOR A CONCENTRATED POSTERIOR

Lets us now argue how one can arrive at RPM in the context of Bayesian aggregation, by systematically
making some assumptions. First, we note that our goal in the paper is not to prove the “posterior
concentration around the truth”, also known as posterior consistency. This is problem-specific and
out of the scope of this work. We assume that we are working with a model for which posterior
consistency has already been established. The question that we are trying to answer is then this:

Given that the posterior concentrates around the true partition, and given that the
MCMC has converged—that is, we are sampling from this concentrated posterior—
can we obtain a consistent estimate of the center of the posterior (which would be
the true partition) based these samples?

For this purpose, it is enough to assume that we are observing samples from the posterior
p(z1, . . . , zn|D), where D is the observed data, and this posterior is concentrating around z∗ which
is the true partition. For simplicity, let us drop D and note that the posterior is some multivariate
discrete distribution p(z1, . . . , zn). Then, we proceed in steps:

1. First, we address the label-switching issue. Let z be a sample from the posterior and let
permutation π be the minimizer of H(z∗, π(z)) over all K! permutations, where H(·, ·) is
the Hamming distance. We note that π(z) is an equivalent label vector to z (only the cluster
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labels are permuted.) We consider the distribution of π(z) as the posterior distribution rather
than that of z. This is only to simplify the discussion and is without loss of generality, since
our methods are invariant to label-switching. The distribution of π(z) will have a single
mode at z∗ while that of z will have K! modes on all equivalent versions of z∗. Given such
simplification, renaming π(z) to z from now on, the posterior is a multivariate distribution
p(z1, . . . , zn) which is highly concentrated around z∗ = (z∗1 , . . . , z

∗
n). This follows from

the posterior consistency assumption.

2. We claim that this multivariate distribution can be approximated by the product of its
marginals p(z1, . . . , zn) ≈

∏n
i=1 pi(zi). This is intuitively clear for any concentrated

discrete distribution. Alternatively, it is intuitively clear to anyone who has looked at MCMC
samples at stationarity. Each node/object i usually has a most likely assignment which is
z∗i , but it occasionally jumps to some other label with a small probability. The fluctuations
for different nodes are independent; this is intuitively because the bulk of the labels don’t
change their clusters all at once; only a few do at any given time.

3. Non-uniform RPM: Given the independence assumption across i, the most general form
pi(zi) can take is a categorical (a.k.a. Multinomial(1,π)) distribution. The bulk of the mass
of this categorical variable will be on z∗i , and the rest distributed among the other labels. For
example, for some node, i, the label can jump, say, between z∗i = 3 and 5 with the bulk of
the probability on 3. For others it could be that when they jump from z∗i , they land over a
larger collection of labels. Here, we are making the simplifying assumption that for each
node, the mass that is put on anything other than z∗i is uniformly distributed over the label
set [K] \ {z∗i }. This assumption can be removed, and we can work with general categorical
variables, at the expense of making the rates and the analysis more complicated.

4. Inhomogeneous RPM: Given that the noise in the categorical variable is uniform over
[K] \ {z∗i }, we now assume that the probability of taking any of those values is the same
for the all nodes (i.e., independent of i). This is exactly the homogeneous RPM that we
consider. This assumption is easy to remove and we can work with the inhomogeneous
RPM that allows this probability to depend on i.

We do not lose anything in Step 1. Steps 3 and 4 are simplifying steps that are taken for the ease of
understanding and presentation. The main assumption is Step 2, the approximation by the product of
marginals. Below we provide some hard evidence that this is very reasonable in the Bayesian setting.

E.2 HARD EVIDENCE OF NEAR-INDEPENDENCE

We consider the problem of recovering the clusters in a stochastic block model (SBM) which is a
random network model with latent node clusters. Figure 5 shows the Sequential NMI plot for a Gibbs
sampler on a non-parametric SBM (with a Dirichlet Process prior on labels). The sequential NMI
means that we compute the NMI of the partition at iteration t relative to that at iteration t− 1, and
the x-axis shows t. The plot suggests that the chain enters stationarity roughly around iteration 100.

We use the MMD-based approach, described in (19; 20; 38), to compare the posterior joint distribution
of the labels to its approximate versions:

- Figure 6(a) shows the result for samples from iterations 100 to 1000 of the Gibbs sampler.
This is the stationary joint distribution.

- Figure 6(b) shows the result for samples from iterations 1 to 100 of the Gibbs sampler.
This is based on the transient samples (effectively, average joint behavior over the transient
period).

- Figure 6(c) shows the results on a movie rating dataset with complicated dependent joint
distribution (that has nothing to do with SBM).

We refer to (19; 20; 38) for details of how these experiments are performed. The bootstrap MMD
serves as the baseline; those methods whose MMD is closer to the bootstrap are better approximations
of the joint distribution. In general smaller MMD means a better approximation of the joint. Ind Mult
is exactly the approximation by independent multinomials (i.e. product of marginals). The Copula
Mult is a good joint model for the discrete multivariate distribution.
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Figure 5: Sequential NMI for the SBM Gibbs sampler

(a) (b) (c)

Figure 6: MMD histograms between the posterior distribution and its various approximations

We see that for the movie rating data and the transient chain, indeed Copula Mult has a much lower
MMD, than Ind Mult, showing that there is dependence in the joint that is not captured by Ind Mult.
However, for the stationary distribution (Figure 6(a)), the Ind Mult has comparable (and even slightly
smaller MMD) relative to the Copula Mult, and is close to bootstrap. This shows that the product of
marginals is a good approximation in this case, and justifies Step 2 in our reduction.

F COMPARISON WITH STOCHASTIC BLOCK MODEL

Below we outline some of the similarities and differences between the problem of cluster recovery in
SBM and the consensus clustering problem we consider in this paper. Suppose that A is the adjacency
matrix generated from the stochastic block model (SBM) and X is the association matrix generated
from the RPM.

Similarity: A larger value of Xij increases the likelihood of i and j being in the same cluster in
RPM. Similarly, Aij = 1, i.e., there is an edge between i and j, increases the likelihood of i and
j being in the same community in SBM. Therefore, both X and A can be considered proximity
matrices and we can utilize a min-cut algorithm on them to find the clusters. To approximate the
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min-cut algorithm, various researchers have proposed the approach of using a good initialization plus
a local refinement step. This idea can be applied to many clustering problems, including community
detection. In this paper, we show that it can also be applied to consensus clustering.

Difference: The entries of the adjacency matrixA are independent, but the entries of the association
matrix X are not. Indeed, the entries on the same row of X have very strong dependence. The
likelihood function of X is very different from A, but we can still show that a simple local refinement
step outputs optimal labels. The error rate is comparable to the Bayes error rate given by likelihood
ratio test.
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