
Towards Tractable Dynamic Decision Making With Circuits

Gabriele Venturato1 Vincent Derkinderen1 Pedro Zuidberg Dos Martires2 Luc De Raedt1,2

1KU Leuven, Belgium
2Örebro University, Sweden

Abstract

A fundamental problem tackled by artificial in-
telligence is decision making under uncertainty
in dynamic environments. For example, a robot
may need to autonomously reason on where to
move (decision) at each time step (dynamic) while
maximising the expected utility of the performed
actions, and taking into account the inherent noisi-
ness of the world (uncertainty). Decision circuits
have been shown to be a useful modelling tool
in such settings, with the caveat that they do not
treat time as a first-class citizen. We repair this
omission by introducing dynamic decision circuits
(DDCs). More specifically, we show how to obtain
DDCs from dynamic decision-theoretic Bayesian
networks via knowledge compilation and how to
perform inference in DDCs using the algebraic
model counting framework — a generalisation of
weighted model counting.

1 INTRODUCTION

Bayesian networks (BNs) have widely been adopted as
the go-to formalism to model real-world processes under
uncertainty [Koller and Friedman, 2009, Russell and Nor-
vig, 2020]. Since their inception [Pearl, 1988], they have
been extended in various ways. In this paper we focus on
their dynamic (i.e., temporal) [Dean and Kanazawa, 1989,
Murphy, 2002] and decision-theoretic [Howard and Math-
eson, 1984] extensions. BNs that are both dynamic and
decision-theoretic have been dubbed dynamic decision net-
works (DDNs) and are capable of modelling a wide range of
problems, including partially observable Markov decision
processes [Russell and Norvig, 2020].

Unfortunately, inference (and by extension learning) in
DDNs is computationally hard. We will mitigate this hard-
ness by means of knowledge compilation [Darwiche and

Marquis, 2002], a state-of-the-art technique to perform in-
ference in BNs. The idea is to compile a BN into a so-called
arithmetic circuit (a computationally hard step), that can
then be evaluated cheaply to compute probabilities.

Our main contribution is the introduction of dynamic de-
cision circuits (DDCs). In the same way arithmetic circuits
represent Bayesian networks, our newly-introduced DDCs
represent dynamic decision networks for the full observ-
ability setting. In order to evaluate DDCs, i.e., to compute
expected utilities, we leverage the algebraic model counting
framework [Kimmig et al., 2017].

Furthermore, we provide an online planning algorithm for
fully observable Markov decision processes (MDPs) that
reduces reasoning to inference on DDCs. We also provide
preliminary experiments and discuss limitations.

2 RELATED WORK

This work takes inspiration from Derkinderen and De Raedt
[2020], who used algebraic model counting with arithmetic
circuits in order to compute expected utilities and maximise
a decision. While their work is restricted to one-shot prob-
lems, we instead consider a setting with multiple decisions
spanning over time, thus tackling MDPs.

In Hoey et al. [1999], compiled structures similar to those
we introduce, were used to solve MDPs. Feng and Hansen
[2002] later extended this approach using forward search
to avoid exploring the whole state space, as we do in our
online algorithm. In contrast to our work, they iteratively
manipulate (smaller) circuits while we create one larger
circuit that we evaluate through bottom-up passes.

Recurrent sum-product-max networks [Tatavarti et al., 2021]
have recently been introduced. Importantly, these circuits
are learned approximately — both the structure and their
parameters — from fully observed data. In our case the DDC
structure is not learned but compiled from a given model.
In addition, we do emphasise the power of algebraic model

Accepted for the 5th Workshop on Tractable Probabilistic Modeling at UAI (TPM 2022).

mailto:<gabriele.venturato@kuleuven.be>?Subject=On your TPM2022 paper

Mt−1

Ht−1

Mt

Ht

Ut
ht−1 mt−1 P (ht|ht−1,mt−1)

T T 0.2
T F 0.2
F T 0.5
F F 0.8

ht mt Ut

T T −4
T F −3
F T −1
F F 4

Figure 1: Dynamic decision network (DDN) for Example 1.

counting, which we envision will allow learning parameters
from partially observed data with the gradient semiring.

3 PRELIMINARIES

We use upper case symbols to denote random variables,
lower case for their instantiation, and bold for sets of vari-
ables. Moreover, we focus on discrete random variables and
assume w.l.o.g. that they are Boolean, i.e., X is x or ¬x.

3.1 DYNAMIC DECISION NETWORKS

Decision networks [Howard and Matheson, 1984] are a
class of probabilistic graphical models for decision making1.
They are Bayesian networks enriched with additional node
types for decisions (rectangles) and utilities (diamonds).

Dynamic decision networks (DDNs) [Kanazawa and Dean,
1989] are decision networks that explicitly involve time and
that are usually represented as a transition from time t−1 to
time t where the Markovian property is assumed — i.e., the
future is independent from the past given the present.

Example 1 (Monkey) The DDN depicted in Figure 1 in-
volves a monkey named Abu who is trying to hit (H) you
with some suspicious mud. You can decide to move (M) or
not. Your decision and your state — that is, if you have been
hit previously or not — influence the next state. If you get hit,
Abu celebrates and it is less likely you will get hit in the next
time step. On the other hand, if he misses he gets angrier
and focusses more on his task, increasing the probability
to hit you. Of course moving decreases the probability of
being hit. There is a utility (U) associated with every state
and decision. For example, moving requires energy even if
you did not get hit, while the best reward is when you both
do not move and do not get hit.

Like in Bayesian networks, each probabilistic node has a
1They are often also called “influence diagrams”. We follow

Russell and Norvig [2020]’s choice of using decision networks
because it is a more descriptive term.

conditional probability table (CPT). In addition, we associ-
ate with each utility node a conditional utility table (CUT).
We assume w.l.o.g. that there is only one utility node and
hence one CUT. Finally, to fully express a dynamic decision
problem we need a starting state. This is the prior network,
which is the transition network without the previous time
step, e.g., in this case we can start with P (H0=¬h) = 1.

3.2 ALGEBRAIC MODEL COUNTING

Algebraic model counting [Kimmig et al., 2017] is a gener-
alisation of weighted model counting (Appendix A.1).

Definition 1 (Algebraic model counting (AMC)) Given
a commutative semiring S = (A,⊕,⊗, e⊕, e⊗), a pro-
positional logic theory T over a set of variables V , and a
labelling function α : L 7→ A, mapping literals L of the
variables in V to values from the semiring domain A, the
task of algebraic model counting is to compute:

AMC(S, T, α) =
⊕

m∈M(T)

⊗
`∈m

α(`). (1)

whereM(T) is the set of models of T .

Many problems, such as sensitivity analysis and gradient
computation, can be tackled defining the appropriate semir-
ing and labelling function [Kimmig et al., 2017]. We exploit
this in Section 4.

Algebraic model counting is in general #P-complete. How-
ever, via knowledge compilation, the logical theory can first
be compiled into an appropriate circuit such that counting
becomes tractable — in the size of the circuit.

4 DYNAMIC DECISION CIRCUITS

We devise dynamic decision circuits with two principles
in mind. First, we want to exploit the repetition over time:
because the transition function is stationary, we can com-
pile it into a circuit only once, and re-use it at each time
step. This avoids the circuit exponentially exploding over
the future lookahead [Vlasselaer et al., 2016]. Second, the
evaluation of the circuit should correspond to a Bellman
update. This means that an infinite lookahead leads to an
optimal policy [Bellman, 1957].

In order to make optimal decisions we must compute the
maximum expected utility (MEU). In the dynamic context,
the utility is given not only by the reward at the current
time step t, but also by the reward expected from the future.
Namely, for a given state x and decisions d taken in x, we
have the expected utility:

Ut(x,d) = CUTu|x,d +MEUt+1(x,d) (2)

2

where CUTu|x,d is the value in the corresponding node’s
conditional utility table, and

MEUt(x,d) = max
d′

∑
x′

P (x′|x,d)Ut(x
′,d′) (3)

is the maximum expected utility achievable from taking
the decision d on state x, and in which P (x′|x,d) stands
for P (Xt=x′|Xt−1=x,Dt−1=d). These equations corres-
pond to the Bellman equations. Specifically, Equation 3
corresponds to the Q-function, where CUTu|x,d is the im-
mediate reward, and the recursive call MEUt+1 is the max-
imum expected reward that can be obtained from the future.

Given a dynamic decision network, we want to produce a dy-
namic decision circuit which exploits algebraic model count-
ing in order to make decisions in a tractable way. Namely,
such that Equation 3 can be computed as follows.

MEUt(x,d) = AMC(Smeu,∆|x,d, αt) (4)

In this equation, Smeu is the semiring used by Derkinderen
and De Raedt [2020] to compute the maximum expected
utility (see Appendix A.2). However, because we consider
multiple decisions spanning over time, we have to define the
circuit ∆|x,d representing the transition, and the labelling
function αt. We do this in the following two sections.

4.1 KNOWLEDGE COMPILATION

The second element of the AMC call in Equation 4 is the
circuit ∆|x,d, short for ∆|Xt−1=x,Dt−1=d. Specifically, it
is the circuit representing the transition from time step t−1
to time step t, where we fix the previous state Xt−1 =x and
the previous decision Dt−1 =d.

In order to obtain such a circuit from the dynamic decision
network (input), we first encode the network into a logic the-
ory T . Afterwards, T is (knowledge) compiled into a circuit
∆. For the encoding, we take inspiration from Darwiche
[2003] and adapt it to a DDN. The adaptation is straightfor-
ward, therefore we will explain it encoding Example 1.

Example 2 (Encoding for the Monkey DDN) We use the
subscript “−1” to indicate variables from the previous time
step (t−1), and no subscript to indicate those in the current
time step (t). Moreover, we use indicator variables λs and
network parameters θs as in the original work.

λm−1
↔ θm−1

, λh−1
↔ θh−1

, λm ↔ θm

λh ↔ (λh−1
∧ λm−1

∧ θh|h−1,m−1
)

∨(λh−1
∧ λ¬m−1

∧ θh|h−1,¬m−1
)

∨(λ¬h−1
∧ λm−1

∧ θh|¬h−1,m−1
)

∨(λ¬h−1
∧ λ¬m−1

∧ θh|¬h−1,¬m−1
)

Trans.

θu|h,m ↔ λh ∧ λm
θu|h,¬m ↔ λh ∧ λ¬m
θu|¬h,m ↔ λ¬h ∧ λm
θu|¬h,¬m ↔ λ¬h ∧ λ¬m

Utilities

The use of Smeu for decision making is only valid in a
context where the variable ordering is constrained, as the
associativity property does not hold in general [Derkinderen
and De Raedt, 2020]. For the compilation process, we will
therefore target circuits of the class X-constrained SDD [Oz-
tok et al., 2016], which allows us to enforce the ordering
constraint.

4.2 LABELLING

The third and last element of the AMC call in Equation 4
is the labelling function αt which is recursively defined on
time as follows.

Definition 2 (Labelling function αt) Let us denote with L
the set of literals of a circuit ∆ representing the transition
from one time step to the next, of a dynamic decision process.
The labelling function αt : L 7→ (p, eu,D), for the Smeu

semiring — where p is a probability, eu is a utility value,
and D is a set of decisions —is defined as follows for every
possible instantiation x of X, and d of D.

αt(λ`) = (1, 0, ∅) ∀` ∈ L
αt(θd) = (1, 0, {d}) ∀d ∈ d

αt(θx|Pa(X)) = (CPTx|Pa(X), 0, ∅) ∀x ∈ X,X ∈ X

αt(θx|x−1,d−1
) = (CPTx|x−1,d−1

, 0, ∅) ∀x ∈ x

αt(θu|x,d) = (1, Ut(x,d), ∅)

where Pa(X) is the set of parents of X , and Ut(x,d) from
Equation 2 can be re-written as

Ut(x,d) = CUTu|x,d +AMC(Smeu,∆|x,d, αt+1)

The way the labelling function α assigns values is simple.
The probabilities originate from the corresponding CPTs,
and when there is no probability for that parameter (λ`, θd,
and θu|x,d), the neutral value 1 is used as to not influence
the probability calculations. For the utilities it is always 0,
except for θu|x,d. Finally, for the decisions it is always ∅,
except for the decision parameters θd. This allows the Smeu

semiring to keep track of the best set of decisions in that
(sub)circuit.

Note that, since AMC returns a triple, the final usage must
select the proper component. For example, in Equation 4
we are interested in the expected utility, that is the second
component of the result returned by the AMC call.

5 EXPERIMENTS

Dynamic decision circuits can be used in an online planning
algorithm to retrieve the next best action — Algorithm 1 in
Appendix A.4 provides the pseudocode for such integration.

3

Table 1: Compilation time, size of the circuit, and average time per action with respect to the horizon length.

Model KC (s) |∆| Horizon (s)
0 1 2 3 4

monkey 0.007 637 0.001± 0 0.008± 0 0.036± 0 0.146± 0 0.589± 0
row 0.053 5 968 0.007± 0 0.061± 0 0.258± 0 1.428± 0.6 7.555± 3.4
grid 0.786 95 325 0.015± 0 0.524± 0.1 6.888± 2.6 64.520± 26.9 591.472± 225.1

Table 2: Compilation time, circuit size, and average time per
action with respect to the size of a grid model, with fixed
horizon (H = 1).

n KC (s) |∆| Act (s)

2 0.27 49 969 0.55± 0
3 2.98 226 845 0.72± 0.1
4 97.64 9 177 175 1.36± 0.3
5 out of memory —

Notice that, in this way, the planning process is exact. How-
ever, to stop the unbounded recursion in the labelling func-
tion, we need to limit the lookahead horizon. All the defin-
itions given in Section 4 can be easily adapted to stop the
recursion at the appropriate depth. For simplicity, we also
do not use any discount factor — despite being common
practice in these type of problems — but it can be easily
added to the labelling definition where the recursive call
happens.

We implemented the online planning algorithm and we de-
signed two sets of preliminary experiments in order to val-
idate it.

The first set aims at confirming the correctness and verifying
how the solution scales with respect to the future lookahead
horizon length. We tested our solution on three models:
monkey, encoding Example 1; row encoding a row of five
cells where the agent can either move (left or right) or stay,
and it collects some utility along the way; grid encoding a
3×3 grid world where the agent can move and collect utility.
Results are reported in Table 1. Bold numbers represent
the horizon length on which the agent starts to follow the
optimal policy. We can see that there are still some scalabil-
ity issues due in part to the size of the circuit which slows
down the evaluation. However we plan to explore sampling
to reduce the search space.

The second set of experiments aims at verifying how the
solution scales with respect to the problem size, given a
fixed horizon (H = 1). We created an n×n grid-like
model, parametric on the size of the grid. The results are
reported in Table 2. We can see that the compilation has
scalability issues as well. This is an already known problem
in literature, however, there are some techniques we will
investigate that might alleviate it [Shen et al., 2018, Choi

et al., 2022].

The experiments have been run on a machine with an In-
tel(R) Xeon(R) CPU E3-1225 v3 @ 3.20GHz and 24GB of
memory.

6 CONCLUSIONS

This work introduced and verified that dynamic decision
circuits are a useful tool to make dynamic decisions. There
are still some scalability issues, in particular, using know-
ledge compilation only partially alleviate the intrinsic cost
of dynamic decision problems. Therefore, as next step we
will focus on introducing an approximation — MCTS-
like [Browne et al., 2012] — to prune the search space and
thus alleviate the cost for the future lookahead. In addition,
we will investigate in more detail the connections between
dynamic decision circuits and other circuit-based MDP solv-
ers. The fact we represent the problem with a circuit let
us exploit all the existing machinery already available for
circuits in literature [Vergari et al., 2021].

Moreover, an important novelty is that we inherit — almost
for free — the ability to learn utilities from Derkinderen and
De Raedt [2020]. In fact, utilities do not change over time,
therefore we will be able to adapt the learning procedure to
the dynamic setting with just minor changes.

Finally, in the future we will also focus on extending the
work to partially observable decision processes.

Acknowledgements

This work was partially supported by the KU Leuven
Research Fund (C14/18/062), the Research Foundation-
Flanders (FWO, 1SA5520N), the Flemish Government un-
der the “Onderzoeksprogramma Artificiële Intelligentie (AI)
Vlaanderen” programme, the EU H2020 ICT48 project
“TAILOR” under contract #952215, and the Wallenberg
AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation.

References

Richard E. Bellman. Dynamic Programming. Princeton
University Press, 1957. ISBN 978-0-691-14668-3.

4

C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I.
Cowling, P. Rohlfshagen, S. Tavener, D. Perez, S. Sam-
othrakis, and S. Colton. A Survey of Monte Carlo Tree
Search Methods. IEEE Transactions on Computational
Intelligence and AI in Games, 4(1):1–43, March 2012.
ISSN 1943-0698. doi: 10.1109/TCIAIG.2012.2186810.

Yoojung Choi, Tal Friedman, and Guy Van Den Broeck.
Solving Marginal MAP Exactly by Probabilistic Circuit
Transformations. In Proceedings of The 25th Interna-
tional Conference on Artificial Intelligence and Statistics,
pages 10196–10208. PMLR, May 2022.

Adnan Darwiche. A differential approach to inference in
Bayesian networks. Journal of the ACM, 50(3):280–
305, May 2003. ISSN 0004-5411. doi: 10.1145/765568.
765570.

Adnan Darwiche and Pierre Marquis. A Knowledge Com-
pilation Map. Journal of Artificial Intelligence Research,
17:229–264, September 2002. ISSN 1076-9757. doi:
10.1613/jair.989.

Thomas Dean and Keiji Kanazawa. A model for reasoning
about persistence and causation. Computational Intel-
ligence, 5(2):142–150, 1989. ISSN 1467-8640. doi:
10.1111/j.1467-8640.1989.tb00324.x.

Vincent Derkinderen and Luc De Raedt. Algebraic Cir-
cuits for Decision Theoretic Inference and Learning. In
Proceedings of the 24th European Conference on Arti-
ficial Intelligence, volume 325, pages 2569–2576. IOS
Press, January 2020. ISBN 978-1-64368-100-9. doi:
10.3233/FAIA200392.

Zhengzhu Feng and Eric A. Hansen. Symbolic heur-
istic search for factored Markov decision processes. In
Eighteenth National Conference on Artificial Intelligence,
pages 455–460, USA, July 2002. American Association
for Artificial Intelligence. ISBN 978-0-262-51129-2.

Jesse Hoey, Robert St-Aubin, Alan Hu, and Craig Boutilier.
SPUDD: Stochastic planning using decision diagrams.
In Proceedings of the Fifteenth Conference on Uncer-
tainty in Artificial Intelligence, UAI’99, pages 279–288,
San Francisco, CA, USA, July 1999. Morgan Kaufmann
Publishers Inc. ISBN 978-1-55860-614-2.

Ronald A. Howard and James E. Matheson. Influence dia-
grams. Readings on Principles and Applications of De-
cision Analysis, II(Menlo Park, CA: Strategic Decisions
Group):721–762, 1984.

Keiji Kanazawa and Thomas Dean. A model for projec-
tion and action. In Proceedings of the 11th International
Joint Conference on Artificial Intelligence - Volume 2,
IJCAI’89, pages 985–990, San Francisco, CA, USA, Au-
gust 1989. Morgan Kaufmann Publishers Inc.

Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt.
Algebraic model counting. Journal of Applied Logic, 22:
46–62, July 2017. ISSN 1570-8683. doi: 10.1016/j.jal.
2016.11.031.

Daphne Koller and Nir Friedman. Probabilistic Graphical
Models: Principles and Techniques - Adaptive Computa-
tion and Machine Learning. The MIT Press, 2009. ISBN
978-0-262-01319-2.

Kevin Patrick Murphy. Dynamic Bayesian Networks: Rep-
resentation, Inference and Learning. PhD thesis, Univer-
sity of California, Berkeley, 2002.

Umut Oztok, Arthur Choi, and Adnan Darwiche. Solving PP
PP -Complete Problems Using Knowledge Compilation.
In Fifteenth International Conference on the Principles of
Knowledge Representation and Reasoning, March 2016.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann,
September 1988. ISBN 978-1-55860-479-7.

Stuart Russell and Peter Norvig. Artificial Intelligence: A
Modern Approach. Pearson, Hoboken, 4th edition edition,
April 2020. ISBN 978-0-13-461099-3.

Yujia Shen, Arthur Choi, and Adnan Darwiche. Conditional
PSDDs: Modeling and Learning With Modular Know-
ledge. Proceedings of the AAAI Conference on Artificial
Intelligence, 32(1), April 2018. ISSN 2374-3468. doi:
10.1609/aaai.v32i1.12119.

Hari Tatavarti, Prashant Doshi, and Layton Hayes. Data-
Driven Decision-Theoretic Planning using Recurrent
Sum-Product-Max Networks. Proceedings of the Interna-
tional Conference on Automated Planning and Schedul-
ing, 31:606–614, May 2021. ISSN 2334-0843.

Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso,
and Guy Van den Broeck. A Compositional Atlas of
Tractable Circuit Operations for Probabilistic Inference.
In Advances in Neural Information Processing Systems,
volume 34, pages 13189–13201. Curran Associates, Inc.,
2021.

Jonas Vlasselaer, Wannes Meert, Guy Van den Broeck, and
Luc De Raedt. Exploiting local and repeated structure
in Dynamic Bayesian Networks. Artificial Intelligence,
232:43–53, March 2016. ISSN 0004-3702. doi: 10.1016/
j.artint.2015.12.001.

A APPENDIX

In this appendix we provide some definitions which are not
fundamental to understand the paper but might help to have
a clearer picture.

5

A.1 WEIGHTED MODEL COUNTING

Weighted model counting (WMC) is an extension of the
famous satisfiability (SAT) problem, where each literal has a
weight assigned. In contrast to SAT, which checks if a theory
admits a model, WMC requires computing the weighted
sum of its models.

Definition 3 (Weighted model counting (WMC)) Given
a propositional logic theory T over a set of variables V ,
and a weight function w : L 7→ R, defined for all literals L
in T . The task of weighted model counting is to compute:

WMC(T,w) =
∑

m∈M(T)

∏
`∈m

w(`) (5)

A.2 MAXIMUM EXPECTED UTILITY SEMIRING

Making decisions require to compute the maximum expec-
ted utility (MEU). In order to do so, with AMC, we will use
the semiring Smeu [Derkinderen and De Raedt, 2020].

Definition 4 (Smeu) The maximum expected utility semir-
ing Smeu = (A,⊕,⊗, e⊕, e⊗) is defined as follows. Given
the set of literals L of a propositional logic theory T , and
D ⊂ L the set of literals representing decisions,

{α(`) = (p`, eu`,D`) | ` ∈ L} ⊂ A,

where p` is the probability of ` and eu` is its expected utility.
Moreover, D` = {`} if ` ∈ D, or D` = ∅ otherwise. Given
a = (p, eu,D) ∈ A and a′ = (p′, eu′,D′) ∈ A,

a⊕ a′ =

{
max(a, a′) if D 6= D′

(p+ p′, eu+ eu′,D) otherwise

a⊗ a′ = (p · p′, p · eu+ p′ · eu′,D ∪D′)
e⊕ = (0, 0, D)

e⊗ = (1, 0, ∅)

where,

max(a, a′) =


a if a′ = e⊕

a′ if a = e⊕

a if eu
p ≥

eu′

p′

a′ otherwise

Notice that while the MEU task requires three operations
(sum, product and max), a semiring is a structure with only
two. Therefore, the ⊕ operation is dynamically defined: if
the two operands have the same decision set D, it means
we just have to perform the summation; otherwise, it means
there is a decision to be made, thus, we perform a maxim-
isation.

A.3 LABELLING FOR THE MONKEY
ENCODING

The following example provides an example of labelling, as
described in Section 4.2, for the Example 1.

Example 3 (Labelling for the Monkey encoding) To cla-
rify the idea, we continue the Monkey example, providing
the labelling for time step t = 0. At the starting point the
model simplifies as described in Section 3.1, thus we do not
need to label anything related to the previous time step.

α0(λm) = α0(λh) = α0(λ¬m) = α0(λ¬h) = (1, 0, ∅)
α0(θh) = α0(θ¬h) = (0.5, 0, ∅)
α0(θm) = (1, 0, {m}) α0(θ¬m) = (1, 0, {¬m})
α0(θu|h,m) = (1,−4 +AMC(Smeu,∆|h,m, α1), ∅)
α0(θu|h,¬m) = (1,−3 +AMC(Smeu,∆|h,¬m, α1), ∅)
α0(θu|¬h,m) = (1,−1 +AMC(Smeu,∆|¬h,m, α1), ∅)
α0(θu|¬h,¬m) = (1, 4 +AMC(Smeu,∆|¬h,¬m, α1), ∅)

A.4 ONLINE PLANNING ALGORITHM

Online algorithms for planning alternate a planning phase,
where the agent find the next best action2, reasoning on the
model of the environment, and an execution phase, where
the best action found is executed in the environment and a
new state is reached. They are generally more efficient than
offline algorithms because instead of providing a(n optimal)
policy — i.e., a mapping from a state to the (best) action in
that state — for every possible state, they explore only what
is reachable from the starting point.

This is the pseudocode for the online planning algorithm us-
ing dynamic decision circuits to find the best next decision.

Algorithm 1 Online planning algorithm

1: procedure ONLINEPLANNING(s,∆)
2: steps← 0
3: while steps < MAX do
4: a← NEXTACTION(s,∆)
5: s′ ← EXECUTE(s, a,∆)
6: s← s′

7: steps← steps+ 1
8: end while
9: end procedure

10: procedure NEXTACTION(s,∆)
11: _, _, d← AMC(Smeu,∆|s, α0, H)
12: return d
13: end procedure

It takes as input the initial state s, and the circuit ∆. The
number of steps the agent can perform in the environment

2In planning the term “action” is commonly used instead of
“decision”. We use them interchangeably.

6

is limited by a constant. We omit the pseudocode for the
execution procedure because it is not relevant to our purpose.
The hyper-parameter H limits the future lookahead horizon.

7

	Introduction
	Related Work
	Preliminaries
	Dynamic Decision Networks
	Algebraic Model Counting

	Dynamic Decision Circuits
	Knowledge Compilation
	Labelling

	Experiments
	Conclusions
	Appendix
	Weighted model counting
	Maximum expected utility semiring
	Labelling for the Monkey encoding
	Online Planning Algorithm

