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ABSTRACT

Simulation-based inference (SBI) refers to statistical inference on stochastic models
for which we can generate samples, but not compute likelihoods. Like SBI algo-
rithms, generative adversarial networks (GANs) do not require explicit likelihoods.
We study the relationship between SBI and GANSs, and introduce GATSBI, an
adversarial approach to SBI. GATSBI reformulates the variational objective in an
adversarial setting to learn implicit posterior distributions. Inference with GATSBI
is amortised across observations, works in high-dimensional posterior spaces and
supports implicit priors. We evaluate GATSBI on two SBI benchmark problems
and on two high-dimensional simulators. On a model for wave propagation on the
surface of a shallow water body, we show that GATSBI can return well-calibrated
posterior estimates even in high dimensions. On a model of camera optics, it infers
a high-dimensional posterior given an implicit prior, and performs better than a
state-of-the-art SBI approach. We also show how GATSBI can be extended to
perform sequential posterior estimation to focus on individual observations. Over-
all, GATSBI opens up opportunities for leveraging advances in GANs to perform
Bayesian inference on high-dimensional simulation-based models.

1 INTRODUCTION

Hypothesis-making in many scientific disciplines relies on stochastic simulators that—unlike ex-
pressive statistical models such as neural networks—have domain-relevant, interpretable parameters.
Finding the parameters 6 of a simulator that reproduce the observed data x, constitutes an inverse
problem. In order to use these simulators to formulate further hypotheses and experiments, one
needs to obtain uncertainty estimates for the parameters and allow for multi-valuedness, i.e., different
candidate parameters accounting for the same observation. These requirements are met by Bayesian
inference, which attempts to approximate the posterior distribution p(6|z,). While a variety of
techniques exist to calculate posteriors for scientific simulators which allow explicit likelihood calcu-
lations p(z|6), inference on black-box simulators with intractable likelihoods a.k.a. ‘simulation-based
inference’ (Cranmer et al.||[2020)), poses substantial challenges. In traditional, so-called Approximate
Bayesian Computation (ABC) approaches to SBI (Beaumont et al., 2002, 2009; |Marjoram et al.,|2003;
Sisson et al., 2007)), one samples parameters 6 from a prior 7(6) and accepts only those parameters
for which the simulation output « ~ p(x|6) is close to the observation d(x, x,) < e. With increasing
data dimensionality IV, this approach incurs an exponentially growing simulation expense (‘curse of
dimensionality’); it also requires suitable choices of distance function d and acceptance threshold e.

Recent SBI algorithms (e.g.,|Greenberg et al., | 2019; |(Gutmann and Corander;, 2015; Hermans et al.,
2020; [Lueckmann et al., |2017; Meeds and Welling}, 2014} |[Papamakarios and Murrayl, 2016} |Radev,
et al.| 2020} Thomas et al.,|[2021) draw on advances in machine learning and are often based on
Gaussian Processes (Rasmussen and Williams| [2006) or neural networks for density estimation (e.g.
using normalizing flows; [Papamakarios et al., 2021)). While this has led to substantial improvements
over classical approaches, and numerous applications in fields such as cosmology (Cole et al., [2021)),
neuroscience (Gongalves et al., 2020) or robotics (Muratore et al., 2021)), statistical inference for
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Figure 1: GATSBI uses a conditional generative adversarial network (GAN) for simulation-
based inference (SBI). We sample parameters 6 from a prior 7(6), and use them to generate
synthetic data x from a black-box simulator. The GAN generator learns an implicit approximate
posterior g, (6|x), i.e., it learns to generate posterior samples §’ given data x. The discriminator is
trained to differentiate between 6’ and 6, conditioned on z.

high-dimensional parameter spaces is an open challenge (Cranmer et al.| |2020; |Lueckmann et al.|
2021): This prevents the application of these methods to many real-world scientific simulators.

In machine learning, generative adversarial networks (GANs, |Goodfellow et al.,|2014)) have emerged
as powerful tools for learning generative models of high-dimensional data, for instance, images (Isola
et al.,2016; Radford et al., 2015; Zhu et al.|[2017)). Using a minimax game between a ‘generator’ and
a ‘discriminator’, GANs can generate samples which look uncannily similar to the data they have
been trained on. Like SBI algorithms, adversarial training is ‘likelihood-free’, i.e., it does not require
explicit evaluation of a density function, and also relies on comparing empirical and simulated data.
This raises the question of whether GANs and SBI solve the same problem, and in particular whether
and how adversarial training can help scale SBI to high-dimensional regimes.

Here, we address these questions and make the following contributions: First, we show how one
can use adversarial training to learn an implicit posterior density for SBI. We refer to this approach
as GATSBI (Generative Adversarial Training for SBIE Second, we show that GATSBI can be
formulated as an adversarial variational inference algorithm (Huszar, [2017}; [Makhzani et al.| 2015}
Mescheder et al.,[2017)), thus opening up a potential area of exploration for SBI approaches. Third,
we show how it can be extended to refine posterior estimates for specific observations, i.e., sequential
posterior estimation. Fourth, on two low-dimensional SBI benchmark problems, we show that
GATSBTI’s performance is comparable to common SBI algorithms. Fifth, we illustrate GATSBI on
high-dimensional inference problems which are out of reach for most SBI methods: In a fluid dynam-
ics problem from earth science, we learn an implicit posterior over 100 parameters. Furthermore, we
show that GATSBI (in contrast to most SBI algorithms) can be used on problems in which the prior
is only specified implicitly: by recasting image-denoising as an SBI problem, we learn a posterior
over (784-dimensional) images. Finally, we discuss the opportunities and limitations of GATSBI
relative to current SBI algorithms, and chart out avenues for future work.

2 METHODS

2.1 SIMULATION-BASED INFERENCE AND ADVERSARIAL NETWORKS

Simulation-based inference (SBI) targets stochastic simulators with parameters € that we can use to
generate samples . In many scientific applications, simulators are ‘black-box’: we cannot evaluate
the likelihood p(x|@), take derivatives through the simulator, or access its internal random numbers.
The goal of SBI is to infer the parameters 6, given empirically observed data z, i.e., to obtain the
posterior distribution p(6|z,). In most applications of existing SBI algorithms, the simulator is a
mechanistic forward model depending on a low (~ 10) number of parameters 6.

"Note that the name is shared by recently proposed, and entirely unrelated, algorithms (Min et al.|[2021}; |Yu
et al.,[2020)
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Generative adversarial networks (GANs) (Goodfellow et al.,|2014)) consist of two networks trained
adversarially. The generator f,(z) produces samples x from latent variables z; the discriminator
Dy, acts as a similarity measure between the distribution of generated = and observations x,, from
a distribution paata (o). The two networks are pitted against each other: the generator attempts to
produce samples that would fool the discriminator; the discriminator is trained to tell apart generated
and ground-truth samples. This takes the form of a minimax game min, maxy, L(¢,¢) between the
networks, with cross-entropy as the value function:

L(6,9) = Epgara(wo) 108 Dy (20) + Ep(zy log(1 = Dy (f(2)))-

At the end of training, if the networks are sufficiently expressive, samples from f; are hard to distin-
guish from the ground-truth samples, and the generator approximates the observed data distribution
Pdata (o). GANs can also be used to perform (implicit) conditional density estimation, by making
the generator and discriminator conditional on external covariates ¢ (Mirza and Osinderol [2014). Note
that the GAN formulation does not evaluate the intractable distribution pdata (o) OF Pdata(Zo|t) at
any point. Thus, GANs and SBI appear to be solving similar problems: They are both ‘likelihood-free*
i.e., they do not evaluate the target distribution, but rather exclusively work with samples from it.

Nevertheless, GANs and SBI differ in multiple ways: GANs use neural networks, and thus are
always differentiable, whereas the numerical simulators in SBI may not be. Furthermore, the latent
variables for the GAN generator are typically accessible, while in SBI, one may not have access to
the simulator’s internal random variables. Finally, in GANs, the goal is to match the distribution of
the generated samples z to that of the observed data x,, and parameters of the generator are learnt as
point estimates. In contrast, the goal of SBI is to learn a distribution over parameters 6 of a simulator
consistent with both the observed data z, and prior knowledge about the parameters. However,
conditional GANSs can be used to perform conditional density estimation. How can we repurpose
them for SBI? We propose an approach using adversarial training for SBI, by employing GANs as
implicit density estimators rather than generative models of data.

2.2 GENERATIVE ADVERSARIAL TRAINING FOR SBI: GATSBI

Our approach leverages conditional GANs for SBI. We train a deep generative neural network f, with
parameters ¢, i.e., f takes as inputs observations x and noise z from a fixed source with distribution
p(z), so that f4(x, z) deterministically transforms z to generate 6. This generative network f is an
implicit approximation g, (6|x) of the posterior distribution, i.e.,

AV }:, 0 ~ gs(0]2). ()

We train f adversarially: We sample many parameters ¢ from the prior, and for each 6, simulate x ~
p(z|0) i.e., we sample tuples (6, 2) ~ 7(0)p(x|0) = p(0|z)p(x) . These samples from the joint
constitute our training data. We define a discriminator D, parameterised by v, to differentiate
between samples 6 drawn from the approximate posterior g4(f|x) and the true posterior p(6|x).
The discriminator is conditioned on . We calculate the cross-entropy of the discriminator outputs,
and maximize it with respect to the discriminator parameters 1) and minimize it with respect to the
generator parameters ¢ i.e., ming, max, L(¢, 1)), with

L(¢,1) = Ex(0)p(z10)p(2) [1082 Dy (0, x) +log (1 — Dy(fs(z, 2), x))}

= Epa) [Epope) (108 Dy (6,2) ) + Eqggope) (Tog (1= Dy (6, 2)) )] ©)

This conditional GAN value function targets the desired posterior p(6|z):
Proposition 1. Given a fixed generator fy, the discriminator Dy~ maximizing equationsatisﬁes

p(f]x)
Dy-(0,2) = — P 3)
Y p(0]2) + 44(0])
and the corresponding loss function for the generator parameters is the Jensen-Shannon divergence
(JSD) between the true and approximate posterior,

Ly(8) = 23SD(p(9

z)|lq¢(0]x)) —log 4.
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Using sufficiently flexible networks, the GATSBI generator trained with the cross-entropy loss
converges in the limit of infinitely many samples to the true posterior, since the JSD is minimised
if and only if g, (6|x) = p(f]x). The proof directly follows Prop. 1 and 2 from Goodfellow et al.
(2014) and is given in detail in App.[A.T] GATSBI thus performs amortised inference, i.e., learns a
single inference network which can be used to perform inference rapidly and efficiently for a wide
range of potential observations, without having to re-train the network for each new observation. The
training steps for GATSBI are described in App.

2.3 RELATING GATSBI TO EXISTING SBI APPROACHES

There have been previous attempts at using GANs to fit black-box scientific simulators to empirical
data. However, unlike GATSBI, these approaches do not perform Bayesian inference: [Kim et al.
(2020) and [Louppe et al.|(2017) train a discriminator to differentiate between samples from the black-
box simulator and empirical observations. They use the discriminator to adjust a proposal distribution
for simulator parameters until the resulting simulated data and empirical data match. However, neither
approach returns a posterior distribution representing the balance between a prior distribution and
a fit to empirical data. Similarly, Jethava and Dubhashi| (2017) use two generator networks, one to
approximate the prior and one to learn summary statistics, as well as two discriminators. This scheme
yields a generator for parameters leading to realistic simulations, but does not return a posterior
over parameters. [Parikh et al.[|(2020) train a conditional GAN (c-GAN), as well as two additional
GANSs (r-GAN and t-GAN) within an active learning scheme, in order to solve ‘population of models’
problems (Britton et al.l|2013; Lawson et al., 2018)). While c-GAN exhibits similarities with GATSBI,
the method does not do Bayesian inference, but rather solves a constrained optimization problem.
Adler and Oktem|(2018) use Wasserstein-GANs (Arjovsky et al.,[2017) to solve Bayesian inverse
problems in medical imaging. While their set-up is similar to GATSBI, the Wasserstein metric
imposes stronger conditions for the generator to converge to the true posterior (App. Sec.[A.3).

Several SBI approaches train discriminators to circumvent evaluation of the intractable likelihood
(e.g.,/Cranmer et al., [2015; |Gutmann et al., 2018; /Pham et al.,2014; Thomas et al.,[2021)). [Hermans
et al.[(2020) train density-ratio estimators by discriminating samples (6, ) ~ 7w (0)p(z|0) from
(0, x) ~ 7(0)p(x), which can be used to sample from the posterior. Unlike GATSBI, this requires
a potentially expensive step of MCMC sampling. A closely related approach (Durkan et al., [2020;
Greenberg et al. |[2019) directly targets the posterior, but requires a density estimator that can be
evaluated—unlike GATSBI, where the only restriction on the generator is that it remains differentiable.

Finally, ABC and synthetic likelihood methods have been developed to tackle problems in high-
dimensional parameter spaces (>100-dimensions) although these require model assumptions re-
garding the Gaussianity of the likelihood (Ong et al.,|2018)), or low-dimensional summary statistics
(Kousathanas et al.||2015; [Rodrigues et al., |2019), in addition to MCMC sampling.

2.4 RELATION TO ADVERSARIAL INFERENCE

GATSBI reveals a direct connection between SBI and adversarial variational inference. Density
estimation approaches for SBI usually use the forward Kullback-Leibler divergence (Dxr,). The
reverse Dy, can offer complementary advantages (e.g. by promoting mode-seeking rather than mode-
covering (Turner and Sahanil [2011)), but is hard to compute and optimise for conventional density
estimation approaches. We here show how GATSBI, by using an approach similar to adversarial
variational inference, performs an optimization that also finds a minimum of the reverse Dkr,.

First, we note that density estimation approaches for SBI involve maximising the approximate log

posterior over samples simulated from the prior. This is equivalent to minimising the forward Dk,
Liwa(¢) = Ep(a) Dxr (p(0]2)14(0]7)) = —Ep(@)p(0]e) 108 46 (0]) + Ep(a)p(o)2) log p(0]z). (4)

rather than reverse Dxr,:

q0(02)

G

This is because it is feasible to compute Ly,q With an intractable likelihood: it only involves evaluating

the approximate posterior under samples from the true joint distribution p(6, x) = p(z|6)m (). The
problem with the reverse Dx1,, however, is that it requires evaluating the true posterior p(6|z) under

Lrev(¢) = Ep(w)DKL(Q(b(G‘x)Hp(G‘x» = Ep(z)q¢(0\w) IOg )
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samples from the approximate posterior g4 (6|x), which is impossible with an intractable likelihood.
This is a problem also shared by variational-autoencoders (VAEs, [Kingma and Welling}, [2013) but
which can be solved using adversarial inference.

A VAE typically consists of an encoder network g4 (u|z) approximating the posterior over latents u
given data x, and a decoder network approximating the likelihood p,, (z|u). The parameters ¢ and «
of the two networks are optimised by maximising the Evidence Lower Bound (ELBO):

ELBO(a, ¢) = —Eyp(a) [Dxr (o (ul2)||p(w)) + Eq, (ufs) [l0g pa (z[w)]
qo (ulx)p(z)
p(u)pa(z|u)
= —Dxr(go(ulz)p(2)|[p(u)pa(z|u)) + const. (6)

= —Ep()q, (ul2) 108 -+ const.

Note that the Dgy, is minimised when maximising the ELBO. If any of the distributions used
to compute the ratio in the Dky, in equation E] is intractable, one can do adversarial inference,
i.e., the ratio can be approximated using a discriminator (see Prop.|1)) and g, (u|x) is recast as the
generator. Various adversarial inference approaches approximate different ratios, depending on which
of the distributions is intractable (see App. Table[I] for a non-exhaustive comparison of different
discriminators and corresponding losses), and their connection to GANs has been explored extensively
(Chen et al.,[2018; |Hu et al., 2017; Mohamed and Lakshminarayanan| [2016} |Srivastava et al., 2017).

Recasting SBI into the VAE framework, the intractable distribution is the likelihood p, (x|6) E] with
« constant, i.e., the simulator only has parameters to do inference over. Hence, p(z) is defined as the
marginal likelihood. In this setting, the SBI objective becomes the reverse Dkr,, and we can use an
adversarial method, e.g. GATSBI, to minimise it for learning g, (6|x). There is an additional subtlety
at play here: GATSBI’s generator loss, given an optimal discriminator, is not the reverse Dk, but
the JSD (see Prop. [I). However, following the proof for Prop. 3 in[Mescheder et al.| (2017), we show
that the approximate posterior that minimises the JSD also maximises the ELBO (see App. [A.2).
Thus, GATSBI is an adversarial inference method that performs SBI using the reverse Dxr,.

Note that the converse is not true: not all adversarial inference methods can be adapted for SBI.
Specifically, some adversarial inference methods require explicit evaluation of the likelihood. Of
those methods listed in Table E], only likelihood-free variational inference (LFVI) (Tran et al., 2017)
is explicitly used to perform inference for a simulator with intractable likelihood. LFVI is defined as
performing inference over latents u and global parameters 3 shared across multiple observations z,
which are sampled from an empirical distribution p’(z) # p(x), i.e., it learns g4 (u, 5|z). However,
if p’(x) = p(x), and B is constant, i.e., the simulator does not have tunable parameters (but only
parameters one does inference over) then LFVI and GATSBI become (almost) equivalent: LFVI
differs by a single term in the loss function, and we empirically found the methods to yield similar
results (see App. Fig.[6). We discuss LFVI’s relationship to GATSBI in more detail in App.[A.3]

2.5 SEQUENTIAL GATSBI

The GATSBI formulation in the previous sections allows us to learn an amortised posterior p(6|x)
for any observation x. However, one is often interested in good posterior samples for a particular
experimental observation z,—and not for all possible observations x. This can be achieved by
training the density estimator using samples 6 from a proposal prior 7(6) instead of the usual prior
(). The proposal prior ideally produces samples 6§ that are localised around the modes of p(0|x,)
and can guide the density estimator towards inferring a posterior for x,, using less training data. To
this end, sequential schemes using proposal distributions to generate training data over several rounds
of inference (e.g. by using the approximate posterior from previous rounds as the proposal prior for
subsequent rounds) can be more sample efficient (Lueckmann et al., [2021).

Sequential GATSBI uses a scheme similar to other sequential SBI methods (e.g.,|Greenberg et al.,
2019; Hermans et al., [2020; Lueckmann et al., [2017; |Papamakarios and Murrayl, 2016} |Papamakarios
et al., 2019): the generator from the current round of posterior approximation becomes the proposal
distribution in the next round. However, using samples from a proposal prior 77(#) to train the GAN
would lead to the GATSBI generator learning a proposal posterior p(0|x) rather than the true posterior

?Note the difference in notation: the parameters # correspond to the latents u of a VAE, and the simulator in
SBI to the decoder of the VAE.
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p(6]x). Previous sequential methods solve this problem either by post-hoc correcting the learned
density (Papamakarios and Murray| [2016), by adjusting the loss function (Lueckmann et al.| 2017),
or by reparametrizing the posterior network (Greenberg et al., 2019). While these approaches might
work for GATSBI (see App.[A.4]for an outline), we propose a different approach: at training time, we
sample the latents z—that the generator transforms into parameters 6—from a corrected distribution
pi(2), so that the samples 6 are implicitly generated from an approximate proposal posterior G4 (0|x):

z ~pe(2) .
0 — f;(%x) } = 0~ Gy(0lz), (7)
€

where p;(2) = p(z) (w(fs(z,2),2))7 1, w(b,z) = ;gz) b()> and p(z) is the marginal likelihood

—

under samples from the proposal prior. Since 7 (), p(x) and p(x) are intractable, we approximate

w(0,x) using ratio density estimators for ;Ezg and %. This ensures that at inference time, the

GATSBI generator transforms samples from p(z) into an approximation of the true posterior p(6|z)
with highest accuracy at = z,, (see App.[A.4][B).[Azadi et al|(2019); |Che et al.| (2020) use similar
approaches to improve GAN training. Note that this scheme may be used with other inference
algorithms evaluating a loss under approximate posterior samples, e.g. LFVI (see Sec. [2.4).

3 RESULTS

We first investigate GATSBI on two common benchmark problems in SBI (Lueckmann et al.| [2021]).
We then show how GATSBI infers posteriors in a high-dimensional regime where most state-of-the-art
SBI algorithms are inadequate, as well as in a problem with an implicit prior (details in App.[D.T).

3.1 BENCHMARK PROBLEMS

We selected two benchmark problems with low-dimensional posteriors on which state-of-the-art SBI
algorithms have been tested extensively. We used the benchmarking-tools and setup from |Lueckmann
et al.|(2021)). Briefly, we compared GATSBI against five SBI algorithms: classical rejection ABC
(Tavaré et al.,|1997, REJ-ABC), sequential Monte Carlo ABC (Beaumont et al., 2009, SMC-ABC)
and the single-round variants of flow-based neural likelihood estimation (Papamakarios et al.,[2019}
NLE), flow-based neural posterior estimation (Greenberg et al., 2019} [Papamakarios and Murrayl,
2016, NPE) and neural ratio estimation (Durkan et al.| |2020; [Hermans et al., 2020, NRE). GANSs have
previously been shown to be poor density estimators for low-dimensional distributions (Zaheer et al.,
2017). Thus, while we include these examples to provide empirical support that GATSBI works, we
do not expect it to perform as well as state-of-the-art SBI algorithms on these tasks. We compared
samples from the approximate posterior against a reference posterior using a classifier trained on the
two sets of samples (classification-based two-sample test, C2ST). A C2ST accuracy of 0.5 (chance
level) corresponds to perfect posterior estimation.

“Simple Likelihood Complex Posterior” (SLCP) is a challenging SBI problem designed to have
a simple likelihood and a complex posterior (Papamakarios et al., 2019). The prior 7(6) is a 5-
dimensional uniform distribution and the likelihood for the 8-dimensional z is a Gaussian whose
mean and variance are nonlinear functions of §. This induces a posterior over 8 with four symmetrical
modes and vertical cut-offs (see App. Fig.[7), making it a challenging inference problem. We trained
all algorithms on a budget of 1k, 10k and 100k simulations. The GATSBI C2ST scores were on par
with NRE, better than REJ-ABC and SMC-ABC, but below the NPE and NLE scores (Figure 2]A).

The “Two-Moons Model” (Greenberg et al., 2019) has a simple likelihood and a bimodal posterior,
where each mode is crescent-shaped (see App. Fig.[§). Both x and # are two-dimensional. We
initially trained GATSBI with the same architecture and settings as for the SLCP problem. While the
classification score for GATSBI (see [Figure 2B) was on par with that of REJ-ABC and SMC-ABC for
1k simulations, performance did not significantly improve when increasing training budget. When
we tuned the GAN architecture and training hyperparameters specifically for this model, we found a
performance improvement. [Lueckmann et al.| (2021)) showed that performance can be significantly
improved with sequential inference schemes. We found that although using sequential schemes with
GATSBI leads to small performance improvements, it still did not ensure performance on-par with the
flow-based methods (see App. Fig.[9). Moreover, since it had double the number of hyperparameters
as amortised GATSBI, sequential GATSBI also required more hyperparameter tuning.
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Figure 2: GATSBI performance on benchmark problems. Mean C2ST score (+ standard error
of the mean) for 10 observations each. A. The classification score for GATSBI (red) on SCLP
decreases with increasing simulation budget, and is comparable to NRE. It outperforms rejection
ABC and SMC-ABC, but has worse performance than NPE and NLE. B. The classification score for
GATSBI (red) on the two-moons model decreases with increasing simulation budget, is comparable
to REJ-ABC and SMC-ABC for simulation budgets of 1k and 10k, and is outperformed by all other
methods for a 100k simulation budget. However, GATSBI’s classification score improves when its
architecture and optimization parameters are tuned to the two-moons model (red, dashed).
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Figure 3: Shallow water model inference with GATSBI, NPE and NLE. A. Ground truth, obser-
vation and prior samples. Left: ground-truth depth profile and prior samples. Middle: surface wave
simulated from ground-truth profile as a function of position and time. Right: wave amplitudes at
three different fixed times for ground-truth depth profile (black), and waves simulated from multiple
prior samples (gray). B. GATSBI inference. Left: posterior samples (red) versus ground-truth depth
profile (black). Middle: surface wave simulated from a single GATSBI posterior sample. Right:
wave amplitudes for multiple GATSBI posterior samples, at three different times (red). Ground-truth
waves in black. C. NPE inference. Panels as in B. D. NLE inference.

3.2 HIGH-DIMENSIONAL INFERENCE PROBLEMS

We showed above that, on low-dimensional examples, GATSBI does not perform as well as the
best SBI methods. However, we expected that it would excel on problems on which GANs excel:
high-dimensional and structured parameter spaces, in which suitably designed neural networks can be
used as powerful classifiers. We apply GATSBI to two problems with ~100-dimensional parameter
spaces, one of which also has an implicit prior.
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Shallow Water Model The 1D shallow water equations describe the propagation of an initial
disturbance across the surface of a shallow basin with an irregular depth profile and bottom friction
(Figure 3A). They are relevant to oceanographers studying the dynamics on the continental sea shelf
(Backhaus},|1983} [Holton, |1973). We discretised the partial differential equations on a 100-point spatial
grid, obtaining a simulator parameterised by the depth profile of the basin, § € R'%° (substantially
higher than most previous SBI-applications, which generally are ~ 10 dim). The resulting amplitude
of the waves evolving over a total of 100 time steps constitutes the 10k-dimensional raw observation
from which we aim to infer the depth profile. The observation is taken into the Fourier domain, where
both the real and imaginary parts receive additive noise and are concatenated, entering the inference
pipeline as an array = € R2%%, Our task was to estimate p(6|z), i.e., to infer the basin depth profile
from a noisy Fourier transform of the surfaces waves. We trained GATSBI with 100k depth profiles
sampled from the prior and the resulting surface wave simulations. For comparison, we trained NPE
and NLE on the same data, using the same embedding net as the GATSBI discriminator to reduce the
high dimensionality of the observations = € R20% to R100,

Samples from the GATSBI posterior 1.0
captured the structure of the underly-

ing ground-truth depth profile

[ure 3B, left). In comparison, only
NPE, but not NLE, captured the true

shape of the depth profile (Figure 3|C, 7
D, left). In addition, the inferred pos- 0.0 T . > : :
terior means for GATSBI and NPE, 0 500 1000 © 500 1000
but not NLE, were correlated with the Rank Rank
ground-truth parameters (0.88 £0.10 Figure 4: SBC results on shallow water model. Empirical
for GATSBI and 0.91 £ 0.09 for NPE, cdf of SBC ranks, one line per posterior dimension (red,
mean =+ standard deviation across GATSBI; blue, NPE). In gray, region showing 99% of devia-
1000 different observations). Further- tion expected under the ideal uniform cdf (black).

more, while GATSBI posterior predic-

tive samples did not follow the ground-truth observations as closely as NPE’s, they captured the
structure and were not as phase-shifted as NLE’s B-D). This is expected since wave-
propagation speed depends strongly on depth profile, and thus incorrect inference of the depth
parameters leads to temporal shifts between observed and inferred waves. Finally, simulation-based
calibration (SBC) (Talts et al., 2020) shows that both NPE and GATSBI provide well-calibrated
posteriors on this challenging, 100 dimensional inference problem (clearly, neither is perfectly cali-
brated, [Figure 4)). This realistic simulator example illustrates that GATSBI can learn posteriors with a
dimensionality far from feasible for most SBI algorithms. It performs similar to NPE, previously
reported to be a powerful approach on high-dimensional SBI problems (Lueckmann et al., 2021)).

0.5

empirical CDF

Noisy Camera Model Finally, we demonstrate a further advantage of GATSBI over many SBI
algorithms: GATSBI (like LFVI) can be applied in cases in which the prior distribution is only
specified through an implicit model. We illustrate this by considering inference over images from a
noisy and blurred camera model. We interpret the model as a black-box simulator. Thus, the clean
images 6 are samples from an implicit prior over images 7(6), and the simulated sensor activations
are observations x. We can then recast the task of denoising the images as an inference problem (we
note that our goal is not to advance the state-of-the-art for super-resolution algorithms, for which
multiple powerful approaches are available, e.g. |[Kim et al.||2016; Zhang et al., 2018]).

Since images are typically high-dimensional objects, learning a posterior over images is already
a difficult problem for many SBI algorithms — either due to the implicit prior or the curse of
dimensionality making MCMC sampling impracticable. However, the implicit prior poses no
challenge for GATSBI since it is trained only with samples.

We chose the EMNIST dataset (Cohen et al., 2017) with 800k 28 x28-dimensional images as the
implicit prior. This results in an inference problem in a 784-dimensional parameter space—much
higher dimensionality than in typical SBI applications. The GATSBI generator was trained to produce
clean images, given only the blurred image as input, while the discriminator was trained with clean
images from the prior and the generator, and the corresponding blurred images. GATSBI indeed
recovered crisp sources from blurred observations: samples from the GATSBI posterior given blurred
observations accurately matched the underlying clean ground-truth images (see [Figure 5). In contrast,
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Figure 5: Camera model inference. Top: ground-truth parameter samples from the implicit prior
and corresponding blurred camera model observations. Bottom: mean and standard deviation (SD) of
inferred GATSBI and NPE posterior samples for matching observation from top.
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NPE did not produce coherent posterior samples, and took substantially longer to train than GATSBI
(NLE and NRE are not applicable due to the implicit prior).

4 DISCUSSION

We proposed a new method for simulation-based inference in stochastic models with intractable
likelihoods. We used conditional GANS to fit a neural network functioning as an implicit density,
allowing efficient, scalable sampling. We clarified the relationship between GANs and SBI, and
showed how our method is related to adversarial VAEs that learn implicit posteriors over latent
variables. We showed how GATSBI can be extended for sequential estimation, fine-tuning inference
to a particular observation at the expense of amortisation. In contrast to conventional density-
estimation based SBI-methods, GATSBI targets the reverse Dk, —by thus extending both amortised
and sequential SBI, we made it possible to explore the advantages of the forward and reverse Dkr..

We found GATSBI to work adequately on two low-dimensional benchmark problems, though it did
not outperform neural network-based methods. However, its real potential comes from the ability
of GANSs to learn generative models in high-dimensional problems. We demonstrated this by using
GATSBI to infer a well-calibrated posterior over a 100-dimensional parameter space for the shallow
water model, and a 784-dimensional parameter space for the camera model. This is far beyond what is
typically attempted with SBI: indeed we found that GATSBI outperformed NPE on the camera model,
and performed similarly to NPE and substantially outperformed NLE on the shallow water model
(both SBI approaches were previously shown to be more powerful than others in high dimensions;
Lueckmann et al.|2021)). Moreover, we showed that GATSBI can learn posteriors in a model in which
the prior is only defined implicitly (i.e., through a database of samples, not a parametric model).

Despite the advantages that GATSBI confers over other SBI algorithms in terms of flexibility and
scalability, it comes with computational and algorithmic costs. GANs are notoriously difficult to
train—they are highly sensitive to hyperparameters (as demonstrated in the two-moons example) and
problems such as mode collapse are common. Moreover, training time is significantly higher than in
other SBI algorithms. In addition, since GATSBI encodes an implicit posterior, i.e., a density from
which we can sample but cannot evaluate, it yields posterior samples but not a parametric model.
Thus, GATSBI is unlikely to be the method of choice for low-dimensional problems. Similarly,
sequential GATSBI requires extensive hyperparameter tuning in order to produce improvements over
amortised GATSBI, with the additional cost of training a classifier to approximate the correction
factor. Hence, sequential GATSBI might be useful in applications where the computational cost of
training is offset by having an expensive simulator. We note that GATSBI might benefit from recent
improvements on GAN training speed and sample efficiency (Sauer et al., [2021]).

Overall, we expect that GATSBI will be particularly impactful on problems in which the parameter
space is high-dimensional and has GAN-friendly structure, e.g. images. Spatially structured models
and data abound in the sciences, from climate modelling to ecology and economics. High-dimensional
parameter regimes are common, but inaccessible for current SBI algorithms. Building on the strengths
of GANSs, we expect that GATSBI will help close this gap and open up new application-domains for
SBI, and new directions for building SBI methods employing adversarial training.
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APPENDIX

A  PROOFS

A.1 PROOF OF CONVERGENCE FOR GATSBI

Proposition 1. Given a fixed generator fy, the discriminator Dy~ (0, x) maximising equation
satisfies

B p(0x)
Do (0:2) = 0y + gol0le)”

and the corresponding loss function for the generator parameters is the Jensen-Shannon divergence
(JSD) between the true and approximate posterior:

Ly (¢) = 2JSD(p(0]z) [ ¢4(0|z)) — log 4

Proof. We start with equation 2] The proof proceeds as for Proposition 1 and 2 in|Goodfellow et al.
(2014). For convenience, we elide the arguments of the various quantities, so that g4 denotes q¢(9|x),
p denotes p(6|z) and Dy, denotes Dy, (6, x).

L(¢7 7/1) = Ep(x,) :]Ep 10g Dq/; +Eq¢ log (1 — Dw )]

= Ep(m) /plOgD¢ dé + /q¢ log(l - Dw) do

»() / (p log Dy +q5 log(1 — Dl,,)) da] :

For any function g(z) = alog z+blog(1—x), where a, b € R?\{0,0} and z € (0, 1), the maximum
of the function is at = ¢/a + b. Hence, L(¢, 1), for a fixed ¢, achieves it’s maximum at:
_ p

pP+4qe

Dy«

Note that p(x) drops out of the expression for Dy~ since it is common to both terms in L(¢, ).
Plugging this into equation[Z] and dropping the expectation over x without loss of generality:

d¢
p+4qe

2 2
=E, logip +Egy, log 9¢
P+as p+de

p
Ly« (¢) =E, log———— + E,, log
w() D P+ s q¢

—log 4

=2JSD(p || g¢) — log 4.

The JSD is always non-negative, and zero only when p(6|z) = g4(8|z). Thus, the global minimum
Ly~ (¢*) = —log 41is achieved only when the GAN generator converges to the ground-truth posterior
p(0]z). O

A.2 PROOF FOR GATSBI MAXIMIZING ELBO LOSS

Proposition 2. If ¢* and ¢* denote the Nash equilibrium of a min-max game defined by equation 2]
then ¢* also maximises the evidence lower bound of a VAE with a fixed decoder i.e.,

9" = arg;ﬂax Le(¢) ®)

m(0)
= argmax E,E = <10g + log p(x|0 ) )]

Proof. The proposition is trivially true if g4« (6|z) = p(6|x), i.e., p(8|x) is the true minimum of both
the JSD and Dyy,. However, we here show that the equivalence holds even when g4+ (0|z) is not
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the true posterior, e.g. if g, (6|z) belongs to a family of distributions that does not include the true
posterior.

Given that ¢* and ¢* denote the Nash equilibrium in equation[2] we know from Proposition|[I] that
the optimal discriminator is given by
p(0lz)

Dy« (6,2) = .
O = 00 + g 01)
To lighten notation, we elide the parameters of the networks and their arguments, denoting D+ (0| z)
as Dy, g4+ (0|) as ¢*, and so on. If we plug D into Eq. we have

o* = arg;nin Ep(g‘w) log Dy —|—]Eq¢ (10g (1 - D¢*))

=argmin E,, log (1 — Dy ) (10)
@

Note that this is true only at the Nash equilibrium, where D~ is a function of g4~ and not g4. This
allows us to drop the first term from the equation. In other words, if we switch out g4~ with any other
e in the expectation, equation @is no longer minimum w.r.t ¢, even though D« is optimal.

Let us define Dy, := o(Ry), where o(-) := 1/1 + exp(~ -). Then from equation

p(0]z) 1 1
R, = PUT) _
o(Ry-) p(0]x) + gy L+e Bor 1496 /po)a)
Comparing the 1.h.s. and r.h.s. of the equation above, we get
0
Ry :logp( ) (11)
do~

Since both log and o are monotonically increasing functions, we also have from equation [T0}
¢* = argmin E,, log (1 — o(R"))
@

=argmin Eg, (1 —o(Ry-+))
é

= argmax Eg, o(Ry-)
¢

= argmax Eg, (Ry-~) (12)
@

In other words, g4~ maximises the function [E, " (RW ). Now, to prove equation@ we need to show
that Lg(¢) < Le(¢*)V ¢ # ¢*.
Lg(¢) = Epm)Eqy, (logm(0) —log gy + log p(x[0))

_ o POIZ) o, p(alO)(0)
= Br e, (1 & p(6]z) )

p(0|x
=Ep()Eq, (10g (qu + logp(x)>

+ log

p(0|x
_E,E,, (1og <q') + 1ogp<x>) B,y (Dt (q0ll6))

*

0|z
< Epa)Eq, (IOg p(q =) +10gp(3:)>

*

= Ep@)Eq, (Ry- +logp(z)) from equation [T1]
< ]Ep(w)Eqw (Rw*) +EP(Z)EQ¢ log p(x) from equation@

= Ep(m)Eq¢* (Rw* + Ing(m)) + Ep(m)Eq¢ logp(x) - Ep(m)Eq¢* Ing(x)
p(6|z
= Ep(2)Eq,. (log (0]2) + logp(x)>

o
= Lg(¢")
= Lgp(¢) < Le(¢")

Hence, the approximate posterior obtained by optimising the GAN objective also maximises the
evidence lower bound of the corresponding VAE. O
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A.3 CONNECTION BETWEEN LFVI, DEEP POSTERIOR SAMPLING AND GATSBI

Adversarial inference approaches maximise the Evidence Lower Bound (ELBO) equation[6]to train a
VAE, and use a discriminator to approximate intractable ratios of densities in the loss (see Table ).
Likelihood-free variational inference (Tran et al.,[2017, LFVI) is one such method.

Table 1: Comparison of adversarial inference algorithms: BiGAN (Donahue et al., [2019), ALI
(Dumoulin et al., [2016), AAE (Makhzani et al., [2015), AVB (Mescheder et al., 2017}, and LFVI

(Tran et al., 2017).

ALGORITHM DISCRIMINATOR RATIO GENERATOR LOSS FUNCTION
BIGAN, ALI Pa(zw)p(w) /g, (u|z)p(z) JSD(pa(u, x)||gs(u, x))
AAE (W) [y (u) JSD(p(u)||ge(u))

AVB P(Wp(@) /g, (ula)p(x) Dxr(qe(ulz)||p(u))

LFVI p(ule)p(2)) /g, (uz)p(z) Dy (¢ (ulz)|[p(ulz))
GATSBI p(ul2)P(2) [g, (u|2)p(=) JSD(p(ulz)||ge(ulz))

In the most general formulation, LFVI learns a posterior over both latents « and global parameters (3
which are latents shared across multiple observations i.e., ¢4 (2, 5|z) and maximises the ELBO given
by
p(5) p(fu)p(u)
Lir(¢) =E log ——= + Eg, (u|z)p () l0g ——F——F~
a6(B) 2(B) 90 (u|@)p’(z) o (ulz)p! (z)

where p'(z)F| an empirical distribution over observations, and not necessarily p(z), the marginal
likelihood of the simulator. A discriminator, Dy (x, u)ﬂ is trained with the cross-entropy loss to
approximate the intractable ratio % in the second term. Using the nomenclature from
Huszar| (2017), we note that D, is joint-contrastive: it simultaneously discriminates between tuples
(x,u) ~ p(z|u)p(u) and (£,4) ~ gy(a|2)p'(£). GATSBI, by contrast, is prior-contrastive: its
discriminator only discriminates between parameters 6, given a fixed x.

However, when p’(x) = p(x) and §3 is constant, the LFVI discriminator becomes prior-contrastive,
equation|13]is a function of both the discriminator parameters ) and generator parameters ¢, and it
differs from GATSBI only by a single term i.e., from equation 2] and equation[I3]and ignoring the
constant:

+ const. (13)

LGATSBI(¢7 ’[/)) = _LLF(¢7 dj) + Eq¢(u|a:)p(a:) IOg Dl/) (.I‘, U) (14)
The second term corresponds to the non-saturating GAN loss (Goodfellow et al., |2014). In this
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Figure 6: GATSBI, LFVI and Deep Poseterior Sampling (DPS) on benchmark problems. Mean
C2ST score (+ standard error of the mean) for 10 observations each. A. On Two Moons, the C2ST
scores for GATSBI (red), LFVI (navy) and Deep Posterior Sampling (DPS, yellow) are qualitatively
similar across all simulation budgets B. On SLCP, DPS is slightly worse than LFVI and GATSBI.

*In|Tran et al{(2017), p’ (x) is denoted q(z)
*denoted 7 (x, u) in|Tran et al.[(2017)
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setting, with an optimal discriminator, GATSBI minimises a JSD, whereas LFVI minimises the
reverse Dkr,.

Adler and Oktem|(2018) introduce Deep Posterior Sampling which also implements an adversarial
algorithm for posterior estimation. The set-up is similar to GATSBI, but GANs are trained using a
Wasserstein loss as in|Arjovsky et al.|(2017). The Wasserstein loss imposes stronger conditions on the
GAN networks in order for the generator to recover the target distribution, i.e., the discriminator has
to be 1-Lipschitz and the generator K-Lipschitz (Arjovsky et al.;[2017;|Qi, |2018)). However, the JSD
loss function allowed us to outline GATSBI’s connection to adversarial VAEs and subsequently its
advantages for SBI (see Sec.[2.4] Suppl. Sec.[A.2]and the discussion above). Whether this would also
be possible with the Wasserstein loss remains a subject for future work. Nevertheless, the sequential
extension of GATSBI using the energy-based correction (see Sec. [2.5]and Supp. Sec. could in
principle also be used with the Wasserstein metric.

Mescheder et al.|(2018)) state that the WGAN converges only when the discriminator minimizes the
Wasserstein metric at every step, which does not happen in practice. |Fedus et al.|(2017)) argue that a
GAN generator does not necessarily minimise a JSD at every update step since the discriminator is
optimal only in the limit of infinite data. Hence, neither asymptotic property can be used to reason
about GAN behaviour in practice. As a consequence, it is difficult to predict the conditions under
which LFVI, or Deep Posterior Sampling would outperform GATSBI, or vice-versa. Nevertheless,
given the same networks and hyperperparameters (with slight modifications to the discriminator for
Deep Posterior Sampling, see App. for details), we found empirically that LFVI, Deep Posterior
Sampling and GATSBI are qualitatively similar on Two Moons, and that Deep Posterior Sampling
is slightly worse that the other two algorithms on SLCP: i.e., there is no advantage to using one
algorithm over the other on the problems investigated (see Fig. [6).

A.4 SEQUENTIAL GATSBI

For many SBI applications, the density estimator is only required to generate good posterior samples
for a particular experimentally observed data x,. This can be achieved by training the density
estimator using samples 6 from a proposal prior 77(#) instead of the prior 7(6). The proposal prior
ideally produces parameters 6 that are localised around the modes of p(|z,) and can guide the
density estimator towards inferring a posterior that is accurate for x ~ x,. If we replace the true prior
7(6) with a proposal prior 7(0) = ¢4(6|z,), i.e., the posterior estimated by GATSBI, and sample
from the respective distributions
0,z ~ 7(0)p(x]0),

the corresponding GAN loss (from equation equation2) is:

z((ba ¢) = Eﬁ(@)p(a:|6’)p(z) [log Dw (97 x) + log(l - Dw(fqﬁ(zv J?), .13))] (15)
= Ep012)p(2) 108 Dy (0, 2) + By, (6]0)p(e) 108(1 — Dy (6, 7). (16)

This loss would allow us to obtain a generator that produces samples 6 that are likely to generate
outputs x close to z,, when plugged into the simulator. However, Proposition [I]in Appendix [A.T]
shows that this loss would result in g4(8|x) converging to the proposal posterior p(6|z) rather than
the ground-truth posterior p(f|x). In order to learn a conditional density that is accurate for z ~ x,
but nevertheless converges to the correct posterior, we need to correct the approximate posterior for
the bias due to the proposal prior. We outline three different approaches to this correction step:

Using energy-based GANs Although it is possible to use correction factors directly in the GATSBI
loss function, as we outline in the next section, these corrections can lead to unstable training
(Papamakarios et al.,[2019). Here, we outline an approach in which we train on samples from the
proposal prior without explicitly introducing correction factors into the loss function. Instead, we
change the setup of the generator to produce ‘corrected’ samples, which are then used to compute the
usual cross-entropy loss, and finally we train the discriminator and generator.

Let us start by introducing the correction factor w (6, z) = % f) g‘:; , such that

p(Olz) = p(0]z) w(0, z). (17)

In the original formulation of GATSBI, sampling from ¢4 (6|z) entails sampling latents z ~ p(z), and
transforming them by a deterministic function fy(z, z) to get parameters 6 (see equation equation .
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Following the energy-based GAN formulation (Azadi et al.,|2019} |Che et al., [2020), we define an
intermediate latent distribution p;(2):

pe(2) = p(2)(W(fo(z,2),2)) . (18)

p¢(z) is the distribution of latent variables that, when passed through the function f,(z, z), are most
likely to produce samples from the approximate proposal posterior 4,(0|z) = q,(0|z)(w(0,z)) L.
For GANS, p(z) is typically a tractable distribution whose likelihood can be computed, and from
which one can sample, and thus, we can use MCMC or rejection sampling to also sample from p;(z)
(see Appendix [D.T|for details). The resulting loss function is:

L($, %) = Eso10)p(x) 108 Dis(0, %) + Ep, (2)5(2) log(1 — Dy (fo(a, 2),2)) = Epeey [L1 + La).
(19)

Note that there are no explicit correction factors in the loss.

We now show that optimising the loss function equation[I9|leads to the generator converging to the
correct posterior distribution. Let us first focus on the second term Ls:

Ly =E,, () log(1 — Dy (fe(z,2),))
~ [ m)1og(1 - Du(fs(a 2). )

= /p(z) (w(fg(z,2),2)) " log(1 — Dy(fs(, 2),2)) from equation [T§]
= /%(9\1‘) (w(0,2))"" log(1 — Dy(6, 2)) reparam. trick

= /%(0@) log(1 — Dy (0, z))
= B, (61z) log(1 — Dy (0, 2)).

Thus, from Proposition [l we can conclude that by optimising the loss function equation
ds(0|z) — p(O|x). This implies that the generator network, which represents g4(#|z), converges
to p(f|x), since both the approximate and target proposal posteriors are related respectively to the
approximate and true posteriors by the same multiplicative factor w(, ). Note that the generator is
more accurate in estimating the posterior given x, (or z ~ ), i.e., p(0|z,) than given x far from z,,
since it is trained on samples from the proposal prior.

In practice, this scheme does produce improvements in the learned posterior. However, it is compu-
tationally expensive, because every update to the generator and discriminator requires a round of
MCMC or rejection sampling to obtain the ‘corrected’ samples. Moreover, if we use the generator
from the previous round as the proposal prior in the next round, we need to train a classifier to
approximate w(, x) at every roundp| Finally, this approach has additional hyperparameters that
need to be tuned during GAN training, which could make it prohibitively difficult to use for most
applications.

Below, we outline theoretical arguments for two additional approaches, although we only provide
empirical results for the second approach.

Using importance weights |[Lueckmann et al.| (2017) solve the problem of bias from using a
proposal prior by introducing importance weights in their loss function. One can use the same trick

for GATSBI,by introducing the importance weights w(f, z) = ;EZ; g EB into the loss defined in

equation [T6}

I~/(¢>7¢) = Ex0)p(2|0)p(2) [w(@, x)log Dy (0, z) + log(1 — Dw(f¢(z,x),x))] =Li+Lo. (20)

SNote that the correction factor could be computed in closed form if we had a generator with an evaluable
density: we would not have to train a classifier to approximate it.
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Optimising this loss allows g4 (0|z) to converge to the true posterior p(6f|z). Let us focus on the first
term L:

Ly = Ep(ojayp(e)w (60, z) log Dy (6, )
// weiigg e D 0)
// (z|0)i(0) "0 P pgg log Dy (6, z)
// (alo)(0) 5 PE) 100Dy (6, 2)
// p(0]z) p(i) log Dy (6, )

// p(8]) log Dy (6, 2)

= Ej(a)p(61z) log Dy (0, ).

Thus, from Proposition [} we can conclude that by optimising the loss function equation [20] the
generator g, (6|x) converges to the true posterior. However, the importance-weight correction could
lead to high-variance gradients (Papamakarios et al.,|2019). This would be particularly problematic
for GANSs, where the loss landscape for each network is modified with updates to its adversary, and
there is no well-defined optimum. High-variance gradients could cause training to take longer or even
prevent it from converging altogether.

Using inverse importance weights Since using importance weights in the loss can lead to
high-variance gradients, we could instead consider using the inverse of the importance weights

(w(@,z))"t = % gég in the second term in equation

L(¢,%) = Epo12)5(x) 108 Dy (0, ) + B, (012)5(2) (@(0,2)) 7" log(1 — Dy (0,2)) = Ly + Lo.
20

Optimising E(d), ) from equationwill result in the generator approximating the true posterior at
convergence. Focusing on the second term of the loss function Ls:

L2 q¢(0\t)p(ac) ( (0755)) ! log(l —Dw(9,$))
O ) D pa
// q4(0)2) 77(9)p ) log(1 — Dy (0, x))

/ / 2)45(0]) log(1 — Dy (6, 2))

E5(2)d,(0]2) 108(1 — Dy (0, 7).

Thus, from Proposition l we can conclude that by optimising the loss function equation n Gs(0]x)
converges to p(0|z). Since G, (0|z) differs from g, (60|z) by the same factor as p(6|x) from p(6|z),
e., (w(fh,x))~! (see equation equatlon , this implies that g, (6|x) — p(6]x).
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B TRAINING ALGORITHMS

Algorithm 1 GATSBI

Input : prior w(6), simulator p(z|¢), generator fy, discriminator D, learning rate A
Output: Trained GAN networks fg« and D~
O = {61,05,...,0,} X x(0)
X =A{z1,22,..., 25} ~ p(x;]0;)
while not converged do
for discriminator iterations do
Sample mini-batch X4, ©4 from X, ©
Z ~p(z), ©a = f4(Z,X4) )
L=3x,(Xe,logDy(04,X4) + X ¢, log(l — Dy (04, X4)))
w — w + )\VwL
end for

for generator iterations do
Sample mini-batch X, ©, from X, ©

Z ~ p(2), ég = f4(Z,X,) .
L=- ZXQ Zé)g log(1 — Dy (0g, Xy))
@<= ¢+ AVyL
end for
end while

Algorithm 2 Sequential GATSBI with energy-based correction

Input: 7(0), simulator p(xz|0), classifier w = 1, observation x,, fy, Dy, learning rate A
Output: Trained GAN networks fy« and D~
for : = 1--- number of rounds do
©; = {01,0s,...,0,} "X 7(6)
Xi = {J}l,ZEQ, . ,LUn} ~ p(x|9)
if ¢ > 1 then:
wn = maxlog o (wp(Oy) + log(1 — 0w (67)))
Wy Huldaxlog o(wz (X)) +log(1 — o(w.(X;)))
we

w =
end if
while not converged do

for discriminator iterations do

Sample mini-batch X4, ©4 from X, ©;
% ~ pt(Z) = p(Z)(W(f¢(Z7 Xd)7 Xd))_l
ed = fgﬁ(za Xd) .
L=3%x,0"6,l08Dy(04,Xq) + > g, log(l — Dy(04,X4)))
Y=Y+ AVyL
end for
for generator iterations do
Sample mini-batch X4, ©4 from X;, O;
% ~p(Z) = p(Z)(w(f¢(Z, Xg)7 Xg))_l
O, = 1,(2.X,) )
L=- ng Zé)g log(1 — Dy (O, X,))
@ @+ AVyL

end for

end while

m(0) = f5(0;20)
end for
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Algorithm 3 Sequential GATSBI with inverse importance weights

Input: 7(#), simulator p(x|6), classifier w = 1, observation x,, f¢, Dy, learning rate A
Output: Trained GAN networks fg+ and D=

for i = 1--- number of rounds do ©; = {01,0,...,60,} i w(0) X; = {x1,29,...,2,} ~
p(z[0)
if : > 1 then:
wp < maxlog o(wy(Op)) + log(l — o(wy(O;)))
we

wy  maxlogo(w,(Xp)) + log(1l — o(w.(X;)))

end if
while not converged do
for discriminator iterations do
Sample mini-batch X4, ©4 from X, ©;
Z ~p(Z)
®d = f¢ (Za Xd) R R
L=3x,>6,106Dy(04,Xa) + X g, (w(O4, Xa)) ' log(1 — Dy (04, X4)))
Y — P+ /\VwL
end for
for generator iterations do
Sample mini-batch X, ©, from X, ©;

Z ~p(Z)
Oy = f¢(Z,Xg) R .
L=- ng Eé)g (W(@gvxg))_l log(1 — Dw(@g’ Xg))
@ P+ AVyL
end for
end while
7(0) = fo(0; 7o)

end for
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C ADDITIONAL RESULTS

C.1 POSTERIORS FOR BENCHMARK PROBLEMS

We show posterior plots for the benchmark problems: SLCP (Fig.[7) and Two Moons (Fig.[8). In
both figures, panels on the diagonal display the histograms for each parameter, while the off-diagonal
panels show pairwise posterior marginals, i.e., 2D histograms for pairs of parameters, marginalised
over the remaining parameter dimensions.

*

@ Ref. Posterior
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1 2 3 4 5

Figure 7: Inference for one test observation of the SLCP problem. Posterior samples for GATSBI
trained on 100k simulations (red), and reference posterior samples (black). The GATSBI posterior
samples cover well the disjoint modes of the posterior, although GATSBI sometimes produces
samples in regions of low density in the reference posterior.

C.2 SEQUENTIAL GATSBI

We found that sequential GATSBI with the energy-based correction produced a modest improvement
over amortised GATSBI for the Two Moons model with 1k and 10k simulation budgets, and no
improvement at all with 100k (see Fig.[9). The inverse importance weights correction did not produce
an improvement for any simulation budget. Sequential GATSBI performance was also sensitive
to hyperparameter settings and network initialisation. We hypothesise that further improvement is
possible with better hyperparameter or network architecture tuning.
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Figure 8: Inference for one test observation of the Two Moons problem. Posterior samples for
GATSBI trained on 100k simulations (red), and reference posterior samples (black). GATSBI
captures the global bi-modal structure in the reference posterior, but not the local crescent shape. It
also generates some samples in regions of low density in the reference posterior.
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Figure 9: Sequential GATSBI performance for the Two Moons Model. The energy-based correction

(EBM) results in a slight improvement over amortised GATSBI for 1k and 10k simulations, but the
inverse importance weights correction does not.
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D IMPLEMENTATION DETAILS

All networks and training algorithms were implemented in PyTorch (Paszke et al.l 2019). We used
Weights and Biases (Biewald, [2020) to log experiments with different hyperparameter sets and
applications. We ran the high-dimensional experiments (camera model and shallow water model) on
Tesla-V100 GPUs: the shallow water model required training to be parallelised across 2 GPUs at a
time, and took about 4 days to converge and about 1.5 days for the camera model on one Tesla V100.
We used RTX-2080Tis for the benchmark problems: the amortised GATSBI runs lasted a maximum
of 1.5 days for the 100k budget; the sequential GATSBI runs took longer with the maximum being 8
days for the energy-based correction with a budget of 100k. On similar resources, NPE took about 1
day to train on the shallow water model, and 3 weeks and 2 days to train on the camera model. NPE
took about 10 min for 100k simulations on both benchmark problems. SMC-ABC and rejection-ABC
both took about 6s on the benchmark problems with a budget of 100k.

D.1 SIMPLE-LIKELIHOOD COMPLEX POSTERIOR (SLCP) AND TWO-MOONS

Prior and simulator For details of the prior and simulator, we refer to Lueckmann et al.|(2021)).

GAN architecture The generator was a 5-layer MLP with 128 hidden units in the first four layers.
The final layer had output features equal to the parameter dimension of the problem. A leaky ReLLU
nonlinearity with slope 0.1 followed each layer. A noise vector sampled from a standard normal
distribution (two-dimensional for Two Moons, and 5-dimensional for SLCP) was injected at the
fourth layer of the generator. The generator received the observations as input to the first layer, used
the first three layers to embed the observation, and multiplied the embedding with the injected noise
at the fourth layer, which was then passed through the subsequent layers to produce an output of the
same dimensions as the parameters. The discriminator was a 6-layer MLP with 2048 hidden units
in the first five layers and the final layer returned a scalar output. A leaky ReLU nonlinearity with
slope 0.1 followed each layer, except for the last, which was followed by a sigmoid nonlinearity.
The discriminator received both the observations and the parameters sampled alternatively from the
generator and the prior as input. Observations and parameters were concatenated and passed through
the six layers of the network. For Deep Posterior Sampling, the discriminator did not have the final
sigmoid layer.

Training details The generator and discriminator were trained in parallel for 1k, 10k and 100k
simulations, with a batch size = min(10% of the simulation budget, 1000). For each simulation
budget, 100 samples were held out for validation. We used 10 discriminator updates for 1k and 10k
simulation budgets, and 100 discriminator updates for the 100k simulation budget, per generator
update. Note that the increase in discriminator updates for 100k simulations is intended to compensate
for the reduced relative batch size i.e., 1000 batches = 0.01%. The networks were optimised with the
cross-entropy loss. We used the Adam optimiser (Kingma and Ba, [2015)) with learning rate=0.0001,
£1=0.9 and (55=0.99 for both networks. We trained the networks for 10k, 20k and 20k epochs for
the three simulation budgets respectively. To ensure stable training, we used spectral normalisation
(Miyato et al., 2018) for the discriminator network weights. For the comparison with LFVI, we
kept the architecture and hyperparameters the same as for GATSBI, but trained the generator to

minimise L(¢) = Eg, g/« [log %}. Similarly, for Deep Posterior Sampling, we kept the same

architecture (minus the final sigmoid layer for the discriminator) and hyperparameters, but trained the
generator and discriminator on the Wasserstein loss: L(¢,v) = Ep4|e) Dy (0) — Eq, (6)2) Dy (0)-

Optimised hyperparameters for Two Moons model The generator was a 2-layer MLP with 128
hidden units in the first layer and 2 output features in the second layer (same as the parameter
dimension). Each layer was followed by a leaky ReLU nonlinearity with slope 0.1. Two-dimensional
white noise was injected into the second layer, after it was multiplied with the output of the first layer.
The discriminator was a 4-layer MLP with 2048 hidden units in the first 3 layers each followed by
a leaky ReL.U nonlinearity of slope 0.1, and a single output feature in the last layer followed by a
sigmoid nonlinearity. We trained the networks in tandem for approximately 10k, 50k and 25k epochs
for the 1k, 10k and 100k simulation budgets respectively. There were 10 discriminator updates and
10 generator updates per epoch, with the batch size set to 10% of the simulation budget (also for

11
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100k simulations). All other hyperparameters (learning rate, 31, 32, etc.) were the same as for the
non-optimised architecture.

Hyperparameters for sequential GATSBI The architecture of the generator and discriminator
were the same as for amortised GATSBI. We trained the networks for 2 rounds. In the first round,
the networks were trained with the same hyperparameters as for amortised GATSBI, on samples
from the prior: the only exceptions were the number of samples we held out for the 1k budget (10
instead of 100) and the number of discriminator updates per epoch for the 100k budget (10 instead of
100). Both exceptions were to ensure that there were always 10 discriminator updates per epoch, and
speeding up training as much as possible. In the second round, the networks were trained using the
energy-based correction with samples from the proposal prior, as well as samples from the prior used
in the first round. All other hyperparameters were the same as for round one. The simulation budget
was split equally across the two rounds, and the networks were trained anew for each of 10 different
observations. The number of epochs was the same for the first and second round: 5k, 10k and 20k for
the 1k, 10, and 100k budget respectively. We trained 2 classifiers at the beginning of round two: one

to approximate the ratio ;Eg; and the other to approximate ggig . Both classifiers were 4-layer MLPs
with 128 hidden units in each layer, and a ReLU nonlinearity following each layer. The classifiers
were trained on samples from the proposal prior and prior, and the proposal marginal likelihood
and likelihood respectively, using the MLPClassifier class with default hyperparameters (except for
"max_iter"=5000) from scikit-learn (Pedregosa et al.,[2011). For the energy-based correction, we used
rejection sampling to sample from the corrected distribution p;(2): for a particular observation x, we
sampled z p(z) = N(0, 1), evaluated the probability of acceptance p = (w(fs(z,x),2)) "' /M, and
accepted z if u < p where « is a uniform random variable. To compute the scale factor M, we simply
took the maximum value of p(z)w(fs(z,z), 2)) ! within each batch. For the inverse importance
weights correction, we computed (w(f,x)) ™!, used it to calculate the loss as in Equation equation
for each discriminator and generator update in the second round.

D.2 SHALLOW WATER MODEL

Prior 0 ~ N (plig0,Y), 6 € R
p=10,%;; = oexp(—(-9?*/r),0 = 15,7 = 100.

The values for p and X were chosen to ensure that the different depth profile samples produced
discernible differences in the corresponding simulated surface waves, particularly in Fourier space.
For example, combinations of p values > 25 (deeper basins), o values < 10 and 7 values > 100
(smoother depth profiles) resulted in visually indistinguishable surface wave simulations.

Simulator
x|0 = f(0) 4+ 0.25¢

€1,1 ce €1,100
€= €55 NN(O,I).

€200,1 --- €200,100

f(0) is obtained by solving the 1D Saint-Venant equations on a 100-element grid, performing a 2D
Fourier transform and stacking the the real and imaginary part to form a 2x 100x 100-dimensional
array.

The equations were solved using a semi-implicit solver (Backhaus, | 1983) with a weight of 0.5 for each
time level, implemented in Fortran (F90). The time-step size dt was set to 300s and the simulation
was run for a total of 3600s. The grid spacing dx was 0.01, with dry cells at both boundaries using a
depth of —10. We used a bottom drag coefficient of 0.001 and gravity=9.81™/s>. An initial surface
disturbance of amplitude 0.2 was injected at x = 2, to push the system out of equilibrium.

We chose to perform inference with observations in the Fourier domain for the following reason.
Since waves are a naturally periodic delocalised phenomenon, it makes sense to run inference on
their Fourier-transformed amplitudes, so that convolutional filters can pick up on localised features.
We used the scipy fft2 package (Virtanen et al., 2020).

12
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GAN architecture The generator network was similar to the DCGAN generator (Radford et al.,
2015)). There were five sequentially stacked blocks of the following form: a 2D convolutional layer,
followed by a batch-norm layer and ReLU nonlinearity, except for the last layer, which had only a
convolutional layer followed by a tanh nonlinearity. The observations input to the generator were of
size batch size x 200 x 100. The input channels, output channels, kernel size, stride and padding
for each of the six convolutional layers were as follows: 1 - (2,512, 4, 1,0), 2 - (512, 256, 4, 2, 1),
3-(256,128,4,2,1),4-(128,128,4,2,1),5-(128, 1, 4, 2, 1). The final block was followed by
a fully-connected readout layer that returned a 100-dimensional vector. Additionally, we sampled
25-dimensional noise, where each element of the array was drawn independently from a standard
Gaussian. and added it to the output of the tanh layer, just before the readout layer.

The discriminator network was similar to the DGCAN discriminator: it contained embedding layers
that mirrored the generator network minus the injected noise. The input channels, output channels,
kernel size, stride and padding for each of the six convolutional layers in the embedding network
were as follows: 1 - (2, 256, 4, 1, 0), 2 - (256, 128, 4,2, 1),3 - (128,64,4,2,1),4 - (64,64,4,2,1),5
-(64,1,4,2,1). This is followed by 4 fully-connected layers with 256 units each and a leaky ReL.U
nonlinearity of slope 0.2 after each fully-connected layer. The final fully-connected layer, however,
was followed by a sigmoid nonlinearity. The discriminator received both the Fourier-transformed
waves and a depth profile alternatively from the generator and the prior as input. The Fourier-
transformed waves were passed through the embedding layers, the embedding was concatenated with
the input depth profile and then passed through the fully-connected layers.

Training details The two networks were trained in parallel for ~40k epochs, with 100k training
samples, of which 100 were held out for testing. We used a batch size of 125, the cross-entropy loss
and the Adam optimiser with learning rate= 0.0001, 5; = 0.9 and 32 = 0.99 for both networks.
In each epoch, there was 1 discriminator update for every generator update. To ensure stability of
training, we used spectral normalisation for the discriminator weights, and clipped the gradient norms
for both networks to 0.01, unrolled the discriminator(Metz et al.,2017) with 10 updates i.e., in each
epoch, we updated the discriminator 10 times, but reset it to the state after the first update following
the generator update.

NPE and NLE We trained NPE and NLE as implemented in the sbi package (Tejero-Cantero et al.|
2020) on the shallow water model. We set training hyperparameters as described in [Lueckmann et al.
(2021), except for the training batch size which we set to 100 for NPE and NLE. The number of
hidden units in the density and ratio estimators which we set to 100 (default is 50). For NPE, we
included an embedding net to embed the 20k-dimensional observations to the number of hidden units.
This embedding net was identical to the one used for the GATSBI discriminators, and it was trained
jointly with the corresponding density or ratio estimators. We trained with exactly the same 100k
training samples used for GATSBI. MCMC sampling parameters for NLE were set as in|Lueckmann
et al.[|(2021)).

To calculate correlation coefficients for the GATSBI and NPE posteriors, we sampled 1000 depth
profiles from the trained networks for each of 1000 different observations from a test set. We then
calculated the mean of the 1000 depth profile samples per observation, and computed the correlation
coeffiecient of the mean with the corresponding groundtruth depth profile. Thus, we had 1000
different correlation coefficients; we report the mean and the standard deviation for these correlation
coefficients.

Simulation-based calibration (Talts et al.,|2020) offers a way to evaluate simulation-based inference
in the absence of ground-truth posteriors. SBC checks whether the approximate posterior ¢, (0|z),
when marginalised over multiple observations x, converges to the prior 7(6). A posterior that
satisfies this condition is well-calibrated, although it is not a sufficient test of the quality of the
learned posterior, since a posterior distribution that is equal to the prior would also be well-calibrated.
However, when complemented with posterior predictive checks it provides a good test for intractable
inference problems.

We performed SBC on the shallow water model. To obtain a test data set {6;, z;} ¥, we sampled
N = 1000 parameters #; from the prior and generated corresponding observations x; from the
simulator. For each z;, we then obtained a set of L = 1000 posterior samples using the GATSBI
generator and calculated the rank of the test parameter 6; under the L GATSBI posterior samples
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as described in algorithm 1 in Talts et al.| (2020), separately for each posterior dimension. For
the ranking we used a Gaussian random variable with zero mean and variance 10. We then used
bins of n = 20 to compute and plot the histogram of the rank statistic. According to SBC, if the
marginalised approximate posterior truly matched the prior, the rank statistic for each dimension
should be uniformly distributed. Performing SBC can be computationally expensive because the
inference has to be repeated for every test data point. In our scenario it was feasible only because
GATSBI and NPE perform amortised inference and do not require retraining or MCMC sampling
(as in the case of NLE) for every new x. We followed the same procedure to do SBC on NPE as for
GATSBI.

D.3 NOISY CAMERA MODEL

Prior The parameters 6 were 28 x 28-dimensional images sampled randomly from the 800k images
in the EMNIST dataset.

Simulator The simulator takes a clean image as input, and corrupts it by first adding Poisson noise,
followed by a convolution with a Gaussian point-spread function: m ~ Poisson(6)

x[th= fsm; f(t)= exp(—%)) where * denotes a convolution operation with a series of 1D
Gaussian filters given by f. We set the width of the Gaussian function o = 3.

GAN architecture The generator network was similar to the Pix2Pix generator (Isola et al., [2016)):
there were 9 blocks stacked sequentially; the first 4 blocks consisted of a 2D convolutional layer,
followed by a leaky ReL.U nonlinearity with slope 0.2 and a batchnorm layer; the next 4 blocks
consisted of transpose a convolutional layer, followed by a leaky ReLLU layer of slope 0.2 and
a batchnorm layer; the final block had a transposed convolutional layer followed by a sigmoid
nonlinearity. The input channels, output channels, kernel size, stride and padding for each of the
convolutional or transposed convolutional layers in the 9 blocks were as follows: 1 - (1, 8, 2,2, 1),
2-(8,16,2,2,1),3-(16,32,2,2,1),4-(32,64,3,1,0),5-(128,32,3,2, 1), 6- (64, 16, 2, 2,
1),7-32,8,3,2,1),8-(16,4,2,2,1),9-(4, 1, 1, 1, 0). There were skip-connections from block
1 to block 8, block 2 to block 7, block 3, to block 6 and from block 4 to block 5. 200-dimensional
white noise was injected into the fifth block, after convolving it with a 1D convolutional filter and
multiplying it with the output of the fourth block.

The discriminator network was again similar to the Pix2Pix discriminator: we concatenated the image
from the generator or prior with the noisy image from the simulator, and passed this through 4 blocks
consisting of a 2D convolutional layer, a leaky ReLLU nonlinearity of slope 0.2 and a batch-norm
layer, and finally through a 2D convolutional layer and a sigmoid nonlinearity. The input channels,
output channels, kernel size, stride and padding for each of the convolutional were as follows: 1 - (2,
8,2,2,1),2-(8,16,2,2,1),3-(16,32,2,2,1),4-(32,64,2,2,1),5-(64,1,3, 1, 0).

Training details The generator and discriminator were trained in tandem for 10k epochs, with
800k training samples, of which 100 were held out for testing. We used a batch size of 800, the
cross-entropy loss and the Adam optimiser with learning rate= 0.0002, 8; = 0.5 and 2 = 0.99 for
both networks. In each epoch, there was a single discriminator update for every second generator
update. To ensure that training was stable, we used spectral normalisation for the discriminator
weights, and clipped the gradient norms for both networks to 0.01.

NPE We trained NPE using the implementation in the sbi package (Tejero-Cantero et al.,|2020).
We set training hyperparameters as described in [Lueckmann et al.| (2021)), except for the training
batch size which we set to 1 (in order to ensure that we did not run out of memory while training),
and the number of hidden units in the density estimators which we set to 100. 28 x28 dimensional
observations were passed directly to the flow, without an embedding net or computing any summary
statistics, as was also the case for GATSBI. We trained with exactly the same 800k training samples
used for GATSBL.
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