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Abstract

Ensemble models are widely recognized in the
ML community for their limited interpretability.
For instance, while a single decision tree is con-
sidered interpretable, ensembles of trees (e.g.,
boosted trees) are often treated as black-boxes.
Despite this folklore recognition, there remains
a lack of rigorous mathematical understanding
of what particularly makes an ensemble (un)-
interpretable, including how fundamental factors
like the (i) number, (ii) size, and (iii) type of base
models influence its interpretability. In this work,
we seek to bridge this gap by applying concepts
from computational complexity theory to study
the challenges of generating explanations for vari-
ous ensemble configurations. Our analysis uncov-
ers nuanced complexity patterns influenced by var-
ious factors. For example, we demonstrate that un-
der standard complexity assumptions like P ̸= NP,
interpreting ensembles remains intractable even
when base models are of constant size. Surpris-
ingly, the complexity changes drastically with the
number of base models: small ensembles of deci-
sion trees are efficiently interpretable, whereas in-
terpreting ensembles with even a constant number
of linear models remains intractable. We believe
that our findings provide a more robust foundation
for understanding the interpretability of ensem-
bles, emphasizing the benefits of examining it
through a computational complexity lens.

1. Introduction
Ensemble learning is a widely acclaimed technique in ML
that leverages the strengths of multiple models instead of
relying on a single one. This approach has been proven to
enhance predictive accuracy, mitigate variance, and handle
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imbalanced or noisy datasets effectively (Dong et al., 2020;
Sagi & Rokach, 2018).

However, a significant challenge with ensemble models is
their perceived lack of interpretability (Guidotti et al., 2018;
Sagi & Rokach, 2021; Hara & Hayashi, 2018; Bénard et al.,
2021; Kook et al., 2022). The reason behind this is straight-
forward — utilizing several models simultaneously makes
the decision-making process inherently more complex, and
thus more challenging to understand. For instance, while
it is feasible to trace the decision-making path in a single
decision tree, this level of straightforward traceability is not
achievable in tree ensembles (Sagi & Rokach, 2021; Hara
& Hayashi, 2018; Bénard et al., 2021).

Despite a general acknowledgment of this issue in the ML
community, some fundamental questions remain regard-
ing the precise nature of what makes an ensemble (un)-
interpretable. For instance: (i) How much “harder” is it
to interpret ensembles compared to their base models? Is
the difference in complexity polynomial or exponential?
(ii) How does the interpretability of ensembles vary de-
pending on the type of explanation used? (iii) How does the
interpretability depend on the type of base models? (iv) How
do structural parameters, such as the number of base models
or the size of individual models, influence interpretability?
For example, is an ensemble with many small models more
interpretable than one with a few large models? Does this
answer depend on the explanation type or the nature of
the base models? (v) Does simplifying an ensemble by re-
ducing the number or the size of base models enhance its
interpretability?

In this work, we aim to address these questions by exam-
ining the interpretability of ensembles through the lens of
computational complexity. The computational investigation
of interpretability has been explored in several recent stud-
ies (Barceló et al., 2020; Bassan et al., 2024; Arenas et al.,
2021a; Adolfi et al., 2025). Notably, (Barceló et al., 2020)
introduced the term “computational interpretability” as a
formal and mathematical approach to assessing interpretabil-
ity, distinguishing it from the more common emphasis on
human-centered understanding (Rudin et al., 2022). Within
computational interpretability, a model is considered inter-
pretable if explanations for its decisions can be generated
efficiently (i.e., it is “easy” to explain). Conversely, if gen-
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erating explanations is computationally challenging, the
model is classified as uninterpretable.

Our Contributions. We perform a formal analysis to inves-
tigate the interpretability of ensemble models by studying
the computational complexity of deriving various types of
explanations in different settings and comparing these com-
plexities to those of their individual base models. Our work
encompasses a wide range of complexity scenarios, focus-
ing on five distinct explanation types examined in previous
research (Barceló et al., 2020; Bassan et al., 2024; Van den
Broeck et al., 2022). These include (i) feature selection
explanations (covering three relevant forms), (ii) contrastive
explanations, and (iii) Shapley value feature attributions.

We additionally explore a broad range of ensemble configu-
rations encompassing various interpretability scenarios and
examine three key factors: (i) the type of base model, (ii) the
number of base models in the ensemble, and (iii) the size
of the base models. To examine diverse base-model types,
we focus on three widely used base models that span the
extremes of the interpretability spectrum: (i) linear models,
(ii) decision trees, and (iii) neural networks. To examine the
number and size of base models, we explore their impact
through concepts from parameterized complexity (Downey
& Fellows, 2012), a key area of computational complex-
ity that examines how various structural parameters affect
complexity behavior.

1.1. Negative Complexity Corollaries

• Ensembles are computationally hard to interpret
(and the explanation type matters). We provide a
range of intractability results (NP, ΣP

2 , #P-Hardness,
etc.) for generating multiple types of explanation, for
diverse ensembles, emphasizing foundational limita-
tions of computing explanations for these models. In-
terestingly, within these intractability results, we un-
cover substantial complexity differences among the
analyzed explanation forms, demonstrating that certain
forms are significantly more challenging than others.

• Ensembles are substantially less interpretable than
their base models (but the base model type matters).
To demonstrate that the intractability arises from the
ensemble aggregation itself, we establish strict com-
plexity separations between explaining an ensemble’s
base models (e.g., linear models, decision trees) —
which can often be done in polynomial or linear time
— and explaining the ensembles themselves, which is
computationally intractable (e.g., NP-hard). This high-
lights, from a computational standpoint, that ensembles
are (exponentially) “less interpretable” than their base
models. Interestingly, we also show that no such com-
plexity gaps exist for ensembles consisting of more
expressive base models like neural networks.

• Even ensembles with significantly small base models
remain hard to interpret. Interestingly, we demon-
strate that in a general setting — including all the in-
stances we examined — ensembles consisting of even
constant-size base models remain computationally in-
tractable to interpret (e.g., NP, ΣP

2 , #P-Hard). From
a practical standpoint, this means that even if a practi-
tioner attempts to simplify an ensemble by drastically
reducing the sizes of its base models, the overall en-
semble remains computationally infeasible to interpret,
highlighting a strikingly negative complexity result.

• Even ensembles with only two linear models are al-
ready computationally hard to interpret. We present
another strong negative complexity result that applies
broadly: across all analyzed settings, ensembles of
linear models (often regarded as highly interpretable)
become intractable to interpret, when consisting of only
two linear models. This underscores how rapidly the
integration of linear models leads to a significant loss
of interpretability, resulting in a substantially negative
complexity outcome in a highly simplified scenario.

1.2. Positive Complexity Corollaries

• Ensembles with a small number of decision trees
can be interpreted efficiently. Surprisingly, we ob-
serve strikingly different complexity behaviors be-
tween ensembles of linear models and those of decision
trees. We present more optimistic complexity results,
demonstrating that reducing the number of decision
trees in an ensemble (e.g., Random Forests, XGBoost)
allows for tractable (poly-time) computation of various
explanation types — unlike in the case of linear models.
These findings open the door to practical and efficient
algorithmic implementations in this context.

We believe these corollaries provide a more rigorous, and
mathematically grounded perspective on ensemble inter-
pretability. While some of our results confirm common
ML beliefs, others reveal unexpected complexity variations
based on model type, number, and size, underscoring the
importance of a complexity analysis in this context.

Due to space constraints, we include an outline of our vari-
ous theorems and corollaries within the paper, and relegate
the complete proofs to the appendix.

2. Preliminaries
Complexity Classes. This paper assumes that readers have
a basic understanding of standard complexity classes, in-
cluding polynomial time (PTIME) and nondeterministic
polynomial time (NP and coNP). We also discuss the com-
mon class within the second order of the polynomial hier-
archy, ΣP

2 . This class contains problems that can be solved
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within NP when provided access to an oracle capable of
solving coNP problems in constant time. It clearly holds
that NP, coNP ⊆ ΣP

2 ; and it is also widely believed that NP,
coNP ⊊ ΣP

2 (Arora & Barak, 2009). The paper addition-
ally discusses the complexity class #P which represents the
total count of accepting paths in a polynomial-time nonde-
terministic Turing machine. It is widely believed that ΣP

2 ⊊
#P (Arora & Barak, 2009).

Setting. We consider a set of n input features {1, . . . , n},
represented by assignments x := (x1, . . . , xn), within a fea-
ture space F. The classifier f : F→ [c], where c ∈ N is the
number of classes, is analyzed through local explanations
that interpret predictions for specific instances x. We note
that for clarity, we follow common conventions (Arenas
et al., 2021a; Wäldchen et al., 2021; Barceló et al., 2020;
Bassan et al., 2024; Adolfi et al., 2025) and assume Boolean
inputs and outputs (i.e., F := {0, 1}n, c := 1). This simpli-
fication aids readability, but our findings extend to discrete
or real-valued inputs and multi-class classifiers. See Ap-
pendix E for additional information.

3. Base-Model and Explanation Types
We aim to explore the interpretability of ensembles through
a computational complexity perspective, encompassing as
broad and diverse a range as possible. To achieve this, we
analyze the complexity of various ensembles composed of
base models spanning different points on the interpretabil-
ity spectrum. Additionally, we examine the complexity of
generating a wide array of explanation forms commonly
studied in the literature.

3.1. Ensemble and Base-Model Types

We define an ensemble as a classification function consisting
of k base models, each itself a classification function. Since
our focus is on post-hoc explanations, we analyze the ensem-
ble’s inference process, specifically for majority voting and
weighted voting inference. These approaches cover a broad
range of ensembles, including boosting, voting, and bagging
ensembles (see Appendix B for details). In majority voting,
the ensemble prediction is determined by the majority vote
among the k base models, while in weighted voting, pre-
dictions are aggregated based on weights assigned to each
model. We examine three types of base models: (i) axis-
aligned decision trees (following conventions (Barceló et al.,
2020; Arenas et al., 2021a; Bassan et al., 2024)), (ii) linear
classifiers, and (iii) neural networks with ReLU activations.
Formal definitions can be found in Appendix B.

This formalization encompasses a wide range of ensemble
techniques, including random forests, boosted trees (e.g.,
XGBoost), and other diverse ensembles composed of deci-
sion trees, neural networks, or linear models (e.g., logistic

regression, SVMs). While our focus is on classification
models, many findings also apply to regression (see Ap-
pendix E), making them relevant for methods like linear
regression. Although we primarily address homogeneous
ensembles (identical model types), several results extend to
heterogeneous ensembles (mixed model types), as detailed
in Appendix E.

3.2. Explanation Types

We focus on several widely recognized forms of explana-
tions from the literature. In line with previous research (Bar-
celó et al., 2020; Arenas et al., 2021a; Bassan et al., 2024),
we conceptualize each type of explanation as an explain-
ability query. An explainability query takes both f and x as
inputs and aims to address specific inquiries while providing
some type of interpretation for the prediction f(x).

Sufficient reason Feature Selection. We consider the com-
mon sufficiency criterion for feature selection, which is
based on common explainability methods (Ribeiro et al.,
2018; Carter et al., 2019; Ignatiev et al., 2019a). A sufficient
reason is a subset of input features, S ⊆ [n], such that when
we fix the features of S to their corresponding values in
x ∈ F, then the prediction always remains f(x), regardless
of any different assignment to the features in the subset S.
We use the notation of (xS ; zS̄) to denote an assignment
where the values x are assigned to S and the values of z
are assigned to S. We can hence formally define S to be a
sufficient reason with respect to ⟨f, x⟩ iff it holds that for all
z ∈ F: f(xS ; zS̄) = f(x).

A typical assumption that is made in the literature suggests
that smaller sufficient reasons (that is, those with a lesser
cardinality of |S|) are more useful than larger ones (Ribeiro
et al., 2018; Carter et al., 2019; Ignatiev et al., 2019a). This
leads to a particular interest in obtaining cardinally minimal
sufficient reasons, also referred to as minimum sufficient
reasons, and consequently to our first explainability query:

MSR (Minimum Sufficient Reason):
Input: Model f , input x, and d ∈ N
Output: Yes if there exists some S ⊆ [n] such that S is a
sufficient reason with respect to ⟨f, x⟩ and |S| ≤ d, and No
otherwise.

To provide a comprehensive understanding of the complex-
ity results of sufficient reasons, we study two additional
common feature selection explainability queries (Barceló
et al., 2020; Bassan et al., 2024) which represent refine-
ments of the MSR query: (i) The Check-Sufficient-Reason
(CSR) query, which, given a subset S, checks whether it is a
sufficient reason; (ii) The Count-Completions (CC) query,
which represents a generalized version of the CSR query,
where given a subset of features, we return the relative por-
tion of assignments that maintain a prediction. This form
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of explanation relates to the probability of maintaining a
classification. Due to space constraints, we relegate the full
formalization of the CSR and CC queries to Appendix D.

Contrastive Explanations. An alternative approach to in-
terpreting models involves examining subsets of features
which, when modified, could lead to a change in the model’s
classification (Dhurandhar et al., 2018; Guidotti, 2022). We
consider a subset S ⊆ [n] as contrastive if changing its val-
ues has the potential to alter the original classification f(x);
or, more formally, if there exists some z ∈ F for which
f(xS̄ ; zS) ̸= f(x). Similarly to sufficient reasons, smaller
contrastive reasons are generally assumed to be more mean-
ingful. These represent the minimum change required to
alter the original prediction. Hence, it is also natural to
focus on cardinally-minimal contrastive reasons.

MCR (Minimum Change Required):
Input: Model f , input x, and d ∈ N.
Output: Yes, if there exists some contrastive reason S such
that |S| ≤ d for f(x), and No otherwise.

Shapley Values. In the additive feature attribution setting,
each feature i ∈ [n] is assigned an importance weight ϕi.
A common method for allocating weights is by using the
Shapley value attribution index (Lundberg & Lee, 2017),
defined as follows:

ϕi(f, x) :=
∑

S⊆[n]\{i}

|S|!(n− |S| − 1)!

n!
(v(S∪{i})−v(S))

(1)

where v(S) is the value function, and we use the com-
mon conditional expectation value function v(S) :=
Ez∼Dp

[f(z)|zS = xS ] (Sundararajan & Najmi, 2020; Lund-
berg & Lee, 2017).

In our complexity analysis, we assume feature indepen-
dence, which follows common practice in computational
complexity frameworks (Arenas et al., 2023; Van den
Broeck et al., 2022), as well as in practical methods for
computing Shapley values, such as the KernelSHAP ap-
proach in the SHAP library (Lundberg & Lee, 2017). For a
complete formalization, refer to Appendix D.

SHAP (Shapley Additive Explanation):
Input: Model f , input x, and i ∈ [n]
Output: The shapley value ϕi(f, x).

4. Ensemble vs. Base-Model Interpretability
We seek to compare the complexity of solving an explain-
ability query Q for an ensemble, to that of solving it for

the ensemble’s constituent base models. We are particularly
interested in cases where there exists strict computational
complexity gaps between the two settings (e.g., solving Q
for a single base model can be performed in polynomial
time, whereas solving it for the ensemble is NP-Complete).
Identifying such gaps is particularly important as they pin-
point the specific situations where the ensemble aggregation
process directly influences the (lack of) interpretability. To
identify these gaps, we use the notion of c-interpretability
(computational interpretability) as defined in (Barceló et al.,
2020).:
Definition 4.1. Let C1 and C2 be two classes of models
and let Q be an explainability query for which Q(C1) is in
complexity class K1 and Q(C2) is in complexity class K2.
We say that C1 is strictly more c-interpretable than C2 with
respect to Q iff Q(C2) is hard for the complexity class K2

and K1 ⊊ K2.

4.1. Complexity Gap in Simple Base Models

We begin with examining two types of base-models known
for their simplicity and interpretability — decision trees
and linear models. Our results affirm the existence of a
complexity gap when an ensemble consists of these base-
models, as depicted in Table 1. Our initial complexity results
are presented in the following proposition, with the proof
provided in Appendix F:
Proposition 4.2. Ensembles of decision trees and ensembles
of linear models are (i) coNP-Complete with respect to CSR,
(ii) NP-Complete with respect to MCR, (iii) ΣP

2 -Complete
with respect to MSR, (iv) #P -Complete with respect to CC,
and (v) #P -Hard with respect to SHAP.

Where the results for majority-voting decision tree ensem-
bles under the CSR and MCR queries were shown in (Or-
dyniak et al., 2024), and we provide all of the remaining
results. Based on these findings, we leverage our previously
established notation to deduce an interpretability separation
between ensembles of decision trees/linear models and their
corresponding base models:

Proof Sketch. We build upon a proof from (Izza & Marques-
Silva, 2021) that reduces DNF formulas to random forest
models to demonstrate that computing prime implicants for
random forests is DP -Complete. We expand this by show-
ing that DNF formulas can be transformed into ensembles
of decision trees or linear models in polynomial time, fitting
our broader category of poly-subset constructable functions
which efficiently represent any disjunction of literals. We
confirm that decision trees and linear models belong to this
category and proceed to obtain the complexity of various
queries through reductions: particularly, the MSR query re-
duction is obtained from the Shortest-Implicant-Core prob-
lem (Umans, 2001). We note that while (Audemard et al.,
2022b) aims to address the MSR query through a reduction
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Table 1. The “complexity gap” when interpreting a single model and an ensemble of models in the case of decision trees and linear models.
Cells highlighted in blue represent novel results, presented here; whereas the rest were already known previously.

Decision Trees Linear Models
Base-Model Ensemble Base-Model Ensemble

Check Sufficient Reason (CSR) PTIME coNP-C PTIME coNP-C
Minimum Contrastive Reason (MCR) PTIME NP-C PTIME NP-C
Minimum Sufficient Reason (MSR) NP-C ΣP

2 -C PTIME ΣP
2 -C

Count Completions (CC) PTIME #P-C #P-C #P-C
Shapley Additive Explanations (SHAP) PTIME #P-H #P-C #P-H

from minimal unsatisfiable sets to DNFs, there is a noted
technical gap in this proof (details in Appendix F.5), also
observed in other similar proofs (Huang et al., 2021). To
the best of our knowledge, we are the first to address this
issue effectively with a non-trivial approach, enabling us to
confirm ΣP

2 -Hardness for DNFs and related ensembles of
poly-subset-constructable functions.
Theorem 4.3. Decision trees are strictly more c-
interpretable than ensembles of decision trees with respect
to CSR, MSR, MCR, CC, and SHAP. The same result holds
for linear models (and ensembles of linear models) with
respect to CSR, MSR, and MCR.

In the previous theorem, there is no complexity gap for
the CC and SHAP queries in the context of linear models.
Nevertheless, it is still possible to demonstrate a complexity
separation if we assume that the weights and biases are given
in unary form, a concept often termed as pseudo-polynomial
time. This is demonstrated in the following proposition,
with its proof provided in Appendix G.
Proposition 4.4. While CC and SHAP can be solved in
pseudo-polynomial time for linear models, ensembles of lin-
ear models remain #P -Hard even if the weights and biases
are given in unary. Therefore, assuming that the weights
and biases are given in unary, linear models are strictly
more c-interpretable than ensembles of linear models with
respect to CC and SHAP.

Proof sketch. The findings for ensembles are derived from
those in Proposition 4.2. We base the pseudo-polynomial
algorithm for CC on the work of (Barceló et al., 2020).
Additionally, we achieve similar outcomes for SHAP using
a non-trivial dynamic programming algorithm that solves
the SHAP query for Perceptrons in pseudo-polynomial time.

4.2. No Complexity Gap in Complex Base Models

We revealed a complexity gap between interpreting simple
models (e.g., decision trees, linear models) and their ensem-
ble counterparts. However, our findings show no such gap
for neural networks. In fact, we establish a much stronger re-

sult: this holds for any explainability query whose complex-
ity class remains consistent under polynomial reductions,
including all K-Complete queries within the polynomial
hierarchy (e.g., PTIME, NP, ΣP

2 ) and their corresponding
counting classes (e.g., #P).

Proposition 4.5. There is no explainability query Q for
which the class of neural networks is strictly more c-
interpretable than the class of ensemble-neural networks.

The proof is provided in Appendix H. The result is intuitive:
since an ensemble of neural networks can be reduced to
a single network in polynomial time, no distinct complex-
ity classes (closed under polynomial reductions) differ in
complexity between interpreting a single model and an en-
semble. We generalize this property to other models, calling
it closed under ensemble construction.

Definition 4.6. We say that a class of models C is closed
under ensemble construction if given an ensemble f con-
taining models from C, we can construct in polynomial time
a model g ∈ C for which ∀x ∈ F, f(x) = g(x).

Clearly, the aforementioned property correlates to the ex-
pressiveness of the base model and does not apply to linear
models or decision trees (assuming P̸=NP).

5. Impact of Base-Model Count and Size on
Ensemble Interpretability

Up until now, our analysis did not consider any structural
parameters. For example, the MCR query is polynomial-
time solvable for a single decision tree, but becomes NP-
Complete for an ensemble of k models. This raises ques-
tions about how different parameters, such as the size of the
participating base-models and the number of base models,
contribute to this effect. We explore these aspects by us-
ing parameterized complexity (Downey & Fellows, 2012),
an important branch of computational complexity theory,
to study how different parameters affect the entire com-
plexity of interpreting ensembles. We begin by outlining
some fundamental concepts in parameterized complexity,
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⋯⋯

Figure 1. Illustration of insights from our parameterized complexity results: even highly simplified ensembles with constant-size base
models (e.g., three base models) remain intractable to interpret. Moreover, ensembles with just two linear models already pose intractability,
highlighting the substantial difficulty of interpreting linear model ensembles, even in simplified cases. However, reducing the number of
trees in tree ensembles (e.g., Random Forest, XGBoost) can make explanation computation tractable if the number of trees is fixed.

which are crucial for this study. In this field, we deal with
two-dimensional instances denoted as ⟨X , k⟩ where X rep-
resents the original encoding, and k is a specified parameter.
We briefly describe the three main scenarios in parameter-
ized complexity.

1. Problems solvable in |X |O(1)·g(k) time. This is the best-
case scenario concerning the parameter k and includes fixed
parameter tractable (FPT) problems concerning k, meaning
their complexity is primarily controlled by the parameter k.
For example, the Vertex-Cover problem is FPT when k is
the vertex cover size, allowing efficient solutions even for
large graphs if k is small.

2. Problems solvable in O(|X |g(k)) time. This class in-
cludes XP problems, solvable in O(|X |g(k)) time. For fixed
k, they are polynomial-time solvable, but large |X | can make
them hard, even for small k. The W-hierarchy (Downey &
Fellows, 2012), including W [t] for t ≥ 1 and W[P], pro-
vides a finer classification within XP. For example, Clique
is W [1]-Complete. Here, t relates to the Boolean circuit
depth used in reductions (Appendix C), with W[P] allowing
arbitrary depth. It is assumed that FPT ⊊ W[1] ⊊ W[2]
⊊ . . . ⊊ XP (Downey & Fellows, 2012). Thus, XP prob-
lems lack FPT algorithms and remain inefficient to solve for
W[1]-Hard cases if |X | grows arbitrarily large.

3. Problems that are NP-Hard when k is constant. At the
extreme of the parameterized complexity spectrum is para-
NP, representing the highest sensitivity to the parameter
k. A problem is para-NP-Hard if it remains NP-hard even
when k is fixed. Assuming P ̸=NP, we have XP ⊊ para-NP.
For example, the Graph-Coloring problem is NP-Hard for

any k ≥ 3, meaning that even for a significantly small k,
the problem is intractable — unlike FPT and XP.

Extensions of parameterized complexity. We briefly men-
tion extensions of parameterized complexity to counting
problems (Flum & Grohe, 2004) and higher orders of the
polynomial hierarchy (de Haan, 2019) (e.g., ΣP

2 ). This in-
cludes the #W -hierarchy, extending the W-hierarchy to
counting problems, where it is believed that FPT ⊊ #W[1]
⊊ #W[2] ⊊ . . .#W[P] ⊊ XP. Similarly, XNP extends XP
to the second order of the polynomial hierarchy, with XNP
⊊ para-ΣP

2 (de Haan & Szeider, 2017). The concept of para-
NP also generalizes to other classes, including para-coNP,
para-ΣP

2 , and para-#P (de Haan, 2019), where a problem is
para-K-Hard if it remains K-Hard when k is constant.

5.1. Impact of Base-Model Sizes on Ensemble
Interpretability

We start by studying how the sizes of an ensemble’s base
models influence its interpretability. In this setting, we
take the size of the largest base model in an ensemble as
our parameter k. We prove that with this parameterization,
all of the aforementioned explainability queries become
intractable already for a constant value of k.

Proposition 5.1. An ensemble consisting of either linear
models, decision trees or neural networks, parameterized by
the maximal base-model size is (i) para-coNP Complete with
respect to CSR, (ii) para-NP-Complete with respect to MCR,
(iii) para-ΣP

2 -Complete with respect to MSR, (iv) para-#P -
Complete with respect to CC, and (v) para-#P -Hard with
respect to SHAP.

6



What makes an Ensemble (Un) Interpretable?

Proof Sketch. The proof appears in Appendix J. To prove
para-NP/para-coNP hardness for MCR and CSR, we re-
duce from the NP-Complete Subset-Sum Problem to the
problem of solving CSR/MCR for ensembles consisting of
only two Perceptrons. To establish para-ΣP

2 -Hardness for
MSR, we employ a more intricate reduction from the lesser-
known Generalized Subset-Sum Problem (GSSP) (Schaefer
& Umans, 2002; Berman et al., 2002), a ΣP

2 -Complete prob-
lem. This reduction demonstrates that solving MSR in an
ensemble of only five perceptrons is already ΣP

2 -Hard.

The results for majority-voting decision tree ensembles un-
der the CSR and MCR queries were shown in (Ordyniak
et al., 2024), and we present here the remaining results. The
proof of Proposition 5.1 appears in Appendix I and provides
a negative outcome regarding the interpretability of ensem-
bles. The proposition implies that the uninterpretability of
ensembles is not a result of the sizes of the participating
base models, but rather of the aggregation process itself,
such as the majority vote in voting ensembles. This implies
that even if we reduce the size of our corresponding models
to a constant size, the ensemble still remains intractable
to interpret, and hence uninterpretable from a complexity
perspective. This result applies to all of our base-model
types, ensembles, and explanation forms.

5.2. Impact of Number of Base-Models on Ensemble
Interpretability

A more intricate dynamic emerges when we take the num-
ber of base models that participate in the ensemble as our
parameter k. Table 2 shows our parameterized complexity
results under this setting. The results for neural networks
are straightforward since they are closed under ensemble
construction. Decision trees and linear models however re-
veal an interesting trend — while linear models lose their
tractability with a constant number of models in the ensem-
ble, tree ensembles tend to remain XP-tractable, meaning
they can be solved in polynomial time when the number
of base models is fixed. The following subsections explore
these findings in more detail.

5.2.1. THE NUMBER OF LINEAR MODELS IN AN
ENSEMBLE

We find that ensembles of linear models become hard to
interpret with only a constant number of base-models. In-
terestingly, we demonstrate that this property holds quite
generally, as it applies across all the explanation types we
analyzed, as stated in the following proposition, with the
proof provided in Appendix J:

Proposition 5.2. k-ensembles of linear models are (i) para-
coNP Complete with respect to CSR; (ii) para-NP-Complete
with respect to MCR; (iii) para-ΣP

2 -Complete with respect
to MSR; (iv) para-#P -Complete with respect to CC, and

(v) para-#P -Hard with respect to SHAP.

5.2.2. THE NUMBER OF DECISION TREES IN AN
ENSEMBLE

Unlike ensembles composed of linear models, ensembles of
decision trees (including widely used models like random
forests and XGBoost) yield more optimistic complexity re-
sults. Specifically, explanations become computationally
tractable when the number of trees in the ensemble is re-
duced. The precise degree of tractability, however, varies
depending on the type of explanation:

XP tractable explanations. We demonstrate that four of
the five queries analyzed (CSR, MCR, CC, and SHAP) fall
within XP, with some also belonging to lower complexity
classes in the W-hierarchy (the full proofs are relegated in
Appendix K.1).

Proposition 5.3. For ensembles of k-decision trees, (i) the
CSR query is coW[1]-Complete; (ii) the MCR query is W[1]-
Hard and in W[P]; (iii) the CC query is #W[1]-Complete;
and (iv) the SHAP query is #W [1]-Hard and in XP.

Proof Sketch. Membership for the CSR query is established
through a many-to-one FPT reduction to the complementary
version of the k-Clique problem, while hardness was shown
by (Ordyniak et al., 2024). The CC query extends these
results, as the counting versions of these tasks are #W[1]-
Complete. #W [1]-Hardness for SHAP can be inferred from
the complexity of CC, given that the tractability of SHAP
is linked to model counting (Van den Broeck et al., 2022).
For membership, a more detailed proof places SHAP within
XP, which is made possible by the assumption of feature
independence. Specifically, when the distribution is uniform,
SHAP is proven to be #W [1]-Complete (see Lemma K.6).
Lastly, while hardness of the MCR query was demonstrated
by (Ordyniak et al., 2024), its membership is established
by reducing it to the weighted circuit satisfiability (WCS)
problem for circuits with arbitrary depth.

Intuitively, this result indicates that these types of explana-
tions can be computed in polynomial time when the number
of trees in the ensemble is fixed. The levels of tractabil-
ity, corresponding to different explanation types, align with
various classes within the W-hierarchy.

XNP tractable explanations. The only explainability query
that is not in XP for tree ensembles is the minimum suffi-
cient reason (MSR) query. This makes sense since this
problem is known to be NP-Hard only for a single decision
tree (Barceló et al., 2020), and hence it is para-NP-Hard for
an ensemble of k trees. However, we can show a similar
behavior, by proving its membership in XNP, the variant of
XP for the second order of the polynomial hierarchy (Flum
& Grohe, 2004). This is illustrated in the following proposi-
tion, with its proof provided in Appendix L.
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Table 2. Parameterized complexity classes for explainability queries of ensemble models, parametrized by the number of models
participating in the ensemble, k.

Decision Trees Linear Models Neural Networks

Check Sufficient Reason (CSR) coW[1]-C para-coNP-C (k=2) para-coNP-C (k=1)

Minimum Contrastive Reason (MCR) W[1]-H, in W[P] para-NP-C (k=2) para-NP-C (k=1)

Minimum Sufficient Reason (MSR) para-NP-H (k=1), in XNP para-ΣP
2 -C (k=5) para-ΣP

2 -C (k=1)

Count Completions (CC) #W[1]-C para-#P-C (k=1) para-#P-C (k=1)

Shapley Additive Explanations (SHAP) #W[1]-H, in XP para-#P-C (k=1) para-#P-C (k=1)

Proposition 5.4. The MSR query for a k-ensemble of deci-
sion trees is para-NP-Hard and in XNP.

Proof Sketch. To prove membership, we devise an algo-
rithm that initially computes all minimal contrastive rea-
sons during a preprocessing phase in O(|X |k) time. In the
second phase, the algorithm leverages the Minimal-Hitting-
Set (MHS) duality between sufficient and contrastive rea-
sons (Ignatiev et al., 2020b), allowing the algorithm to non-
deterministically identify the MHS among all minimal con-
trastive reasons.

Intuitively, while this query is NP-Hard when k is constant,
its membership in XNP suggests it remains significantly
more tractable compared to para-ΣP

2 -Hard problems (as en-
countered with the MSR query for ensembles of linear mod-
els). When k is fixed, these problems can be addressed us-
ing NP oracles (e.g., SAT solvers (Moskewicz et al., 2001)),
whereas para-ΣP

2 -Hard problems demand a worst-case ex-
ponential number of queries to such solvers.

Although the MSR query is not in XP, a relaxed version is.
This version seeks a subset-minimal (or “locally minimal”)
sufficient reason, i.e., a subset S ⊆ [n] that is a sufficient
reason, where removing any i from S makes it no longer
sufficient. This result was previously shown in (Ordyniak
et al., 2024); in Appendix M, we discuss its connection to
our other findings.

Proposition 5.5. Obtaining a subset-minimal sufficient rea-
son for a k-ensemble of decision trees is in XP.

FPT tractable explanations. Although the previous XP-
tractable explanations are relatively more tractable for tree
ensembles (compared to ensembles of linear models) and
solvable in polynomial time with a fixed number of trees,
our results show they are either W[1] or coW[1]-hard. Thus,
assuming FPT ⊊ W[1], no FPT algorithms exist to solve
these queries in |X |O(1) · g(k) time (Downey & Fellows,
2012). Consequently, they are not primarily driven by the pa-
rameter k and grow more challenging as tree size increases.

However, if we assume that the number of leaf nodes m in
each tree is bounded by a constant (even if the total size |fi|

of each tree is arbitrarily large), it is possible to develop FPT
algorithms to solve these queries. This follows from the fact
that all the aforementioned algorithms have a runtime of
O(mk). This leads to the following conclusion, which can
also be inferred from (Ordyniak et al., 2024) for majority-
voting tree ensembles under the CSR and MCR queries and
we extend this result to all remaining settings:

Proposition 5.6. If the maximal number of leaves in each
tree m is constant, there exist FPT algorithms that solve
the CSR, MCR, CC, and SHAP queries for k-ensembles of
decision trees (even if the size |fi| of each base-model, and
hence the size of the ensemble |f |, is arbitrarily large).

5.2.3. TREE ENSEMBLES VS. LINEAR MODEL
ENSEMBLES

The previous subsections showed that decision tree and
linear model ensembles exhibit very distinct behaviors when
parameterized by the number of base models k, giving rise
to the following corollary:

Theorem 5.7. k-ensemble decision trees are strictly more
c-interpretable than k-ensemble linear models with respect
to CSR, MSR, MCR, CC, and SHAP.

From a practical perspective, if a practitioner seeks to sim-
plify an ensemble by reducing the number of base models,
this simplification enhances computational interpretability
for decision tree ensembles. However, this is not the case for
ensembles composed of linear models, where interpretabil-
ity becomes intractable even with just two linear models.
Notably, these complexity challenges also extend to het-
erogeneous ensembles. In other words, any ensemble that
includes a mix of model types and only two linear models
is already intractable to interpret.

Finally, Proposition 5.6 shows that algorithms for CSR,
MCR, CC, and SHAP on decision tree ensembles run not
only in XP but in FPT time with a fixed number of leaves
per tree, even for arbitrarily large input spaces and tree sizes.
In contrast, ensembles of linear models remain computation-
ally intractable unless the model size — and thus the input
space size — is constrained, even with just two models.
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6. Practical Implications
While our work is theoretical, it offers key insights for prac-
titioners focused on ensemble interpretability. Specifically,
we show that generating explanations for ensembles is sub-
stantially intractable, with exponential gaps compared to
single base-models. This remains true even for ensembles
with constant-sized base models, indicating that using en-
sembles with small base-models alone does not improve
interpretability from a computational standpoint. A key
practical takeaway, however, is that using ensembles with
fewer but deeper trees is computationally more favorable
than many shallow ones. This observation can guide tree
architecture choices when interpretability is a priority. Con-
versely, incorporating linear models — even with only a
few models — can drastically increase complexity. This un-
derscores a substantial comparative advantage for decision-
tree-based ensembles over those using linear models.

More concretely, our tractability results yield polynomial-
time algorithms for computing explanations. While some
cases are W[1]-, coW[1]-, or #W[1]-hard, bounding the
number of leaves per tree makes them FPT-tractable, en-
abling efficient computation even for arbitrarily large ensem-
bles. Many of these tasks also support parallelization, boost-
ing performance. Finally, since our problems fall within
well-studied classes like W[1], they can be reduced to canon-
ical problems like k-Clique, for which effective heuristics
already exist (Vassilevska, 2009; Chang, 2019; Chen et al.,
2019), opening new directions for practical applications.

7. Related Work
Our work relates to the field of formal XAI, which focuses
on explanations with mathematical guarantees (Marques-
Silva et al., 2020). Previous studies have explored the com-
putational complexity of generating such explanations for
various ML models (Barceló et al., 2020; Bassan et al.,
2024; Adolfi et al., 2025). Here, we focus on the complexity
of ensemble models and their interpretability. Prior work
has examined the complexity of interpretations for specific
ensembles (e.g., random forests) (Izza et al., 2021; Aude-
mard et al., 2022b; 2023; Huang & Marques-Silva, 2024)
and used parameterized complexity to distinguish between
shallow and deep neural networks (Barceló et al., 2020) or
parameterize explanations by size (Ordyniak et al., 2023).
In a more recent and independent study, the notable work
by (Ordyniak et al., 2024) examines the complexity of var-
ious explainability queries — primarily local and global
abductive and contrastive explanations, which correspond
to our CSR, MSR, and MCR queries — under different pa-
rameterizations, including those related to majority-voting
ensembles of models such as decision trees, lists, and sets.
We provide a more technical and comprehensive discus-
sion of all relevant prior computational complexity results,

including this work and others, in Appendix A.

Another line of work focuses on obtaining explanations with
formal guarantees on tree ensembles by encoding them as
propositional logic formulas and then solving these queries
with Boolean satisfiability (SAT) (Izza & Marques-Silva,
2021), Maximum satisfiability (MaxSAT), (Ignatiev et al.,
2022), Mixed integer linear programming (MILP) (Parmen-
tier & Vidal, 2021; Chen et al., 2019) or satisfiability modulo
(SMT) (Ignatiev et al., 2019c) solvers.

Finally, in our work, we used terms that have sometimes ap-
peared in the literature under different names. For example,
“sufficient reasons” are also called abductive explanations
(Ignatiev et al., 2019b). Subset minimal sufficient reasons
are related, though not identical, to prime implicants in
Boolean formulas (Darwiche & Marquis, 2002). Similarly,
the CC query aligns with the concept of a δ-relevant set
(Wäldchen et al., 2021; Izza et al., 2021), which identifies
whether the completion count exceeds a threshold δ.

8. Limitations and Future Work
Similarly to other studies on the computational complexity
of obtaining explanations, our work is limited to specific
explanation forms and base-model types. However, we
believe it still offers a broad overview of various formats and
settings, covering diverse facets of ensemble interpretability
and laying the groundwork for exploring the complexity of
additional forms in future work. Moreover, while most of
our findings extend from classification to regression, some
require further investigation, as discussed in Appendix E,
along with other potential extensions and open problems.

9. Conclusion
We introduce a complexity-theoretic framework for evalu-
ating the interpretability of ensemble models. Our study
encompasses a wide range of popular explanation forms,
base-model types, and varying structural parameters, such
as the number and size of base models. We believe our
findings offer a significantly more rigorous understanding
of some of the fundamental factors shaping the interpretabil-
ity limitations of ensembles. While some of our results
support widely held assumptions in the ML community,
others are unexpected and surprising — for instance, the sig-
nificantly differing impacts of base-model sizes, numbers,
and types across various contexts. These insights provide
a novel perspective on ensemble interpretability, informing
both the practical development of explanation algorithms
(the tractable cases) and a deeper understanding of scenar-
ios where explanations may be infeasible to obtain (the
intractable cases). Overall, we believe that our work un-
derscores the importance of computational complexity in
advancing our understanding of interpretability in ML.
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Appendix
The appendix contains formalizations and proofs that were mentioned throughout the paper:

Appendix A contains an extended discussion of related work.
Appendix B contains formalizations of base-model types and ensembles.
Appendix C contains background on parameterized complexity.
Appendix D contains additional formalizations concerning explainability queries.
Appendix E contains information regarding possible expansions of our framework to (i) discrete and continuous input/output
domains, (ii) regression tasks, and (iii) heterogeneous ensembles.
Appendix F contains the proof of Proposition 4.2.
Appendix G contains the proof of Proposition 4.4.
Appendix H contains the proof of Proposition 4.5.
Appendix I contains the proof of Proposition 5.1.
Appendix J contains the proof of Proposition 5.2.
Appendix K contains the proof of Proposition 5.3.
Appendix L contains the proof of Proposition 5.4.
Appendix M contains the proof of Proposition 5.5.

A. Extended Related Work
This section provides a more detailed discussion of related work and key complexity results explored in previous research.

The Complexity of Computing Explanations. Our work builds on a growing body of research analyzing the computational
complexity of generating various types of explanations with different guarantees across a wide range of ML models (Barceló
et al., 2020; Amir et al., 2024; Bhattacharjee & Luxburg, 2024; Adolfi et al., 2025; Blanc et al., 2022; Huang et al., 2023;
Arenas et al., 2021a; Cooper & Marques-Silva, 2023). Prior studies have examined the complexity of computing explanations
based on sufficiency (Barceló et al., 2020; Bassan et al., 2024), contrastiveness (Blanc et al., 2022; Cooper & Marques-Silva,
2023; Barceló et al., 2020), Shapley values (Marzouk et al., 2025; Marzouk & De La Higuera, 2024; Van den Broeck et al.,
2022; Arenas et al., 2023), and probabilistic reasoning (Izza et al., 2023; Blanc et al., 2021; Wäldchen et al., 2021). These
analyses span a variety of model classes — from inherently interpretable models like linear classifiers (Subercaseaux et al.,
2025), monotonic models (Marques-Silva et al., 2021), KNNs (Barceló et al., 2025), and decision trees (Bounia & Koriche,
2023; Arenas et al., 2022; Huang et al., 2021) — to more complex black-box models such as neural networks (Adolfi et al.,
2025; Bassan et al., 2024; Barceló et al., 2020), where the computational challenges are typically greater.

The Complexity of Computing Explanations for Ensembles. Most closely related to our work are studies that analyze the
complexity of generating explanations for ensemble models. Notably, (Izza & Marques-Silva, 2021) show that computing
a subset-minimal sufficient reason for a random forest is DP -complete, a result extended by (Audemard et al., 2023) to
weighted voting ensembles. The significant work of Audemard et al. (2022b) establishes complexity results for sufficient
and contrastive reasons in majority-voting tree ensembles — results we expand upon in the relevant sections. More recently,
the highly notable work of (Ordyniak et al., 2024) provide a thorough parameterized complexity analysis for majority-voting
ensembles of decision trees, decision lists, and sets, considering both explanation-size parameters and structural parameters
of the models. We elaborate on the connection to their results throughout the paper and in the appendix. Lastly, both (Huang
& Marques-Silva, 2024) and (Marzouk et al., 2025) analyze the complexity of computing SHAP values on different models,
which include tree ensembles; our work extends these findings by exploring additional ensemble settings and introducing
new parameterized results.

Formal XAI. More broadly, our work lies within the subfield of formal XAI (Marques-Silva & Ignatiev, 2022), which
seeks to provide explanations for ML models with formal guarantees (Ignatiev et al., 2020a; Bassan & Katz, 2023;
Darwiche & Hirth, 2020; Darwiche & Ji, 2022; Ignatiev et al., 2019a; Audemard et al., 2022a; Bassan et al., 2025a). Such
explanations are typically obtained using formal reasoning tools like SMT solvers (Barrett & Tinelli, 2018) (e.g., for tree
ensembles (Audemard et al., 2022b)) or neural network verifiers (Katz et al., 2017; Wu et al., 2024a; Wang et al., 2021b)
(e.g., for neural networks (Izza et al., 2024; Bassan et al., 2023)), or by performing other manipulations such as relaxing the
sufficiency definitions (Jin et al., 2025; Izza et al., 2023; Wang et al., 2021a; Chockler et al., 2024; Jin et al., 2025), applying
smoothing (Xue et al., 2023), or using self-explaining methods (Bassan et al., 2025b; Alvarez Melis & Jaakkola, 2018;
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Bassan et al., 2025c). A central concern in the area of Formal XAI is the computational complexity of generating these
explanations (Barceló et al., 2020; Wäldchen et al., 2021; Cooper & Marques-Silva, 2023; Bassan et al., 2024; Blanc et al.,
2021; Amir et al., 2024; Adolfi et al., 2025; Barceló et al., 2025; Calautti et al., 2025; Ordyniak et al., 2023).

B. Ensembles and Base-Model Types
In this appendix, we describe the various ensembles that are incorporated in our work and the corresponding base-model
types that consist in these models.

B.1. Ensemble Formalization

Numerous well-known ensemble techniques exist; however, our research is geared towards post-hoc interpretation, thus we
emphasize the inference phase rather than the training of these ensembles. Our analysis is focused on ensemble families that
utilize either majority voting or weighted-voting methods during inference. This includes bagging ensembles such as random
forests, which implement majority-voting-based inference, and boosting ensembles like XGBoost, Gradient Boosting, and
Adaboost, which employ weighted voting for inference. Moreover, we will examine how all of our results hold to either
hard-voting or soft-voting inference as well as the potential to apply our findings to alternative inference techniques such as
weighted averaging, or meta-model decision inference. Such inference techniques are commonly found in other ensemble
types like stacking ensembles, or those utilized in regression tasks.

Majority Voting Inference.

In majority voting inference, the condition f(x) = 1 is satisfied if and only if there are at least ⌈k2 ⌉ base-models within an
ensemble f where fi(x) = 1. Put simply, the decision for f(x) is determined by the majority consensus of the models
involved in f . Formally, for any x ∈ F we define f as follows:

f(x) :=

{
1 if |{ i | fi(x) = 1 }| ≥ ⌈k2 ⌉
0 otherwise

(2)

Weighted Voting Inference.

For weighted voting inference, we consider a weight ϕi ∈ Q that describes the importance of each model participating in the
ensemble. Considering this is a binary classification, we can define the prediction as being determined by the sign of the
total aggregation of all weights. Formally, for any x ∈ F we define f as follows:

f(x) := step(
∑

1≤i≤n

ϕi · fi(x)) (3)

where step(z) = 1 ⇐⇒ z ≥ 0.

Weighted voting is harder than majority voting: When examining the explainability query Q, our analysis aims to
evaluate the complexity classes of two families of ensembles: majority voting ensembles, denoted as CM, and weighted
voting ensembles, denoted as CW . It is straightforward to demonstrate that the following relationship is true:

Lemma B.1. Let C denote a class of models, CM the class of majority voting ensembles of models from C, and CW , the
class of weighted voting ensembles of models from C. Then for any explainability query Q it holds that Q(CM) ≤P Q(CW).

Proof. The lemma holds by a simple reduction that starts with a majority voting ensemble f and constructs a weighted
voting ensemble f ′ where each weight is assigned an equal attribution. In other words: ϕ′

i =
1
n for all i ∈ [n].

The previous statement holds technical significance as it simplifies the process of establishing complexity class completeness
results for both CM and CW :

Observation 1. For proving that the complexity of solving both Q(CM) and Q(CW) are complete for some complexity class
K (closed under polynomial reductions), it suffices to prove membership for Q(CW) and hardness for Q(CM).
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From this point forward, whenever we mention the computational complexity of an ensemble of models in our text, it applies
to both majority voting ensembles and weighted voting ensembles, as we prove the completeness of complexity classes for
both families. We highlight this differentiation in our proofs, which are applicable to both types of ensembles.

Extension to Soft Voting. In contrast to hard voting that is common in the binary classification setting, within probabilistic
classification soft voting can also be implemented. In this case, each model fi in the ensemble outputs some given probability
value i.e, fi : F→ [0, 1]. Then, in the case of majority soft voting, the inference is computed by:

f(x) := step(
∑

1≤i≤n

fi(x)
n

) (4)

whereas in weighted soft voting the inference is computed by incorporating equation 3 for each fi : F→ [0, 1].

We start by defining a property that will be used in the next lemma. We say that a class C of models f : F→ [0, 1] is scalar
multiplicative if given some constant λ ∈ R and for all f ∈ C we can construct, in polynomial time a model f ′ ∈ C for
which f ′ = λf .

Lemma B.2. Let C denote a class of models, CW the class of weighted (hard) voting ensembles of models from C, CSW ,
the class of (soft) weighted voting ensembles of models from C, and CSM, the class of (soft) majority voting ensembles of
models from C. Then for any explainability query Q it holds that Q(CW) =P Q(CSW) =P Q(CSM). The only restriction is
for the condition Q(CW) ≥P Q(CSM) and it is that CW is scalar multiplicative.

Proof. Given a soft majority voting ensemble f , we can construct a weighted hard (voting) ensemble f ′ for which
each weight ϕ′

i(x) := fi(x)
n . For the other direction, given a weighted hard (voting) ensemble f , and assuming that

CW is scalar multiplicative, we can construct a soft majority voting ensemble f ′. We do this by, for every i ∈ [n],
constructing f ′

i(x) = ϕi · fi(x) (since CW being scalar multiplicative). Overall, from these two reductions, we get that
Q(CW) =P Q(CSM).

For the second part of the claim — we start with a weighted hard voting ensemble f and construct a weighted soft
voting ensemble f ′ by assigning each weight ϕ′

i(x) := ϕi(x)
n . For the other direction, given a weighted soft voting

ensemble f we construct a weighted hard voting ensemble f ′ by setting ϕ′
i(x) := ϕi(x) · fi(x). Overall, this implies that

Q(CW) =P Q(CSW).

Lemma B.2 establishes that our proofs (including those for membership and hardness) apply to soft-voting ensembles, both
for majority and weighted voting scenarios. This is because our proofs are conducted within the framework of weighted
(hard voting ensembles), and all the complexity classes we consider are closed under polynomial reductions.

(Weighted) Averaging. In the regression setting, another common inference technique involves a weighted averaging of all
base-model predictions. Formally, given a set of k regression base-models fi : F→ R, then we define f by incorporating
equation 4 over each fi. In essence, this is the same formalization as that of majority soft voting, and hence Lemma B.2
holds for this family of inference models as well. However, when shifting our focus to regression, we must also consider
different formalizations of some of the query forms discussed in our paper, such as the definition of a sufficient reason. We
discuss these specific adjustments for the regression setting under Appendix E.

Meta learner decision. Another common ensemble inference method often used in stacking ensembles involves employing
a meta-model to aggregate the outputs of the k base models. In our particular scenario, this involves a model g : {0, 1}k →
{0, 1}, which is trained to classify the outputs from each base model fi within a specified domain. It is important to note that
if g can function as a majority voting system among the k models — a capability all analyzed model types possess, including
neural networks, linear classifiers, and decision trees -—- then all the hardness findings discussed in this paper automatically
apply to this setup as well. For instance, a stacking ensemble comprising a constant number of linear base-models remains
intractable to interpret, as demonstrated in Proposition 5.2. However, the examination of membership results that were
presented in this paper will vary depending on the type of model used for the meta-model g.
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B.2. Base-Model Types

In this subsection, we formalize the three base-model types that were analyzed throughout the paper: (i) (axis-aligned)
decision trees, (ii) linear classifiers, and (iii) neural networks with ReLU activations.

Decision Trees. We regard a decision tree is an acyclic-directed graph and serves as a graphical model for the function f .
This graph embodies the given Boolean function in the following manner: (i) Each internal node v is associated with a unique
binary input feature from the set {1, . . . , n}; (ii) Every internal node v has precisely two outgoing edges, corresponding to
the values {0, 1} which are assigned to v; (iii) In the decision tree, each variable is encountered no more than once on any
given path α; (iv) Each leaf node is labeled either True or False.

Thus, assigning a value to the inputs x ∈ F uniquely determines a specific path α from the root to a leaf in the decision
tree. The function f(x) is assigned a 1 if the terminal node leaf is labeled True, and 0 if it is labeled False. The size of
the decision tree, denoted as |f |, is measured by the total number of edges in its graph. We additionally assume that the
decision tree permits different varying orderings of the input variables {1, . . . , n} across any two distinct paths, α and α′.
This ensures that no two nodes along any single path α share the same label.

Neural Networks. We focus on neural networks with ReLU activations. It is straightforward to show that any neural
network using ReLU activations can be straightforwardly transformed into a fully connected network by assigning “missing”
connections a weight and bias of 0 for any non-connected neurons. Following standard conventions (Barceló et al., 2020;
Bassan et al., 2024; Adolfi et al., 2025), we assume the network is fully connected. In other words, our analysis pertains to
multi-layer perceptrons (MLPs). Formally, an MLP, denoted by f , consists of t− 1 hidden layers (gj where j ranges from 1
to t− 1) and a single output layer (gt). The layers are defined recursively — each layer g(j) is computed by applying the
activation function σ(j) to the linear combination of the outputs from the previous layer g(j−1), the corresponding weight
matrix W (j), and the bias vector b(j). This is represented as g(j) := σ(j)(g(j−1)W (j) + b(j)) for each j in {1, . . . , t}. The
model includes t weight matrices (W (1), . . . ,W (t)), t bias vectors (b(1), . . . , b(t)), and t activation functions (σ(1), . . . , σ(t)).

In the described MLP, the function f is defined to output f := g(t). The initial input layer g(0) is denoted by x ∈ {0, 1}n,
which serves as the model’s input. The dimensions of the biases and weight matrices are specified by the sequence of
positive integers {d0, . . . , dt}. We specifically focus on weights and biases that are rational numbers, represented as
W (j) ∈ Qdj−1×dj and b(j) ∈ Qdj , which are parameters that are optimized during training. Given that the model is a binary
classifier for indices {1, . . . , n}, it follows that d0 = n and dt = 1. The primary activation function σ(i) that we focus on is
the ReLU activation function, defined as reLU(x) = max(0, x), except for the output layer, where a sigmoid function is
typically used for the classification. Since our focus is only on the post-hoc interpretation of the corresponding model, we will
equivalently assume the existence of a step function for the final layer activation, where we denote step(z) = 1 ⇐⇒ z ≥ 0.

Linear Classifiers. A linear classifier is essentially equivalent to a single-layer MLP classifier, which corresponds to a
Perceptron model. To emphasize this equivalence — also important for establishing the technical significance of hardness
proofs for linear classifiers that extend to neural network classifiers — we will refer to them as perceptrons throughout this
work. This terminology is consistent with prior research on the subject (Barceló et al., 2020; Bassan et al., 2024). Formally,
a perceptron represents a single-layer MLP or in other words t = 1. It is defined by the function f(x) = step((w · x) + b)
with b belonging to the set of rational numbers, and w being a matrix in Qn×d1 . Consequently, for the perceptron function
f it holds without loss of generality that f(x) = 1 if and only if (w · x) + b ≥ 0.

C. Parameterized Complexity Background
In parameterized complexity, we deal with parameterized problems L ⊆ Σ∗ × N where Σ is some finite alphabet. The
elements of the paramaterized problems are hence two-dimensional instances denoted as ⟨X , k⟩ where X represents the
original encoding and k is the parameter.

C.1. Parameterized Reductions

FPT Reductions. The parameterized complexity classes that we will discuss here are closed under a specific kind of
reductions, known as fixed-parameter tractable (FPT) reductions. A given mapping ϕ : Σ∗×N→ Σ∗×N between instances
from a parameterized problem P1 to another parameterized problem P2 is an FPT reduction iff it holds that: (i) (X , k) is in
P1 if and only if ϕ(X , k) is in P2; (ii) there exists a computable function g for which k′ ≤ g(k) when k′ is the parameter of

18



What makes an Ensemble (Un) Interpretable?

ϕ(X , k); and (iii) ϕ(X , k) can be computed in |X |O(1) · g′(k) time for some computable function g′.

FPT Parsimonious Reductions. For the counting version of FPT reductions (Flum & Grohe, 2004), given two paramterized
counting problems F : Σ∗ × N→ N, and G : Σ∗ × N→ N we define an FPT parsimonious reduction from F to G as an
algorithm that computes for any instance ⟨X , k⟩ of F an instance ⟨Y, ℓ⟩ of G in time g1(k) · |X |c such that ℓ ≤ g2(k) and
F (X , k) = G(Y, ℓ), for some computable functions g1, g2 : N→ N, and a constant c ∈ N.

C.2. Parameterized Complexity Classes.

We now will formalize the parameterized complexity classes that are relevant for this work.

FPT. A problem is fixed parameter tractable (FPT) concerning k iff there exists a |X |O(1) · g(k) time algorithm solving the
problem for some computable function g.

XP and the W-Hierarchy. The class XP describes all problems that can be solved in O(|X |g(k)) time for some computable
function g. This class additionally encompasses the W -hirerchy (Downey & Fellows, 2012), which can be described using
boolean circuits. We recall that a boolean circuit C is represented as a rooted directed acyclic graph. Nodes with no incoming
edges are referred to as input gates, and the singular node without any outgoing edges is the output gate. The internal nodes
of the circuit are designated as OR, AND, or NOT gates. NOT gates are characterized by having exactly one incoming edge.
AND and OR gates can have up to two incoming edges, termed small gates, or more than two, termed large gates. The depth
of a circuit is measured by the longest path of edges from any input node to the output node. The weft of a circuit refers to
the largest number of large gates on any path from an input node to the output node. An assignment for C maps the input
gates to binary values {0,1}. The hamming weight of an assignment reflects the count of input gates assigned the value 1.
This assignment determines the output at each gate based on its specific function. A circuit is satisfied by an assignment if it
results in the output gate producing a value of 1.

We can now characterize the W -Hierarchy through reductions to the general Weighted Circuit Satisfiability problem (WCS),
which is defined as follows:

Weighted Circuit Satisfiability (WCS[Ct,d]):
Input: A boolean Circuit C with weft at most t and depth at most d, and an integer k,
Parameter: k
Output: Yes, if C has a satisfying assignment of Hamming weight exactly k

We then say that a problem Q belongs to W [t] if there is an FPT reduction from Q to WCS[Ct,d], for some fixed constant d.
If there exists an FPT reduction from Q to WCS[Ct,d], where the constructed circuit C is allowed to have an arbitrary weft
t, then we say that Q belongs to W [P ]. It is widely believed that the following relation holds (Downey & Fellows, 2012):

FPT ⊊ W [1] ⊊ W [2] ⊊ . . . ⊊ W [t] ⊊ W [P ] ⊊ XP (5)

XNP. Our paper will also briefly discuss the XNP complexity class (de Haan & Szeider, 2017), which is a generalization of
the XP class to the second order of the polynomial hierarchy. XNP describes the set of problems that can be solved by a
non-deterministic algorithm in O(|X |g(k)) time for some computable function g. It is widely believed that XNP ⊊ para-ΣP

2 .

The #W -Hirerchy. The W -Hierarchy can be extended to its equivalent counting based hiearchy, which is termed the
#W -hierarchy (Flum & Grohe, 2004). Similarly to the W -herarchy, where we use the problem WCS[Ct,d], we now denote
#WCS[Ct,d] as the problem of counting the number of assignments of Hamming weight k for a Boolean circuit C with
depth d and weft t (that is not a fixed constant, but may depend on the size of C). Similarly to the W -hiearchy, we define
#W [t] as any problem Q for which there exists an FPT parsimonious reduction from Q to #WCS[Ct,d] for some constant
t. If t is arbitrary, then Q is in #W [P ]. Similarly to the W -hierarchy, it here too is believed that:

FPT ⊊ #W [1] ⊊ #W [2] ⊊ . . . ⊊ #W [t] ⊊ #W [P ] ⊊ XP (6)

Para-NP. A problem is in para-NP concerning some paramater k if there exists a non-deterministic algorithm which solves
the problem in O(|X |O(1) · g(k)) time for some computable function g. A problem is para-NP-Hard if and only if the
non-parameterized problem is NP-Hard when k is set to some constant.
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Beyond Para-NP. Other relevant classes are the extensions of the para-NP class to other classes, such as para-coNP,
para-ΣP

2 , etc. (Flum & Grohe, 2003). Let K be a classical complexity class. Then para-K is the class of all parameterized
complexity problems P , with P ⊆ Σ∗ × N, for which there exists an alphabet Π, a computable function g : N→ Π∗, and a
problem Q ⊆ Σ∗ ×Π∗ such that X ∈ K and for all instances (X , k) ∈ Σ∗ × N of P we have:

(X , k) ∈ P ⇐⇒ (X , g(k)) ∈ Q (7)

Intuitively, the class para-K contains all problems that are in K after a pre-computation involving the parameter. Put
differently, a problem is in para-K if it can be solved by two algorithms P and A, where P is arbitrary and A has resources
that are constrained by K. The pre-computation that is performed by P involves only the paramater, which then transforms k
into a string g(k). Then, the second algorithm A solves the problems given g(k) from the pre-computation and the original
input x, with resources that are constrained by the complexity class K. We define a problem as para-K-Hard if there exists
an FPT-reduction from any problem in para-K to it. Alternatively, a problem is para-K-Hard if it is K-Hard even when k is
constant. (Flum & Grohe, 2003; de Haan, 2016). It is widely believed that the following relations hold (Downey & Fellows,
2012; Flum & Grohe, 2004):

XP ⊊ para-NP, XNP ⊊ para-ΣP
2 (8)

D. Additional Query Formalizations
Here, we define the two remaining queries referenced throughout the paper: the Check-Sufficient-Reason (CSR) and Count
Completions (CC) queries, which have also been analyzed in previous works (Barceló et al., 2020; Bassan et al., 2024). We
will then provide further details on the computational complexity analysis of computing Shapley values, as discussed in the
paper.

The CSR query answers whether a specific subset S is a sufficient reason. More formally:

Check Sufficient Reason (CSR):
Input: A model f , an instance x, and a subset S.
Output: Yes, if S is a sufficient reason of ⟨f, x⟩, and No otherwise.

For the CC query we consider a relaxed version of the CSR query which instead of validating whether a specific subset is
sufficient or not, asks for the relative portion of assignments maintaining a given prediction, given that the other features are
independently and uniformly distributed. We start by defining the completion count of a given subset:

c(S, f, x) :=
|{z ∈ {0, 1}|S|; f(xS ; zS̄) = f(x)}|

|{z ∈ {0, 1}|S||
(9)

Now, the CC query is defined as follows:

CC (Count Completions):
Input: Model f , input x, and subset of features S.
Output: The completion count c(S, f, x).

We provide here a more expanded formalization of the shapley-value that is incorporated in the paper. The shapley value
attribution is:

ϕi(f, x) :=
∑

S⊆[n]\{i}

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S)) (10)

where v(S) is the value function, and we use the common conditional expectation value function v(S) := Ez∼Dp [f(z)|zS =
xS ] (Sundararajan & Najmi, 2020; Lundberg & Lee, 2017). We follow common conventions in frameworks that assessed
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the computational complexity of computing exact calculations of Shapley values (Arenas et al., 2023; Van den Broeck
et al., 2022), as well as practical frameworks that compute Shapley values, such as the kernelSHAP method in the SHAP
libary (Lundberg & Lee, 2017), and assume that each input feature is independent of all other features, or in other words,
every feature i ∈ [n] is assigned some probability value [0, 1], i.e., p : [n]→ [0, 1]. These are called product distributions in
the work of (Arenas et al., 2023) or fully factorized in the work of (Van den Broeck et al., 2022). We then formally define
our distributions Dp(x) as:

Dp(x) :=
( ∏
i∈[n];xi=1

p(i)
)
·
( ∏
i∈[n],xi=0

(1− p(i))
)

(11)

Clearly the uniform distribution is a special case of Dp, obtained by setting p(i) := 1
2 for every i ∈ [n].

E. Framework Extensions
Input and Output Domains. To make our proofs cleaner and easier to understand, we followed common conventions (Bar-
celó et al., 2020; Arenas et al., 2022; Wäldchen et al., 2021; Arenas et al., 2021a; Bassan et al., 2024) and presented them
using boolean input and output values. It should be emphasized that our analysis is not confined to binary input feature
domains but is also applicable to features with k possible discrete values, where k is any integer. Furthermore, we can
modify our method to include inputs incorporating continuous input domains. We will next provide a short overview of the
various contexts in which this extension is applicable.

Regarding MLP explainability queries, earlier research indicates that the complexity of a satisfiability query on an MLP
extends to scenarios involving continuous inputs. Specifically, the work of (Katz et al., 2017) and (Sälzer & Lange, 2021)
proves that verifying an arbitrary satisfiability query on an MLP with ReLU activations, over a continuous input domain,
remains NP-complete. The CSR query mentioned in this work, when S := ∅ is akin to negating a satisfiability query,
and this implies that the CSR query in MLPs remains coNP complete for the continuous case as well. We recall that the
complexity of the MSR query for MLPs is ΣP

2 -Complete (Barceló et al., 2020). This complexity arises from the use of a
coNP oracle, which determines whether a subset of features is sufficient, essentially addressing the CSR query. Given that
CSR can also be adapted to handle continuous outputs, the logic applied to CSR can similarly be applied to demonstrate that
the MSR query can be extended to continuous domains.

For Perceptrons, the completeness proofs remain valid in a continuous domain for the explainability queries. The continuity
of inputs does not alter the membership proofs, for the same reasons that hold for MLPs. For hardness proofs, notice that
all reductions that were derived from the subset sum (SSP) problem (or generalized subset sum (GSSP) problem), can be
adjusted to substitute any call to max{zi, zj} in our original proof with max([zi, zj ]).

Finally, the proofs that apply to tree classifiers (or ensemble tree classifiers) for queries are equally valid for continuous
inputs. This extension to continuous inputs was demonstrated by previous works (see for instance, (Huang et al., 2021)).
This logic implies also to the complexity of ensembles consisting of the aggregation of a few decision trees.

Regression and Probabilistic Classification. Another avenue for extending our framework could involve redefining
the explanation forms we have proposed to be more flexible, allowing them to be applied to different contexts such as
probabilistic classification or regression.

Potential relaxations of our definitions might include integrating probabilistic concepts of sufficiency (Wäldchen et al.,
2021; Izza et al., 2021; Arenas et al., 2022; Wang et al., 2021a), applying them within bounded ϵ-ball domains (Wu et al.,
2024b; Izza et al., 2024; La Malfa et al., 2021), or focusing on meaningful distributions (Yu et al., 2023; Gorji & Rubin,
2022). Additionally, our definitions could be expanded beyond binary classification to address regression or probabilistic
classification scenarios. For instance, in the context of a regression model f : F→ R, a sufficient reason might be defined
as a subset S ⊆ {1, . . . , n} of input features such that:

∀z ∈ F ||f(xS ; zS̄)− f(x)||p ≤ δ (12)

for some 0 ≤ δ ≤ 1 and an appropriate ℓp-norm. Other notations explored in our work, such as contrastive explanations,
can also be adapted within this framework. It is important to note, however, that some complexity results related to
Shapley values may differ when transitioning from classification to regression. For example, while computing Shapley
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values for linear regression models is computationally feasible, the same task may become intractable when applied to
classification (Van den Broeck et al., 2022).

Homogeneous and Heterogeneous Ensembles. The complexity analysis primarily focuses on homogeneous ensembles
(ensembles containing base models of the same type). However, most of our results extend to heterogeneous ensembles as
well. Clearly, all hardness results for homogeneous ensembles also apply to heterogeneous ensembles and will always align
with the ”hardest” complexity class among the associated models. For example, consider an ensemble composed of both
linear models and decision trees. Suppose that for some explainability query Q, interpreting an ensemble of linear models is
K1-Complete for a complexity class K1, and interpreting an ensemble of decision trees is K2-Complete for a complexity
class K2. If we assume, without loss of generality, that K1 ⊊ K2, then a heterogeneous ensemble consisting of both linear
models and decision trees will be K2-Hard. This holds for both our non-parameterized results (Section F) and parameterized
results (Section 5). For instance, according to Proposition 4.2, for an ensemble comprising decision trees and Perceptrons,
computing the MSR query would be ΣP

2 -Hard. Furthermore, based on Proposition 5.3 and Proposition 5.2, obtaining the
MCR query for a heterogeneous ensemble containing both Perceptrons and decision trees is para-NP-Hard (though when
the ensemble consists only of decision trees, this query is in coW[1]).

F. Proof of Proposition 4.2
Proposition F.1. Ensembles of decision trees and ensembles of Perceptrons are (i) coNP-Complete with respect to CSR,
(ii) NP-Complete with respect to MCR, (iii) ΣP

2 -Complete with respect to MSR, (iv) #P -Complete with respect to CC, and
(v) #P -Hard with respect to SHAP.

Proof. We will, in fact, prove this claim for a broader class of models, which we define as poly-subset-constructible
models (and for the MCR query we will require an additional constraint). We will then demonstrate that both decision trees
and Perceptrons fall into this category. Intuitively, poly-subset-constructable models are those for which, given a partial
assignment over a subset xS , we can polynomially construct a function that returns 1 if and only if the features in S are
assigned the values in x. More formally:
Definition F.2. We say that a class of models C is poly-subset constructable iff given an assignment x ∈ F, and a subset
S ⊆ {1, . . . , n}, it is possible to construct a model f ∈ C, in polynomial time, for which for all y ∈ F it holds that:

f(y) =

{
1 if yS = xS

0 otherwise
(13)

We will start by proving that each one of the models analyzed within our framework are poly-subset constructable:
Lemma F.3. Perceptrons, decision trees, and MLPs are all poly-subset constructable.

Proof. We will begin with decision trees. Given an assignment x and a subset S, we can simply construct a decision tree
with a single accepting path α that corresponds to the partial assignment of the features in S with their respective values
from x. It clearly follows that ∀z ∈ F, f(xS ; zS̄) = 1. Additionally, for any y ∈ F that does not match the assignments of x
on S, we have that f(y) = 0.

For Perceptrons, given some input x ∈ F and a subset S, we construct a perceptron with n input features. The single hidden
layer h1 is constructed as follows:

h1
i :=


1 if xi = 1 ∧ i ∈ S

−1 if xi = 0 ∧ i ∈ S

0 if i ̸∈ S

(14)

We additionally define the single bias term as follows:

b1 := −[
∑

1≤i≤n

(h1
i · xi)] +

1

2
(15)

It clearly satisfies that:
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∑
1≤i≤n

(h1
i · xi) = |{i ∈ S ∧ xi = 1}| (16)

Moreover, it holds that:

∑
i∈S∧xi=1

zi · h1
i +

∑
i∈S̄∧xi=0

zi · h1
i =

∑
i∈S∧xi=1

zi −
∑

i∈S̄∧xi=0

zi (17)

Now assume some assignment (xS ; zS̄) for any z ∈ F. It satisfies that:

f(xS ; zS̄) = step(
∑

i∈S∧xi=1

(xS ; zS̄)i −
∑

i∈S̄∧xi=0

(xS ; zS̄)i − [
∑

1≤i≤n

(h1
i · xi)] +

1

2
) =

step(|{i ∈ S ∧ xi = 1}| −
∑

i∈S∧xi=1

zi · h1
i +

1

2
) = step(

1

2
) = 1

(18)

Now assume some assignment y ∈ F for which S does not match the values over x. It holds that:

f(y) = step(
∑

i∈S∧xi=1

yi −
∑

i∈S̄∧xi=0

yi − [
∑

1≤i≤n

(h1
i · xi)] +

1

2
) =

step(|{i ∈ S ∧ xi = 1 ∧ yi = 1}| − |{i ∈ S ∧ xi = 0 ∧ yi = 1}| −
∑

1≤i≤n

(h1
i · xi) +

1

2
) = 0

(19)

Hence concluding the construction.

The construction for Perceptrons clearly holds for MLPs as well.

Lemma F.4. Let ϕ be a DNF ϕ := t1 ∨ . . . ∨ tn formula, and let C be a poly-subset constructable class of functions. Then,
it is possible to construct, in polynomial time, a hard voting ensemble f consisting of 2n− 1 base-models fi ∈ C.

Proof. We follow a similar reduction to the one proposed in previous work, which demonstrated that obtaining a prime
implicant on a random forest is DP -Complete (Izza & Marques-Silva, 2021). The key distinction here is that we need to
show that our result holds for any poly-subset constructable class.

Let ϕ := t1 ∨ . . . ∨ tn be a DNF formula. First, we construct n models ⟨f1, . . . , fn⟩, where each model fi corresponds
to its respective clause ti. This construction can be completed in polynomial time, given that we assume C is poly-subset
constructable. Each clause ti corresponds to a partial assignment of values based on the literals that appear in ti. For
example, if ti := xi ∧ xj ∧ xk, then ti represents a partial assignment of the features S := {i, j, k} with the corresponding
assignment of 101.

We can now leverage the fact that C is poly-subset constructable to build a model fi corresponding to each ti such that
for all i ∈ {1, . . . , n}, fi(x) = ti(x). To complete the ensemble f , we add n− 1 models that always return True, denoted
as f t

1, . . . , f
t
n−1. Our final ensemble is f := ⟨fi, . . . , fn, f t

1, . . . , f
t
n−1⟩. If ϕ is true, then at least one clause ti is satisfied,

meaning that at least n > 2n−1
2 models in f return True, and therefore f is True. If ϕ is false, all models f1, . . . , fn return

False, which means that at least n > 2n−1
2 models return False, and thus f is false. This concludes the construction.

Lemma F.5. Let C be some poly-subset constructable class. Then the MSR query for a k ensemble of models from C is
ΣP

2 -Complete.

Proof. Membership is evident since we can guess an assignment of features S of size k, and then use a coNP oracle to
verify that S is indeed sufficient. In other words: ∀z ∈ F, f(xS ; zS̄) = f(x). Next, we will prove ΣP

2 -Hardness. We
begin by briefly discussing a proof proposed by (Audemard et al., 2022b), highlighting a technical gap in this proof, which
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also appears in a different proof from (Huang et al., 2021). Finally, we will present an alternative proof that resolves this
technical issue.

A techincal gap in previous reductions. We begin by referring to a previous reduction proposed by (Audemard et al.,
2022b) (Proposition 5), which demonstrates that the MSR query for random-forest classifiers is ΣP

2 -Hard. This is essentially
the same objective as our proof, though in our case, we extend the result to a more general class of classifiers (those that
are poly-subset constructible) rather than just decision trees. The proof relies on a reduction from the problem of finding
minimal unsatisfiable sets (MUSs) of size k, a problem frequently discussed in this context (Ignatiev et al., 2019b). We
will first point out an existing gap in this proof, which appears to be similar to gaps in other proofs suggested in previous
works ((Huang et al., 2021), Proposition 7). Afterward, we will present how this gap can be addressed, and demonstrate that
the aforementioned problem is indeed ΣP

2 -Hard. To the best of our knowledge, we are the first to propose a solution to
resolve this gap.

The approach behind the reductions in (Audemard et al., 2022b; Huang et al., 2021) begins with a given CNF ϕ :=
c1 ∧ . . . ∧ cm and an integer k. For each clause, the reductions define ti := ci ∨ si, introducing a new variable si (referred
to in (Huang et al., 2021) as the selector variable, and denoted in (Audemard et al., 2022b) by yi). Then, they define
ϕ′ := t1 ∧ t2 ∧ . . . ∧ tm, which is still a valid CNF. Negating ϕ′ produces a DNF equivalent to ¬ϕ′. The work in (Huang
et al., 2021) halts the reduction at this point, as their focus is on proving hardness for DNF classifiers. However,(Audemard
et al., 2022b) proceeds further by reducing the DNF classifier to an ensemble of decision trees (via a procedure similar to the
one provided in LemmaF.4, which reduces a DNF to a more general ensemble of poly-subset constructable functions). Next,
both reductions assume x to be a vector containing only “1”s. The core argument in both reductions is that any selection of
k clauses {c′1, . . . , c′k} from c1, . . . , cm corresponds to selecting k features {s′1, . . . , s′k} from s1, . . . , sm. Consequently,
they claim that a minimal unsatisfiable set in ϕ of size k corresponds to a sufficient reason of size k involving the variables
s1, . . . , sm in f .

However, we identify a technical gap in these reductions. In the DNF proof from (Huang et al., 2021) and the decision tree
ensemble proof from (Audemard et al., 2022b), the features that can be included in a sufficient reason may include not
only the selector variables s1, s2, . . . , sm (or equivalently y1, y2, . . . , ym in (Audemard et al., 2022b)), but also the original
variables x1, x2, . . . , xn from the CNF ϕ. Consequently, a sufficient subset may be chosen that includes both selector and
original variables, which does not guarantee equivalence between the two problems.

An alternative approach that avoids the technical gap. Instead of reducing minimal unsatisfiable sets to DNFs and then
transforming them further, we will take a different approach. We will reduce from the ΣP

2 -Complete Shortest Implicant
Core problem (Umans, 2001) for DNFs, a problem that is related but not entirely equivalent to finding cardinally minimal
unsatisfiable sets.

It is already known that computing the MSR query over MLPs is ΣP
2 -Hard (Barceló et al., 2020), and this complexity

result can be derived from the Shortest-Implicant-Core problem, not through DNFs, but rather through boolean circuits.
Specifically for MLPs, this reduction leverages the fact that any boolean circuit can be reduced to an MLP, making
the reduction more adaptable. For ensembles, however, a more complicated approach is needed (which will enable its
incorporation to DNFs). We begin by introducing the Shortest Implicant Core problem, first defining an implicant, followed
by the formal definition of the Shortest-Implicant-Core problem:

Definition F.6. Consider ϕ as a boolean formula over the literals {x1, . . . , xn}. An implicant C := x′
1x

′
2, . . . x

′
l of ϕ is

defined as a partial assignment over ϕ’s literals (for all 1 ≤ i ≤ l, x′
i is equal to either xj or xj and each x′

i contains an
instance of a different literal), ensuring that any completion of this assignment results in ϕ evaluating to true.

For example for the DNF furmula: ϕ := x1x2x3 ∨ x1x2x3, we have that x1x2 is an implicant of ϕ, since any completion of
x1x2 evaluates ϕ to True. We now define the Shortest-Implicant-Core problem as follows:

Shortest Implicant Core:
Input: A DNF Formula ϕ := t1 ∨ . . . ∨ tn, and an integer k.
Output: Yes, if there exists an implicant C ⊆ tn of ϕ of size k, and No otherwise.

It is firstly important to mention that the Shortest-Implicant-Core problem is generally more suitable than the Shortest-
Implicant problem for a reduction from the MSR query since the core tn is important for representing the specific local
assignment x ∈ F for which the sufficient reason is provided. Additionally, since we are working with DNFs and not general
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boolean circuits, it is known that the Shortest-Implicant problem for DNFs is GC-Complete (Umans, 2001), which is a class
that is strictly less complex than ΣP

2 .

We will start by briefly presenting the proof presented by (Barceló et al., 2020) for reducing the Shortest Implicant Core
problem to the problem of solving the MSR query for MLPs. We will then discuss the desired modifications needed in order
to produce this problem for ensembles containing poly-subset constructable functions instead.

For example, let us assume we have the following DNF formula:

ϕ := x1x5 ∨ x2x6 ∨ x3x6 ∨ x1x2x4 ∨ x1x3x5 (20)

A straightforward approach to reduce Shortest Implicant Core to MSR is to construct an MLP f that is equivalent to ϕ,
which is feasible since any Boolean circuit can be reduced to an MLP (Barceló et al., 2020). For the input x, we can create
an input where the features corresponding to tn (in this case, features 1, 3, and 5 are in C) are set to 1, while the remaining
features can be assigned other values.

There is an issue with this construction. The problem is that the sufficient reason in the constructed MLP may include
features that are not part of tn. Specifically, if we set k := 2, we observe that no implicant of size 2 exists for ϕ, yet setting
features 3 and 6 to 1 determines the prediction of f(x), indicating that a sufficient reason of size 2 does exist. To address
this issue, (Barceló et al., 2020) suggests constructing a different formula as follows:

ϕ′ :=

3∧
i=1

(
x1x5 ∨ xi

2x
i
6 ∨ x3x

i
6 ∨ x1xi

2x
i
4 ∨ x1x3x5

)
(21)

We can then once again transform this formula into an equivalent MLP f , which is possible since, as mentioned before, any
Boolean circuit can be transformed into an MLP. More generally, this construction is formalized as follows. Let Xc denote
the set of variables that are not mentioned in tn. Then, ϕ′ will be defined as:

ϕ(i) := ϕ[xj → xi
j , for all xj ∈ Xc]

ϕ′ :=

k+1∧
i=1

ϕ(i)
(22)

However, in our case, the following construction does not apply directly. This is because, as proven in Lemma F.4, any DNF
can be transformed into an equivalent ensemble of poly-subset constructable functions. However, this does not necessarily
imply that we can reduce any Boolean circuit to such models, and since ϕ′ is no longer a DNF, we cannot apply the same
reduction as in (Barceló et al., 2020).

Instead, we will address this issue differently. Starting with the DNF ϕ, we will create a new DNF, ϕ′, which includes only
the literals from tn. We will subsequently demonstrate that any implicant C ⊆ tn for ϕ also serves as an implicant for ϕ′.
To facilitate this construction within polynomial time, we rely on the fact that any term ti in ϕ, aside from tn, has at most a
constant size. We will thus formalize our problem as follows:

Shortest Implicant Core (Constant DNF):
Input: An integer k, a constant integer d = O(1), and a DNF Formula ϕ := t1 ∨ . . . ∨ tn, where for any 1 ≤ i ≤ n− 1, ti
contains less than d literals.
Output: Yes, if there exists an implicant C ⊆ tn of ϕ of size k, and No otherwise.

Claim 1. Shortest Implicant Core (Constant DNF) is ΣP
2 -Hard.

Proof. We note that this proof directly follows from the hardness proof of the ΣP
2 -hardness of the Shortest-Implicant

problem (Umans, 2001). The hardness is established using a reduction from QSAT2, where each term in ϕ is constructed
from a 3-DNF formula conjoined to another constructed 3-DNF. This setup results in a DNF where each term in ϕ is of
constant size. Consequently, it follows that the Shortest Implicant Core, where each term in {t1, . . . , tn−1} is of constant
size, is also ΣP

2 -hard to decide.
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We will first demonstrate how, from a DNF ϕ := t1 ∨ . . . ∨ tn where the size of any {t1, . . . tn−1} is bounded by some d,
we can construct another DNF ϕ′ in polynomial time and size, where ϕ′ exclusively includes literals from tn. This approach
allows us to later use tn directly as our desired x ∈ F in the reduction. We will also demonstrate that any implicant C ⊆ tn
for ϕ equally serves as an implicant C ⊆ tn for ϕ′.

The construction. The idea is that if a term ti in ϕ includes literals not present in tn, we can “eliminate” these non-tn
elements by iterating over all possible assignments that cover the literals not included in tn (and this number is polynomial,
as each term in ϕ is of constant size). Formally, let there be a DNF ϕ := t1 ∨ t2 ∨ . . . tn. For each ti where 1 ≤ i ≤ n− 1,
let us denote ri as the subset of literals from ti which do not participate in tn. First, we define ϕ′ to be the disjunction of any
ti for which 1 ≤ i ≤ n− 1 and ri is empty (in other words the “part” of the DNF that only contains assignments of literals
that appear in tn).

Now, for each ti, if ri is not empty, we consider every subset S ⊆ {t1, . . . , tn−1} where the size of S is j ≤ 2|ri|.
We use {xi

1, x
i
2, . . . , x

i
l} to represent the literals participating in ri. By iterating through S, we can verify whether any

potential assignment for {xi
1, x

i
2, . . . , x

i
l} is encompassed by S ∪ ti. Consider, for example, ri := x1x7. The literals

involved are {x1, x7}. Assume S := [x1x7x8], [x1x8x9], [x1x7]. Here, every potential assignment to x1x7 (which includes
[x1x7], [x̄1x7], [x1, x̄7], [x̄1x̄7]) is encompassed by S ∪ ti. Another example of a subset S such that S ∪ ti covers all
assignments is: S := {[x1x5], [x1x7x5]}. However, the subset S := [x1x7], [x1x7], [x1x7] fails to enable S ∪ ti to cover all
assignments since it misses the assignment x1x7. It is worth noting that validating whether S covers all literal assignments
can be done in linear time with respect to |S|, as each ti ∈ S accounts for covered assignments, allowing us to save each
covered assignment and, after iterating through the entire S, check whether all assignments were covered.

For each ti, we initatie a set Si. For each S that we iterate on concerning ti, if we have that S ∪ ti covers all assignments of
literals of ri we will add

∧
tl∈S rl to Si. Now, we are in a position to define our refined DNF formula:

ϕ′′ := ϕ′ ∨ [
∨

1≤i≤n−1

[
∨

tl∈Si

tl ] ] ∨ tn (23)

We first note that the construction of ϕ′′ is polynomial. For each ti we iterate over all subsets of size 2|ri| or less. Overall
the number of subsets we iterate on is bounded by:

∑
1≤i≤n−1

( ∑
1≤j≤2|ri|

(
n

j

))
≤

∑
1≤i≤n−1

( ∑
1≤j≤2|ri|

nj
)
≤

∑
1≤i≤n−1

(
2|ri| · n2|ri|

)
≤

∑
1≤i≤n−1

(
2d · n2d

)
≤ n ·

(
2d · n2d

) (24)

and since d is constant, the derived term is polynomial in n. We have that both the runtime of constructing ϕ′′ as well as the
size of ϕ′′ are polynomial in n. We now will prove the following lemma regarding the construction:

Claim 2. Any C ⊆ tn is an implicant for ϕ if and only if it is an implicant for ϕ′′.

Proof. If C ⊆ tn is an implicant, this indicates the existence of a subset S ⊆ {t1, . . . , tn} such that the partial assignment C
ensures any completion of C within

∨
tl∈S tl evaluates to true (thereby guaranteeing that any completion of C within ϕ

also evaluates to true). Initially, we assume that each tl ∈ S incorporates literals from tn. This leads to the identification
of this subset as a subset of terms in ϕ′, and consequently in ϕ′′. Thus, we identify a subset S′ ⊆ {t′1, . . . , t′m}, where
{t′1, . . . , t′m} represents the terms of ϕ′′, satisfying

∨
tl∈S tl =

∨
tl∈S′ tl. Therefore, any extension of C in

∨
tl∈S tl that

holds true, ensures that any extension of C in
∨

tl∈S′ tl is true (and by extension, any completion of C in ϕ′′). This leads us
to conclude that C is also an implicant of ϕ′′.

Revisiting our earlier notation, let ri represent the set of literals from ti that are absent in tn. For any tl ∈ S where
rl is non-empty, it is required that all assignments to the literals of rl are covered by S (failing which, there will be an
assignment making

∨
tl∈S tl untrue). Essentially, S consists of each ti where ri is non-empty, including terms that cover

all assignments for ri, and potentially terms where ri is empty (which would then be included in ϕ′). We observe that any
assignment covering all assignments for ri can be at most of size 2|ri|. This assignment will be generated by our approach
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and incorporated within
∨

ti∈S ti and subsequently in ϕ′′. Consequently, we identify a subset S′ ⊆ {t′1, . . . , t′m}, where
{t′1, . . . , t′m} are the terms of ϕ′′, such that

∨
tl∈S tl =

∨
tl∈S′ tl. Thus, any completion of C over

∨
tl∈S tl that proves true,

equally confirms that any completion of C over
∨

tl∈S′ tl is true (and thus any completion of C over ϕ′′ is true). Ultimately,
this demonstrates that C is also a prime implicant of ϕ′′.

For the second direction, let us assume that C is an implicant for ϕ′′. Consequently, there is a subset S ⊆ {t′1, . . . , t′m}
of terms from ϕ′′, denoted by {t′1, . . . , t′m}, where any completion of C over

∨
tl∈S′ tl invariably results in true (thus

guaranteeing any completion of C over ϕ′′ is true). If S is entirely within ϕ′, it follows that S is also part of ϕ, and therefore,
there exists a corresponding set S′ ⊆ {t1, . . . , tn} in which any completion of C over

∨
tl∈S tl is true, as is any completion

of C over ϕ. Therefore, C is also an implicant of ϕ.

Now, if S includes terms that are not from ϕ′, these must be assignments in the form of
∧

tl∈S′′ rl, where S′′ is a subset
of {t1, . . . , tn} and covers all potential assignments over the literals of ri for some ti ∈ {t1, . . . tn}. Consequently, we
can select the terms from each S′′, as well as those from ϕ′, to form a corresponding subset S′ ⊆ {t1, . . . , tn}. It is
important to note that all terms in S′ that lack any literals from tn are part of ϕ′ and thus appear equivalently in both S
and S′. Additionally, for any term tl ⊆ S′ where rl ̸= ∅, all assignments over the literals in rl are covered by both S and
S′. Therefore, we conclude that

∨
tl∈S tl =

∨
tl∈S′ tl; thus, if any completion of C confirms that

∨
tl∈S tl is true, it also

confirms that
∨

tl∈S′ tl is true (and thus ϕ). Ultimately, this shows that C is also a prime implicant of ϕ, completing the
proof of the claim.

This claim proves that a prime implicant C ⊆ tn of size k exists for ϕ if and only if a prime implicant C ⊆ tn of size k
exists for ϕ′′, thus concluding that the Shortest Implicant Core problem for constant DNF is ΣP

2 -Hard.

Concluding the reduction. We now finalize our proof for reducing the Shortest-Implicant-Core (Constant DNF) to the
MSR for an ensemble of poly-subset constructable functions. Given a tuple ⟨ϕ,C, k, d⟩, we can construct ϕ′ from ϕ in
polynomial time, a task feasible particularly because d is constant. Utilizing Lemma F.4, we convert ϕ′ into an equivalent
ensemble f of poly-subset constructable functions. Notably, the literals in ϕ′ are exclusively those from tn. Therefore,
we use tn to construct our input vector, where any positive assignment in C is represented as a “1” in x and any negative
assignment as a “0”. For example, if tn := x1x2x3, we would set x := (101).

Now, since the input x includes only features present in f , we can assert that an implicant in tn of size k for ϕ′ exists if and
only if a sufficient reason of size k exists for ⟨f, x⟩. Given that any implicant C in tn for ϕ′ also serves as an implicant C in
ϕ, it follows that an implicant of size k for ϕ exists if and only if there is a sufficient reason of size k for ⟨f, x⟩, thereby
completing our reduction.

In contrast to the MSR query which was non-trivial, for the CSR, MCR, CC, and SHAP queries we can incorporate similar
reductions to other works (Izza et al., 2021) which show hardness for DNFs, since we know that an ensemble which is
encompassed by models from a class that is poly-subset constructable, can be reduced to DNFs (Lemma F.4).
Lemma F.7. Let C be some poly-subset constructable class of functions. Then the CSR query for a k ensemble of models
from C is coNP-Complete.

Proof. While these results can be derived from the notable works of (Audemard et al., 2022b) and (Ordyniak et al., 2024)
in the specific setting of majority-voting decision tree ensembles, we provide a direct proof here for the more general
class of poly-subset constructable models, covering both majority and weighted voting schemes. Membership in coNP
is straightforward since we can guess an assignment z ∈ F and verify whether f(xS ; zS̄) ̸= f(x) to determine if S is
not a sufficient reason. For the hardness result, we can apply the same proof provided by (Barceló et al., 2020), which
involves a reduction from the tautology (TAUT) problem for DNFs. In their work, DNFs are reduced to equivalent MLPs to
establish coNP-hardness for MLPs. Similarly, in our case, we can utilize the exact same reduction since, in Lemma F.4, we
demonstrated that any DNF can be reduced to an ensemble of models from C, where C is poly-subset constructable. This
leads to the conclusion that the problem is coNP-complete.

In the specific case of MCR, we will establish the complexity of the problem for a set of models C that remains poly-subset
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constructable, but also adheres to an additional property, which we define as being “closed under symmetric construction”.
This property is formalized as follows:

Definition F.8. Let C be a class of functions. Then C is closed under symmetric construction iff for any f ∈ C, then ¬f can
be constructed in polynomial time.

We will prove that ensembles of decision trees, Perceptrons, and MLPs all satisfy the aforementioned property:

Lemma F.9. The class of ensembles of decision trees, the class of ensembles of MLPs, and the class of ensembles of
Perceptrons are all closed under symmetric construction. In other words, suppose we are given f — an ensemble of k
models f1, . . . , fk that are all either Perceptrons, decision trees, or MLPs; then, f ′ := ¬f can be constructed in polynomial
time.

Proof. We first note that negating individual decision trees, Perceptrons, and MLPs can be done in polynomial time, as
demonstrated by (Amir et al., 2024). Applying this transformation to any decision tree fi within the ensemble results in
negating the entire model f . The only asymmetric element in this negation arises in majority voting ensembles—where a
“1” classification occurs iff ⌈k2 ⌉ of the models are classified as ”1”—and the negation effectively changes the ensemble to
classify “1” iff ⌊k2 ⌋ models are classified as “1”. This asymmetry can be addressed by constructing an additional model,
when needed, that always classifies “1”. This can be done using Perceptrons, decision trees, or MLPs. Similarly, in weighted
voting ensembles, asymmetry may arise due to the distinction between strict and non-strict inequalities. In other words,
while f classifies as “1” iff

∑
1≤i≤k ϕi ≥ 0, in the negated model f ′, it will classify as “1” iff

∑
1≤i≤k ϕi > 0. This can

again be resolved by adding an extra model fi that always classifies “1” with a very small weight, thereby addressing this
issue. Given that any weight in fi, ϕi, is a rational number pi

qi
, the weight of the newly constructed model can be set to

q1 · q2 . . . · qk. This additional model will correct the asymmetry in cases where the weighted sum of all models is exactly
zero, allowing the ensemble to be negated.

We are now prepared to prove the following claim, which will establish that solving MCR for ensembles of decision trees,
Perceptrons, and MLPs is NP-complete. This result follows directly from Lemma F.9 and Lemma F.3.

Lemma F.10. Let C be some poly-subset constructable class of functions, which is also closed under symmetric construction.
Then the MCR query for a k ensemble of models from C is NP-Complete.

Proof. Similarly to CSR, although these results can be derived from the notable works of (Audemard et al., 2022b)
and (Ordyniak et al., 2024) in the specific case of majority-voting decision tree ensembles, we present a direct proof for
the more general class of poly-subset constructable models, encompassing both majority and weighted voting schemes.
Membership holds because we can guess a subset S and check whether |S| ≤ d and f(xS ; zS̄) ̸= f(x), which confirms the
existence of a contrastive reason of size d.

For hardness, we can use a similar proof to (Barceló et al., 2020), which demonstrates that the MCR problem is NP-Hard for
MLPs. They reduce the problem from the Vertex-Cover problem, which is NP-Complete. To achieve this, given a graph
G := ⟨V,E⟩, they construct an equivalent CNF formula:

∧
(u,v)∈E

(xu ∨ xv) (25)

and encode the CNF formula as an equivalent MLP. In Lemma F.4, we proved that any DNF can be reduced to an ensemble
with poly-subset constructable base-model functions. However, to extend the proof of (Barceló et al., 2020) to apply to our
ensembles, we must show that any CNF can also be transformed into an ensemble constructed from these models. This is
possible because the family of models C is not only poly-subset constructable but also closed under symmetric construction.
We begin by proving the following relation:

Claim 3. Let ϕ be a CNF ϕ := t1 ∧ . . . ∧ tn formula, and let C be a poly-subset constructable class of functions. Then, it is
possible to construct, in polynomial time, a hard voting ensemble f consisting of 2n− 1 base-models fi ∈ C where C is
both a poly-subset constructable class, and is closed under symmetric construction.

Proof. We begin by negating ϕ in polynomial time and derive a DNF formula equivalent to ¬ϕ. From Lemma F.4, we
know that any DNF can be transformed in polynomial time into an ensemble of models f ∈ C (since C is poly-subset
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constructable). Given that C is also closed under symmetric construction, we can negate f and construct ¬f in polynomial
time. Thus, we obtain an ensemble f ′ := ¬f equivalent to ϕ, completing our proof.

We can now conclude our proof, as we know that ensembles of decision trees, Perceptrons, and MLPs are all poly-subset
constructable and closed under symmetric construction. Therefore, any CNF can be reduced to an equivalent ensemble
composed of models from this class, allowing us to leverage the vertex-cover problem to establish NP-Hardness.

Lemma F.11. Let C be some poly-subset constructable class of functions. Then the CC query for a k ensemble of models
from C is #P -Complete.

Proof. Membership is straightforward by definition. For the hardness result, we can reduce from the Model Counting
problem for DNFs, which is known to be #P -Hard (Valiant, 1979). Given a DNF ϕ, we can construct an equivalent
ensemble of poly-subset constructable functions using Lemma F.4 and set S := ∅ for the CC query. Thus, solving CC is
equivalent to model counting, and the reduction holds.

Lemma F.12. Let C be some poly-subset constructable class of functions. Then the SHAP query for a k ensemble of models
from C is #P -Hard.

Proof. We follow the proof of (Arenas et al., 2021b), which demonstrated a connection between computing SHAP under
fully factorized distributions and the model counting problem. The following relation is established:

#f := f(x)− 2n ·
∑

i∈{1,...,n}

ϕi(f, x) (26)

where #f represents the number of positive assignments of f and ϕ denotes the Shapley value. This establishes that
computing SHAP is at least as hard as the model counting problem. Since, as shown in Lemma F.4, any DNF can
be constructed into an ensemble of poly-subset constructable functions, and model counting for DNFs is known to be
#P -Hard (Valiant, 1979), this concludes the proof, demonstrating #P -Hardness for computing SHAP.

G. Proof of Proposition 4.4
Proposition G.1. While the CC and SHAP queries can be solved in pseudo-polynomial time for Perceptrons, ensemble-
Perceptrons remain #P -Hard even if the weights and biases are given in unary.

Proof. For the CC query, we refer to the results from (Barceló et al., 2020), which demonstrated that when the weights
and biases are provided in unary, the CC query can be solved in polynomial time for perceptrons. However, according
to the findings in Proposition F.1, when the weights and biases are not given in unary, the CC query is #P -Complete for
ensembles of perceptrons.

For the SHAP query, we use a proof that was proposed by the work of (Arenas et al., 2023) which showed a connection
between the computation of shapley values for models (under some mild conditions) and the following portion:

HDp(f, x, S, k) :=
∑

S⊆[n],|S|=k

Ez∼Dp [f(z)|zS = xS ] (27)

Specifically, this relationship applies to models that are closed under conditioning, defined as follows:

Definition G.2. A model f : F → {0, 1} is closed under conditioning if given some assignment x ∈ F and some
subset S ∈ [n], we can construct in polynomial time a function f ′ : F → {0, 1} for which it holds that for all y ∈ F:
f ′(y) = f(xS ; yS̄).

29



What makes an Ensemble (Un) Interpretable?

The connection between models that are closed under conditioning and the computation of HDp
is as follows (Arenas et al.,

2023):
Lemma G.3. Let there be a model f which is closed under conditioning. Then solving the SHAP query for f and any
i ∈ [n] can be reduced, in polynomial time, to the problem of computing HDp

To apply this lemma to our scenario, we begin by proving the following claim:
Claim 4. Any perceptron f := ⟨w, b⟩ is closed under conditioning.

Proof. Given a perceptron f := ⟨w, b⟩, an assignment x ∈ F, and a subset S ∈ [n], we can construct a second perceptron
f ′ := ⟨w′, b′⟩, where w′ := w · 1S̄ . In other words, we “zero-out” all the feature values in w corresponding to the set S
and leave the features in S unchanged. Additionally, we define b′ := b+

∑
i∈S,xi=1 wi. It now holds that for any y ∈ F:

f ′(y) =
∑
i∈[n]

w′
i · yi + b′ =

∑
i∈S

w′ · yi +
∑
i∈S̄

w′ · yi + (b+
∑

i∈S,xi=1

wi) =

∑
i∈S̄

w · yi + (b+
∑

i∈S,xi=1

wi) =∑
i∈S̄

w · yi + (b+
∑

i∈S,xi=1

wi · xi +
∑

i∈S,xi=0

wi · xi) = f(xS ; yS̄)

(28)

Now, we only need to prove that when the weights and biases of a perceptron f are given in unary, HDp(S, k) can be
computed in polynomial time. This will complete our proof that the SHAP query can be solved in pseudo-polynomial time
for perceptrons. We use the notation sim(z, x) to denote the set of features S such that for all i ∈ S, it holds that zi = xi.
We begin by demonstrating the following relations:

HDp
(S, k) :=

∑
S⊆[n],|S|=k

Ez∼Dp
[f(z)|zS = xS ] =

∑
z∈F,|sim(z,x)|≥k

(
|sim(z, x)|

k

)
·
( ∏
i∈[n],zi=1

(
p(i)

) ∏
i∈[n],zi=0

(
1− p(i))

)
· f(z) =

∑
z∈F,|sim(z,x)|≥k,f(z)=1

(
|sim(z, x)|

k

)
·
( ∏
i∈[n],zi=1

(
p(i)

) ∏
i∈[n],zi=0

(
1− p(i))

)
=

j=n∑
j=k

( ∑
z∈F,|sim(z,x)|=j,f(z)=1

(
|sim(z, x)|

k

)
·
( ∏
i∈[n],zi=1

(
p(i)

) ∏
i∈[n],zi=0

(
1− p(i))

))
=

j=n∑
j=k

(
j

k

)( ∑
z∈F,|sim(z,x)|=j,f(z)=1

·
( ∏
i∈[n],zi=1

(
p(i)

) ∏
i∈[n],zi=0

(
1− p(i))

))
=

j=n∑
j=k

(
j

k

)( ∑
z∈F,|sim(z,x)|=j

·
( ∏
i∈[n],zi=1

(
p(i)

) ∏
i∈[n],zi=0

(
1− p(i))

))
· 1{f(z)=1} =

j=n∑
j=k

(
j

k

)( ∑
z∈F,|sim(z,x)|=j

·
( ∏
i∈[n],zi=1

(
p(i)

) ∏
i∈[n],zi=0

(
1− p(i))

))
· 1{

∑n
i=1 wi·zi+b≥0}

(29)

We define M := max(w) + 1. Next, we define the vector w′ as follows:

w′
i :=

{
−wi +M if xi = 1

wi +M if xi = 0
(30)

We finally define T := b+
(∑

i∈[n],xi=0 wi

)
. We now prove the following relation:
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Claim 5. Given some integer 1 ≤ j ≤ n, the following relation between w and w′ holds:∑
z∈F,|sim(z,x)|=j

1{
∑n

i=1 wi·zi+b≥0} =
∑

S⊆[n],|S|=j

1{
∑

i∈S w′
i≤T+M ·j} (31)

Proof. We start by noting that the iterating over all vectors z ∈ F for which |sim(z, x)| = j is equivalent to iterating over all
subsets S ⊆ [n], |S| = j and taking the values of the features in S to be those of x and those of S to be ¬x. In other words,
iterating over all vectors of the form (xS ;¬xS̄ for which |S| = j. From this, we can derive the following relation:

∑
z∈F,|sim(z,x)|=j

1{
∑n

i=1 wi·zi+b≥0} =
∑

S⊆[n],|S|=j

1{
∑n

i=1 wi·(xi;¬xi)+b≥0} =

∑
S⊆[n],|S|=j

1{(
∑

i∈S wi·xi)+(
∑

i∈S̄ wi·(¬xi))+b≥0}
(32)

We can continue and show that the new relation holds the following:

∑
S⊆[n],|S|=j

1{(
∑

i∈S wi·xi)+(
∑

i∈S̄ wi·(¬xi))+b≥0} =

∑
S⊆[n],|S|=j

1{(
∑

i∈S,xi=1 wi)+(
∑

i∈S̄,xi=0 wi)+b≥0}
(33)

We move to the second term and prove that the following holds:

∑
S⊆[n],|S|=j

1{
∑

i∈S w′
i≤T+M ·j} =

∑
S⊆[n],|S|=j

1{
∑

i∈S,xi=1(−wi+M)+
∑

i∈S,xi=0(wi+M)≤T+M ·j} =

∑
S⊆[n],|S|=j

1{
∑

i∈S,xi=1(−wi)+
∑

i∈S,xi=0 wi≤T} =

∑
S⊆[n],|S|=j

1{
∑

i∈S,xi=1(−wi)+
∑

i∈S,xi=0 wi≤b+(
∑

i∈[n],xi=0 wi)} =

∑
S⊆[n],|S|=j

1{
∑

i∈S,xi=1(−wi)+
∑

i∈S,xi=0 wi−
∑

i∈S,xi=0 wi−
∑

i∈S̄,xi=0 wi≤b} =

∑
S⊆[n],|S|=j

1{
∑

i∈S,xi=1 wi+
∑

i∈S̄,xi=0 wi+b≥0}

(34)

Hence proving the equivalence.

We hence can equivalently derive in that HDp
(S, k) is equivalent to:

j=n∑
j=k

(
j

k

)( ∑
|S|=j

( ∏
i∈[n],(xS ;¬xS̄)i=1

(
p(i)

) ∏
i∈[n],(xS ;¬xS̄)i=0

(
1− p(i))

))
· 1{

∑
i∈S w′

i≤T+M ·j} (35)

We now will conclude the proof by proving the following claim:

Claim 6. HDp(S, k) can be computed in polynomial time.
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Proof. We will demonstrate how HDp
(S, k) can be computed in polynomial time. This will be done using a dynamic

programming algorithm that computes a portion of this sum, utilizing the notation of DP . Specifically, for all i ∈ N, ℓ ∈ N0

such that 1 ≤ i− ℓ ≤ i ≤ n, and for all C ∈ Z, we define:

DP [i][C][i− ℓ] :=
∑

S⊆[n],|S|≤i−ℓ

( ∏
r∈[i],(xS ;¬xS̄)r=1

(
p(r)

) ∏
r∈[i],(xS ;¬xS̄)r=0

(
1− p(r)

))
if

∑
i∈S w′

i ≤ C

0 otherwise

(36)

where, for any i, ℓ ∈ N such that it does not hold that 1 ≤ ℓ ≤ i ≤ n, we define DP [i][C][i − ℓ] = 0. Given some
1 ≤ j ≤ n, if we take i := n, C := T +Mj, and i− ℓ := j (i.e., ℓ := i− j), we find that DP [n][T +Mj][j] is equal to:

∑
|S|≤j

( ∏
i∈[n],(xS ;¬xS̄)i=1

(
p(i)

) ∏
i∈[n],(xS ;¬xS̄)i=0

(
1− p(i))

)
· 1{

∑
i∈S w′

i≤T+M ·j} (37)

Thus, we ultimately obtain that:

DP [n][T +Mj][j]−DP [n][T +M(j − 1)][j − 1] =∑
|S|=j

( ∏
i∈[n],(xS ;¬xS̄)i=1

(
p(i)

) ∏
i∈[n],(xS ;¬xS̄)i=0

(
1− p(i))

)
· 1{

∑
i∈S w′

i≤T+M ·j} (38)

Therefore, assuming that DP [i][C][j] can be computed in polynomial time, we can iterate over all j ≤ k ≤ n and compute
DP [i][C][j] for each j, thereby calculating HDP

overall. To simplify the presentation, we define:

R(x, S, i) :=
( ∏
r∈[i],(xS ;¬xS̄)r=1

(
p(r)

) ∏
r∈[i],(xS ;¬xS̄)r=0

(
1− p(r)

))
(39)

Thus, we can simply express it as:

DP [i][C][i− ℓ] :=


∑

S⊆[n],|S|≤i−ℓ

R(x, S, i) if
∑

i∈S w′
i ≤ C

0 otherwise
(40)

For our final step, we will now prove the correctness of our dynamic programming algorithm:

Lemma G.4. There exists a polynomial dynamic programming algorithm that computes DP [i][C][j] for any C ∈ Z and
any 1 ≤ ℓ ≤ i ≤ n.

Proof. We present the following inductive relation:

DP [i+ 1][C][i+ 1− ℓ] ={
DP [i][C][i− ℓ] · (1− p(i)) +DP [i][C −w′

i+1][i− ℓ] · p(i) if xi = 1

DP [i][C][i− ℓ] · p(i) +DP [i][C −w′
i+1][i− ℓ] · (1− p(i)) if xi = 0

(41)

We also define that DP [i][C][j] = 0 for any i, C, j < 0 and further define that when i = 0, then DP [i][C][j] = 1. We
begin with the induction base, i.e., when i = 1. If ℓ ≥ 1, then we have DP [1][C][1− ℓ] = 0, which satisfies our conditions.
The only remaining case is when ℓ = 0. In the case that xi = 1:

DP [1][C][1− ℓ] = DP [1][C][1] = DP [0][C][0] · (1− p(1)) +DP [0][C − s1][0] · p(1) =
DP [0][C − s1][0] · p(1)

(42)
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If it also holds that s1 ≤ C, we obtain:

DP [1][C][1− ℓ] = DP [0][C − s1][0] · p(1) = p(1) = R(x, {s1}, 1) (43)

However, if s1 > C we get that:

DP [1][C][1− ℓ] = DP [0][C − s1][0] · p(1) = 0 (44)

As required. For the other scenario, we get that if xi = 0 it holds that:

DP [1][C][1− ℓ] = DP [1][C][1] = DP [0][C][0] · (p(1)) +DP [0][C − s1][0] · p(1) =
DP [0][C − s1][0] · (1− p(1))

(45)

If it additionally holds that s1 ≤ C, then we have:

DP [1][C][1− ℓ] = DP [0][C − s1][0] · (1− p(1)) = (1− p(1)) = R(x, {s1}, 1) (46)

However, if s1 > C we get that:

DP [1][C][1− ℓ] = DP [0][C − s1][0] · (1− p(1)) = 0 (47)

as required. For the inductive step, we assume correctness holds for some i ∈ N and show that:

DP [i+ 1][C][i+ 1− ℓ] :=

DP [i][C][j] · p(i) +DP [i][C −w′
i+1][j − 1] · (1− p(i)) =∑

|S|≤i−ℓ,|xS |1≤C

R(k, x, S, i) · p(i+ 1)+

∑
|S|≤i−ℓ,|xS |1≤C−w′

i+1

R(k, x, S, i) · (1− p(i+ 1)) =

∑
|S|≤i−ℓ+1,|xS |1≤C,i+1̸∈S

R(k, x, S, i) · p(i+ 1)+

∑
|S|≤i−ℓ+1,|xS |1≤C,i+1∈S

R(k, x, S, i) · (1− p(i+ 1)) =

R(k, x, S, i+ 1)

(48)

We conclude by presenting the complete algorithm described for computing HDP
(S, k) with the following pseudocode:

Algorithm 1 Computing HDP
(S, k)

Input f , x, S, k
1: T ← b+

(∑
i∈[n],xi=0 wi

)
2: HDP

← 0
3: for each k ≤ j ≤ n do
4: HDP

← HDP
+
(
j
k

)
· (DP [n][T +Mj][j]−DP [n][T +M(j − 1)][j − 1])

5: end for each
6:
7: return HDP

The following proof demonstrates that solving the SHAP query for Perceptrons can be done in polynomial time, assuming
the weights and biases are provided in unary.
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H. Proof of Proposition 4.5
Proposition H.1. There is no explainability query Q for which the class of MLPs is strictly more c-interpretable than the
class of ensemble-MLPs.

Proof. We will specifically prove this claim for a much larger set of functions that we will refer to as models that are closed
under ensemble construction:

Definition H.2. We say that a class of models C is closed under ensemble construction if given an ensemble f containing
models from C, we can construct in polynomial time a model g ∈ C for which ∀x ∈ F, f(x) = g(x).

We first note that from the definition of a model that is closed under ensemble construction, the following claim holds: Let
there be a class of models C, which is closed under ensemble construction. Let us denote CE as the class of ensemble models
that consist of base-models from class C. Then for any explainability query Q: then it holds that Q(CE) ≤P Q(C). Now, if
Q(C) belongs to a complexity class that is closed under polynomial reductions, it hence must hold that Q(CE) does not
belong to a strictly harder complexity class. We are now only left to prove the following claim:

Claim 7. Let CMLP denote the class of models that are represented by MLPs. Then CMLP is closed under ensemble
construction.

Proof. Consider a model f comprising k individual MLPs denoted as f1, . . . , fk We can devise a new MLP, f ′, by integrating
the hidden layers from each fi. Specifically, f ′’s first hidden layer is constructed by concatenating the first hidden layers
of f1, . . . , fk , and similarly for subsequent layers up to the highest number of layers present in any fi. For models with
fewer layers, we introduce “dummy” layers equipped with weights of 1 and biases of 0, effectively passing their last actual
output through unchanged. In this initial setup, the layers in f ′ corresponding to each fi are only linked to their respective
preceding layers within the same fi, thus lacking full connectivity across the different models fj such that j ̸= i. To amend
this, connectivity can be enhanced by adding inter-layer connections with weights of 1 and biases of 0, ensuring each layer
does not influence the next across the different sub-models.

Finally, we observe that the constructed f ′ outputs k distinct values corresponding to the outputs of each model f1, . . . , fk
(the output value prior to the step function). We need to introduce a new output layer to f ′ to implement a majority voting
mechanism. This is conceptualized as a weighted voting process where each model fi is assigned a specific weight ϕi.
This can be realized by adding a fully connected layer that consolidates the k outputs into a single output in the final layer
of f ′. In this layer, each output i ∈ {1, . . . , k} is assigned a weight wi := ϕi, and we set the bias of this last layer to 0.
Consequently, applying a step function over f ′ results in an output that represents a weighted majority vote of the ensemble
f . Additionally, a non-weighted majority vote can be modeled in the setting where all weights ϕ1 = ϕ2 = . . . = ϕk are
equal. We thus establish that f ′ ∈ CMLP , and that for all z ∈ F, f(z) = f ′(z) thereby confirming that CMLP is closed
under ensemble construction.

I. Proof of Proposition 5.1
Proposition I.1. An ensemble consisting of either Perceptrons, decision trees, or MLPs, parameterized by the maximal
base-model size is (i) para-coNP Complete with respect to CSR, (ii) para-NP-Complete with respect to MCR, (iii) para-
ΣP

2 -Complete with respect to MSR, and (iv) para-#P -Complete with respect to CC, (v) para-#P -Hard with respect to
SHAP.

Proof. Membership is straightforward from the definition of para-K and the completeness of all the non-paramaterized
versions to each corresponding complexity class K, as proven in Proposition F.1. For example, the non-parameterized
version of CSR for an ensemble of Perceptrons, decision trees, or MLPs is coNP-Complete. The same holds for the other
complexity classes.

Hardness. The reduction for the CSR query was provided as a direct reduction from the TAUT problem. Since TAUT is hard
when restricted to 3-DNFs as well, then hardness for an ensemble consisting of constant sized-base lines is straightforward
(for any k ≥ 3). In the case of the MCR reduction, the result already holds for any k = 2 since the reductino inherently
produces ensembles consisting of input dimensions of at most 2. For the CC query.

Finally, in the case of MSR, we note that the Shortest Implicant Core problem in its classic form presented by (Umans, 2001)
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describes general DNFs and not restricted DNFs. However, in a consequent work (Dick et al., 2009), it was proven that the
Shortest implicant core problem for DNFs with constant term size is also ΣP

2 -Hard.

J. Proof of Proposition 5.2
Proposition J.1. k-ensemble-Perceptrons are (i) para-coNP Complete with respect to CSR, (ii) para-NP-Complete with
respect to MCR, (iii) para-ΣP

2 -Complete with respect to MSR, and (iv) para-#P -Hard with respect to CC and SHAP.

Proof. All membership results are a direct result from the non-parameterized complexity results F.1, and from the reasons
described under the proof of Proposition I.1. We now will prove each hardness result seperattley.

Lemma J.2. The CSR query for a k-ensemble of Perceptrons is para-coNP Hard.

Proof. We will equivalently prove that the CSR query for an ensemble containing only 2 perceptrons is coNP Complete. We
will reduce from the Subset-sum problem (SSP), which is a classic NP-Complete problem.

SSP (Subset Sum):
Input: (z1, z2, . . . , zn) set of positive integers and a positive (target) integer T
Output: Yes, if there exists a subset S ⊆ (1, 2, . . . , n) such that

∑
i∈S zi = T , and No otherwise.

We reduce CSR for an ensemble with k = 2 of Perceptrons from SSP . Given some ⟨(z1, z2, . . . , zn), T ⟩, the reduction
constructs the two following Perceptrons f1 := ⟨w1, b1⟩ and f2 := ⟨w2, b2⟩, where w1 := (−z1,−z2, . . . ,−zn),
b1 := T − 1

2 , w2 := (z1, z2, . . . , zn), and b2 := −T − 1
2 . The reduction constructs ⟨f := (f1, f2), x := 0n, S := ∅⟩, and

0n denotes a vector of size n where all values are set to 0.

First, we notice that:

f1(x) = f1(0n) = T − 1

2
> 0 ∧

f2(x) = f2(0n) = −T −
1

2
< 0

(49)

Since f1(x) is positive and f2(x) is negative, then the ensemble f = ⟨f1, f2⟩ returns 1 for the input x (is positive), by
definition.

If ⟨(z1, z2, . . . , zn), T ⟩ ∈ SSP then there does not exist a subset of features S′ ⊆ (1, 2, . . . , n) such that
∑

i∈S′ zi = T .
Since these are integers, this implies that any subset S′ ⊆ (1, 2, . . . , n) is either equal or greater than T + 1 or equal and
smaller than T − 1. Let us mark S′ as some subset for which it holds that

∑
i∈S′ zi ≥ T +1. Let us denote x′ = (1S′ ;0S̄′).

Or in other words x′ denotes a vector where all the values in S′ are set to 1 and the rest to 0. It clearly holds that:

f1(x
′) =

∑
i∈S̄′

x′
i ·w1

i + b1 =

−
∑
i∈S′

zi + b1 ≤

−(T + 1) + T − 1

2
= −3

2
< 0

(50)

It also holds that:
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f2(x
′) =

∑
i∈S̄′

x′
i ·w2

i + b2 =

∑
i∈S′

zi + b2 ≥

(T + 1) + (−T − 1

2
) =

1

2
> 0

(51)

This implies f1(x
′) is negative and f2(x

′) is positive, and overall we get that for the ensemble f it holds that f(x′) is
positive.

Now, let us assume that
∑

i∈S′ zi ≤ T − 1. Again, let us denote x′ = (1S′ ;0S̄′). It clearly holds that:

f1(x
′) =

∑
i∈S̄′

x′
i ·w1

i + b1 =

−
∑
i∈S′

zi + b1 ≥

−(T − 1) + T − 1

2
=

1

2
> 0

(52)

It also holds that:

f2(x
′) =

∑
i∈S̄′

x′
i ·w2

i + b2 =

∑
i∈S′

zi + b2 ≤

(T − 1) + (−T − 1

2
) = −3

2
< 0

(53)

Implying, that under this scenario the opposite case occurs: f1(x′) is positive and f2(x
′) is negative, and overall we get

again that for the ensemble f it holds that f(x′) is positive.

This shows, that for any feasible value of x′, f(x′) is positive, and this implies that S = ∅ is a sufficient reason of
⟨f, x = 0n⟩.

If ⟨(z1, z2, . . . , zn), T ⟩ ̸∈ SSP , this means that there does exist a subset S′ ⊆ {1, . . . , n} for which
∑

i∈S′ zi = T . We
again denote x′ = (1S′ ;0S̄′). It holds that:

f1(x
′) =

∑
i∈S̄′

x′
i ·w1

i + b1 =

−
∑
i∈S′

zi + b1 =

−(T ) + T − 1

2
= −1

2
< 0

(54)

It also holds that:

f2(x
′) =

∑
i∈S̄′

x′
i ·w2

i + b2 =

∑
i∈S′

zi + b2 =

(T ) + (−T − 1

2
) = −1

2
< 0

(55)
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This means that both f1(x
′) and f2(x

′) are negative and hence the ensemble f(x′) is also negative. Since f(x) = f(0n) is
positive, it holds that S = ∅ is not a sufficient reason of ⟨f, x⟩, which concludes the reduction.

Lemma J.3. The MCR query for a k-ensemble of Perceptrons is para-NP Hard.

We will equivalently show that the MCR query for an ensemble of k=2 Perceptrons is NP-Complete. We use a refined
version of the SSP problem — kSSP, which is also known to be NP-Complete.

kSSP (k Subset Sum):
Input: (z1, z2, . . . , zn) set of positive integers, a positive integer k, and a positive (target) integer T .
Output: Yes, if there exists a subset S ⊆ (1, 2, . . . , n) such that |S| = k and

∑
i∈S zi = T , and No otherwise.

We reduce MCR for an ensemble with 2 Perceptrons from kSSP . Given some ⟨(z1, z2, . . . , zn), k, T ⟩, the reduction
constructs the two following Perceptrons f1 := ⟨w1, b1⟩ and f2 := ⟨w2, b2⟩, where w1 := (−z1,−z2, . . . ,−zn),
b1 := T − 1

2 , w2 := (z1, z2, . . . , zn), and b2 := −T − 1
2 . The reduction constructs ⟨f := (f1, f2), x := 0n, k⟩, and 0n

denotes a vector of size n where all values are set to 0.

First, we notice that:

f1(x) = f1(0n) = T − 1

2
> 0 ∧

f2(x) = f2(0n) = −T −
1

2
< 0

(56)

Since f1(x) is positive and f2(x) is negative, then the ensemble f = ⟨f1, f2⟩ returns 1 for the input x (is positive), by
definition.

If ⟨(z1, z2, . . . , zn), k, T ⟩ ̸∈ SSP then there does not exist a subset of features S′ ⊆ (1, 2, . . . , n) such that
∑

i∈S′ zi = T .
Since these are integers, this implies that any subset S′ ⊆ (1, 2, . . . , n) of size k is either equal or greater than T + 1 or
equal and smaller than T − 1. Let us mark S′ as some subset of size k for which it holds that

∑
i∈S′ zi ≥ T + 1. Let us

denote x′ = (1S′ ;0S̄′). Or in other words x′ denotes a vector where all the values in S′ are set to 1 and the rest to 0. It
clearly holds that:

f1(x
′) =

∑
i∈S̄′

x′
i ·w1

i + b1 =

−
∑
i∈S′

zi + b1 ≤

−(T + 1) + T − 1

2
= −3

2
< 0

(57)

It also holds that:

f2(x
′) =

∑
i∈S̄′

x′
i ·w2

i + b2 =

∑
i∈S′

zi + b2 ≥

(T + 1) + (−T − 1

2
) =

1

2
> 0

(58)

This implies f1(x
′) is negative and f2(x

′) is positive, and overall we get that for the ensemble f it holds that f(x′) is
positive.

Now, let us assume that
∑

i∈S′ zi ≤ T − 1. Again, let us denote x′ = (1S′ ;0S̄′). It clearly holds that:
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f1(x
′) =

∑
i∈S̄′

x′
i ·w1

i + b1 =

−
∑
i∈S′

zi + b1 ≥

−(T − 1) + T − 1

2
=

1

2
> 0

(59)

It also holds that:

f2(x
′) =

∑
i∈S̄′

x′
i ·w2

i + b2 =

∑
i∈S′

zi + b2 ≤

(T − 1) + (−T − 1

2
) = −3

2
< 0

(60)

Implying, that under this scenario the opposite case occurs: f1(x′) is positive and f2(x
′) is negative, and overall we get

again that for the ensemble f it holds that f(x′) is positive.

This shows that for any subset S′ of size k the value of f(x′) remains positive. Since the value of f(x) is also positive,
this implies that there is no contrastive reason S′ of size k with respect to ⟨f, x⟩. This also clearly implies that there is no
contrastive reason S′ of size smaller than k with respect to ⟨f, x⟩.

If ⟨(z1, z2, . . . , zn), T ⟩ ∈ SSP , this means that there does exist a subset S′ ⊆ {1, . . . , n} of size k for which
∑

i∈S′ zi = T .
We again denote x′ = (1S′ ;0S̄′). It holds that:

f1(x
′) =

∑
i∈S̄′

x′
i ·w1

i + b1 =

−
∑
i∈S′

zi + b1 =

−(T ) + T − 1

2
= −1

2
< 0

(61)

It also holds that:

f2(x
′) =

∑
i∈S̄′

x′
i ·w2

i + b2 =

∑
i∈S′

zi + b2 =

(T ) + (−T − 1

2
) = −1

2
< 0

(62)

This means that both f1(x
′) and f2(x

′) are negative and hence the ensemble f(x′) is also negative. Since f(x) = f(0n) is
positive, it holds that there exists a contrastive reason (S′) of size k with respect to ⟨f, x⟩, concluding the reduction.

Lemma J.4. The CC and SHAP queries are para-#P -Hard for a k ensemble of Perceptrons.

Proof. The Hardness of the CC query follows from tbe fact that this problem is already #P -Hard for a single percep-
tron (Barceló et al., 2020) (k = 1). For the SHAP query, we follow the proof suggested by (Arenas et al., 2023) who showed
a connection between the exact computation of shapley values computations and the model counting problem. Given some
model f , we define #f as the number of assignments which output 1. More formally: #f : |{z | f(z) = 1}|. (Arenas
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et al., 2023) showed the following connection for the specific case where Dp is taken to be the uniform distribution. It holds
that for all x ∈ F it holds that:

#f = 2n
(
f(x)−

∑
i∈[n]

ϕi(f, x)
)

(63)

where the following relation is a consequence of the well-known efficiency property of shapley values. This result establishes
a direct reduction from the SHAP query to the model counting problem. Moreover, the model counting problem is simply a
private case of the CC query where S := ∅. This establishes a polynomial reduction from the CC to the SHAP query. We
hence conclude that SHAP is also #P -Hard for an ensemble consisting of only a single Perceptron.

Lemma J.5. The MSR query for a k-ensemble of Perceptrons is ΣP
2 -Complete.

Proof. Membership. We establish membership in para-ΣP
2 using the direct definition of the complexity class since we can

non-deterministically guess a subset S and then utilize a coNP oracle to verify whether S is sufficient.

Hardness. We will equivalently show that the MSR query for an ensemble of k = 5 Perceptrons is ΣP
2 -Hard. First, we will

present the Generalized Subset Sum problem, which is known to be ΣP
2 -complete-complete (Schaefer & Umans, 2002).

GSSP (Generalized Subset Sum):
Input: Two vectors of positive integers u = (u1,u2, . . . ,ul) and v = (v1, v2, . . . , vm), and a positive (target) integer T .
Output: Yes, if there exists a binary vector x ∈ {0, 1}l such that for any binary vector y ∈ {0, 1}m, it holds that:
Σl

i=1(xi · ui) + Σm
j=1(yj · vj) ̸= T ; and No otherwise.

We will actually use a very close modified version of this problem which we term k-Generalized Subset Sum, which requires
an additional constraint that the size of the vector x is equal to some input integer k. More formally, the problem is defined
as follows:

k-GSSP (k-Generalized Subset Sum):
Input: Two vectors of positive integers u = (u1,u2, . . . ,ul) and v = (v1, v2, . . . , vm), an integer k, and a positive (target)
integer T .
Output: Yes, if there exists a binary vector x ∈ {0, 1}l such that ∥x∥1 = k, and for any binary vector y ∈ {0, 1}m, it holds
that: Σl

i=1(xi · ui) + Σm
j=1(yj · vj) ̸= T ; and No otherwise.

We next prove the following claim:

Claim 8. The query k-GSSP is ΣP
2 -complete-hard.

Proof. We present a polynomial-time reduction from GSSP to k-GSSP, enabling us to conclude that k-GSSP is ΣP
2 -

hard. Given ⟨u = (u1,u2, . . . ,ul), v = (v1, v2, . . . , vm), T ⟩, we define some G > 0. The reduction then constructs
⟨u′ = (u1 +G,u2 +G, . . . ,ul +G,G1, . . . , Gl), v’ := v = (v1, v2, . . . , vm), k′ := l, T ′ := T + (l ·G)⟩ (where Gi is the
i-th occurrence of the value G).

First, assume that ⟨u, v, T ⟩ ∈ GSSP. By construction, this implies that:

∃x ∈ {0, 1}l ∀y ∈ {0, 1}m Σl
i=1(xi · ui) + Σm

j=1(yj · vj) ̸= T (64)

Let x be an element of {0, 1}l. Therefore, for this x, the following holds:

∀y ∈ {0, 1}m Σl
i=1(xi · ui) + Σm

j=1(yj · vj) ̸= T (65)

We express: ∥x∥1 = r ≤ l. Next, we divide the l summations into two parts: the first sum will include the corresponding
values in u with non-zero coordinates in x, and the other part will include the remaining values in u. For simplicity and
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w.l.o.g., we also reindex the coordinates accordingly so that, w.l.o.g., all r nonzero coordinates are the first ones of x (this is
w.l.o.g. since we can reorder the corresponding coordinates in u accordingly). Next, given this x, we can construct a new
binary vector x′ ∈ {0, 1}2l where the first l coordinates are identical to the given vector x, and the remaining l coordinates
are constructed as follows: the first (l − r) coordinates of the second half, i.e., coordinates (l + 1) to (2l − r) of x′, will be
“1”, while the remaining coordinates of x′, i.e., from (2l − r + 1) to (2l), will be “0”.

Σ2l
i=1(x

′
i · u′

i) =

Σr
i=1(x

′
i · u′

i) + Σl
i=r+1(x

′
i · u′

i) + Σ2l−r
i=l+1(x

′
i · u′

i) + Σ2l
i=2l−r+1(x

′
i · u′

i) =

Σr
i=1(xi · (ui +G)) + Σl

i=r+1(0 · (ui +G)) + Σ2l−r
i=l+1(1 ·G) + Σ2l

i=2l−r+1(0 ·G) =

Σr
i=1(xi · ui) + (r ·G) + ((l − r) ·G)

(66)

And as (w.l.o.g.) the last (l− r) coordinates for x are “0”, it follows that for this constructed x′, we can sum up to l (and not
“only” r):

Σ2l
i=1(x

′
i · u′

i) = Σl
i=1(xi · ui) + (l ·G) (67)

Now, suppose, by contradiction, that for this constructed x′, it holds that:

∃y ∈ {0, 1}m Σ2l
i=1(x

′
i · u′

i) + Σm
j=1(yj · vj) = T ′ (68)

Then, according to Eq. 67, it follows that:

∃y ∈ {0, 1}m Σl
i=1(xi · ui) + (l ·G) + Σm

j=1(yj · vj) = T ′ (69)

And from the definition T ′ := T + (l ·G), we infer from our assumption that:

∃y ∈ {0, 1}m Σl
i=1(xi · ui) + (l ·G) + Σm

j=1(yj · vj) = T + (l ·G) ⇐⇒
∃y ∈ {0, 1}m Σl

i=1(xi · ui) + Σm
j=1(yj · vj) = T

(70)

However, this contradicts the outcome from Eq. 65 concerning this specific x. Therefore, our assumption is incorrect, and
thus for the constructed x′ ∈ {0, 1}2l, with ∥x′∥1 = l = k′, it follows that:

∀y ∈ {0, 1}m Σ2l
i=1(x

′
i · u′

i) + Σm
j=1(yj · vj) ̸= T ′ (71)

Therefore, we can conclude that: ⟨u′, v′, k′, T ′⟩ ∈ k-GSSP.

Now, suppose ⟨u, v, T ⟩ /∈ GSSP. This implies that ∀x ∈ {0, 1}l:

∃y ∈ {0, 1}m Σl
i=1(xi · ui) + Σm

j=1(yj · vj) = T (72)

We need to prove that this implies the following:

∀x′ ∈ {0, 1}2l s.t ∥x′∥1 = k′,

∃y ∈ {0, 1}m, Σ2l
i=1(x

′
i · u′

i) + Σm
j=1(yj · v′j) = T ′ (73)

Let us assume, for the sake of contradiction, that this is not the case, i.e.:

∃x′ ∈ {0, 1}2l s.t ∥x′∥1 = k′,

∀y ∈ {0, 1}m Σ2l
i=1(x

′
i · u′

i) + Σm
j=1(yj · v′

j) ̸= T ′ (74)
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Let x′ ∈ {0, 1}2l represent a binary input x′ ∈ {0, 1}2l. Therefore, ∥x′∥1 = k′ := l. Assume 1 ≤ s ≤ l corresponds to the
number of “1” entries in x′ located in the first l coordinates of u’, with the remaining (k′ − s) = (l − s) “1” entries of x′
located in the second half of u’. Further, assume without loss of generality that the first s coordinates of x′

[1...l] are “1”, and
similarly, without loss of generality, that the first (l− s) coordinates of x′[(l+1)...2l] (i.e., the second half of x′’s l coordinates)
represent the locations of the remaining (l − s) “1” values. Therefore, we establish that for this x′:

∀y ∈ {0, 1}m, Σs
i=1(x

′
i · u′

i) + Σl
i=s+1(x

′
i · u′

i) + Σ2l−s
i=l+1(x

′
i · u′

i)+

Σ2l
i=2l−s+1(x

′
i · u′

i) + Σm
j=1(yj · v′j) ̸= T ′ ⇐⇒

∀y ∈ {0, 1}m, Σs
i=1(x

′
i · u′

i) + Σl
i=s+1(0 · u′

i) + Σ2l−s
i=l+1(x

′
i · u′

i)+

Σ2l
i=2l−s+1(0 · u′

i) + Σm
j=1(yj · v′j) ̸= T ′ ⇐⇒

∀y ∈ {0, 1}m, Σs
i=1(x

′
i · u′

i) + Σ2l−s
i=l+1(x

′
i · u′

i) + Σm
j=1(yj · v′j) ̸= T ′ ⇐⇒

∀y ∈ {0, 1}m, Σs
i=1(x

′
i · (ui +G)) + Σ2l−s

i=l+1(x
′
i ·G) + Σm

j=1(yj · v′j) ̸= T ′

(75)

Similarly, by partitioning the summation and considering the coordinates of x′, we can deduce that the aforementioned
equation can be rewritten as:

∀y ∈ {0, 1}m, Σs
i=1(1 · ui) + Σs

i=1(1 ·G)+

Σ2l−s
i=l+1(1 ·G) + Σm

j=1(yj · v′j) ̸= T ′ ⇐⇒
∀y ∈ {0, 1}m Σs

i=1(1 · ui) + (s+ (l − s)) ·G+

Σm
j=1(yj · v′j) ̸= T ′ = T + (l ·G) ⇐⇒

∀y ∈ {0, 1}m Σs
i=1(1 · ui) + Σm

j=1(yj · v′
j) ̸= T

(76)

Equivalently:

∀y ∈ {0, 1}m, Σs
i=1(1 · ui) + Σ2l

i=s+1(0 · ui) + Σm
j=1(yj · v′j) ̸= T (77)

Let us define an input x′′ ∈ {0, 1}l, such that the first 1 ≤ s ≤ l coordinates are “1”, and the remaining ones are“0”. In
other words, x′′ := x′

[1...l]. Therefore, given Eq. 77 and the specified x′′ ∈ {0, 1}l, it follows that:

∀y ∈ {0, 1}m Σl
i=1(x

′′
i · ui) + Σm

j=1(yj · vj) ̸= T (78)

However, this contradicts Eq. 72, and therefore we determine that our initial assumption is erroneous (i.e., no such
x′ ∈ {0, 1}2l exists), and:

∀x′ ∈ {0, 1}2l s.t ∥x′∥1 = k′,

∃y ∈ {0, 1}m Σ2l
i=1(x

′
i · u′

i) + Σm
j=1(yj · v′j) = T ′ (79)

Thus, ⟨u′, v′, k′, T ′⟩ /∈ k-GSSP. To conclude, we have proved that: ⟨u, v, T ⟩ ∈ GSSP ⇐⇒ ⟨u′, v′, k′, T ′⟩ ∈ k-GSSP,
completing our reduction.

Next, we introduce a variant of the k-GSSP problem, which we refer to as the k-GSSP* problem.

k-GSSP* (Constrained k Generalized Subset Sum):
Input: A set of positive integers (z1, z2, . . . , zn), a subset S0, an integer k, and a positive (target) integer T .
Output: Yes, if there exists a subset of features (indices) S ⊆ S0, such that, |S| = k, and for all subsets S′ ⊆ S̄ it holds that
Σi∈S(zi) + Σj∈S′(zj) ̸= T ; and No otherwise.
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Now, we will establish the hardness of this refined query by demonstrating the following claim:

Claim 9. The query k-GSSP* is ΣP
2 -complete-hard.

Proof. We will demonstrate ΣP
2 -complete-hardness through a reduction from the k-GSSP problem. Starting with ⟨u =

(u1,u2, . . . ,ul), v = (v1, v2, . . . , vm), k, T ⟩, we produce ⟨z = (z1, z2, . . . , zn), S0 = (1, . . . , l), k′, T ′⟩. The vector z is
formed by concatenating u and v in the following manner:

• z := (u′⌢v′) ∈ Nn:=(l+m), i.e., for any 1 ≤ i ≤ l: zi = ui, and for any (l + 1) ≤ j ≤ (l +m): zj = vj−l.

• u′ := [(2n+ 1) · u] + 1, i.e., u′
j = [(2n+ 1) · uj ] + 1

• v′ := (2n+ 1) · v, i.e., v′i = (2n+ 1) · vi

We also set T ′ := T (2n + 1) + k and k′ := k. We then will prove that: ⟨u, v, k, T ⟩ ∈ k-GSSP ⇐⇒ ⟨z, S0, k
′, T ′⟩ ∈

k-GSSP*.

First, suppose ⟨u, vk, T ⟩ ∈ k-GSSP. Then, there exists a binary vector x ∈ 0, 1l such that ∥x∥1 = k, and for any binary
vector y ∈ 0, 1m, the following condition is met: Σl

i=1(xi · ui) + Σm
j=1(yj · vj) ̸= T . Assuming, without loss of generality,

that the first k entries of u align with this particular binary vector x ∈ {0, 1}l (note that ∥x∥1 = k), we define the subset S
to include all corresponding indices, thus S := {i|xi = 1} = {1, . . . , k} ⊆ S0. We will now establish that for all subsets
S′ ⊆ S̄ := {(k + 1), . . . , l, (l + 1), . . . , n := (l +m)}, the following holds true for our chosen set S:

Σi∈S(zi) + Σj∈S′⊆S̄(zj) ̸= T ′ (80)

We will demonstrate this in two parts: initially by considering subsets of S̄ that include only features from {(l+ 1), . . . , (l+
m)}, and subsequently by considering subsets of S̄ that intersect with {(k + 1), . . . , l}. In the first scenario, consider all
S′ ⊆ S̄ where S′ ⊆ {(l + 1), . . . , (l +m) = n}, meaning the features correspond exclusively to those in the original v
vector. For this particular x ∈ {0, 1}l, it is established that for any y ∈ {0, 1}m:

Σl
i=1(xi · ui) + Σm

j=1(yj · vj) ̸= T ⇐⇒
(2n+ 1)Σl

i=1(xi · ui) + (2n+ 1)Σm
j=1(yj · vj) ̸= T (2n+ 1) ⇐⇒

(2n+ 1)Σl
i=1(xi · ui) + (2n+ 1)Σm

j=1(yj · vj) + k ̸= T (2n+ 1) + k = T ′

(81)

Given that ∥x∥1 = k, we proceed under the assumption (w.l.o.g.) that the first k indices of x are set to “1”, while the
remaining (l − k) coordinates are 0”. Therefore, for any y ∈ {0, 1}m:

(2n+ 1)Σk
i=1(xi · ui) + (2n+ 1)Σl

i=k+1(xi · ui)+

(2n+ 1)Σm
j=1(yj · vj) + k ̸= T ′ ⇐⇒

Σk
i=1((2n+ 1) · xi · ui) + Σl

i=k+1((2n+ 1) · xi · ui)+

Σm
j=1((2n+ 1) · yj · vj) + k ̸= T ′

(82)

And, assuming (w.l.o.g.) that the first k coordinates of x are “1”, with the remaining ones set to “0”, it follows that for any
y ∈ {0, 1}m:

Σk
i=1((2n+ 1) · 1 · ui) + Σl

i=k+1((2n+ 1) · 0 · ui)+

Σm
j=1((2n+ 1) · yj · vj) + k ̸= T ′ ⇐⇒

Σk
i=1((2n+ 1) · 1 · ui) + Σm

j=1((2n+ 1) · yj · vj) + k ̸= T ′ ⇐⇒
Σk

i=1([(2n+ 1) · uj ] + 1) + Σm
j=1(yj · (2n+ 1) · vj) ̸= T ′

(83)

Given our definitions of u′ and v′, it follows that for any y ∈ {0, 1}m:
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Σk
i=1(u

′
i) + Σm

j=1(yj · v′
j) ̸= T ′ (84)

Since S encompasses the first k coordinates of u’ (which align with the k “1” coordinates of the specified x, by design), it
results that for any y ∈ {0, 1}m:

Σi∈S(zi) + Σm
j=1(yj · zl+j) ̸= T ′ (85)

Therefore, for all S′ ⊆ S̄ where S′ ⊆ {(l + 1), . . . , (l +m)}, it is established that:

Σi∈S(zi) + Σi∈S′⊆S̄(zi) ̸= T ′ (86)

In the second scenario, we consider any subset S′ ⊆ S̄ that intersects with {(k + 1), . . . , l}, meaning there is at least one
feature i ∈ S′ such that (k + 1) ≤ i ≤ l. We note that, according to our construction, S contains exactly k indices, each
corresponding to a value of [(2n+ 1) · ui] + 1. In this second case, S′ ⊆ S̄ includes at least one index that corresponds
to a value of [(2n+ 1) · ui] + 1 (corresponding to u′) and potentially other values of (2n+ 1) · vi (corresponding to v′).
Consequently, when adding the values associated with the indices from S and S′, we obtain at least (k + 1) values (and at
most, n), with at least k + 1 values t being such that t mod (2n+ 1) = 1. Therefore, the total sum will yield a value with
a modulus of at least k + 1 over (2n+ 1), implying that:

[Σi∈S(zi)]mod(2n+ 1) = k =⇒
1 ≤ [Σi∈S′⊆S̄(zi)]mod(2n+ 1) ≤ l − k =⇒
(Σi∈S(zi) + Σi∈S′⊆S̄(zi))mod(2n+ 1) ̸= k

(87)

Lastly, given that T ′ := (2n+ 1)T + k, it follows that (T ′) mod (2n+ 1) = k, therefore:

Σi∈S(zi) + Σi∈S′⊆S̄(zi) ̸= T ′ = (2n+ 1)T + k (88)

Thus, we have demonstrated in both scenarios that for our defined S ⊆ S0, it is true that |S| = k and for all subsets
S′ ⊆ S̄ := {(k + 1), . . . , l, (l + 1), . . . , n := (l +m)}, it holds that:

Σi∈S(zi) + Σj∈S′⊆S̄(zj) ̸= T ′ (89)

Hence, ⟨z, S0, k
′, T ′⟩ ∈ k-GSSP*

For the other direction, if ⟨u, v, k, T ⟩ /∈ k-GSSP, then for every binary vector x ∈ {0, 1}l with ∥x∥1 = k, there exists a
binary vector y′ ∈ {0, 1}m such that: Σl

i=1(xi · ui) + Σm
j=1(y′j · vj) = T . For every k-sized subset S ⊆ S0, we define

x′ := 1i∈S . Additionally, for each fixed S, we define the set S′ ⊆ S̄ to be:

S′ := {(|u|+ i)|y′i = 1} (90)

for the corresponding y′ that aligns with the indicator x′ associated with S′. Next, we observe that:
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Σi∈S(zi) + Σj∈S′⊆S̄(zj) =
(∗)

Σi∈S(u′
i) + Σj∈S′⊆S̄(v′j) =

Σi∈S((2n+ 1)ui + 1) + Σj∈S′⊆S̄((2n+ 1)vi) =
(2n+ 1)[Σi∈S(ui) + Σj∈S′⊆S̄(vi)] + |S| · 1 =

(∗∗)

(2n+ 1)[Σl
i=1(x

′
i · ui) + Σm

j=1(y
′
j · vj)] + k =

(2n+ 1)[T ] + k =

(2n+ 1)[
T ′ − k

2n+ 1
] + k =

[T ′ − k] + k

(91)

Where (*) arises because we have selected S′ ⊆ S̄ to exclusively contain indices of values pertaining to v’ (i.e., S′∩1, . . . , l ̸=
∅), and (**) is due to considering any subset S ⊆ S0 with a size of |S| = k. Therefore, we conclude that for all k-sized
subsets S ⊆ S0, it is established that there exists a subset S′ ⊆ S̄ such that:

Σi∈S(zi) + Σj∈S′⊆S̄(zj) = T ′ (92)

Thus, ⟨z, S0, k
′, T ′⟩ /∈ k-GSSP*, as required.

We will now present the final component of this proof by establishing the following claim:
Claim 10. The MSR query for an ensemble of k-Perceptrons is ΣP

2 -complete-hard for k = 5.

Proof. We will outline a polynomial-time reduction from k-GSSP* to k-perceptron-MSR, specifically for k = 5. Given
⟨z, S0, k, T ⟩, our polynomial-time reduction produces ⟨(f1, . . . , f5), x′, k⟩, in the following manner: Initially, the reduction
verifies (in polynomial time) whether: Σi=1(zi) = T . If this condition is met, then since z consists solely of strictly positive
integers, any strict k-sized subset of these will not sum to T . Consequently, ⟨z, S0, k, T ⟩ qualifies as belonging to k-GSSP*.
As a result, the reduction returns, within polynomial time, ⟨(f1 := True, . . . , f5 := True), x′, k⟩ for k-Perceptron-MSR, as
any k-sized set of features sufficiently justifies the condition. Otherwise, if Σi=1(zi) ̸= T , the following steps are taken: we
initialize x′ := 1n and k′ := k. For each 1 ≤ i ≤ 5, the perceptron fi is defined as follows:

• f1 := (w1, b1), for w1 := (−z1, . . . ,−zn), and b1 := T − 1
2

• f2 := (w2, b2), for w2 := (z1, . . . , zn), and b2 := −T − 1
2

• f3 := (w3, b3), for w3 := (1S0 ;0S̄0
) and b3 := −k it holds that: f3(x) = 1 ⇐⇒ Σn

i=1(xi)−k ≥ 0 ⇐⇒ Σn
i=1(xi) ≥

k ⇐⇒ Σ
|S0|
i=1(1S0

∧ xi)+Σn
i=|S0|+1(1S0

∧ xi) ≥ k ⇐⇒ Σ
|S0|
i=1(1S0

∧ xi) ≥ k ⇐⇒ |{xi|xi = 1 ∧ xi ∈ S0} | ≥ k,
i.e., f3 classifies as “1” if and only if the input has at least k “1” values in S0.

• f4 := (w4, b4), for w4 := (0, . . . , 0), and b4 := 1, i.e., f4=True

• f5 := 11n , i.e., f5(x) = 1 ⇐⇒ x := 1n (i.e., f5 acts as a Perceptron serving as an indicator function for the
constructed input x := 1n. This setup can be implemented in polynomial time, as demonstrated in (?).)

First, we observe that the ensemble (f1, . . . , f5) classifies x’ := 1n as “1”. This classification results from a majority of at
least three (out of five) ensemble members designating the input 1n as “1”:

f3(x’) = step(Σ
|S0|
i=1(x

′
i − k) = step(Σ

|S0|
i=1(1)− k) = step(|S0| − k) = 1 (93)

Thus, f3(x’) = f3(1
n) = 1. Additionally, f4(1n) = 1, as it classifies every input as “1”, and f5(1

n) = 1 as it functions
as an indicator for this very input. We will prove that: ⟨z, S0, k, T ⟩ ∈ k-GSSP* ⇐⇒ ⟨(f1, . . . , f5), x’, k′⟩ ∈ MSR for
k-ensembles of Perceptrons when k = 5.
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Initially, assuming that ⟨z, S0, k, T ⟩ ∈ k-GSSP*, there exists a subset S ⊆ S0 with |S| = k and for every S′ ⊂ S̄ it holds
that Σi∈S(zi) + Σj∈S′(zj) ̸= T . We then contend that S serves as a k-sized explanation for input x’ := 1n within the
5-Perceptron ensemble (f1, . . . , f5). When considering S, we conclude that for every S′ ⊆ S̄: Σi∈S(zi) + Σj∈S′(zj) ̸= T ,
or equivalently, for each S′:

[ Σi∈S(zi) + Σj∈S′(zj) ≥ T + 1 ] ∨ [ Σi∈S(zi) + Σj∈S′(zj) ≤ T − 1 ] (94)

We will demonstrate that in both cases, exactly one of f1 and f2 classifies an input as “1”, while the other classifies it as
“0”. In the scenario where Σi∈S(zi) + Σj∈S′(zj) ≥ T + 1, for any input x ∈ {0, 1}n with xS = 1S, we construct (xS ; yS̄),
applicable for x ∈ {0, 1}n and for every y ∈ {0, 1}n, ensuring that both f2((xS ; yS̄)) = 1 and f1((xS ; yS̄)) = 0. Moreover,
f2((xS ; yS̄)) = 1‘, based on the following:

f2((xS ; yS̄)) =
step([(xS ; yS̄) · w2] + b2) =

step([(xS ; yS̄) · (z1, . . . , zn)] + (−T − 1

2
)) =

step(Σi∈S(xi · zi) + Σj∈S̄(yi · zj)− T − 1

2
) ≥

step((T + 1)− T − 1

2
) = step(

1

2
) = 1

(95)

In this case, it also true that f1((xS ; yS̄)) = 0, as the following holds:

f1((xS ; yS̄)) =
step([(xS ; yS̄) · w1] + b1) =

step([(xS ; yS̄) · (−z1, . . . ,−zn)] + (T − 1

2
)) =

step(−Σi∈S(zi)− Σj∈S̄(zj) + (T − 1

2
)) ≤

step(−(T + 1) + (T − 1

2
)) = step(−3

2
) = 0

(96)

With the last transition justified by the assumption that: Σi∈S(zi) + Σj∈S′(zj) ≥ T + 1, and we also observe that we have
selected S′ := S̄ (which is valid since trivially S̄ ⊆ S̄). In the situation where Σi∈S(zi) + Σj∈S′(zj) ≤ T − 1, for any
input x ∈ {0, 1}n with xS = 1, we construct (xS ; yS̄), suitable for x ∈ {0, 1}n and for every y ∈ {0, 1}n, ensuring that
both f1((xS ; yS̄)) = 1 and f2((xS ; yS̄)) = 0. Additionaly, f1((xS ; yS̄)) = 1, based on the following:

f1((xS ; yS̄)) =

step([(xS ; yS̄) · w1] + b1) =

step([(xS ; yS̄) · (−z1, . . . ,−zn)] + (T − 1

2
)) =

step(−[Σi∈S(xi · zi) + Σj∈S̄(yi · zj)] + T − 1

2
) ≥

step((−1)(T − 1) + T − 1

2
) = step(1− T + T − 1

2
) = step(

1

2
) = 1

(97)

In this scenario, it also holds that f2((xS ; yS̄)) = 0, as the following holds:
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f2((xS ; yS̄)) =

step([(xS ; yS̄) · w2] + b2) =

step([(xS ; yS̄) · (z1, . . . , zn)] + (−T − 1

2
)) =

step(Σi∈S(zi) + Σj∈S̄(zj) + (−T − 1

2
)) ≤

step(T − 1 + (−T − 1

2
)) = step(−3

2
) = 0

(98)

The last transition remains valid under the assumption: Σi∈S(zi) + Σj∈S′(zj) ≤ T − 1. We further observe that S′ := S̄,
which is valid since S̄ ⊆ S̄ by definition. Therefore, when Σi∈S(zi) + Σj∈S′(zj) ̸= T , it follows that exactly one of the
Perceptrons in the pair (f1, f2) classifies the input (xS ; yS̄) as “1”, while the other classifies it as “0”.

Furthermore, f3((xS ; yS̄)) = 1 because (xS ; yS̄) contains k “1” values, which is the threshold required by f3 to activate. It
is also observed that f4((xS ; yS̄)) ≥ 0, implying that it evaluates to True (classifying all inputs as 1”). Therefore, when k
values of “1” are set in S, one of two outcomes occurs: either the majority (f2, f3, f4) or the majority (f1, f3, f4) classifies
every input (xS , yS̄) as “1” for every possible y ∈ {0, 1}n. Consequently, S serves as a k-sized sufficient reason for input
1n with respect to (f2, . . . , f5), thus ⟨(f1, . . . , f5), x’, k′⟩ ∈MSR for k-ensemble Perceptrons when k = 5.

For the second direction, assume that ⟨z, S0, k, T ⟩ /∈ k-GSSP*. We aim to demonstrate that this leads to
⟨(f1, . . . , f5), x’, k′⟩ /∈ MSR for k-ensemble Perceptrons when k = 5. For the sake of contradiction, suppose the op-
posite is true, i.e., ⟨(f1, . . . , f5), x’, k′⟩ ∈MSR for k-ensemble Perceptrons when k = 5. In other words, we posit that there
are k features in x = 1n which, when fixed, result in the ensemble consistently classifying as “1”. We will prove this to be
impracticable by examining the only two scenarios: (i) that these features are all contained within S0; (ii) that at least one of
the fixed k features resides in S̄0.

In the first scenario, assume that all k features are within S0. Yet, since ⟨z, S0, k, T ⟩ /∈ k-GSSP*, it follows that for any input
(xS ; yS̄) (for any k-sized subset S ⊆ S0 and any x ∈ {0, 1}n), there exists a corresponding y ∈ {0, 1}n such that:

Σi∈S(zi) + Σj∈S′(zj) = T (99)

This suggests that both f1 and f2 classify the input (xS ; yS̄) as “0”, which we will demonstrate below. Additionally,
f1((xS ; yS̄)) = 0, as evidenced by the following:

f1((xS ; yS̄)) =
step([(xS ; yS̄) · w1] + b1) =

step([(xS ; yS̄) · (−z1, . . . ,−zn)] + (T − 1

2
)) =

step(−[Σi∈S(xi · zi) + Σj∈S̄(yi · zj)] + T − 1

2
) =

step(−T + T − 1

2
) = step(−1

2
) = 0

(100)

Additionally, f2((xS ; yS̄)) = 0, as the following holds:

f2((xS ; yS̄)) =
step([(xS ; yS̄) · w2] + b2) =

step([(xS ; yS̄) · (z1, . . . , zn)] + (−T − 1

2
)) =

step(Σi∈S(xi · zi) + Σj∈S̄(yi · zj)− T − 1

2
) =

step(T − T − 1

2
) = step(−1

2
) = 0

(101)
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Therefore, under the assumption that all k fixed features are within S0, there exists an input y ∈ {0, 1}n such that for the
input (xS ;yS̄), both f1 and f2 classify f1((xS ;yS̄)) = 0 and f2((xS ;yS̄)) = 0. Next, we will demonstrate that the input
(1S ;0S̄) ̸= 1n, i.e., it contains at least one feature with value “0”. This is because, for the defined f1 and f2, it is not
possible that both f1(1

n) = 0 and f2(1
n) = 0, as this would require:

f1(1
n) = 0 ∧ f2(1

n) = 0 ⇐⇒

[step(Σn
i=1(1 · −zi) + (T − 1

2
)) = 0] ∧ [step(Σn

i=1(1 · zi) + (−T − 1

2
)) = 0] ⇐⇒

[Σn
i=1(1 · −zi) + (T − 1

2
) < 0] ∧ [Σn

i=1(1 · zi) + (−T − 1

2
) < 0] ⇐⇒

[Σn
i=1(1 · zi) > T − 1

2
] ∧ [Σn

i=1(1 · zi) < T +
1

2
] ⇐⇒

T − 1

2
< Σn

i=1(1 · zi) < T +
1

2

(102)

Given that the zi values are positive integers, this is only true if Σn
i=1(1 · zi) = T , which contradicts our assumption.

Therefore, for 1n, it is not the case that both f1(1
n) = 0 and f2(1

n) = 0. Consequently, the existing input y ∈ {0, 1}n
such that both f1((xS ; yS̄)) = 0 and f2((xS ; yS̄)) = 0 is not 1n, i.e., (1S ;0S̄) ̸= (1S ;1S̄) = 1n. In this scenario, it also
holds that for this input f5((1S ;0S̄)) = 0, since f3 is an indicator for the input 1n. Therefore, for any k fixed inputs
originating solely from S0, there always exists an (1S ;0S̄), such that the perceptron majority (f1, f2, f5), and thus the
ensemble overall, classifies this input (1S ;0S̄) as “0”, contrary to the initial classification. Consequently, given our premise
that ⟨z, S0, k, T ⟩ /∈ k-GSSP*, no k features from S0 qualify as a sufficient reason with respect to 1n.

In the second scenario, we examine the case where not all k fixed features are in S0, which, under our assumption, means
the MSR (Minimum Sufficient Reason) consists of at most (k − 1) fixed values of “1” in S0. We will show why this is also
infeasible. We consider any completion with exactly |S| − k “0” values in the features of S to illustrate this point. Using the
same logic as previously, based on the configuration of f1 and f2, it is established that for any input -—- at least one of f1
or f2 classifies it as “0”. As demonstrated, exactly one Perceptron of the pair classifies it as “0” when the summation of zi-s
does not equal T , and both of them classify it as “0” when the summation equals T .

Furthermore, any input with at most k − 1 “0” values in features corresponding to S is classified by f5 as “0”, since f3
activates only when it detects at least k of S’s features as “1”. Additionally, any input that includes more than a single zero
value is clearly not equal to 1n and, therefore, will also result in f5 classifying it as “0”, given that f5 serves as an indicator
for 1n (classifying any other input as 0”). Thus, in this scenario as well, there is a majority of (f1, f3, f5) or (f2, f3, f5),
and consequently the entire ensemble, classifying any such input as “0”.

This indicates that any sufficient reason for our ensemble must have a size of at least (k + 1), and therefore:
⟨(f1, . . . , f5), x′, k′⟩ /∈ MSR for k-ensembles of Perceptrons when k = 5. In summary, we have demonstrated that
⟨z, S0, k, T ⟩ ∈ k-GSSP* ⇐⇒ ⟨(f1, . . . , f5), x′, k′⟩ ∈MSR for k-ensembles of Perceptrons when k = 5. Thus, solving
the MSR query for k-ensemble Perceptrons is para-ΣP

2 -hard.

K. Proof of Proposition 5.3
Proposition K.1. For ensembles of k-decision trees (i) the CSR query is coW[1]-Complete, (ii) the MCR query is W[1]-Hard
and in W[P], (iii) the CC query is #W[1]-Complete, and (iv) the SHAP query is W[1]-Hard and in XP.

Proof. We begin by demonstrating the initial complexity result stated in the proposition:

Lemma K.2. For ensembles of k-decision trees, the CSR query is coW[1]-Complete.

Proof. We execute a many-one FPT reduction from the complement of the Multi-Color Clique problem to the corresponding
CSR query, and from the CSR query to the complement of the k-Clique problem. Both the Multi-Color Clique and the
k-Clique problems are known to be W[1]-Complete. We will begin with the first direction to establish membership in
coW[1]. We start by defining the k-Clique problem:

47



What makes an Ensemble (Un) Interpretable?

k-Clique:
Input: A graph G = ⟨V,E⟩.
Parameter: Integer k.
Output: Yes, if there exists a clique of size larger than k in G.

Membership. We initiate the reduction by demonstrating membership in coW[1]. As discussed in Section B, our aim is to
establish membership for the weighted voting scenario. However, for clarity, we will initially focus on the simpler case of
regular majority voting. Subsequently, we will elaborate on how this proof can be extended to the weighted version.

Membership for standard majority vote. We will specifically demonstrate a reduction from CSR to k-Clique, establishing
that CSR resides in coW[1]. Given an instance ⟨f, x, S⟩, CSR inquires whether S is not a sufficient reason with respect to
x, or in other words, if S is contrastive. We will begin by establishing the following claim, which concerns the fact that
ensembles of decision trees are closed under conditioning (refer to Definition G.2):

Claim 11. Given a model f which is an ensemble of k decision trees, some input x, and subset S ⊆ [n], then f is closed
under conditioning.

Proof. We first observe that any individual decision tree fi in the ensemble can be conditioned over xS . This is accomplished
by creating a modified model f ′

i as follows: we start by duplicating fi, that is, f ′
i := fi. We then iterate through the tree

from the top downwards, examining all splits. Each split corresponds to an assignment to a feature j, which can be set to
either 0 or 1. If j ∈ S, we will retain all paths that extend from the subtree and follow the assignment xj , while deleting all
paths that follow the assignment ¬xj . Ultimately, the resulting tree fi adheres to the following condition:

∀z ∈ F [fi(xS ; zS̄) = f ′
i(z] (103)

We observe that following the modifications, any split in the tree f ′
i concerning the features j ∈ S results in only one viable

path, as the subtree associated with the contrary assignment was removed earlier. Consequently, f ′
i effectively becomes a

tree defined solely over the features in S. Therefore, the following assertion is valid:

∀z ∈ F [fi(xS ; zS̄) = f ′
i(zS̄ ] (104)

We have thus demonstrated that a single decision tree is closed under conditioning. By applying this procedure to each tree
within the k-ensemble f , we arrive at the following conclusion:

∀z ∈ F [f(xS ; zS̄) = f ′(zS̄ ] (105)

We will establish a secondary minor claim that will be beneficial for our reduction:

Claim 12. Given a model f which is an ensemble of k decision trees, then f ′ := ¬f can be constructed in polynomial time.

Proof. We first note that negating a single decision tree can be achieved by switching each leaf node’s assignment from “1”
to “0” and vice versa. Applying this modification to any decision tree fi within the ensemble results in negating the entire
model f .

Now, employing Claim 11, an ensemble f can be conditioned on a partial assignment of features, allowing us to develop a
new model f ′ that is conditioned on xS . In simpler terms, f ′ retains only the features from S and satisfies the following
condition:

∀z ∈ F [f(xS ; zS̄) = f ′(zS̄)] (106)

Given the ensemble f = (f1, f2, . . . , fk), the reduction constructs f ′ = (f ′
1, f

′
2, . . . , f

′
k) and uses it to construct a graph G.

The final setup of the reduction is ⟨G, k′ := ⌈k2 ⌉⟩. We will now detail the construction of the graph G. First, we compute
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f ′(xS̄), which is equivalent to f(xS ; xS̄) = f(x). If f ′(xS̄) = 1, we negate the ensemble f ′. This negation is carried out
using Lemma 12. Thus, we can generally assume that f ′(xS̄) = 0.

The graph we construct will be a k-partite graph, with each part corresponding to each tree in the ensemble f ′. The vertices
and edges of the graph are constructed as follows: We iterate over the leaf nodes in each tree of f ′, and every leaf node
corresponding to the assignment of ¬f ′(x) is designated as a vertex vi in the graph (associated with the specific tree this
node is part of). We will now proceed to describe the construction of the edges of the graph.

First, it is important to note that any two vertices within the same part of the graph (i.e., associated with the same tree)
will not be connected by an edge. We iterate over any two paths in two distinct trees –— and hence associated with two
different parts of the graph. We consider two paths, α and α′, from different trees in f ′ to “match” if they do not “collide”
on any variable. Specifically, there should be no feature i associated with both α and α′ where the assignment of i in α is
xi ∈ {0, 1} and the assignment in α′ is ¬xi. The two paths “match” if there is no such collision.

Now, each vertex vi in the graph is linked to a particular leaf node in one of the trees (and consequently to the path α that
leads to this leaf node). The reduction will establish an edge between any two vertices vi and vj , which correspond to paths
α and α′ from two separate trees, if and only if the paths α and α′ “match” and both paths conclude at a terminating node
with a True assignment, that is, classified as 1.

We will now prove that S is not a sufficient reason with respect to ⟨f, x⟩ if and only if there exists a clique in the graph of
size larger than k′ := ⌈k2 ⌉. The proof will be divided into several distinct claims. First, we will establish the following claim:

Claim 13. For the aforementioned reduction construction, S is not a sufficient reason concerning ⟨f, x⟩ if and only if there
exists a partial assignment zS̄ for which f ′(zS̄) = 1.

Proof. By definition, S is not a sufficient reason for ⟨f, x⟩ if and only if:

∃z ∈ F [f(xS ; zS̄) ̸= f(x)] (107)

This equivalently means that S is contrastive with respect to ⟨f, x⟩. Given that f ′ is conditioned on xS and includes only the
features from S̄, it equivalently follows that S is not a sufficient reason concerning ⟨f, x⟩ iff:

∃z ∈ F [f ′(zS̄) ̸= f ′(xS̄) = 0] ⇐⇒ ∃z ∈ F [f ′(zS̄) = 1] (108)

This equation holds based on our assumption about the negation of f ′ during its construction. Additionally, the condition
where f ′(zS̄) = 1 occurs if and only if at least ⌈k2 ⌉models in the ensemble f ′, specifically f ′1, . . . , f ′⌈k2 ⌉, have f ′i(zS̄) = 1.

We will begin by establishing a smaller claim.

Claim 14. For the aforementioned reduction construction, the following condition is satisfied: there exists some z ∈ F for
which f ′(zS̄) = 1 if and only if there exists a subset of j ≥ ⌈k2 ⌉ trees: f ′

1, . . . , f
′
j , in which it is possible to select one path

αi in each tree f ′
i such that each path terminates at a “True” (classification = 1) node, and each pair of distinct paths

“match”.

Proof. We first observe that upon proving this lemma, it will be established that the claim (the existence of j ≥ ⌈k2 ⌉ trees
satisfying the aforementioned property) holds if and only if S is not a sufficient reason for ⟨f, x⟩. This is a direct outcome of
the equivalence property mentioned in equation 108.

Let us assume we have a set of j different paths α1, . . . , αj within j distinct trees: f ′′
1 , . . . , f

′′
j , where each f ′′

i is a model
from the ensemble f1, . . . , fk, with each path chosen within one of the trees. All paths are selected such that they terminate
on a “True” node (assignment 1) and every pair of paths from two distinct trees “matches”. According to the definition of
“matching” paths, this means that there is no feature i for which paths in two different trees disagree on the assignment of
that feature. Consequently, we can adopt the partial assignment zi for each feature i that is assigned a value in one of these
paths. Let us denote this partial assignment as zS′ for some S′ ⊆ S. It therefore, follows that if we fix the features in S′ to
their values in z, the prediction of each one of the distinct trees: f ′′

1 , . . . , f
′′
j will be classified as 1. This is equivalent to

stating that for any S′′ ⊆ S̄′, the following holds:
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∀z′ ∈ F [f ′′
1 (zS′′ ; z′S̄\S′′) = f ′′

2 (zS′′ ; z′S̄\S′′) = . . . = f ′′
j (zS′′ ; z′S̄\S′′) = 1] =⇒

∃z′ ∈ F [f ′′
1 (zS′′ ; z′S̄\S′′) = f ′′

2 (zS′′ ; z′S̄\S′′) = . . . = f ′′
j (z

′
S′′ ; z′S̄\S′′) = 1]

(109)

If we consider j ≥ ⌈k2 ⌉, then it clearly follows that:

∃z′ ∈ F [f ′(zS′′ ; z′S̄\S′′) = 1] (110)

Therefore, we can assign yS̄ := (zS′′ ; z′
S̄\S′′) and it will be established that:

∃y ∈ F [f ′(yS̄) = 1] (111)

For the other direction, let us assume that there is no set of j ≥ ⌈k2 ⌉ trees that terminate at a 1 “True” assignment, such that
there is a viable choice of path αi in each tree f ′′

i where each pair of distinct paths in this set of trees “matches”. From this
assumption, it follows that there is no group of j ≥ ⌈k2 ⌉ trees for which a partial assignment zS′ , with S′ ⊆ S, can be fixed
to z ensuring that the prediction of all the trees f ′′

1 , . . . , f
′′
j will remain 1. More specifically, this indicates that there is no set

of j ≥ ⌈k2 ⌉ trees for which an assignment to S guarantees that the prediction of all f ′′
1 , . . . , f

′′
j trees will remain 1.

Since there are no j ≥ ⌈k2 ⌉ trees where an assignment to S leads to all these trees predicting 1, the value of f ′ will
consistently be 0 for any possible assignment to the features in S. Therefore, it is established that:

∀y ∈ F [f ′(yS̄) = 0] (112)

This concludes this segment of the proof. We have now demonstrated that S is not a sufficient reason concerning ⟨f, x⟩ if
and only if there exists a subset of j ≥ ⌈k2 ⌉ trees, each with a different path that finishes at a positive terminal node, and
where each pair of paths “match”. We will now proceed to prove the following claim, which will conclude our general proof:

Claim 15. In the aforementioned reduction construction, there is a clique of size greater than k′ ≥ ⌈k2 ⌉ in G if and only if
there exist k′ distinct trees in f ′ with k′ distinct paths (one per tree) that end at a True “1” node, and each pair of distinct
paths “match”.

Proof. Assuming that there are k′ ≥ ⌈k2 ⌉ paths in k′ distinct trees that “match” and end at a 1 (True) node, the reduction
construction implies that each of these paths corresponds to a vertex in G (as they terminate on a 1 node). Furthermore, given
that these paths ”match” according to our construction, there will be an edge connecting each pair of vertices. Consequently,
the set of these k′ vertices forms a clique in G, establishing the existence of a clique of size k′ in G.

For the second direction, suppose there is no subset of k′ trees or more. This equivalently means that for any subset of
j ≥ ⌈k2 ⌉ paths chosen from j distinct trees that end on a 1 node, there exists at least one pair of distinct paths that do
not match. According to our construction, this implies that the subgraph G′ ⊆ G, corresponding to these vertices (each
representing one of the paths), is not a clique. Therefore, it follows that for any subgraph G′ ⊆ G with ⌈k2 ⌉ or more vertices,
G′ is not a clique. This completes the reduction.

Membership for weighted Vote. In our previous proof, we conditioned f on the partial assignment xS to derive the model
f ′. We demonstrated that S not being sufficient with respect to ⟨f, x⟩ equates to a satisfying assignment in f ′. We will now
extend this proof to the weighted version, where a satisfying assignment does not necessarily correspond to a set of ⌈k2 ⌉
trees with a “1” classification. In this version, each tree f ′

i is associated with a weight ϕi, and f ′ is defined as follows:

f ′(x) := step(
∑

1≤i≤n

ϕi · f ′
i(x)) (113)

Therefore, we can implement the following procedure: Iterate over the power set of all possible trees (representing all
potential sets of different trees), which includes iterating over subsets S′ ⊆ {1, . . . , k}. This enumeration is bounded by

50



What makes an Ensemble (Un) Interpretable?

O(2k) and thus can be performed in FPT time. For each selected combination S′, representing a choice of |S′| distinct trees,
we check whether:

step(
∑
i∈S′

ϕi · f ′
i(x)) > 0 (114)

This corresponds to checking whether:

step(
∑
i∈S′

ϕi · f ′
i(x)) = step(

∑
i∈S′

ϕi · f ′
i(x) +

∑
i∈S̄′

ϕi · f ′
i(x)) = step(

∑
1≤i≤n

ϕi · f ′
i(x)) > 0 (115)

Thus, we only need to “check” subsets S′ where equation 116 is satisfied (as these alone correspond to a positive instance of
f ′). In our reduction, for each subset, S′ satisfying equation 116, we construct a subgraph G′ in the same manner as in the
previous reduction: each path for each tree associated with S′ becomes a vertex in G′, and an edge between two vertices is
formed between two edges iff two distinct paths ”match”. Additionally, we add k − |S′| extra vertices to each such graph,
which are connected to all other vertices in G′. We then construct G as the union of all such sub-graphs G′ that were derived
from each S′, and the reduction results in ⟨G, k⟩.

Previously, in the classic majority-vote scenario, we demonstrated that a positive assignment in f ′ corresponds to a clique
in G, with each vertex in the clique representing its associated path in f ′. Thus, in our current construction, if there is a
positive assignment to f ′, then there exists some subset S′ such that:

step(
∑
i∈S′

ϕi · f ′
i(x)) > 0 (116)

This implies that there is a subset S′ of distinct trees within a subgraph G′ that forms a clique of size |G′| (where each vertex
in G′ corresponds to a path in f ′). Since these vertices are also connected to an additional k − |S′| vertices included in our
construction, there is also a corresponding clique of size k within G′, and thus in G as well.

However, if a positive assignment for f ′ does not exist, it indicates that for any subset of trees S′ in f ′, there is no
corresponding clique of size |S′| where each vertex corresponds to a path in f ′. This implies that any clique is of size less
than k − |S′|+ |S′|. Since this holds for any subgraph G′ within G, it follows that there is no clique of size k in G, thereby
concluding the reduction.

Hardness. To demonstrate that CSR for a k-ensemble of decision trees is coW[1]-Hard, we will establish a many-to-one
FPT reduction from the complementary version of the multi-color clique problem, which is known to be W[1]-Complete.

Multi Color Clique:
Input: A graph G = ⟨V,E⟩, such that V := ⟨V1, . . . , Vk⟩ where each Vi denotes a set of distinct vertices of some color, for
which any two vertices associated with a color are not neighbors (for all i there is no edge (u, v) ∈ E where u, v ∈ Vi).
Parameter: k (the number of colors).
Output: Yes, if there exists a clique of size k in G.

Let us consider an instance ⟨G, k⟩, where G is a multi-colored graph with k distinct colors. We can assume that |V1| =
|V2| = . . . = |Vk| = m. This assumption is valid because we can take the set with the maximum number of vertices, denoted
maxV , and “pad” the parts of the graph with fewer than maxV vertices by adding extra vertices that are unconnected
(thereby not affecting the size of any potential clique). Consequently, the total number of vertices is m · k.

The reduction constructs a model f , which is an ensemble of decision trees, in the following manner: Initially, each vertex
is associated with a unique binary string of length log(m), ensuring that vertices of the same color have different strings.
We then iterate over pairs of distinct colors, ranging from 1 ≤ i < j ≤ k. For each pair, we create a tree fi,j , which is a
complete binary tree with a depth of 2log(m). This tree comprises features xi

1, x
i
2, . . . , x

i
log(m) (representing all possible

assignments for the tree associated with color i) and xj
1, x

j
2, . . . , x

j
log(m) (representing all possible assignments for the tree
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associated with color j). Each of the 2log(m) nodes in the tree corresponds to an assignment of all features of xi and xj .
Each terminal node in the tree, which corresponds to some path, represents a pair of vertices in colors i and j. If there is an
edge between these two vertices, this terminal node is marked with a 1 (a “True” assignment); if not, it is marked with a 0 (a
“False” assignment).

Now, for each constructed tree (totaling
(
k
2

)
trees), we also construct an additional “dummy” tree that consistently returns

“False” (assignment 0). Consequently, the total number of trees in the constructed ensemble is
(
k
2

)
· 2.

We initially observe that we can assume the existence of at least one pair of vertices (u, v) from different colors i, j that are
not adjacent (if all pairs were adjacent, there would trivially exist a clique of size k). Therefore, we select an assignment
where fi,j reaches a “False” (0) terminal node. Arbitrary assignments can be chosen for all other features. Let us denote this
complete feature assignment by x. Given that there is at least one tree among the first

(
k
2

)
trees that results in a “False” (0)

classification, and all the additional
(
k
2

)
“dummy” trees are designed to reach a “False” (0) outcome, the majority of trees in

f will classify x as 0. Thus, it is established that f(x) = 0. The final structure of the reduction is ⟨f, x, S := ∅⟩. Notably,
the number of models in f is 2 ·

(
k
2

)
, setting the parameter for the instance ⟨f, x, S := ∅⟩ at k′ := 2 ·

(
k
2

)
, which is within

the bounds of a computable function g(k), thereby maintaining the FPT reduction.

We first note that this reduction operates in FPT time, as the size of f is capped by log(n) · O(k2), which is naturally
bounded by O(g(k) · nk) for some computable function g. We will now demonstrate that a multi-colored clique of size k or
greater exists in G if and only if S := ∅ is not a sufficient reason with respect to ⟨f, x⟩.

Assume there exists a multi-colored clique of size k, denoted as G′, within G. This implies that for any two vertices u, v in
G′, (u, v) ⊆ E. Given that no edges exist between vertices of the same color, selecting two distinct colors i, j ensures that
there is at least one edge connecting a vertex from color i to a vertex from color j. Therefore, for each tree fi,j associated
with a pair of two different colors i, j, we can select the corresponding path that aligns with the edge connecting these two
vertices, and which terminates at a “True” (1) leaf node, as per our construction.

We will now prove that when we select these specific paths, any two pairs of distinct paths “match”. This occurs due to the
following reason: Consider two paths chosen from two distinct trees. Initially, assume the first tree fi,j is associated with
a pair of colors i, j and the second tree fk,l is associated with a pair k, l, where i ̸= j ̸= k ̸= l. Since the features of the
tree fi,j are not shared with those of the tree fk,l, any two paths from these trees “match” (they do not conflict over any
feature assignment). The more complex scenario arises when two distinct trees, fi,j and fj,k, involve the colors i, j and
j, k, where i ̸= j ̸= k. In this case, the features corresponding to i, k are different, but those associated with color j are
shared. However, because a clique of size k in a k-partite graph includes exactly one vertex from each color, the vertex
corresponding to color j associated with the paths chosen for both fi,j and fj,k is the same. Consequently, the binary string
representing the path associated with these features is identical, ensuring these two paths do not conflict over any feature
assignment. Thus, in any scenario, any pair of distinct paths selected in this manner for these trees “match”.

Therefore, we can assign each of the features in these paths to their respective values within the path. This is feasible
because all these paths “match” and have no conflicting assignments. Given that all of these trees are complete, all features
can be assigned (i.e., this constitutes a full assignment, not a partial one). We will denote this assignment by z ∈ F. As
previously noted, and according to our construction, all of these paths terminate at a “True” (1) leaf node. Consequently,
the assignment z results in the first

(
k
2

)
trees receiving a (1) assignment. Since exactly half of the trees in the ensemble are

assigned a value of 1, the overall classification by f is 1. In summary, there exists an assignment z for which:

∃z ∈ F [f(z) = 1 ̸= f(x) = 0] (117)

If no clique of size k exists in G, then any subgraph G′ of G containing k vertices is not a clique. Consider such a subgraph
G′ with k vertices. Since it is not a clique, this means there must be at least one pair of vertices (u, v) within it that are not
connected by an edge.

Consider some assignment z ∈ F. When examining the specific path associated with fi,j(x) (for 1 ≤ i, j ≤ k), it follows a
designated path leading to a specific terminal node of the tree fi,j . Additionally, any pair of distinct paths from two distinct
trees associated with z necessarily “match” (since otherwise, they would not correspond to a non-contradicting assignment).
Suppose, for the sake of contradiction, that each of these paths ends at a “True” (“1” classification) node.

For each tree fi,j , we can identify the pair of vertices (u, v) that correspond to the path representing the binary string of that
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path. This involves selecting vertices (u, v) associated with two distinct colors i, j. Consequently, this specific assignment z
gives rise to a subgraph G′, which includes at least one vertex from each color (since every tree fi,j is associated with two
vertices —– one for each color). However, we will now prove that there must be exactly one vertex from each color in G′.
Assume, for the sake of contradiction, that there are two vertices v1, v2 of the same color i in G′. Since v1, v2 are in G′,
there exist (without loss of generality) two distinct trees fi,j and fi,k where i ̸= k, and the path associated with fi,j includes
vertex v1, while the path associated with fi,k includes vertex v2. This configuration implies that the paths for fi,j and fi,k
do not “match” (as the vertex chosen for color i in these two trees differs and is associated with a different binary string).

We have established that G′, the graph associated with a specific assignment z, contains exactly one vertex from each color
in G, and therefore has a size of k. From the assumption of this direction in the reduction, this indicates that G′ is not a
clique. Consequently, this also means there must be two vertices (u, v) from two different colors i ̸= j where (u, v) ̸⊆ E.
In terms of our reduction construction, this means that examining fi,j , the binary string associated with vertices u, v leads to
a “False” (0) terminal node, which contradicts our initial assumption.

Thus, we have demonstrated that if there is no clique in G of size k, then for any arbitrary assignment z, not all of the first
⌈
(
k
2

)
⌉ trees in f receive a 1 assignment. In simpler terms, at least one tree receives a 0 assignment. Consequently, in the

ensemble, any assignment results in at least ⌈
(
k
2

)
⌉+ 1 trees being assigned 0, ensuring that the ensemble classification is

always 0. In other words:

∀z ∈ F [f(z) = 0 = f(x)] (118)

This indicates that S := ∅ is a sufficient reason with respect to ⟨f, x⟩, thereby concluding our reduction.

Lemma K.3. The CC query for a k-ensemble of decision trees is #W[1]-Complete.

Proof. We note that the CC query is the counting version for the CSR query, for which we already proved coW[1]-
Completness. The proofs of membership and hardness where from the k-Clique, and k-Multicolored-Clique problems. It is
well known that the counting version of k-Clique is #W[1]-Complete (Flum & Grohe, 2004). Moreover, there exist FPT
reductions to and from k Multi-Color Clique to k-Clique, which shows us that Multicolored clique is also #W[1]-Complete.
Finally, we arrive at that the CC query for a k ensemble of decision trees is #W[1]-Complete.

Lemma K.4. The MCR query for a k-ensemble of decision trees is W[1]-Hard and in W[P].

Proof. Hardness. Specifically, the hardness results are consistent with those presented by (Ordyniak et al., 2024). However,
we can also directly prove hardness by presenting a reduction from the previous (complement of) the CSR problem for
ensembles of decision trees, which we have shown to be coW[1]-Complete (via FPT reductions from k-Clique and k-
Multicolored Clique), which will prove hardness beyond majority-voting ensembles. The complement of the CSR problem
is equivalent to validating whether, given some f, x, and a subset S, it can be checked whether S is not a sufficient reason
for ⟨f, x⟩. This is equivalent to checking whether S is a contrastive reason for ⟨f, x⟩.

Hence, given an instance ⟨f, x, S⟩, we can apply Lemma 11, which states that ensembles of decision trees are closed under
conditioning. We will condition f on xS to construct f ′. The resulting model f ′ will have |S| features, and it holds that:

∀z ∈ F [f ′(zS̄) = f(xS ; zS̄)] (119)

Now, given the instance ⟨f, x, S⟩, the reduction will construct: ⟨f ′, x, k := |S|⟩. If S is not a sufficient reason for ⟨f, x⟩,
this implies that S is a contrastive reason for ⟨f, x⟩, and therefore:

∃z ∈ F [f(xS ; zS̄) ̸= f(x)] (120)

This further implies that:

∃z ∈ F [f ′(zS̄) = f(xS ; zS̄) ̸= f(x) = f ′(xS̄)] (121)
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which indicates that S is a contrastive reason for ⟨f ′, x⟩. Therefore, there exists a contrastive reason of size |S| for ⟨f ′, x⟩.
If we assume that S is a sufficient reason for ⟨f, x⟩, then it holds that:

∀z ∈ F [f(x) = f(xS ; zS̄)] ⇐⇒
∀z ∈ F [f ′(xS̄) = f(x) = f(xS ; zS̄) = f ′(zS̄)]

(122)

This indicates that S is not a contrastive reason for ⟨f ′, x⟩, and that any subset S′ ⊆ S is also not a contrastive reason for
⟨f ′, x⟩. Hence, it follows that there is no contrastive reason of size |S| or smaller for ⟨f ′, x⟩. This completes the reduction,
thereby proving that the MCR query for an ensemble of k decision trees is W[1]-Hard.

Membership. We will prove membership in W[P] by reducing the MCR query for k-ensemble decision trees to the
WCS[Cd,t] problem, as described in Section C. Given an instance ⟨f, x, D⟩, where D represents the size of the contrastive
reason we are looking for, we construct a Boolean circuit C. Although the weft of C is 2 (and could be reduced to 1 with a
more refined construction), its depth will depend on a parameter D and will not be bounded by a constant.

Our reduction begins by creating a modified model f ′ based on the original model f and the input x. Essentially, f and f ′

will maintain the same structure; however, the vector 1n (consisting solely of 1s) in f ′ will correspond to the vector x in f ,
and conversely, the vector ¬x in f will correspond to the vector 0n (consisting solely of 0s) in f ′.

To carry out this construction, we start by replicating f to create f ′. For each decision tree fi in the ensemble f , we examine
every node v within fi. For each node assignment vi ∈ {0, 1} where vi ̸= xi, we reverse the 0 and 1 assignments, with
the typical convention that 1 represents the right branch and 0 the left branch. This flipping will be done such that 1 will
now correspond to the left branch. If vi = xi, we retain the original order. This process is repeated across all paths in
each decision tree of the ensemble. As a result, we generate a new model f ′ where each assignment to a value of xi in f
corresponds to an assignment to 1 in f ′. If f(x) = 1, we can apply the negation principle using Lemma 12 to negate f ′, and
if f(x) = 0, we can leave it as is. Consequently, any vector z ∈ F where f(z) ̸= f(x) translates to a vector z′ ∈ F for which
f ′(z) ̸= 1. Therefore, the problem of determining whether there exists a subset S of size D such that f(xS̄ ; zS) ̸= f(x)
equates to finding a vector z′ ∈ F with D assignments to 1 (i.e., of Hamming weight D) where f ′(z′) ̸= 1.

Now, with f ′ in place, we will develop a Boolean circuit C, as outlined earlier. Specifically, we will create a Boolean circuit
C with a weft of 2 and arbitrary depth, designed to return True if f ′ has a positive assignment of Hamming weight D, and
False otherwise. The construction will proceed through the following steps:

1. In our ensemble of k trees, for each leaf v in every tree f ′
i , we will designate y{v,f ′

i} as an input node in the circuit. We
will consider two input nodes, y{v,f ′

i} and y{v′,f ′
j}, as inconsistent if i = j and v ̸= v′. In such cases, we will introduce

a node: [¬y{v,f ′
i}] ∨ [¬y{v′,f ′

i}], which is equivalent to ¬[y{v,f ′
i} ∧ y{v′,f ′

i}], where both y{v,f ′
i} and y{v′,f ′

i} are input
nodes. This setup essentially encodes the k-Clique problem, except for the final AND encoding involving all input
nodes, which we will address in the last step. Recalling our proof for the CSR query, the reduction to the k-Clique
problem assists in determining whether a positive assignment exists for f ′. We are now tasked with a more challenging
problem: determining whether there is a positive assignment to f ′ with a Hamming weight of d. This necessitates the
inclusion of additional constraints.

2. To this circuit C, currently encoding the Clique problem, we will introduce more nodes. For each feature i ∈ [n], we
will create a new node ui functioning as an OR gate. This node will take inputs from any y{v,f ′

j} where the assignment
represented by the leaf v assigns “True” (i.e., a 1 assignment) to feature i.

3. For the final component, we will add another layer to our circuit. For every 1 ≤ j ≤ n and for every 0 ≤ d′ ≤ D, we
define a variable u{j,d′}. This variable is configured to be set to True if and only if exactly d′ of the features 1, . . . , j
are set to True. Specifically, u{1,0} will take ¬u1 as its input, and u{1,1} will take u1 as its input. All other u{1,d′}
variables are set to False. For j > 1, we construct u{j,d′} to take the input:

[ u{j−1,d′−1} ∧ uj ] ∨ [ u{j−1,d′−1} ∧ ¬uj ] (123)

4. Finally, the output of the circuit is derived from a large AND node that collects inputs from all nodes established in
step 2 and those from step 4 of the form un,d′ , where d′ ranges from 0 to D.
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Since that circuit C effectively encodes a scenario where f ′ receives a positive assignment of Hamming weight D, and
considering that C possesses a weft of 2 and arbitrary depth, we conclude that the MCR query for ensembles of decision
trees is in W[P].

The W[1]-W[P] gap for the MCR query. We note that while we have proven the MCR query for ensembles of decision
trees is W[1]-Hard and belongs to W[P], the exact complexity class for which this problem is complete remains unknown.
Unfortunately, the current definition of the W-hierarchy is not well-suited to capture the complexity of this problem.
Specifically, containment in W[t] for a fixed constant t means that the problem instance at hand should be encoded using a
Boolean circuit of constant depth (as well as weft t), so that the instance at hand is a yes-instance if and only if the circuit has
a satisfying assignment having exactly k variables assigned true, where k is the parameter (or k is bounded by a function of
the parameter) of the instance at hand. We refer to Chapter 13.3 in (Cygan et al., 2015) for more information. However, our
problem involves a “weight measure” d (the Hamming distance) that may be arbitrarily larger than k. In particular, encoding
that a potential solution to the instance at hand assigns true to at most d variables cannot be done with a constant-depth
circuit, as this requires the implementation of a counter.

The problem described above is a fundamental one in the definition of the W-hierarchy in the context of weighted problems
in general, where the desired total weight of the solution is not bounded by the parameter. Indeed, it is not known how to
classify basic W[1]-hard problems in the field such as Weighted k-Clique, where given a vertex-weighted graph, along
with integers k and w, we seek a clique of size exactly k and weight at least/at most W , and the parameter is k. The same
situation holds for problems where the “weight measure” is implicit similarly to our problem, such as the Partial Vertex
Cover problem, where given a (non-weighted) graph G and integers k and t, we seek a set of vertices of size exactly k that
altogether cover at least t edges. From personal communications with other researchers in the field, we have gathered that
the definition and study of a “Weighted W-Hierarchy” can be a topic of independent interest in parameterized complexity,
but this is outside the scope of this paper.

Lemma K.5. The SHAP query for a k-ensemble of decision trees is #W[1]-Hard, and in XP.

proof. Hardness. We begin by proving that this problem is #W[1]-Hard. Our approach follows the proof outlined by (Arenas
et al., 2023), which demonstrates a link between the computation of Shapley values and the model counting problem. First,
we provide a definition of the model counting problem. Given a model f : {0, 1}n → {0, 1}, we denote #f as the number
of assignments where f outputs 1. In other words:

#f := |{z ∈ F, f(z) = 1}| (124)

Now, the work of (Arenas et al., 2023) demonstrates the following relationship when the feature distribution Dp is assumed
to be the uniform distribution, which is a specific case of the fully factorized distribution considered in this paper. For any
f, x, it holds that:

#f := f(x)− 2n ·
∑

i∈{1,...,n}

ϕi(f, x) (125)

This provides direct proof that computing the Shapley value under a uniform distribution (and consequently for the fully
factorized distribution) is as difficult as the model counting problem. It remains to be shown that the model counting problem
for an ensemble of k-decision trees is #W[1]-Complete, when parameterized by k. Since we have already established that
the CC query for a k-ensemble of decision trees is #W[1]-Complete, we can demonstrate an FPT many-one reduction from
the model counting problem to the computation of the CC query.

Given a model f , we start by selecting an arbitrary vector x ∈ F. If f(x) = 1, the reduction calculates the count for
⟨f, x, S := ∅⟩, which we denote as #CC(f, x, S). If f(x) = 0, the reduction computes 2n −#CC(f, x, S). We note that
2n can be computed in polynomial time, as n (representing the number of input assignments) is provided in unary.

The completion count seeks the number of assignments where the complement of S (which, in this case, includes all possible
assignments) results in a classification of 1. Thus, if f(x) = 1, we have #f = #CC(f, x, S), and if f(x) = 0, we have
#f = 2n −#CC(f, x, S), concluding the reduction.
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Membership. We will prove membership in XP by presenting an algorithm that computes Shapley values for ensembles of
k-decision trees in O(|X |k) time. We utilize the following relation, established by (Van den Broeck et al., 2022), concerning
Shapley values under conditional expectations and assuming feature independence. The following relation has been proven:

SHAP(f, i,Dp, x) =P Ez∼Dp
[f(z)] (126)

In other words — the computational complexity of obtaining a Shapley value under this formalization is equivalent
(under polynomial reductions) to the complexity of computing Ez∼Dp[f(z)]. This means we can focus on determining the
complexity of obtaining Ez ∼ Dp[f(z)], which can sometimes be easier to handle.

We now present the following algorithm for computing Ez∼Dp [f(z)] for ensembles of decision trees in O(|X |k) time. The
algorithm iterates over every combination of selecting one path from each tree in the ensemble f . We assume that j of
these selected paths correspond to trees that classify as “1”, while the remaining k − j trees classify as “0”. We first check
whether this selection of j trees f ′

1, . . . , f
′
j that classify as “1” can result in a positive classification for f . For unweighted

majority voting, this is equivalent to verifying whether j ≥ ⌈k2 ⌉, and for weighted voting, it involves checking whether the
weights ϕi associated with each tree f ′i satisfy

∑
1 ≤ i ≤ jϕi > 0.

We can then verify whether each pair of paths chosen from the set of paths across all trees satisfies that any two paths
“match” (i.e., they do not contain any features with conflicting assignments). For each combination of trees, we examine the
partial assignment to all features involved in these paths (there must be only one such assignment since the paths “match”).
In practice, this is equivalent to iterating over all possible positive assignments of the ensemble f . However, we note that
a single iteration over a selection of paths in each tree may yield only a partial assignment to some features, denoted zS′

for some S′ ⊆ [n]. As a result, this assignment corresponds to any assignment of the form (zS′ ; z′
S̄′) for any z′ ∈ F (all of

which are also classified as “1”).

We note that this entire process is bounded by O(mk), where m represents the maximum number of leaves in a tree and k is
the number of trees. This is also bounded by O(|X |O(k)). We now proceed to prove the following claim:

Claim 16. For two distinct partial assignments zS and z′S′ , obtained by iterating through the aforementioned procedure of
selecting j paths in j distinct trees, it holds that there exists a feature i ∈ S, S′ such that zi ̸= z′i.

Proof. Since zS and z′S′ are selected from iterating over two distinct choices of paths from trees, there must be at least one
tree where the paths chosen for zS and z′S′ differ. Any two distinct paths in a tree contain at least one feature with differing
assignments for some feature i. Therefore, based on the previous construction, it follows that there exists at least one feature
i where the partial assignments of zS and z′S′ differ.

By definition, the following sum holds:

Ez∼Dp
[f(z)] =

∑
z∈F,f(z)=1

Dp(z) =
∑

z∈F,f(z)=1

( ∏
i∈[n],zi=1

p(i)
)
·
( ∏
i∈[n],zi=0

(1− p(i))
)

(127)

That is, computing the expectation involves summing each Dp(z) for every positive assignment. Now, assume we have
some partial assignment zS obtained in the previous phase. Since this is only a partial assignment, we need to account for
all possible completions of zS , or, in other words, any vector of the form (zS ; z′S̄). Let the set of all partial assignments
computed using the aforementioned procedure be denoted by S. Since any two partial assignments have a conflicting feature
that does not “match”, there is no “overlap” in the assignment completions corresponding to two distinct partial assignments.
In other words, for two distinct partial assignments zS and z′S′, it holds that for all z′′ ∈ F, (zS ; z′′S̄) ̸= (z′S′; z′′S̄′). This
leads to the following equivalence:

Ez∼Dp
[f(z)] =

∑
zS∈S

( ∑
z′
S̄
∈{0,1}|S|

Dp(zS ; z′S̄)
)

(128)

We do note, however, that for a fixed partial assignment zS , the following holds:
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∑
z′
S̄
∈{0,1}|S|

Dp(zS ; z′S̄) =
∑

z′
S̄
∈{0,1}|S|

( ∏
i∈[n],(zS ;z′

S̄
)i=1

p(i)
)
·
( ∏
i∈[n],(zS ;z′

S̄
)i=0

(1− p(i))
)
=

∑
z′
S̄
∈{0,1}|S|

( ∏
i∈S,zi=1

p(i)
)( ∏

i∈S,zi=0

(1− p(i))
)( ∏

i∈S,z′i=1

p(i)
)( ∏

i∈S,z′i=0

(1− p(i))
)
=

( ∏
i∈S,zi=1

p(i)
)
·
( ∏
i∈S,zi=0

(1− p(i))
) (129)

Overall, we obtain that:

Ez∼Dp
[f(z)] =

∑
zS∈S

( ∏
i∈S,zi=1

p(i)
)
·
( ∏
i∈S,zi=0

(1− p(i))
)

(130)

Hence, after computing S in O(|X |O(k)) time, we can iterate over each partial assignment, compute its corresponding
weight, and sum all the weights to obtain Ez∼Dp[f(z)]. This proves that the complexity of computing Ez ∼ Dp[f(z)] is in
XP.

As explained earlier, this also establishes that the complexity of computing SHAP for some ⟨f, x, i,Dp⟩ is likewise in XP.

We have demonstrated that solving SHAP when Dp represents any fully factorized distribution is #W[1]-Hard and in XP.
However, if we specifically set Dp to the uniform distribution (i.e., where for any i ∈ [n], p(i) = 1

2 ), a specific type of fully
factorized distribution, then this query becomes #W[1]-Complete.

Lemma K.6. Assuming that Dp is the uniform distribution, then the SHAP query for ensembles of k-decision trees is
#W[1]-Complete.

Proof. The hardness is derived directly from our proof concerning fully factorized distributions, assuming a uniform
distribution. For membership, we leverage the analysis by (Arenas et al., 2021b), which demonstrates that when Dp is
uniform, computing SHAP can be polynomially reduced to the problem of model counting (i.e., computing #f ). As outlined
in Proposition K.3, the task of model counting for a k-ensemble of decision trees is #W [1]-Complete. Thus, we conclude
that computing SHAP under the uniform distribution for k-ensembles of decision trees also achieves #W[1]-Complete
status.

L. Proof of Proposition 5.4
Proposition L.1. The MSR query for a k-ensemble of decision trees is para-NP-Hard and is in XNP.

Proof. Hardness. Para-NP hardness is straightforward since the MSR query for a single decision tree is already NP-
Hard (Barceló et al., 2020) and hence is obtained for k = 1.

Membership. For membership in XNP we need to show that there exists a non-deterministic algorithm that solves this
problem in O(|X |k) time. Specifically, we will make use of the minimum-hitting-set (MHS) duality between sufficient and
contrastive reasons to prove this claim (Ignatiev et al., 2020b). First, we will define the MHS:

Definition L.2. Given a collection S of sets from a universe U, a hitting set h for S is a set such that ∀S ∈ S, h ∩ S ̸= ∅. A
hitting set h is said to be minimum when it has the smallest possible cardinality among ll hitting sets.

We note that a subset minimal contrastive (sufficient) reason S of ⟨f, x⟩ is a contrastive (sufficient) reason that ceases to
be a contrastive (Sufficient reason) when any feature i is removef from it. In other words, for all i, it holds that S \ i is
not sufficient (contrastive). We now are in a position to use the following MHS duality between sufficient and contrastive
reasons (Ignatiev et al., 2020b):
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Lemma L.3. The MHS of all subset minimal contrastive reasons with respect to ⟨f, x⟩ is a cardinally minimal sufficient
reason of ⟨f, x⟩. Moreover, the MHS of all subset minimal sufficient reasons with respect to ⟨f, x⟩ is a cardinally minimal
contrastive reason of ⟨f, x⟩.

Now, we describe the following preprocessing stage which runs in time O(|X |k) and computes all of the subset minimal
contrastive reasons of ⟨f, x⟩.
Claim 17. Given an ensemble of decision trees f with k decision trees, there exists an algorithm that computes all of
the subset minimal contrastive reasons of ⟨f, x⟩ in time O(mk), where m denotes the maximal number of leaf nodes in a
decision tree within f .

Proof. We iterate over combinations of choosing one leaf (which corresponds to one path) from every distinct tree in f . This
process can be done in O(mk) time. We check whether two conditions hold. First, we check whether every pair of two
distinct paths that belong to two distinct trees “matches” and whether more than ⌈k2 ⌉ of these trees terminate over a leaf with
a ¬f(x) assignment. For any combination of k distinct paths in which any two paths “match”, it means that there is some
partial assignment zS′ , which describes the corresponding assignments in each one of these paths (there is necessarily one
such assignment since each two paths “match”) and it holds that:

∀y ∈ F [f ′(zS′ ; yS̄′) ̸= f(x)] (131)

We now will denote by S′′, the subset of features in zS′ that do not match with x. More specifically:

S′′ := |{i ∈ {1, . . . S′} zi ̸= xi| (132)

For each combination of k paths, for which the corresponding two conditions hold, we compute S′′. We denote the set of all
such subsets as S. We will now prove the following claim, which will finish the proof of our lemma:

Claim 18. Any subset minimal contrastive reason of ⟨f, x⟩ is contained in S

Proof. Let us assume towards contradiction that this claim does not hold. In other words, there exists a subset S which is
a subset minimal contrastive reason of ⟨f, x⟩ and that is not chosen to be in S by our algorithm. Since S is a contrastive
reason it holds that:

∃z ∈ F [f(xS̄ ; zS) ̸= f(x)] (133)

However, we will prove a stronger property that holds if S is a subset minimal contrastive reason of ⟨f, x⟩. Specifically, it
holds that:

[f(xS̄ ;¬xS) ̸= f(x)] (134)

or in other words the specific vector z for which fixing S to, changes the classification is ¬x. The proof to this claim is
straightforward — let us assume towards contradiction that this is not the case, or in other words, it holds that:

[f(xS̄ ;¬xS) = f(x)] (135)

Since S is a contrastive reason, this means that there exists some other assignment to the features of S (which is not ¬x,
which causes the classification to change. In other words, there exists some y ̸= ¬x for which:

[f(xS̄ ; yS) ̸= f(x)] (136)

Since y ̸= ¬x over the features in S, this means that there is at least one feature i ∈ S for which yi = xi. Let us now denote
S0 := S \ {i}. We hence get that:
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[f(xS̄ ; yS) = f(xS̄0
;¬xS0

) ̸= f(x)] (137)

This implies that S0 is a contrastive reason of ⟨f, x⟩, hence contradicting the subset minimality of S. This concludes the
proof of this claim, and we hence derive in the fact that since S is a subset minimal contrastive reason of ⟨f, x⟩, it must hold
that:

[f(xS̄ ;¬xS) ̸= f(x)] (138)

We hence can take the assignment (xS̄ ;¬xS) and propagate it through f . The assignment fi(xS̄ ;¬xS) will lead to some
path, for which there are at least ⌈k2 ⌉ which terminate on a ¬f(x) node. These paths, of course “match” (meaning any
pair of two distinct paths “match”), because they correspond to one assignment of features, and hence will be chosen as a
combination of paths by our algorithm.

We recall that our algorithm chooses the partial assignment which assigns a value to each one of the features in each path of
each tree (there exists one such assignment). In our case this will be some partial assignment of (xS̄ ;¬xS). The algorithm
then chooses the subset S′′ which is the subset of features whose values (in our case of (xS̄ ;¬xS)) that are different than
those of x. Hence, it necessarily holds that S′′ ⊆ S.

We note that S′′ is a contrastive reason concerning ⟨f, x⟩, since by construction, it describes a subset of features such that if
we set them to values that are not of x (specifically ¬x), ⌈k2 ⌉ or more trees in the ensemble terminate on a ¬fi(x) assignment.
Since we have proven that S′′ ⊆ S, then it must hold that S′′ = S, since otherwise, this will contradict the subset minimality
of S. We hence derive in the fact that S′′ = S is chosen during our algorithm to be in S, contradicting the assumption that S
is not in S. This concludes the proof that any subset minimal contrastive reason of ⟨f, x⟩ is in S.

We will now use the MHS duality to conclude our proof regarding membership in XNP. We recall that if S is the set
containing all subset minimal contrastive reasons of ⟨f, x⟩, then the MHS of S is the cardinally minimal sufficient reason
of ⟨f, x⟩. We note that if we add to S (which contains all subset minimal contrastive reasons of ⟨f, x⟩ other (non-subset-
minimal) contrastive reasons of ⟨f, x⟩ the MHS of S will remain the same. This is true since the hitting set of any two
subsets S and S′, when S ⊆ S′, is equal to S.

We have proven that the set S that is obtained by our algorithm contains all subset minimal contrastive reasons of ⟨f, x⟩, as
well as perhaps other contrastive reasons. Hence, the MHS of S is a cardinally minimal sufficient reason of ⟨f, x⟩.

Hence, we can simply non-deterministically guess some subset S1 ⊆ {1, . . . , n}, and check whether S1 intersects with all
subsets in S (and hence is the MHS of S, and a cardinally minimal sufficient reason of ⟨f, x⟩. If |S1| ≤ d, our algorithm can
return true, and otherwise, it will return false. Overall, the entire algorithm that we described performs a preprocessing
step in O(mk) time (and hence is bounded by O(|X |k) time), and then performs a non-deterministic step, also bounded by
O(|X |k) time. This concludes the proof that solving the MHS query for an ensemble of k decision trees is contained in
XNP.

M. Proof of Proposition 5.5
Proposition M.1. Obtaining a subset-minimal sufficient reason for a k-ensemble of decision trees is in XP.

Proof. The specific result aligns with a result demonstrated by (Ordyniak et al., 2024). However, we can further establish
this result as a direct extension of the complexity result for the CSR query (Lemma K.2), which will demonstrate this result
not only for majority voting ensembles. To show this, we use a common greedy algorithm that computes a subset-minimal
sufficient reason by invoking a linear number of queries, each checking whether a given subset is a sufficient reason (Ignatiev
et al., 2019a). Intuitively, the algorithm attempts to “free” a feature from the subset S at each iteration, until finally
converging to a subset-minimal sufficient reason.

Lemma K.2 proved that the CSR query for an ensemble of decision trees is in coW[1] (and hence is also in XP). In essesnse,
algorithm M implies that a linear number of queries to the CSR query produces a subset-minimal sufficient reason. It hence,
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Algorithm 2 Greedy Subset Minimal Sufficient Reason Search
Input f , x

1: S ← {1, . . . , n}
2: for each i ∈ {1, ..., n} by some arbitrary ordering do
3: if S \ {i} is a sufficient reason w.r.t ⟨f, x⟩ then
4: S ← S \ {i}
5: end if
6: end for each
7:
8: return S {S is a subset minimal sufficient reason}

directly follows that obtaining some subset minimal sufficient reason for some ⟨f, x⟩ is also in XP.
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