
DeepSpeed4Science Initiative: Enabling Large-Scale
Scientific Discovery through Sophisticated AI System

Technologies

Shuaiwen Leon Song
Microsoft

Bonnie Kruft
Microsoft

Minjia Zhang
Microsoft

Conglong Li
Microsoft

Shiyang Chen
Rutgers University

Chengming Zhang
Microsoft

Masahiro Tanaka
Microsoft

Xiaoxia Wu
Microsoft

Mohammed AlQuraishi
Columbia University

Gustaf Ahdritz
Harvard University

Christina Floristean
Columbia University

Rick Stevens
Argonne National Laboratory

Venkatram Vishwanath
Argonne National Laboratory

Arvind Ramanathan
Argonne National Laboratory

Sam Foreman
Argonne National Laboratory

Kyle Hippe
Argonne National Laboratory

Prasanna Balaprakash
Oak Ridge National Laboratory

Yuxiong He
Microsoft

Abstract

In the upcoming decade, deep learning may revolutionize the natural sciences,
enhancing our capacity to model and predict natural occurrences. This could
herald a new era of scientific exploration, bringing significant advancements across
sectors from drug development to renewable energy. To answer this call, we
present DeepSpeed4Science initiative (deepspeed4science.ai) which aims to build
unique capabilities through AI system technology innovations to help domain
experts to unlock today’s biggest science mysteries. By leveraging DeepSpeed’s
current technology pillars (training, inference and compression) as base technology
enablers, DeepSpeed4Science will create a new set of AI system technologies
tailored for accelerating scientific discoveries by addressing their unique complexity
beyond the common technical approaches used for accelerating generic large
language models (LLMs). In this paper, we showcase the early progress we made
with DeepSpeed4Science in addressing two of the critical system challenges in
structural biology research.

1 Introduction

In the next decade, deep learning may revolutionize the natural sciences, enhancing our capacity to
model and predict natural occurrences. This could herald a new era of scientific exploration, bringing
significant advancements across sectors from drug development to renewable energy. In line with
Microsoft’s mission to empower every person and every organization on the planet to achieve more,
the DeepSpeed team at Microsoft is responding to this opportunity by launching a new initiative

An extended version of this paper is at arxiv.org/abs/2310.04610.

NeurIPS 2023 AI for Science Workshop.

https://arxiv.org/abs/2310.04610


Figure 1: DeepSpeed4Science approach: developing a new set of AI system technologies that are
beyond generic large language model support, tailored for accelerating scientific discoveries and
addressing their complexity.

called called DeepSpeed4Science, aiming to build unique capabilities through AI system technology
innovations to help domain experts to unlock today’s biggest science mysteries.

The DeepSpeed system framework [9] is an industry leading open-source AI system framework,
developed by Microsoft, that enables unprecedented scale and speed for deep learning training and
inference on a wide range of AI hardware. Figure 1 demonstrates our basic approach to this new
initiative. By leveraging DeepSpeed’s current technology pillars (training, inference and compression)
as base technology enablers, DeepSpeed4Science will create a new set of AI system technologies
tailored for accelerating scientific discoveries by addressing their unique complexity beyond the
common technical approaches used for accelerating generic large language models (LLMs). We
work closely with internal and external teams who own AI-driven science models that represent
key science missions, to identify and address general domain-specific AI system challenges. This
includes climate science, drug design, biological understanding, molecular dynamics simulation,
cancer diagnosis and surveillance, catalyst/material discovery, and other domains.

Our long-term vision is to develop DeepSpeed4Science into a new platform and a unified repository
for sharing advanced AI system technologies that support scientific discoveries. DeepSpeed4Science
is designed to be inclusive, which is reflected in the initiative’s support for a diverse group of signature
science models, representing some of the most critical AI for science investments. In this paper, we
showcase how DeepSpeed4Science helps address two of their critical system challenges in structural
biology research: (1) eliminating memory explosion problems for scaling Evoformer-centric protein-
structure prediction models, and (2) enabling very-long sequence support for better understanding the
evolutionary landscape of pandemic-causing viruses.

2 DS4Sci_EvoformerAttention: eliminating memory explosion problems for
scaling Evoformer-centric structural biology models

2.1 Core Problem Description

OpenFold [1] is a community reproduction of DeepMind’s AlphaFold2 [5] that makes it possible to
train or finetune AlphaFold2 on new datasets. Researchers have used it to retrain AlphaFold2 from
scratch to produce new sets of model parameters, studied the early training phase of AlphaFold2, and
developed new protein folding systems.

While OpenFold does apply performance and memory optimizations using state-of-the-art system
technologies, training AlphaFold2 from scratch is still computationally expensive. The model at
the current stage is small in absolute terms, with just 93 million parameters, but it contains several
custom attention variants that manifest unusually large activations. During the “finetuning” phase
of a standard AlphaFold2 training run, the logit tensor produced in just one of these variants–one

2

https://deepspeed4science.ai/


Figure 2: Peak memory requirement for training
variants of the MSA attention kernels (with bias)
with the maximum possible training sample dimen-
sion in OpenFold. (Left) The original OpenFold
implementation with EvoformerAttention used in
AlphaFold2. The memory explosion problems
in training/inference these types of protein struc-
ture prediction models are common. Particularly,
state-of-the-art FlashAttention cannot effectively
support such science attention variants. (Right)
A new solution from DeepSpeed4Science called
DS4Sci_EvoformerAttention significantly reduces
OpenFold’s peak memory requirement for training
by 13X without accuracy loss.

Figure 3: Peak memory requirement break-
down for training variants of the MSA atten-
tion kernels (with bias) with the maximum
possible training sample dimension in Open-
Fold. (Left bar) the original OpenFold im-
plementation with EvoformerAttention used
in AlphaFold 2. The memory explosion
problems in training/inference these types of
protein structure prediction models are com-
mon. Particularly, FlashAttention cannot ef-
fectively support such science attention vari-
ants. (Right bar) Our DeepSpeed4Science-
optimized solution significantly reduces the
overall peak memory requirement.

Figure 4: The example of MSA row-wise attention computation in OpenFold in four steps. The
example shows the computation of one attention head, where the input Q, K, and V are 3D tensors
and the pair bias is a matrix. Each attention head is associated with a 3D intermediate attention logit
causing the memory explosion. We fuse four steps in one kernel to reduce peak memory usage.

designed to attend over the deep protein MSAs fed to the model as input–is in excess of 12GB in half
precision alone, dwarfing the peak memory requirements of comparably sized language models. Even
with techniques like activation checkpointing and DeepSpeed ZeRO optimizations [8], this memory
explosion problem heavily constrains the sequence lengths and MSA depths on which the model can
be trained. Furthermore, approximation strategies can significantly affect the model accuracy and
convergence, while still resulting in memory explosion, shown as the left bar (orange) in Figure 2.

To address this common system challenge in structural biology research (e.g., protein structure
prediction and equilibrium distribution prediction), DeepSpeed4Science is addressing this memory
inefficiency problem by designing customized exact attention kernels for the attention variants (i.e.,
EvoformerAttention), which widely appear in this category of science models. Specifically, a set of
highly memory-efficient DS4Sci_EvoformerAttention kernels enabled by sophisticated fusion/tiling
strategies and on-the-fly memory reduction methods, are created for the broader community as
high-quality machine learning primitives. Incorporated into OpenFold, they provide a substantial
speedup during training and dramatically reduce the model’s peak memory requirement for training

3



and inference. This allows OpenFold to be experimented with bigger and more complex models, and
longer sequences, and trained on a wider spectrum of hardware.

2.2 Methodology

The Evoformer-centric models such as OpenFold and others typically use four attention variants to
process the 4D sequence tensors: MSA row-wise, MSA column-wise, and two kinds of Triangular.
In particular, the input tensor is of shape (Nres, Nmsa, H,D), where Nmsa is the length of MSA
sequences, Nres is the length of residue sequences, H is the number of attention heads, and D is
the hidden dimension of the model. Figure 4 illustrates an example of MSA row-wise attention.
The inputs consist of three projected tensors in shape (Nmsa, Nres, D), namely Q, K, and V , and a
(Nres, Nres) bias matrix of residue pairs. In step 1, Q and K perform dot-product between every row
vector along the D dimension, deriving the attention logits in shape (H,Nmsa, Nres, Nres) as the
intermediate results. For simplicity, we only depict one head in the figure. Unlike language models
such as GPT-3 [2], where D and H are considerably larger, Evoformer operates on a different scale.
Specifically, MSA row-wise attention is typically designed with 8 heads, each having 8 features, while
GPT-3 is configured with 96 heads and 128 features per head. However, MSA and residue sequence
lengths can extend up to 5K during training and inference, respectively, making the memory explosion
for intermediate results. MSA row-wise attention has the O(Nmsa ∗Nres

2) memory footprint, and,
similarly, for MSA column-wise attention, the memory footprint is O(Nres ∗Nmsa

2). In contrast,
the memory footprint of language models is much smaller, approximately O(N2). Figure 3 shows
the breakdown of memory requirements per GPU.

Existing techniques for long sequences cannot effectively address such memory explosion challenges
in Evoformer’s specialized attention for structural biology. For example, MSA row-wise attention
and two Triangular attention apply a bias term to the attention logits, and the bias term’s gradients are
required during backward. As shown in step 2, the pair bias is derived by projecting the pair-wise
representation and is used to adjust the attention logits based on the structure of residues to satisfy
the spatial constraints. Take FlashAttention [4] as an example; it cannot integrate these backward-
compatible bias terms directly. Furthermore, the bias requires appropriate broadcasting to match the
shape of attention logits before adding. It thus also needs to be mirrored in backward computing.
Recognizing these challenges, DeepSpeed4Science addresses this memory inefficiency problem by
designing customized, exact attention kernels for these attention variants in EvoformerAttention and
boosting the training/inference efficiency.

Our customized highly memory-efficient DS4Sci_EvoformerAttention kernels fuses the four steps
computation and calculates the attention logits in tiles. Specifically, in the forward kernel, each thread
block computes a tile of (Tilex, T iley, T ilez) in the attention logit tensor. Each thread block loads
the needed tiles from Q and K to perform the dot-product. The resultant tile is stored in registers
and added with biases. Then, we perform softmax as step 3 and multiply V as step 4. We reduce the
memory footprint by materializing only a subset of tiles in the (Nmsa, Nres, Nres) tensor and not
saving the whole tensor for backward. We perform steps 1-3 in the backward kernel to recompute the
attention logits. The backward computation is similar to that of FlashAttention. In our kernels, we
tune the tile size for better performance. Large tile size leads to more efficient memory access while
incurring register spilling; We tune the tile size to be (64, 64, 1).

The bias-adding needs to be effectively broadcasted to match the bias shape with the attention
logits. For example, in MSA row-wise attention, the residue pair-wise representation in shape
(Nmsa, Nres, D) is transformed to be the bias term in shape (H,Nmsa, Nres), while the attention
logits tensor is of shape (H,Nmsa, Nres, Nres). To broadcast, the bias tensor will be repeated Nmsa

times as the second dimension. Here, we cannot directly leverage the broadcast semantics in Pytorch
because we use a fused CUDA kernel out of PyTorch. Besides, broadcasting in PyTorch requires
the operation between two full tensors instead of tiles. Thus, we enabled on-the-fly broadcasting
in the kernel; in particular, after calculating the attention logits after step 1. For example, a thread
block loads a (Tilex, T iley) tile from the pair bias. The thread block for different heads with the
same position of its tile in the attention logits will load the same bias tile. The loaded tile is added to
the logits tile in registers.

In backward, the gradient of the bias terms equals the gradient of attention logits. However, we need
to reverse the broadcast operation. That is, the gradients along the broadcast dimension need to be
accumulated. Specifically, the shape of attention logits gradients is H,Nmsa, Nres, Nres and the bias

4



gradient is computed similar to attn_grad.sum(0) in Pytorch. To reduce the memory footprint, we
also fuse this operation into our kernel; otherwise, it needs the full attention logits gradient tensor.
As described above, different thread blocks load the same bias tiles participants in the accumulation.
Each thread block uses atomic-add operations when writing out its tile of gradients. To reduce the
contention that multiple thread blocks are trying to write the same place, we schedule the thread
block so that blocks executing on GPU’s multiprocessors at the same wave write to different tiles.
Furthermore, the accumulation could lead to potential accuracy issues due to the round-off error of
low-precision arithmetic operations, especially for bfloat16. Consequently, we convert the gradient to
FP32 before adding and converting it back in another kernel if necessary. It also avoids using the
slow atom.add.bf16x2 instruction.

For detailed source code release and tutorial, please visit our release blog for
DS4Sci_EvoformerAttention.

3 DeepSpeed4Science Enables Very-Long Sequence Support via both
Systematic and Algorithmic Approaches for Genome-scale Foundation
Models

3.1 Core Problem Description

GenSLMs [12], a 2022 ACM Gordon Bell award winning genome-scale language model from
Argonne National Lab, can learn the evolutionary landscape of SARS-CoV-2 (COVID-19) genomes
by adapting large language models (LLMs) for genomic data. It is designed to transform how new
and emergent variants of pandemic-causing viruses, especially SARS-CoV-2, are identified and
classified. GenSLM represents one of the first whole genome-scale foundation models which can
generalize to other prediction tasks. A good understanding of the latent space can help GenSLMs
tackle new domains beyond just viral sequences and expand their ability to model bacterial pathogens
and even eukaryotic organisms, e.g., to understand things such as function, pathway membership, and
evolutionary relationships. To achieve this scientific goal, GenSLMs and similar models require very
long sequence support for both training and inference that is beyond generic LLMs’ long-sequence
strategies like FlashAttention. Through DeepSpeed4Science’s new designs, scientists can now build
and train models with significantly longer context windows, allowing them to explore relationships
that were previously inaccessible.

Despite the importance of supporting very long sequence lengths and efficient training for better
understanding the genome latent space in models like GenSLMs, the existing large model training
frameworks such as NVIDIA Megatron-LM [7] and old version of Megatron-DeepSpeed [6], and
their corresponding parallelism choices do not have tailored optimizations for very long sequence
training and inference. There are two main challenges with the existing frameworks. First, the
existing parallelism approaches such as data, tensor, and pipeline parallelism cannot effectively
address the scaling along the sequence dimension. Second, the existing large model training systems
feature inferior training throughput when long sequences are required. For example, many scientists
today use NVIDIA’s Megatron-LM or the older version of Megatron-DeepSpeed to train their
models. Megatron-DeepSpeed is the DeepSpeed version of NVIDIA’s Megatron-LM. GenSLMs were
previously trained with Megatron-DeepSpeed. However, the older version of Megatron-DeepSpeed
misses many new acceleration opportunities including FlashAttention2 [3], new fused kernels and
sequence parallelism. As shown in Figure 5, the maximum sequence lengths supported by the
two state-of-the-art frameworks for the 33B GenSLM model are less than 60K, which is far from
the requirements of the genome-scale foundation models. And even worse, they show very poor
scalability in training.

In this release, we are proud to introduce the new Megatron-DeepSpeed framework. We rebased
and enabled DeepSpeed with the newest Megatron for long sequence support and other capabili-
ties/optimizations. With the new Megatron-DeepSpeed, users can now train their large AI4Science
models like GenSLMS with much longer sequences via a synergetic combination of our newly added
memory optimization techniques on attention mask and position embedding, tensor parallelism,
pipeline parallelism, sequence parallelism, ZeRO-style data parallelism and model state offloading.

The key properties of our new Megatron-DeepSpeed and its design/optimizations released are as
follows:

5

https://deepspeed4science.ai/2023/09/18/model-showcase-openfold/


Figure 5: Maximum sequence length support for
the 33B GenSLM model.

Figure 6: Attention mask operation.

• Enhancing Megatron-style sequence parallelism with our memory optimization techniques
for attention mask and position embedding.

• Rotary positional embedding, new fused kernels, and FlashAttention v1 and v2 are also
enabled.

• The overall training throughput is improved by up to 2x due to the newly enabled capability
of processing larger batch sizes through the new Megatron-DeepSpeed framework.

• An average of 13x longer sequence lengths are achieved compared to the state-of-the-art
training frameworks, e.g., enabling training with sequences with over a million tokens.

In the subsequent sections, we will provide a detailed discussion of rebasing efforts/achievements,
new Megatron-DeepSpeed core optimizations, experimental evaluation, and comparison analysis
against the existing frameworks.

3.2 Rebase and Optimizations of Megatron-DeepSpeed Framework

Megatron-DeepSpeed is a framework for training very large-scale LLMs. Since its release, the re-
search community has adopted it for training various LLMs, including the BigScience BLOOM 176B
model [10] and Argonne National Lab for GenSLMs. While containing a rich set of optimizations
for training LLMs, new features and new demands are coming out rapidly such that having a stable
and up-to-date support of Megatron-DeepSpeed is critical for our community of users. For example,
there have been more than 1300 new commits on the Megatron-LM side and 75 new commits from
the DeepSpeed side since the original Megatron-DeepSpeed release. Therefore, incorporating these
new changes and ensuring the robustness of the new framework becomes a fundamental requirement
for our science collaborators who use this framework extensively. In this release, we have enabled
the following capabilities:

• We integrated several new features, including Megatron-style sequence parallelism, rotary
positional embedding, FlashAttention v1 and v2, and new fused kernels from NVIDIA.

• We included additional optimizations specially tailored for long sequence training, such as
attention map optimization and position embedding partitioning (discussed next).

• We fixed several conflicts during integration: (1) activation checkpointing where the new fine-
grained partial checkpointing technique introduced by Megatron-LM was not compatible
with DeepSpeed; (2) model checkpoint save/load when DeepSpeed was used with the newest
Megatron-LM; and (3) major refactoring to DeepSpeed pipeline parallelism implementation
for GPT models in order to work with the newest Megatron-LM.

• We fully verified the performance and correctness of GPT pretraining after the rebasing.
Even though the new Megatron-DeepSpeed has tensor, sequence, and pipeline parallelism,
the maximum sequence length is still inadequate. Through profiling, we identified that
attention mask and weights of position encoding are main memory bottlenecks.

3.3 Further Memory Optimizations in our New Megatron-DeepSpeed

Based on the new rebase, we further enhance the Megatron-style sequence parallelism with our
memory optimization techniques for attention mask and position embedding.

6



Figure 7: Generation strategy.
Figure 8: Position embedding in Transformers.

3.3.1 Memory-Efficient Generation of Attention Masks

Attention mask allows models to only attend to the previous tokens (Figure 6). First, the reason why
the attention mask is one of the main memory bottlenecks is because of its size: [s, s], where is the
sequence length, making its memory complexity as O(s2). The size of the attention mask is over
10 GB when the sequence length (s) is larger than 50K (e.g., DNA sequences). Second, PyTorch
pre-allocates at least 2X larger GPU memory when generating an attention mask. However, an
attention mask is also very important when (1) users explicitly need it when there is no FlashAttention
in their virtual environment; and (2) users may want to use customized attention masks to tune their
models, not just using casual FlashAttention.

As illustrated in Figure 7, our approach involves initially determining a sequence length threshold
through extensive experimentation. This threshold is identified based on achieving optimal system
performance while maintaining reasonable memory usage. If the sequence length is below this
threshold, we proceed to directly generate an attention mask on the GPU. However, if the sequence
length exceeds this threshold, we follow a process in which we initially generate it within CPU
memory, perform the necessary operations, and subsequently transfer it to GPU memory. To prevent
out-of-memory errors while ensuring consistently high performance, we then establish this threshold
based on the underlying GPU hardware (e.g., 16K for A100 40G GPUs).

3.3.2 Weights Parallelization of Position Embedding

As shown in Figure 8, position embeddings are used to identify each token’s position in the list of
tokens. The size of weights of position embedding is [s, d], where s is sequence length and d is the
hidden dimension; it is linearly scaled with the sequence length. In the original Megatron-LM’s
design, each GPU holds a replica of these weights. Training these weights will result in the same size
of gradients and m times of the optimizer states (i.e., m is determined by PyTorch). For example,
the overall memory consumption is approximately 10 GB per GPU when DNA sequence lengths are
longer than 100K.

As shown in Figure 9. Our method is to split weights across all GPUs when enabling sequence
parallelism. Each GPU just needs to hold [s/p, d] partial weights. Thus, we reduce GPU memory
consumption by p times, where p is the number of GPUs.

3.3.3 Algorithmic Support: Relative Position Embedding

Some users may expect a model to achieve extrapolation at inference time for sequences that are
longer than it saw during training. We would use relative position embedding [11] (e.g., attention
with linear biases) to let users train large language models with shorter sequences, but the trained
model can infer much longer sequences.

7



Table 1: Throughput comparison from the
two frameworks on the 33B GenSLM dense
model.

Sequence Old Megatron- New Megatron-
Length DeepSpeed (TFLOPS) DeepSpeed (TFLOPS)

2k 25 (TP=32) 68 (TP=32)
4k 28 (TP=32) 80 (TP=32)
8k OOM 86 (TP=32)

16k OOM 92 (TP=32)
32k OOM 100 (TP=32)
64k OOM 106 (TP=32)

128k OOM 119 (TP=32)
256k OOM 94 (TP=32)

Figure 9: Memory overhead comparison between
baseline and the optimized version via parallelizing
position embedding.

3.4 Performance Improvement of Our New Megatron-DeepSpeed Framework

In order to demonstrate the performance improvement from our new Megatron-DeepSpeed framework,
we first show a range of performance comparisons between the old Megatron-DeepSpeed and the
New Megatron-DeepSpeed in Table 1, when disabling ZeRO (zero_stage=0). The new Megatron-
DeepSpeed is able to support much longer sequence lengths without triggering out-of-memory errors
due to (1) Megatron-style sequence parallelism partitions the activation memory when sequence
lengths are massive, (2) our enhanced memory optimization through memory-efficient attention mask
generation and position embedding parallelization, and (3) FlashAttention V1 and V2 support, which
reduces the memory consumption of the attention map calculation from quadratic to linear complexity
with respect to the sequence length. The new Megatron-DeepSpeed can achieve higher TFLPOS
because it includes new fused kernels from NVIDIA and supports larger batch sizes using our memory
optimizations without triggering out-of-memory errors. Appendix A.1 and A.2 present additional
evaluation of new Megatron-DeepSpeed framework’s capability and scalability. For detailed source
code release and tutorial, please visit our release blog for the new Megatron-DeepSpeed.

4 Conclusion

We are very proud and excited to announce the DeepSpeed4Science initiative along with several
R&D highlights and achievements. We are hosting our new initiative at https://deepspeed4science.ai/,
including information about our external colleagues, and current and future DeepSpeed4Science
technology releases. One of our high-level goals is to generalize AI system technologies that broadly
address the major system pain points for large-scale scientific discoveries. We hope scientists around
the world will enjoy the new capabilities unlocked by DeepSpeed4Science through open-sourced
software. We are looking forward to better understanding the AI system design challenges that block
scientists’ discovery progress. We sincerely welcome your participation to help us build a promising
AI4Science future.

Acknowledgment

We thank members of Microsoft DeepSpeed Team for their help on this initial release of Deep-
Speed4Science initiative.

Our Founding Collaborators (in alphabetical order):

Argonne National Laboratory: Rick Stevens, Cristina Negri, Rao Kotamarthi, Venkatram Vish-
wanath, Arvind Ramanathan, Sam Foreman, Kyle Hippe, Troy Arcomano, Romit Maulik, Maxim
Zvyagin, Alexander Brace, Bin Zhang, Cindy Orozco Bohorquez, Austin Clyde, Bharat Kale, Danilo
Perez-Rivera, Heng Ma, Carla M. Mann, Michael Irvin, J. Gregory Pauloski, Logan Ward, Valerie
Hayot, Murali Emani, Zhen Xie, Diangen Lin, Maulik Shukla, Ian Foster, James J. Davis, Michael E.
Papka, Thomas Brettin.

AMD: Ashwin Aji, Angela Dalton, Michael Schulte, Karl Schulz.

Brookhaven National Laboratory: Adolfy Hoisie, Shinjae Yoo, Yihui Ren.

8

https://deepspeed4science.ai/2023/09/18/model-showcase-genslms/


Columbia University OpenFold team: Mohammed AlQuraishi, Gustaf Ahdritz, Christina Floris-
tean.

Microsoft Research AI4Science team: Christopher Bishop, Bonnie Kruft, Max Welling, Tie-Yan
Liu, Cristian Bodnar, Johannes Brandstetter, Wessel Bruinsma, Chan Cao, Yuan-Jyue Chen, Peggy
Dai, Patrick Garvan, Liang He, Elizabeth Heider, PiPi Hu, Peiran Jin, Fusong Ju, Yatao Li, Chang
Liu, Ana Lucic, Renqian Luo, Qi Meng, Frank Noe, Paris Perdikaris, Tao Qin, Bin Shao, Yu Shi,
Wenlei Shi, Gregor Simm, Megan Stanley, Lixin Sun, Yue Wang, Tong Wang, Zun Wang, Lijun Wu,
Yingce Xia, Leo Xia, Shufang Xie, Shuxin Zheng, Jianwei Zhu.

Microsoft WebXT Weather team: Pete Luferenko, Divya Kumar, Jonathan Weyn, Ruixiong Zhang,
Sylwester Klocek, Volodymyr Vragov.

NVIDIA: Yuntian Deng, Weili Nie, Josh Romero, Christian Dallago, Arash Vahdat, Chaowei Xiao,
Thomas Gibbs, Anima Anandkumar.

Oak Ridge National Laboratory: Prasanna Balaprakash, Gina Tourassi, John Gounley, Heidi
Hanson, Thomas E Potok, Massimiliano (Max) Lupo Pasini, Kate Evans, Dan Lu, Dalton Lunga,
Junqi Yin, Sajal Dash , Feiyi Wang, Mallikarjun Shankar, Isaac Lyngaas, Xiao Wang, Guojing Cong,
Pei Zhang, Ming Fan, Siyan Liu.

Princeton University: William Tang, Kyle Felker, Alexey Svyatkovskiy (Microsoft liaison).

Rutgers University: Hang Liu.

References
[1] Gustaf Ahdritz, Nazim Bouatta, Sachin Kadyan, Qinghui Xia, William Gerecke, Timothy J

O’Donnell, Daniel Berenberg, Ian Fisk, Niccolò Zanichelli, Bo Zhang, Arkadiusz Nowaczynski,
Bei Wang, Marta M Stepniewska-Dziubinska, Shang Zhang, Adegoke Ojewole, Murat Efe
Guney, Stella Biderman, Andrew M Watkins, Stephen Ra, Pablo Ribalta Lorenzo, Lucas Nivon,
Brian Weitzner, Yih-En Andrew Ban, Peter K Sorger, Emad Mostaque, Zhao Zhang, Richard
Bonneau, and Mohammed AlQuraishi. OpenFold: Retraining AlphaFold2 yields new insights
into its learning mechanisms and capacity for generalization. bioRxiv, 2022.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc., 2020.

[3] Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

[4] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. Advances in Neural Information Processing
Systems, 35:16344–16359, 2022.

[5] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

[6] Microsoft. Megatron-DeepSpeed. https://github.com/microsoft/
Megatron-DeepSpeed.

[7] NVIDIA. Megatron-LM. https://github.com/NVIDIA/Megatron-LM.

[8] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimiza-
tions toward training trillion parameter models. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–16. IEEE, 2020.

9

https://github.com/microsoft/Megatron-DeepSpeed
https://github.com/microsoft/Megatron-DeepSpeed
https://github.com/NVIDIA/Megatron-LM


[9] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System
optimizations enable training deep learning models with over 100 billion parameters. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 3505–3506, 2020.

[10] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow,
Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A
176b-parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100,
2022.

[11] Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. arXiv preprint arXiv:2104.09864, 2021.

[12] Maxim Zvyagin, Alexander Brace, Kyle Hippe, Yuntian Deng, Bin Zhang, Cindy Orozco
Bohorquez, Austin Clyde, Bharat Kale, Danilo Perez-Rivera, Heng Ma, Carla M. Mann,
Michael Irvin, J. Gregory Pauloski, Logan Ward, Valerie Hayot, Murali Emani, Sam Foreman,
Zhen Xie, Diangen Lin, Maulik Shukla, Weili Nie, Josh Romero, Christian Dallago, Arash
Vahdat, Chaowei Xiao, Thomas Gibbs, Ian Foster, James J. Davis, Michael E. Papka, Thomas
Brettin, Rick Stevens, Anima Anandkumar, Venkatram Vishwanath, and Arvind Ramanathan.
Genslms: Genome-scale language models reveal sars-cov-2 evolutionary dynamics. bioRxiv,
2022.

10



Figure 10: Maximum sequence lengths of 33B GenSLM models supported by different frameworks
at different scales. The hardware profiled here are NVIDIA DGX nodes with eight 40G A100 GPUs
per node.

Figure 11: Maximum sequence lengths of 25B GenSLM models supported by different frameworks
at different scales. The hardware profiled here are NVIDIA DGX nodes with eight 40G A100 GPUs
per node.

A Appendix

A.1 New Megatron-DeepSpeed Max Sequence Length Capability

Through our new Megatron-DeepSpeed framework, scientists can now train their large science models
like GenSLMs with much longer sequences via a synergetic combination of our newly added memory
optimization techniques on attention mask and position embedding, tensor parallelism, pipeline
parallelism, sequence parallelism, ZeRO-style data parallelism and model state offloading. Figure 10
and 11 demonstrate that our new framework enables the longest sequence length for GenSLMs’ 25B
and 33B models by up to 12X and 14X, respectively, over the previous Megatron-DeepSpeed. In
terms of supported sequence lengths, this new framework also significantly outperforms NVIDIA’s
Megatron-LM by up to 9.8X and 9.1X for the 25B and 33B models, respectively. For example,
GenSLMs’ 25B model can now be trained with a 512K sequence of nucleotides, compared to the
Argonne team’s original 42K sequence length on 64 GPUs. This drastically improves model quality
and scientific discovery scope without additional accuracy loss.

11



Figure 12: Scalability of the 33B GenSLM model. MDS, TP, SP stand for Megatron-DeepSpeed,
tensor parallelism and sequence parallelism.

Figure 13: Scalability of the 25B GenSLM model. MDS, TP, SP stand for Megatron-DeepSpeed,
tensor parallelism and sequence parallelism.

A.2 New Megatron-DeepSpeed Scalability Analysis

We further show the scalability of new Megatron-DeepSpeed and what different optimizations entail
in Figure 12 and 13. We make two observations. Firstly, when only tensor parallelism and sequence
parallelism are used without position embedding optimization, the maximum length of the sequence
this training system can support is about 50K, and continuing to increase GPUs will not allow the
system to support longer sequences. Secondly, when enabling sequence parallelism, the maximum
length of the sequence that can be supported varies within 4K.

There are several reasons behind these observations. Firstly, during training, the majority of a device’s
memory is used for model state when the sequence length is small. However, as the sequence
length increases, the activation memory and temporary buffers can grow significantly. For instance,
GPT-style models require O(seq_length x n_layer x hidden_dim x batch_size) to store activations,
and O(seq_length x seq_length) to store the attention map, and O(3 x seq_length x hidden_dim ) to
train the position embedding.

Secondly, the attention map is linearly proportional to the sequence length, while the latter has
quadratic memory complexity. For a 25B parameter GPT model trained with a sequence length
of 100K and a batch size of 1, the activation memory requires about 12 GB and the attention map
requires at least 10 GB per device, both of which are non-trivial. By using techniques such as model
parallelism, we can reduce the memory footprint by using aggregated device memory for activation

12



memory from 480 GB to 12 GB. Finally, we also optimized the attention map’s memory usage by
avoiding allocating temporary buffers on the device, which reduces the peak memory consumption
from 54 GB (Out of Memory) to 39 GB. Even if we only use casual flash attention (avoid generating
attention map explicitly), the memory requirement for training position embedding is linearly scaled
with sequence length, and the needed memory is over 10 GB when a sequence length is over 100K.

13


	Introduction
	DS4Sci_EvoformerAttention: eliminating memory explosion problems for scaling Evoformer-centric structural biology models
	Core Problem Description
	Methodology

	DeepSpeed4Science Enables Very-Long Sequence Support via both Systematic and Algorithmic Approaches for Genome-scale Foundation Models
	Core Problem Description
	Rebase and Optimizations of Megatron-DeepSpeed Framework
	Further Memory Optimizations in our New Megatron-DeepSpeed
	Memory-Efficient Generation of Attention Masks
	Weights Parallelization of Position Embedding
	Algorithmic Support: Relative Position Embedding

	Performance Improvement of Our New Megatron-DeepSpeed Framework

	Conclusion
	Appendix
	New Megatron-DeepSpeed Max Sequence Length Capability
	New Megatron-DeepSpeed Scalability Analysis


