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ABSTRACT

Peters et al. (2016) introduced the problem of invariant modeling. In this problem,
we observe feature/outcome data from multiple environments and our goal is to
identify a set of invariant features, those that maintain a stable predictive rela-
tionship with the outcome. Identifying such features is important for robust gen-
eralization to new environments and for uncovering causal mechanisms. While
previous methods primarily tackle this problem through hypothesis testing or reg-
ularized optimization, we take a Bayesian approach. We develop a probabilistic
model of multi-environment data where the indices of the invariant features are en-
coded as a latent variable. Under the data-generating assumptions as Peters et al.
(2016), we show that posterior inference in our model targets the true invariant fea-
tures. We prove that this posterior is consistent and we provide theoretical results
about the posterior contraction rate. In particular, we show that, under a certain
metric, greater heterogeneity among environments leads to a faster contraction of
the posterior. When the number of features is large, we design an efficient vari-
ational inference algorithm to approximate the posterior. In both simulations and
real-world data, we show that Bayesian invariance is more accurate and scalable
than existing approaches.

1 INTRODUCTION

An important goal of statistics is to identify features that have stable effects on the outcome of inter-
ests across varying settings, which is crucial for building robust prediction models and uncovering
causal mechanisms. To achieve this goal, Peters et al. (2016) leverages the invariance idea when
given access to data collected from multiple environment. In this setting, each environment e ∈ E
indexes a unique joint distribution pe(x, y) of the features x ∈ Rp and the outcome y, where p is the
feature dimension and E is the set of all environments of interest. They assume the existence of a
subset of features x∗ ⊂ x such that the conditional distribution pe(y | x∗) remains the same across
environments. We call these features x∗ the invariant features.

To identify these features, previous methods primarily focus on enforcing some invariance property
on the conditional model of y given candidate invariant features. For example, Peters et al. (2016)
proposed a hypothesis testing framework, and Fan et al. (2023) formulated a linear regression objec-
tive with a regularization term on the model residuals. However, these approaches lack a principled
characterization of the underlying data generative process. Moreover, they often struggle to scale to
high-dimensional settings.

In this work, we propose an alternative perspective by modeling the joint distribution of features and
outcome through a generative process that incorporates the invariance assumption. In our data gen-
erative process, we begin with a latent variable z ∈ {0, 1}p that selects a candidate set of invariant
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features xz := {x(i) : z(i) = 1} associated with a prior p(z). Given z, each environment’s data
x, y is drawn from an environment-specific likelihood model that encodes an invariance property.
Specifically, the conditional distribution of y given selected features xz is assumed to be invariant
across environments, while the distribution of the selected features xz and that of the de-selected
features x−z := {x(i) : z(i) = 0} conditioned on others are allowed to vary.

We estimate the invariant features through posterior inference on the latent variable z. While our
model involves the joint distribution of x, y, we derive a simplified posterior expression that only re-
quires conditional modeling of y given xz within each environment and across pooled environments.
This simplification enhances the computational efficiency while maintaining theoretical rigor.

Our theoretical results show that the posterior distribution is consistent. Moreover, we characterize
the posterior contraction rate and reveal factors that influence the rate including the prior specifica-
tion and the heterogeneity level of environments.

In high-dimensional settings, we develop a variational inference algorithm to approximate the pos-
terior of z. By optimizing a variational objective, our approach avoids the exponential complexity
of exact inference and previous methods.

We validate our theoretical findings through extensive simulations. Additionally, We compare our
method against existing works in both simulated and real-world gene-perturbation datasets (Kem-
meren et al., 2014). Our results show that our approach, particularly when combined with variational
inference, outperforms existing methods in inference accuracy and scalability across various tasks.
For a detailed discussion of related works, including comparisons to our approach, see Appendix A.

We summarize our contributions in the following:

1. We propose a Bayesian model to infer invariant features from multi-environment data.
2. We establish theoretical guarantees on posterior consistency and contraction rates.
3. We develop a scalable variational inference algorithm that overcomes the exponential com-

plexity of previous methods in high-dimensional settings.
4. Our method with variational inference outperforms existing approaches in accuracy and

scalability across simulation and real-world studies.

2 METHOD

2.1 DATA FROM MULTIPLE ENVIRONMENTS

The data D := {{xei, yei}ne
i=1}Ee=1 is organized into multiple environments. Each environment e

indexes a distinct data distribution pe(x, y), and xei, yei
i.i.d.∼ pe(x, y),∀e. Data from different

environments are drawn independently. For a collection of environments E of interests, we make the
following assumption,

Assumption 1 (Invariance). ∃z∗ ∈ {0, 1}p such that pe(y | xz∗
) is invariant with respect to e ∈ E .

We call z∗ the (true) invariant feature selector and xz∗
the (true) invariant features. As a conse-

quence of Assumption 1 and the chain rule, each environment’s joint distribution factorizes,

pe(x, y) = pe(x
z∗
)p∗(y | xz∗

)pe(x
−z∗
| xz∗

, y) (1)

where p∗(y | xz∗
) ≡ pe(y | xz∗

) denotes the invariant conditional distribution that is independent
with the environment e, ∀e ∈ E .

In reality, we do not observe the invariant feature selector z∗. Our goal in this work is to infer z∗
from the observed multi-environment data.

2.2 A BAYESIAN MODEL FOR INFERRING INVARIANT FEATURES

We propose a Bayesian model to infer z∗. Our model posits a prior p(z) over all candidate invariant
feature selectors z in {0, 1}p. Given multi-environment data D, we will show that the posterior
distribution of z from our model centers on the true value z∗.
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For now, we assume the per-environment joint distributions {pe(x, y)}e are known, as in practice,
estimating pe(x, y) is feasible with a sufficiently large dataset. Consequently, for a candidate invari-
ant feature selector z, we observe the marginal pe(xz), conditionals pe(y|xz), and pe(x

−z | xz, y),
which are derived from pe(x, y). We call pe(y|xz) the per-environment conditional of y given a
candidate set of invariant features xz , as it is the conditional within each environment. With the
same z, we also define the pooled conditional as the following
Definition 1 (Pooled conditional).

p(y | xz) :=

∫∫
E p(e)pe(x, y) dedx

−z∫
E p(e)pe(x

z) de
, p(e) ∝ 1. (2)

The pooled conditional p(y | xz) represents the conditional distribution of y given xz when we
pool all environments in E . Importantly, the pooled conditional for z = z∗ recovers the invariant
conditional distribution, that is,
Proposition 1. The pooled conditional matches the local conditional, i.e. p(y|xz) = pe(y|xz),
∀e ∈ E , only for z = z∗ with z∗ any value satisfying Assumption 1.

The proof is included in Appendix B.1.

Consequently, incorporating the pooled conditional into our model will prove useful to show that,
with the correct z = z∗, the model recovers the true data generating process in Section 2.1.

Our Bayesian model. With the above ingredients in place, our model is the following

• Draw invariant feature selector z ∼ p(z).
• For each environment e = 1, · · · , E ∈ E :

For each observation i = 1, · · · , ne:
1. Draw the invariant features xz

ei ∼ pe(x
z
ei).

2. Draw outcome yei | xz
ei ∼ p(yei | xz

ei).
3. Draw the other features x−z

ei | xz
ei, yei ∼ pe(x

−z
ei | xz

ei, yei).

Why does this model help us estimate the true z∗? Consider any z. The true data generating
distribution for y given xz in step 2 is the per-environment conditional pe(y|xz), which may change
with e. Therefore, the pooled conditional p(y | xz) cannot match all pe(y | xz), leading to a low
data likelihood. But for z = z∗, p(y | xz∗

) matches all pe(y | xz∗
) by Proposition 1, leading to a

high data likelihood. This intuition is made precise in the following posterior inference outcome.

Exact posterior inference. We derive a simplified posterior expression which only involves the
prior and the ratio of pooled conditionals to local conditionals. We first re-write the joint distribution

p(z,D) = p(z)

E∏
e=1

ne∏
i=1

pe(x
z
ei)p(yei | xz

ei)pe(x
−z
ei | x

z
ei, yei) (3)

= p(z)

E∏
e=1

ne∏
i=1

pe(x
z
ei)p(yei | xz

ei)pe(x
−z
ei | x

z
ei, yei)

pe(yei | xz
ei)

pe(yei | xz
ei)

. (4)

In eq. (4), each pe(x
z
ei)pe(yei | xz

ei)pe(x
−z
ei | xz

ei, yei) = pe(xei, yei). So,

p(z,D) = p(z)

E∏
e=1

ne∏
i=1

pe(xei, yei)
p(yei | xz

ei)

pe(yei | xz
ei)

. (5)

Because pe(xei, yei) in eq. (5) is a constant factor with respect to z, we have the posterior

p(z | D) ∝ p(z)︸︷︷︸
prior

E∏
e=1

ne∏
i=1

p(yei | xz
ei)

pe(yei | xz
ei)︸ ︷︷ ︸

likelihood ratio

. (6)
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This expression only involves the prior and the likelihood ratio Λ(D | z) :=
∏E

e=1

∏ne

i=1
p(yei|xz

ei)
pe(yei|xz

ei)

between the pooled and per-environment conditionals. It further provides insights into the limiting
behavior of the posterior distribution for theoretical analysis. With sufficient amount of data, the
posterior is dominated by the likelihood ratio Λ(D | z). For arbitrary z, the term pe(yei | xz

ei) in
the denominator of Λ(D | z) tends to be no smaller than the term p(yei | xz

ei) in the numerator,
since pe(yei | xz

ei) is the true data distribution. But for z = z∗, they are equal by Proposition 1.
Consequently, the posterior will concentrate on z∗ provided that its prior p(z∗) > 0. We formalize
this reasoning in Section 3, where we establish posterior consistency and contraction rates.

In practice, we do not know per-environment conditionals pe(y | xz) and pooled conditionals p(y |
xz). We estimate these distributions from data with maximum likelihood. See Appendix B.2.

Variational inference. Computing the exact posterior in Equation (6) requires enumerating 2p

possible values of z, which is intractable for high-dimensional settings. To address this challenge, we
develop a variational inference algorithm (Blei et al., 2017) with the following variational posterior

qϕ(z) :=

p∏
j=1

Bernoulli
(
z(j) | sigmoid(ϕ(j))

)
(7)

where sigmoid(·) := exp(·)
1+exp(·) , and ϕ ∈ Rp is the variational parameter. We optimize qϕ by maxi-

mizing the evidence lower bound. See details in Appendix B.3.

3 THEORY

We establish the main theoretical results: (1) the posterior distribution p(z | D) concentrates around
the true value z∗ as either the number of environments E or the number of observations per environ-
ment n tends to infinity, under suitable assumptions; and (2) the posterior contracts exponentially
in n and E, with a rate that improves under stronger prior knowledge or greater environment het-
erogeneity. These results apply when the true data distributions pe(x, y) are available. At the end
of this section, we discuss how these results extend to settings where the data distributions are esti-
mated from finite data, and how they are modified when certain assumptions are relaxed for practical
considerations.

Without loss of generality, we assume the per-environment sample size is the same, i.e. ne = n,
and write the observed data as Dn,E = {{xei, yei}ni=1}e∈E . We use P→ to denote convergence in
probability. All relevant assumptions and proofs are included in Appendix C.
Theorem 1 (Posterior consistency). Given Assumptions 1 and 2, as n→∞ (fixing E) or as E →∞
(fixing n), we have

• posterior mode consistency, i.e. zn,E := argmaxz p(z | Dn,E)
P→ z∗, and

• posterior consistency at z∗, i.e. p(z∗ | Dn,E)
P→ 1.

Theorem 1 shows that our Bayesian model is faithful: the posterior will concentrate on the invariant
z∗ as we observe more environments and/or more data points per environment.
Theorem 2 (Posterior contraction rate). Given Assumptions 1, 2 and 3, there exists a sequence
ϵn,E = O(R · (|supp(p(z))| − 1) · e−κµmin·nE) such that

P

(
TV
(
p(z | Dn,E), δz∗(z)

)
> ϵn,E

)
→ 0, (8)

as n→∞ or E →∞, where

R := max
z ̸=z∗

p(z)/p(z∗), (9)

µmin : min
z ̸=z∗,z∈supp(p(z))

Ep(e)pe(xz)KL(pe(y | xz)∥p(y | xz)), (10)

and κ is a fixed value in (0, 1).
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Theorem 2 demonstrates the exponential contraction of the posterior at z∗ with respect to n and
E. Additionally, it reveals key factors that influence the rate: (1) The prior. when the prior as-
signs less mass to non-invariant zs, the resulting R value is smaller, leading to a faster contraction
rate. Additionally, if the prior is supported on fewer non-invariant zs, the factor (|supp (p(z)) | − 1)
in the rate expression is smaller, also resulting in faster contraction. (2) The heterogeneity of en-
vironments encoded through µmin. When environments pe(x, y) are more similar, we expect the
per-environment conditionals pe(y | xz) to be also more similar. Consequently, these conditionals
are closer to the pooled p(y | xz), resulting in a smaller µmin and a slower contraction. Conversely,
when environments are more dissimilar, µmin tends to be larger and the posterior contracts faster.

Extension to the finite-sample case. In practice, we do not observe the true distributions but
only finite samples from each environment. In this setting, we estimate the relevant distributions
from data and compute the posterior as described in Equation (16). The key insight is that, when
each environment has a sufficiently large number of samples, these estimated distributions become
accurate, and the same theoretical guarantees—posterior consistency and contraction—continue to
hold under mild conditions.

We analyze two asymptotic regimes. First, when the environment size E is fixed and per-
environment sample size n grows to infinity, the estimated pooled and local conditionals converge to
their true counterparts under consistency assumptions, and our theoretical results extend naturally.
Second, when n is fixed and E grows, consistency for the pooled conditional models can still be
achieved. However, the estimated local models remain biased due to limited data per environment.
In this case, we require an additional assumption to ensure that the true invariant feature can still be
identified despite the estimation bias. When n is sufficiently large, the bias becomes negligible, and
the assumption is expected to hold. Formal statements and proofs are provided in Appendix C.3.

Discussion on relaxations of conditions. When exact invariance i.e. Assumption 1, does not
hold, the posterior would concentrate on the most approximately invariant selector, defined as
argminz∈supp(p(z)) Ep(e)pe(xz)KL(pe(y | xz)∥p(y | xz)), minimizing the discrepancy between per-
environment and pooled conditionals. When there are multiple minimizers, invalidating Assump-
tion 2, the posterior would concentrate on all these values, with densities proportional to their prior
support. See a rigorous analysis in Appendix C.4.

4 EXPERIMENTS

We verify our theory and compare our method to existing approaches in simulations and real-world
datasets. All experiments use a linear Gaussian model for the conditional relationship between
outcome y and selected features xz . Additional details and results are included in Appendix E.1.

4.1 SIMULATION STUDY

Empirical verification of theory. We study the empirical behavior of the posterior in simulations
with p = 3 features. We vary n from 10 to 200, E from 1 to 5, and intervention fraction (controlling
the diversity of environments) from 0.33 to 1. Figure 1a shows the posterior value at the true z∗,
p̂(z∗|D). We observe that for each level of intervention fraction, p̂(z∗|D) converges to 1 with
increasing n or E, corroborating our theory on posterior consistency. Furthermore, at a higher level
of intervention fraction, the empirical rate at which p̂(z∗|D) converges to 1 is faster.

Figure 1b plots the theoretical posterior contraction rate against the number of environments E under
different levels of intervention fraction. The rate is plotted in log scale and normalized by a factor of
1/nE. We observe that the contraction rate increases with a greater number of environments and a
higher intervention fraction. In either case, the observed environments become more heterogeneous.
Notably, the theoretical rate shown in Figure 1b aligns with the empirical trends in Figure 1a.

Comparison to other methods. In simulations with p = 450 features, we compare our method,
using both exact inference (PI-exact-s) and variational inference (PI-var), against existing ap-
proaches: (1) Oracle – linear regression on the true invariant features; (2) Regression – linear re-
gression on all features; (3) ICP-s (Peters et al., 2016); (4) Hidden-ICP-s (Rothenhäusler et al.,
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Figure 1: Empirical verification of theory in simulation with p = 3 features. Left: The posterior
value at the invariant z∗ increases with larger value of n, E, and intervention fraction. Results
are averaged over 1,000 simulations with 95% confidence bands. Right: The theoretical posterior
contraction rate increases with more environments, as well as higher intervention fraction.
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Figure 2: Comparison to other methods in simulation with p = 450 features. Left: the exact
discovery rate of Oracle and PI-var converges to 1 as E increases, while the rate for other methods
remain low. Middle: Oracle maintains near-perfect coverage, and the coverage of PI-var and EILLS-
s approaches to 1 as E increases; the remaining methods show low coverage. Right variational
posterior value at z∗ by PI-var increases with larger E and intervention fraction. Results are averaged
over n = 50, 200, 500, each with 400 simulations. Error bars indicate 95% confidence intervals.

2019); and (5) EILLS-s (Fan et al., 2023). PI-exact-s, ICP-s, Hidden-ICP-s, and EILLS-s require a
screening step to pre-select 10 features.

Figure 2 displays the results of (i) exact discovery rate – the average occurrence where the inferred
invariant features recover the true invariant features, and (ii) coverage – the average occurrence
where the inferred invariant features form a subset of the true invariant features.

Figure 2a shows that Oracle and PI-var achieve an exact discovery rate approaching 1 as E increases,
while other methods remain near zero due to failures in pre-screening. Figure 2b demonstrates that
PI-var’s coverage improves with more environments, approaching Oracle’s near-perfect coverage.
Notably, EILLS achieves high coverage at large E by predicting an empty invariant feature set,
while other methods maintain low coverage. Figure 2c illustrates the variational posterior density
q(z∗) from PI-var, which increases with E and intervention fraction.

These results show that PI-var successfully recovers invariant features in high-dimensional settings
given sufficient data, whereas other methods struggle due to challenges in pre-screening.

4.2 GENE PERTURBATION STUDY

We analyze a large-scale yeast gene perturbation dataset (Kemmeren et al., 2014), which includes
mRNA expression for 6,170 genes. It consists of 262 observational samples (e = 1, no gene dele-
tion) and 1,479 interventional samples (e = 2, each with a unique gene deletion). For each target
gene, we infer invariant feature genes and validate them following Peters et al. (2016) by checking
whether their deletion significantly changes the target gene expression. In addition to the meth-
ods introduced in Section 4.1, we include Lasso (Tibshirani, 1996) for comparison. All experiment
details and additional results are included in Appendix E.2.
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Figure 3: Gene perturbation study: precision v.s. recall. Each dot is the average result over 3 random
seeds, with error bar indicating 2 standard errors. The color corresponds to a specific method, and
multiple dots for the same method represent different hyperparameter settings. We observe that PI-
var achieves a favorable trade-off between precision and recall: it has the highest precision among
all methods, with a recall higher than ICP-s and comparable to PI-exact-s and Hidden-ICP-s.

To compare the performance among the above methods, we evaluate precision and recall. We check
the effect of a predicted invariant feature gene on the target gene through the validation set. However,
since the validation set is limited, not all predictions can be checked. Consequently, we define
precision as the ratio of the number of the true predicted effects to the total number of predicted
effects that can be checked through the validation set. Similarly, recall is defined as the ratio of the
number of the true predicted effects to the total number of true effects that can checked.

We present the results of precision and recall in Figure 3, excluding Marginal as it is an outlier.
Different methods demonstrate different trade-offs between precision and recall. The summary is
that (i) PI-var is the most accurate method (with highest precision) and has a moderate recall; (ii)
ICP-s is the second most accurate but also the most conservertive as indicated by the lowest recall;
(iii) Other invariance inference methods either struggle with a relatively low precision or a relatively
low recall; (iv) Marginal, which is not plotted in the figure, has the lowest precision of 0.11, but the
highest recall of 0.87.

We comment on the low recall values across all methods except for Marginal. For methods that
require screening, this low recall rate is expected as their predictions are limited within a maximum
of 10 screened features. The recall of PI-var, which does not require screening, is also low. A
possible explanation is that the true posterior given only two environments may be multi-modal,
which the mean-field variational distribution may struggle to capture. Other factors include viola-
tions of invariance assumption or model mis-specifications. Lastly, inferring invariant features is
only a proxy for detecting gene perturbation effect – it is possible that a non-invariant feature gene
could still have an effect on the target gene when it is perturbed, which would not be captured by
the invariance inference methods.

5 DISCUSSION

This paper presents a Bayesian model to infer invariant features from multi-environment data. We
establish theoretical guarantees on posterior consistency and contraction rates. In high-dimensional
settings, we develop a scalable variational inference algorithm that mitigates the exponential com-
plexity of previous approaches. We validate our method in both synthetic and real data studies,
demonstrating its superior performance compared to existing approaches.

Our current method has some limitations: (1) model estimation bias from finite data may obscure
posterior inference results, and (2) the mean-field variational family is restrictive. Future work will
explore a full Bayesian model to better quantify model parameter uncertainty and develop more
expressive variational family to improve inference fidelity.
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A RELATED WORKS

The idea of invariance closely relates to the independent causal mechanism in causal inference liter-
ature (Peters et al., 2017; Schölkopf et al., 2021), which states that the causal mechanism p(y|x) and
the cause distribution p(x) are independent under the causal structure x→ y. This property implies
the possibility of intervening on p(x) while keeping p(y|x) invariant. Invariance was also studied in
econometrics under the terms autonomy and modularity (Frisch et al., 1948; Hoover, 2008), and was
later introduced to computer science research as stable and autonomous parent-child relationships
in a causal graph (Pearl, 2009, p. 22). For a historical overview of the invariance idea, please refer
to Peters et al. (2017, Chapter 2.2) and Bühlmann (2020).

Peters et al. (2016) is the seminal work that formalized the concept of invariant predictions in ma-
chine learning models, and established its connection to causal inference. They assumed that the dis-
tribution of the outcome given a subset of features remains the same across environments, and under
certain conditions, these features are the direct causes of the outcome. They developed a hypothesis
testing approach for identifying such features in linear models, which requires an exhaustive search
over exponentially many candidates. Heinze-Deml et al. (2018) later extended this framework to
non-linear settings. Rothenhäusler et al. (2019) proposed an invariance notion based on the inner
product between features and residuals in linear models, linking it to causal inference under additive
interventions. Their estimator solves a modified linear system using differences of Gram matri-
ces across environments, which poses some invertibility condition. Fan et al. (2023) incorporated
residual-based invariance as a regularization term in linear regression but faced the limitation of ex-
ponential feature subset enumeration. However, their approach is limited by the need to enumerate
all possible feature subsets exponentially. Wang et al. (2024) established a theoretical connection
between invariant prediction models and the true causal outcome model, proposing a computation-
ally efficient algorithm for causal discovery. Gu et al. (2025) further showed that solving for exact
invariance is NP-hard and introduced an objective that interpolates between exact invariance and
predictive performance. In contrast, our method focuses on the (approximate) pursuit of invariance
without relaxing the objective. In this sense, our goal is most similar to Peters et al. (2016) and Fan
et al. (2023).

Invariance can also be studied in general representation learning contexts: consider a potentially
non-linear function h(·) such that p(y | h(x)) or E[y | h(x)] is invariant across environment. For
example, Arjovsky et al. (2019) considers learning invariant representations through neural networks
such that the empirical risk of the prediction is invariant across environments. The feature selection
setting considered in this work is a special case where h(·) is a binary mask.

Broadly speaking, invariance is a useful tool to improve the generalization of machine learning
models when given access to multi-environment data. There are other objectives that can be enforced
on models to achieve similar goals. For example, Group DRO (Sagawa et al., 2019) focuses on
optimizing the worst-group performance when provided with data from multiple groups. We do not
compare to these methods in the paper as they rely on fundamentally different assumptions.

B ADDITIONAL DETAILS FOR SECTION 2

B.1 PROOF OF PROPOSITION 1

Proof Substituting the factorization of pe(x, y) in eq. (1) into p(y | xz) defined in eq. (2), we have
for z = z∗ that

p(y | xz∗
) =

∫∫
p(e)pe(x

z∗
)p∗(y | xz∗

)pe(x
−z∗ | xz∗

, y) dedx−z∗∫
p(e)pe(xz∗) de

(11)

= p∗(y | xz∗
)

∫∫
p(e)pe(x

z∗
)pe(x

−z∗ | xz∗
, y) dedx−z∗∫

p(e)pe(xz∗) de
(12)

= p∗(y | xz∗
) = pe(y | xz∗

) ∀e. (13)

On the other hand, for any z such that p(y | xz) = pe(y | xz)∀e ∈ E , pe(y | xz) is invariant across
environments and hence z satisfies Assumption 1.

10
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B.2 MODEL ESTIMATION

Let Py|xz be a class of conditional models indexed by z. Given the dataset D, we estimate per-
environment and pooled conditionals with maximum likelihood,

p̂e(y | xz) := argmax
p̃(y|xz)∈Py|xz

ne∑
i=1

log p̃(yei | xz
ei), ∀e, z (14)

p̂(y | xz) := argmax
p̃(y|xz)∈Py|xz

E∑
e=1

ne∑
i=1

log p̃(yei | xz
ei), ∀z, (15)

We write p̂(z | D) for the posterior distribution given estimated conditionals p̂e(y | xz) and p̂(y |
xz), that is,

p̂(z | D) ∝ p(z)
∏
e∈E

ne∏
i=1

p̂(yei | xz
ei)

p̂e(yei | xz
ei)

. (16)

We summarize the exact inference procedure with estimated conditionals in Algorithm 1, termed as
PI-exact. This algorithm is exhaustive: it sweeps over all candidates z in the prior support and for
each z it estimates the corresponding pooled and per-environment conditionals, and their likelihood
ratio; finally it combines and normalizes the results over all zs to get the posterior.

B.3 VARIATIONAL INFERENCE

We optimize the variational parameter ϕ by maximizing the Evidence Lower Bound (ELBO)

L(D, ϕ) = Eqϕ(z) [log p(z,D)− log qϕ(z)] (17)

= Eqϕ(z)

[
log p(z) +

(
E∑

e=1

ne∑
i=1

log p(yei | xz
ei)− pe(yei | xz

ei)

)
− log qϕ(z)

]
+ C.

(18)

where we substitute the joint p(z,D) with the expression from eq. (5), and C =∑E
e=1

∑ne

i=1 log p(xei, yei) is a term independent of the variational parameter ϕ.

In practice, we estimate the pooled p̂(yei | xz
ei) and per-environment conditionals p̂e(yei | xz

ei) from
data, and optimize the following objective:

l(D, ϕ) = Eqϕ(z) [f(z, ϕ,D)] , (19)

where f(z, ϕ,D) = log p(z) +

(
E∑

e=1

ne∑
i=1

log p̂(yei | xz
ei)− p̂e(yei | xz

ei)

)
− log qϕ(z). (20)

We summarize the variational inference algorithm, PI-var, in Algorithm 2. PI-var optimizes the
variational objective l(D, ϕ) with stochastic gradient ascent. It requires a stochastic gradient esti-
mator g(·) that produces a random, unbiased estimate of the gradient ∇ϕl(D, ϕ). And we use the
average of multiple Monte Carlo samples to reduce the variance of gradient estimation. After T
iterations of gradient ascent updates, the algorithm returns qϕT

(z) with the optimized parameter ϕT

as the approximate posterior distribution of z.

Gradient estimation. We discuss the choice of the stochastic gradient estimator. In this work,
we use the U2G gradient estimator summarized in Algorithm 3 in the appendix, which provides an
unbiased estimate of the true gradient (Yin et al., 2020).

In general, estimating the gradient of an expectation over discrete variables, including the form of
l(D, z) in eq. (19), is an active research area. In addition to the U2G estimator explored in this
work, there are other methods that can provide unbiased or low-variance gradient estimation. See a
comprehensive review in Mohamed et al. (2020).
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Algorithm 1: PI-exact: exact posterior inference for inferring invariant features
Input: Dataset D = {(xei, yei)}
Output: Posterior distribution p̂(z | D)

1 for z in support of p(z) do
2 Estimate per-environment conditionals {p̂e(y | xz)}Ee=1 and pooled conditional p̂(y | xz)

by eqs. (14) and (15) using data D
3 Compute the likelihood ratio Λ̂(z)←

∑E
e=1

∑ne

i=1
p̂(yz

ei|x
z
ei)

p̂e(yz
ei|xe

ei)

4 Compute the posterior p̂(z | D) ∝ p(z)Λ̂(z)

Algorithm 2: PI-var: variational inference for inferring invariant features
Input: Dataset D, stochastic gradient estimator g, objective function f in eq. (20), number of

optimization iterations T , number of samples for gradient estimation M , learning rate
scheduler r(·)

Output: Variational posterior qϕT
(z)

1 Initialize variational parameter ϕ0

2 for t = 1 to T do
3 Compute M gradient estimates: ĝm ← g(f,D, ϕt−1) for m = 1, · · · ,M
4 Update variational parameters: ϕt ← ϕt−1 + r(t) ∗ 1

M

∑M
m=1 ĝm

Complexity. The complexity of PI-var is O(T · M · c(D, p)) for T optimization iterations and
M stochastic gradient samples, in contrast to (2p · c(D, p)) of PI-exact under an uninformative
prior. Similarly, with an informative prior that limits the number of features within pmax ≪ p, VI’s
complexity can be reduced to O(T ·M · c(D, pmax)).

C ADDITIONAL THEORY AND PROOFS

In this section we provide additional theoretical results and proofs that are in complement to Sec-
tion 3.

Without loss of generality, we assume the per-environment sample size is the same, denoted by
ne = n. We explicitly write the observed data as Dn,E = {{xei, yei}ni=1}e∈E . The notation P→
indicates convergence in probability. Unless otherwise specified, we consider convergence over the
probability space defined by: (i) E random environments sampled from p(e), and (ii) n random
data points sampled from the corresponding pe(x, y) for e = 1, · · · , E, where p(e) is a uniform
distribution over all environments E . We adopt the notation ∀pe to mean “for p(e)-almost every e”,
∀pz to mean “for p(z)-almost every z, and supp(p(z)) for the support of p(z).

C.1 PRELIMINARY LEMMAS

We first introduce two lemmas that are helpful for proofs of the main theorems.
Lemma 1. Let {Xn} be a sequence of random variables where each Xn ∈ Rp and p is a fixed

number. Assume Xn
P→ µ for some constant µ ∈ Rp, and define I∗ := {i : µi = µmax} where

µmax is value of the largest component(s) of µ and therefore I∗ is the set of corresponding indices.
Let i∗n := argmaxi X

(i)
n denote the index of the maximal component of Xn. Then we have

P (i∗n ∈ I∗)→ 1, as n→∞. (21)

As a special case, when I∗ = {i∗ : µi∗ > µj∀j ̸= i∗} is a singleton, we have

i∗n
P→ i∗, as n→∞. (22)

Proof By continuous mapping theorem, ∀j ̸∈ I∗, as n→∞,

max
i∈I∗

X(i)
n −X(j)

n
P→ µmax − µ(j) > 0. (23)

12
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Hence P (maxi∈I∗ X
(i)
n −X

(j)
n < 0)→ 0 as n→∞.

Consequently, as n→∞,

P (i∗n ̸∈ I∗) = P (∃j ̸∈ I∗,max
i∈I∗

X(i)
n < X(j)

n ) (24)

≤
∑
j ̸∈I∗

P (max
i∈I∗

X(i)
n −X(j)

n < 0)→ 0, (25)

and therefore

P (i∗n ∈ I∗)→ 1. (26)

Lemma 2. Let {Xn} be a sequence of random variables such that its sample average Sn

n converges
to µ in probability, where µ < 0, and Sn :=

∑n
i=1 Xi. Then we have

exp{Sn}
P→ 0. (27)

Proof ∀ϵ > 0, ∀δ > 0, it suffices to find an N = N(ϵ, δ) such that for n > N ,

P (exp{Sn} < ϵ) = P (
Sn

n
<

1

n
log ϵ) > 1− δ. (28)

Since Sn

n

P→ µ, for ϵ′ = −µ
2 and δ given above, ∃N ′ = N ′(ϵ′, δ) such that for n > N ′,

P (
Sn

n
< µ+ ϵ′) > 1− δ. (29)

We choose N = max(N ′, 1
µ+ϵ′ log ϵ). For n > N , we have

1

n
log ϵ > µ+ ϵ′, (30)

and therefore

P (
Sn

n
<

1

n
log ϵ) > P (

Sn

n
< µ+ ϵ′) > 1− δ. (31)

C.2 ASSUMPTIONS AND PROOFS FOR THEOREMS IN SECTION 3

Assumption 2 (Prior positivity and uniqueness of invariant z∗). The existence of z∗ in Assumption 1
is unique and the prior value p(z∗) > 0.

C.2.1 PROOF OF THEOREM 1 ON POSTERIOR CONSISTENCY

Proof ∀z, the posterior density at z can be written as follows

p(z | Dn,E) =
p(z) exp{−Sn,E(z)}∑
z′ p(z′) exp{−Sn,E(z′)}

(32)

where Sn,E(z) is the sum of log conditional likelihood ratio given z,

Sn,E(z) :=

n∑
i=1

E∑
e=1

lei(z), (33)

with lei(z) the per-data point log likelihood ratio given z.

lei(z) := log pe(yei | xz
ei)− log p(yei | xz

ei). (34)

We divide the analysis for two cases, infinite n (fixing E) and infinite E (fixing n).

13
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Case 1: infinite n. We first consider the case of holding E fixed and letting n→∞. We interpret
Sn,E(z) as the sum of i.i.d. variables of the form

∑E
e=1 le,i(z), indexed by i for i = 1, · · · , n, each

with mean Eµ(z) where
µ(z) := Ep(e)pe(xz)KL [pe(y | xz) ∥ p(y | xz)]

= Ep(e)Epe(x,y) [log pe(y | x
z)− log p(y | xz)] ,

(35)

with µ(z) ≥ 0 and µ(z∗) = 0. By Law of Large Numbers (LLN), as n→∞, we have
1

n
Sn,E(z)

P→ Eµ(z). (36)

Applying Lemma 1 to eq. (36) and by Assumption 2, we have

argmax
z

− 1

n
Sn,E(z)

P→ argmax
z

−Eµ(z) = z∗. (37)

Consequently, the posterior mode is consistent:
zn,E := argmax

z
p(z | Dn,E) (38)

= argmax
z

log p(z)− Sn,E(z) (39)

= argmax
z

1

n
log p(z)− 1

n

n∑
i=1

Sn,E(z) (40)

P→ z∗, (41)
where we note that log p(z) in eq. (40) is bounded (since the support {0, 1}p is finite-dimensional)
and so 1

n log p(z)
P→ 0,∀z.

Next, we prove the posterior consistency at z∗. By Assumption 2, p(z∗) > 0. Therefore, dividing
both the numerator and denominator on the RHS of Equation (32) by p(z∗) exp{−Sn,E(z

∗)}, we
obtain the posterior density at z∗ as follows

p(z∗ | Dn,E) =
1

1 +
∑

z ̸=z∗ p(z)/p(z∗) · exp{Sn,E(z∗)− Sn,E(z)}
(42)

To show p(z∗ | Dn,E})
P→ 1 with respect to n, it suffices to show that ∀pz ̸= z∗,

exp{Sn,E(z
∗)− Sn,E(z)}

P→ 0 (43)
as n→∞.

By eqs. (36) and (35) and continuous mapping theorem, ∀pz ̸= z∗, as n→∞
1

n
(Sn,E(z

∗)− Sn,E(z))
P→ E(µ(z∗)− µ(z)) < 0. (44)

By applying Lemma 2 to eq. (44), eq. (43) holds. Hence we conclude the proof for posterior consis-
tency at z∗ with respect to n.

Case 2: infinite E. The above proof extends similarly to the case when n is held fixed while
E →∞. In this setting, we interpret Sn,E as defined in eq. (33), as the sum of i.i.d. variables of the
form

∑n
i=1 le,i(z), indexed by e over e = 1, · · · , E, each with mean as nµ(z).

C.2.2 PROOF OF THEOREM 2 ON POSTERIOR CONTRACTION RATE

Next, we characterize the posterior contraction rate. We consider the total variational distance
TV(·, ·) between the posterior and the Dirac measure centered at the true z∗,

TV
(
p(z | Dn,E), δz∗(z)

)
=

1

2

∑
z ̸=z∗

|p(z | Dn,E)− 0|+ |p(z∗|Dn,E)− 1|

 = 1− p(z∗|Dn,E).

(45)
We make an additional assumption:
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Assumption 3 (Finite variance of log likelihood ratio). ∀pz, the log likelihood ratio log pe(y |
xz)− log p(y | xz) has finite variance, that is,

v(z) := Varp(e)pe(y,xz) ([log pe(y | xz)− log p(y | xz)]) <∞. (46)

Incorporating the above assumption, we derive the following posterior contraction rate.

Proof We retain the notation Sn,E(z) and lei(z) as defined in eqs. (33) and (34), respectively.

Using the expression in Equation (42), we lower bound the posterior at z∗,

p(z∗ | Dn,E) ≥
1

1 +R
∑

z ̸=z∗ exp{Sn,E(z∗)− Sn,E(z)}
. (47)

where we recall that R := maxz ̸=z∗ p(z)/p(z∗).

We structure the remaining proof to show that

(i) the term [Sn,E(z
∗) − Sn,E(z)]/(nE) in the denominator of eq. (47) concentrates at its

expected value, −µ(z), for large n or E;

(ii) consequently, the rate at which p(z∗ | Dn,E) converges to 1 depends on µmin, the smallest
µ(z) among all z satisfying z ̸= z∗ and p(z) > 0.

We first show the concentration behavior of Sn,E(z
∗) − Sn,E(z). For any z ̸= z∗ and any k > 0,

by Chebyshev’s inequality we have

P

(
| Sn,E(z

∗)− Sn,E(z)− µ̃n,E(z)| ≥ k

)
≤

σ̃2
n,E(z)

k2
(48)

where µ̃n,E(z) and σ̃2
n,E(z) are the mean and variance of Sn,E(z

∗)− Sn,E(z),

µ̃n,E(z) := E

[
n∑

i=1

E∑
e=1

(le,i(z
∗)− le,i(z))

∣∣∣z] = nE(µ(z∗)− µ(z)) = −nEµ(z) (49)

σ̃2
n,E(z) := Var

[
n∑

i=1

E∑
e=1

(le,i(z
∗)− le,i(z))

∣∣∣z] = nEv(z). (50)

For any k, taking k = (1 − κ)|µ̃e,E(z)| = (1 − κ)nEµ(z), with a fixed value κ ∈ (0, 1), and
substituting the expressions for the mean and variance from eqs. (49) and (50) into eq. (48), we
obtain

P

(
| Sn,E(z

∗)− Sn,E(z) + nEµ(z)| ≥ (1− κ)nEµ(z)

)
≤ v(z)

nE(1− κ)2µ(z)2
. (51)

By Assumption 2 µ(z) > 0 , and by Assumption 3 v(z) is finite for any z ̸= z∗. Therefore, the RHS
of eq. (51) is well-defined.

Let An,E be the event that ∃z ̸= z∗ such that |Sn,E(z
∗)− Sn,E(z) + nEµ(z)| ≥ (1− κ)nEµ(z),

and Ac
n,E denotes the complement of An,E .

By definition of An,E and the subadditivity of probability measure, we have

P (An,E) ≤
∑
z ̸=z∗

P

(
|Sn,E(z

∗)− Sn,E(z) + nEµ(z)| ≥ (1− κ)nEµ(z)

)

≤
∑
z ̸=z∗

v(z)

nE(1− κ)2µ(z)2
→ 0

(52)

as either n→∞ or E →∞.
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Next, we define the rate ϵn,E as follows

ϵn,E := 1− 1

1 +R
∑

z ̸=z∗ exp{−κnEµ(z)}

=
R
∑

z ̸=z∗ exp{−κnEµ(z)}
1 +R

∑
z ̸=z∗ exp{−κnEµ(z)}

=
1

1 +
(
R
∑

z ̸=z∗ exp{−κnEµ(z)}
)−1

≤ 1

1 +
(
R · (|supp (p(z)) | − 1) · exp{−κnEµmin}

)−1

(53)

where we recall µmin := minz ̸=z∗,z∈supp(p(z)) µ(z).

The rate ϵn,E can be asymptotically upper bounded as either n→∞ or E →∞:

ϵn,E = O
(
R · (|supp (p(z)) | − 1) · exp{−nEκµmin}

)
. (54)

Using the inequality that lower bounds p(z∗ | Dn,E) from eq. (47), we have

P

(
p

(
z∗ | Dn,E

)
< 1− ϵn,E

)
≤ P

(
1

1 +R
∑

z ̸=z∗ exp{Sn,E(z∗)− Sn,E(z)}
< 1− ϵn,E

)
(55)

= P

(
1

1 +R
∑

z ̸=z∗ exp{Sn,E(z∗)− Sn,E(z)}
< 1− ϵn,E | Ac

n,E

)
P (Ac

n,E) (56)

+ P

(
1

1 +R
∑

z ̸=z∗ exp{Sn,E(z∗)− Sn,E(z)}
< 1− ϵn,E | An,E

)
P (An,E) (57)

where eqs. (56) and (57) follow from the law of total probability.

The event Ac
n,E implies that ∀z ̸= z∗,

|Sn,E(z
∗)− Sn,E(z) + nEµ(z)| < (1− κ)nEµ(z) (58)
⇒ Sn,E(z

∗)− Sn,E(z) < −κnEµ(z). (59)
Therefore, given Ac

n,E ,

1

1 +R
∑

z ̸=z∗ exp{Sn,E(z∗)− Sn,E(z)}
>

1

1 +R
∑

z ̸=z∗ exp{−κnEµ(z)}
(60)

where the RHS equals 1− ϵn,E by the definition of ϵn,E in eq. (53).

Hence

P

(
1

1 +R
∑

z ̸=z∗ exp{Sn,E(z∗)− Sn,E(z)}
< 1− ϵn,E | Ac

n,E

)
= 0. (61)

Substituting eq. (61) into eq. (56) and recall the convergence of P (An,E) from eq. (52), we obtain

P

(
p

(
z∗ | Dn,E

)
< 1− ϵn,E

)
≤ 0 · P (Ac

n,E) + 1 · P (An,E) = P (An,E)→ 0 (62)

as n→∞ or E →∞.

Finally, we recall that the total variational distance TV
(
p(z | Dn,E), δz∗(z)

)
= 1 − p(z∗|Dn,E)

from eq. (45), which reduces the expression in eq. (62) to the desired result:

P
(

TV
(
p(z | Dn,E), δz∗(z)

)
> ϵn,E

)
→ 0, as n→∞ or E →∞. (63)
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C.3 RESULTS FOR THE ESTIMATED POSTERIOR

Next we extend the analysis to the practical scenario where the true distributions {pe(x, y)} are
unknown and we estimate the relevant conditionals from observed data. Specifically, we derive
asymptotic results for the estimated p̂(z | Dn,E) as defined in Equation (16).

We first define the population version of the estimated pooled and per-environment conditionals:

p̄(y | xz) := argmax
p̃∈Py|xz

Ep(e)pe(x,y) [log p̃(y | x
z)] , ∀z (64)

p̄e(y | xz) := argmax
p̃∈Py|xz

Epe(x,y) [log p̃(y | x
z)] ,∀z∀e. (65)

These population conditional models do not necessarily coincide with the true conditionals p(y | xz)
and pe(y | xz), unless the model class Py|xz is correctly specified and the maximum likelihood
estimation is consistent.

Correspondingly, we define

µ̄(z) := Ep(e)Epe(x,y) [log p̄e(y | x
z)− log p̄(y | xz)] . (66)

which measures the discrepancy between the per-environment population conditional and the pooled
population conditional.

We divide the remaining analysis into two parts: the limiting behavior with respect to n and the
limiting behavior with respect to E.

C.3.1 LIMITING BEHAVIOR WITH RESPECT TO n.

We make the following assumptions.

Assumption 4 (Model well-specification for the invariant z∗). p(y | xz∗
) ∈ Py|xz∗ , which also

implies pe(y | xz∗
) ∈ Py|xz∗ since pe(y | xz∗

) = p(y | xz∗
),∀e.

Assumption 5 (Regularity condition on the modeling class). For any z ̸= z∗ with p(z) > 0 and
∀pe,

Epe(x,y) [log p̄e(y | x
z)] > Epe(x,y) [log p̄(y | x

z)] . (67)

Assumption 6 (Likelihood consistency of pooled conditional with respect to n). ∀pz, as n→∞,

1

n

1

E

n∑
i=1

E∑
e=1

log p̂(yei | xz
ei)

P→ Ep(e)pe(xz,y) [log p̄(y | xz)] . (68)

Assumption 7 (Likelihood consistency of per-environment conditional with respect to n). ∀e ∈ E
and ∀pz, as n→∞,

1

n

n∑
i=1

log p̂e(yei | xz
ei)

P→ Epe(xz,y) [log p̄e(y | xz)] . (69)

Given these relaxed assumptions, we can extend ?? to the following one:
Theorem 3 (Posterior consistency with respect to n given estimated models). Given Assumptions 1
and 4 to 7 and that p(z∗) > 0, fixing E and as n→∞ we have

1. posterior mode consistency , i.e. ẑn,E := argmaxz p̂(z | Dn,E)
P→ z∗

2. posterior consistency at z∗, i.e. p̂(z∗ | Dn,E)
P→ 1.

Proof The finite-sample posterior can be written as

p̂(z | Dn,E) =
p(z) exp{−Ŝn,E(z)}∑
z p(z) exp{−Ŝn,E(z)}

(70)
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where Ŝn,E(z) is the sum of log likelihood ratios under estimated conditional models corresponding
to z,

Ŝn,E(z) :=

n∑
i=1

E∑
e=1

log p̂e(yei | xz
ei)− log p̂(yei | xz

ei). (71)

By the likelihood consistency in Assumptions 6 and 7 and continuous mapping theorem, fixing E
and as n→∞,

1

n

n∑
i=1

Ŝn,E(z)
P→ Eµ̄(z), (72)

where we recall µ̄(z) as defined in eq. (66).

Similarly to the proof of Theorem 1, it suffices to show that z∗ is the unique minimizer of µ̄(z)
with positive prior mass. This holds because, by Assumption 4, µ̄(z∗) = 0, and by Assumption 5,
µ̄(z) > 0 for z ̸= z∗.

Next, we establish the contraction rate result with respect to n. Similarly to Assumption 3, we
impose a condition on the finite variance of the log ratios of population conditionals.
Assumption 8 (Finite variance of log likelihood ratio for population conditionals). ∀pz, the log
likelihood ratio log pe(y | xz)− log p̄(y | xz) has finite variance, that is,

v̄(z) := Varp(e)pe(y,xz) ([log p̄e(y | xz)− log p̄(y | xz)]) <∞. (73)

Taking into account this assumption, we derive the following contraction rate result.
Theorem 4 (Contraction rate of estimated posterior with respect to n). Given Assumptions 1 and 4
to 8 and that p(z∗) > 0, for any fixed E, there exists a sequence ϵn,E = O(R · (|supp(p(z))| − 1) ·
e−κnEµ̄min) such that

P

(
TV
(
p(z | Dn,E), δz∗(z)

)
> ϵn,E

)
→ 0 (74)

as n→∞, where R is the same as defined in eq. (9),
µ̄min := min

z ̸=z∗,z∈supp(p(z))
µ̄(z) = min

z ̸=z∗,z∈supp(p(z))
Ep(e)pe(xz)KL(p̄e(y | xz)∥p̄(y | xz)), (75)

and κ is a fixed value in (0, 1).

Proof Similarly to the derivation of the lower bound of the true posterior in eq. (47), we have the
following lower bound on the finite-sample posterior value at z∗:

p̂(z∗ | Dn,E) ≥
1

1 +R
∑

z ̸=z∗ exp{Ŝn,E(z∗)− Ŝn,E(z)}
. (76)

where we recall the definition of Ŝn,E(z) from eq. (71).

We decompose Ŝn,E(z) as follows:

Ŝn,E(z) = S̄n,E(z) +Bn,E(z) (77)
where

S̄n,E(z) :=

E∑
e=1

ne∑
i=1

log p̄e(yei | xz
ei)− log p̄(yei | xz

ei), (78)

Bn,E(z) := B
(1)
n,E(z)−B

(2)
n,E(z), (79)

with B
(1)
n,E(z) :=

E∑
e=1

n∑
i=1

[log p̂e(yei | xz
ei)− log p̄e(yei | xz

ei)] , (80)

B
(2)
n,E(z) :=

E∑
e=1

n∑
i=1

[log p̂(yei | xz
ei)− log p̄(yei | xz

ei)] . (81)
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We define the rate

ϵn,E := 1− 1

1 +R
∑

z ̸=z′ exp{−κnEµ̄(z)}
(82)

= O(R · (|supp(p(z))| − 1) · e−κnEµ̄min), (83)

Following a similar analysis in the proof of Theorem 2, one can show that

P

(
TV
(
p̂(z | Dn,E), δz∗(z)

)
> ϵn,E

)
≤ P (Ân,E), (84)

where κ ∈ (0, 1) is a fixed constant, and Ân,E is the event that ∃z ̸= z∗ such that |S̄n,E(z
∗) −

S̄n,E(z) + nEµ(z)| ≥ 1−κ
2 nEµ(z), or |Bn,E(z

∗)−Bn,E(z)| ≥ 1−κ
2 nEµ(z).

It suffices to show that P (Ân,E) → 0 as n → ∞. By definition of Ân,E and subadditivity of
probability measure, we have

P (Ân,E) ≤
∑
z ̸=z∗

P

(
|S̄n,E(z

∗)− S̄n,E(z) + nEµ̄(z)| ≥ 1− κ

2
nEµ̄(z)

)

+
∑
z ̸=z∗

P

(
|Bn,E(z

∗)−Bn,E(z)| ≥
1− κ

2
nEµ̄(z)

)
.

(85)

By Chebyshev’s inequality, ∀z ̸= z∗ as n→∞,

P

(
|Sn,E(z

∗)− Sn,E(z) + nEµ̄(z)| ≥ 1− κ

2
nEµ̄(z)

)
≤ v̄(z)

nE(1− κ)2µ̄(z)2
→ 0, (86)

where the RHS of the above inequality is valid because by Assumptions 4 and 5 µ̄(z) > 0 and by
Assumption 8 v̄(z) is finite.

By Assumptions 6 and 7 and LLN, ∀z ̸= z∗ as n→∞,

Bn,E(z)

n

P→ 0, (87)

and consequently

P

(
|Bn,E(z

∗)−Bn,E(z)| ≥ nE
1− κ

2
|µ̄(z)|

)
→ 0. (88)

Substituting the results from eqs. (86) and (88) into eq. (85), we have P (Ân,E) → 0 as n → ∞,
which concludes the proof.

C.3.2 LIMITING BEHAVIOR WITH RESPECT TO E

We make the following assumptions.
Assumption 9 (Likelihood consistency of pooled conditional with respect to E). ∀pz, as E →∞,

1

n

1

E

n∑
i=1

E∑
e=1

log p̂(yei | xz
ei)

P→ Ep(e)pe(xz,y) [log p̄(y | xz)] . (89)

We note that we view each size-n dataset {xei, yei}ni=1 indexed by e as an i.i.d. draw from the distri-
bution

∫
p(e)

∏n
i=1 pe(x, y)de. When E →∞, we expect the collection of data {{xei, yei}ni=1}Ee=1

provides a consistent estimate of the population conditional model p̄(y | xz). Assumption 9 further
requires that the average log likelihood value of the estimator models converges to the expected log
likelihood value given the population model.
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Assumption 10 (Prior positivity and uniqueness of invariant z∗ under estimation bias). p(z∗) > 0,
and z∗ is the unique minimizer of µ̄n(z) among z ∈ supp (p(z)) where

µ̄n(z) := Ep(e)pe(xz)KL(p̄e(y | xz)∥p̄(y | xz))︸ ︷︷ ︸
:=population model discrepancy µ̄(z)

+
1

n
Ep(e)

∏n
i=1 pe(xi,yi)

n∑
i=1

[log p̂ze(yi;x
z
i )− log p̄e(yi | xz

i )]︸ ︷︷ ︸
:=estimation bias of per-environment conditionals b̄n(z)

,
(90)

While Assumption 9 is a reasonable assumption, Assumption 10 is non-trivial. When the condi-
tional model class is well-specified or regular, i.e. Assumptions 4 and 5 hold, z∗ minimizes µ̄(z).
Furthermore, if the estimation bias b̄n(z) is well-controlled for all z (which is the non-trivial part
particularly when the per-environment sample size n is small), one can expect that z∗ also minimizes
µ̄n(z), thereby satisfying Assumption 10.

With the above assumptions, we extend ?? to the following result.
Theorem 5 (Posterior consistency with respect to E given estimated conditionals). Given Assump-
tions 1, 9 and 10, for any fixed n, as E →∞, we have

1. posterior mode consistency, i.e. ẑn,E
P→ z∗

2. posterior consistency at z∗, i.e. p̂(z∗ | Dn,E)
P→ 1.

Proof The proof follows the same structure as that for the infinite-n case in Theorem 3. It suffices
to show that

argmax
z

− 1

E
Ŝn,E(z)

P→ 0 as E →∞,

after which the remainder of the proof is similar to the previous analysis, and is therefore omitted.

Recall S̄n,E(z) =
∑E

e=1

∑n
i=1 log p̄e(yei | xz

ei) − log p̄(yei | xz
ei) defined in eq. (78).

Given a fixed value of z, we view S̄n,E(z) as a sum of i.i.d. variables of the form∑n
i=1 log p̄e(yei | xz

ei) − log p̄(yei | xz
ei) indexed by e, each with mean nµ̄(z) where µ̄(z) :=

Ep(e)Epe(x,y) [log p̄e(y | xz)− log p̄(y | xz)] is introduced in eq. (66). By LLN, as E →∞,

1

E
S̄n,E(z)

P→ nµ̄(z). (91)

Similarly, we have that

1

E
B

(1)
n,E(z) =

1

E

E∑
e=1

n∑
i=1

[log p̂e(yei | xz
ei)− log p̄e(yei | xz

ei)]
P→ nb̄n(z), (92)

where we recall B(1)
n,E(z) from eq. (80), and b̄n(z) is the estimation bias of per-environment condi-

tionals from eq. (90).

By Assumption 9, as E →∞, the estimation bias of the pooled conditional goes to 0, that is,

1

E
B

(2)
n,E(z) =

1

E

E∑
e=1

n∑
i=1

[log p̂(yei | xz
ei)− log p̄(yei | xz

ei)]
P→ 0. (93)

where B
(2)
n,E is first introduced in eq. (81).

Combining eqs. (91) to (93), as E →∞,
1

E
Ŝn,E(z) =

1

E

(
S̄n,E(z) +B

(1)
n,E(z)−B

(2)
n,E(z)

)
P→ n(µ̄(z) + b̄n(z)) = nµ̄n(z). (94)

Applying Lemma 1 to eq. (94), as E →∞,

argmax
z

− 1

E
Ŝn,E(z)

P→ argmax
z

−nµ̄n(z) = z∗. (95)
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where the last equality follows from Assumption 10.

To establish the contraction rate result for the finite-sample posterior, we assume the following
condition:
Assumption 11 (Finite variance of estimation bias in per-environment models). For any fixed n, the
variance of the estimation bias of per-environment conditionals

v̄n(z) := Varp(e)∏n
i=1 pe(yi|xz

i )

[
n∑

i=1

(log p̂e(yi | xz
i )− log p̄e(yi | xz

i ))

]
exists and is finite.
Theorem 6 (Contraction rate of estimated posterior with respect to E). Given Assumptions 1 and 8
to 11, for any fixed n, there exists a sequence ϵn,E = O(R · (|supp(p(z))| − 1) · e−κnEµ̄min) such
that

P

(
TV
(
p(z | Dn,E), δz∗(z)

)
ϵn,E

)
→ 0 (96)

as E →∞ with a fixed E, where R and µ̄min are defined in eqs. (9) and (75) respectively, and κ is
a fixed value in (0, 1).

Proof The finite-sample posterior at z∗ is

p̂(z∗ | Dn,E) ∝
1

1 +
∑

z ̸=z′ p(z)/p(z∗) · exp{dSn,E
(z∗, z) + d

B
(1)
n,E

(z∗, z)− d
B

(2)
n,E

(z∗, z)}
.

(97)

where
dSn,E

(z∗, z) := S̄n,E(z
∗)− S̄n,E(z),

d
B

(1)
n,E

(z∗, z) := B
(1)
n,E(z

∗)−B
(1)
n,E(z),

d
B

(2)
n,E

(z∗, z) := B
(2)
n,E(z

∗)−B
(2)
n,E(z),

and we recall S̄n,E(z), B
1
n,E(z), B

2
n,E(z) from eqs. (78), (80) and (81).

We first analyze the concentration behavior of the term dSn,E
(z∗, z) + d

B
(1)
n,E

(z∗, z) in eq. (97). By

Chebyshev’s inequality, ∀z ̸= z∗,

P

(
|dSn,E

(z∗, z) + d
B

(1)
n,E

(z∗, z)− nEdµ̄n(z
∗, z)| ≥ 1− κ

2
nE|dµn(z

∗, z)|
)

≤ nv̄(z) + v̄n(z)

En2 · (1− κ)2/4 · dµ̄n
(z∗, z)2

→ 0, as E →∞.

(98)

where dµ̄n
:= µ̄n(z

∗) − µ̄n(z) < 0 by Assumption 10, and v̄(z) and v̄n(z) exist and are finite
quantities by Assumptions 8 and 11.

We then characterize the concentration behavior of d
B

(2)
n,E

(z) in eq. (97). By Assumption 9, ∀pz, as

E →∞,

B
(2)
n,E(z)

E

P→ 0, (99)

and consequently
1

E
d
B

(2)
n,E

(z∗, z) :=
1

E

(
B

(2)
n,E(z

∗)−B
(2)
n,E(z)

)
→ 0. (100)

Therefore,

P

(
|d

B
(2)
n,E

(z∗, z)| ≥ nE
1− κ

2
|dµ̄n

(z∗, z)|
)
→ 0. (101)
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We define Ân,E be the event that ∃z ̸= z∗ such that |dSn,E
(z∗, z)+d

B
(1)
n,E

(z∗, z)−nEdµ̄n
(z∗, z)| ≥

1−κ
2 nE|dµn

(z, z∗)|, or |B(2)
n,E(z

∗)−B
(2)
n,E(z)| ≥

1−κ
2 nE|dµ̄n(z∗,z)|.

Following a similar analysis in the proof of Theorem 4, we can show that

P

(
TV
(
p(z | Dn,E), δz∗(z)

)
> ϵn,E

)
= P

(
p̂

(
z∗ | Dn,E

)
< 1− ϵn,E

)
≤ P (Ân,E) (102)

It suffices to show that P (Ân,E)→ 0 as E →∞. This convergence follows directly from eqs. (98)
and (101), thereby concluding the proof.

C.4 DISCUSSION

We discuss adjustments to the posterior consistency results when certain conditions change.

We begin with the case where the true distributions {pe(x, y)} are available.

Violation of the invariance assumption. When Assumption 1 is violated, the posterior would
instead concentrate on an “approximately invariant” feature selector – one that minimizes an invari-
ance measure µ(z) among all z values:

µ(z) := Ep(e)pe(xz)KL [pe(y | xz) ∥ p(y | xz)] . (103)
The invariance measure µ(z) quantifies the expected KL divergence between the per-environment
conditional and the pooled conditional given z, and therefore is non-negative for all z. A lower value
of µ(z) indicates less discrepancy between per-environment conditionals and the pooled conditional,
meaning that z is closer to resulting in an invariant model. In particular, when Assumption 1 holds,
the invariant z∗ satisfies µ(z∗) = 0.

Violation of prior positivity for the invariant z∗. When the prior p(z) assigns zero mass to
z∗ which invalidates part of Assumption 2, the posterior would concentrate on an approximately
invariant feature selector within the prior support, i.e. argminz∈supp(p(z)) µ(z).

Violation of Assumption 2 If there are multiple invariant feature selectors – violating the unique-
ness condition in Assumption 2 – the posterior would concentrate on all invariant feature selectors,
with density proportional to their prior values.

Next, we examine the impact of model misspecification on the results for estimated posterior given
finite data.

Model misspecification. We let {p̄e(y | xz)}e,z and {p̄(y | xz)}z be the best-fitting conditional
models within the chosen model class. When the model class is misspecified, the posterior distribu-
tion under these fitted models will concentrate on the feature selector that minimizes the following
invariance measure:

µ̄(z) := Ep(e)pe(x,y) [log p̄e(y | x
z)− log p̄(y | xz)] . (104)

This measure µ̄(z) quantifies the average discrepancy between the best-fitting per-environment and
pooled conditionals over the multi-environment data.

The minimizer of µ̄(z) is not necessarily the true invariant z∗, which minimizes µ(z) defined in
eq. (103). Therefore, for posterior inference to remain reliable, it is crucial to ensure that our choice
of conditional model class is reasonably specified:

(i) we can model the true invariant model accurately such that µ̄(z∗) ≈ 0;
(ii) for remaining z ̸= z∗, the conditional model class must be expressive enough to better fit

the per-environment data than the pooled data such that µ̄(z) > 0.

When both conditions (i) and (ii) are satisfied, z∗ can be expected to minimize µ̄(z).

Finally, we comment on the limiting behavior with respect to n conditioned on a fixed set of envi-
ronments.
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Conditioning on the fixed set of environments. The above analysis takes into account of the ran-
domness in sampling E environments from all potential environments E . If we instead conditioned
on a fixed set of observed environments, denoted as Eobs – the scenario encountered in practice – we
can restrict the environments of interests E to Eobs. When all relevevant assumptions hold for Eobs,
the consistency and contraction rate results would still hold.

Practically speaking, when Eobs includes only a few environments, it is possible that the uniqueness
assumption in Assumption 2 does not hold, i.e. there exists multiple invariant feature selectors within
Eobs. Thus, the posterior distribution will concentrate on all these solutions when n→∞, as above
discussion indicates. That said, adding new environments to Eobs can help in reducing the number
of invariant feature selectors within the expanded Eobs, resulting in fewer modes in the posterior. In
this sense, the uncertainty will shrink with respect to the number of observed environments.

Theoretical justification. To justify the above claims, we prove the following theorem generalizes
the consistency result in Theorem 1 to more general conditions.

Theorem 7 (Generalized posterior consistency). Let Z ′ be the set of minimizer(s) of µ(z) as defined
in eq. (35), and assume that p(Z∗) > 0. Then as n→∞ (fixing E) or E →∞ (fixing n), we have

(i) P (ẑn,E ∈ Z ′)→ 1,

(ii) p(z∗ | Dn,E)
P→ p(z∗)

p(Z∗) .

Proof (Sketch) We adapt the proof from Theorem 1. The proof to (i) follows similarly which we
skip here.

To prove (ii), we note that

p(z∗ | Dn,E) =
p(z∗)∑

z∈Z′ p(z)I1(z) +
∑

z ̸∈Z′ p(z)I2(z)
(105)

where

I1(z) = exp{Sn,E(z
∗)− Sn,E(z)} (106)

I2(z) = exp{Sn,E(z
∗)− Sn,E(z)}. (107)

Following the proof of Theorem 1, we know that I1(z) = 1 for z ∈ Z ′, and I2(z)
P→ 0 as n or E

goes to∞, for z ̸∈ Z ′

Therefore, as n→∞ or E →∞,

p(z∗ | Dn,E)
P→ p(z∗)

p(Z ′)
. (108)

The above results apply to the case when the true distributions {pe(x, y)}e are known. Similar
results apply when estimated models are used but additional conditions on model well-specification
and estimation bias must be imposed. For example, when the models are not correctly specified, the
above results need to be adjusted for the best-fitting model within the chosen model class. Moreover,
in the case of finite per-environment sample n, the estimation bias must be adequately controlled to
ensure posterior consistency.

D VARIATIONAL INFERENCE

D.1 GRADIENT ESTIMATORS FOR BINARY LATENT VARIABLES

We use the following algorithm to update the variational parameters of binary latent variables.
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Algorithm 3: U2G gradient estimation (Yin et al., 2020)
Input: Objective function f , dataset D, variational parameter ϕ
Output: A random unbiased estimate ĝ of ∇ϕEqϕ(z) [f(z,D, ϕ)]

1 Draw u ∼
∏p

i=1 Uniform[0, 1]
2 z1 ← 1 [u > 1− σ(ϕ)] , z2 ← 1 [u < σ(ϕ)]

3 ĝ ← 1
2σ(|ϕ|) · [f(z1,D, ϕ)− f(z2,D, ϕ)] · (z1 − z2)

D.2 OPTIMIZATION DETAILS

For all experiments, we use M = 10 Monte Carlo samples for the gradient estimation, the learning
rate of 1.0 and the cyclic learning rate scheduler.

In simulation experiments, the variational parameter ϕ is initialized with σ(0.4). In the gene data
experiments, the variational parameter ϕ is initialized with σ(0.05),

In practice, the initialization value of ϕ can be tuned using the training-set ELBO, and by checking
whether the resulting optimization is stable. We found that making sure the expected number of
invariant features under the variational posterior at the initialization is smaller than the maximum
number of invariant features under the prior to be a good practice.

E EXPERIMENT DETAILS

E.1 SYNTHETIC DATA STUDY

E.1.1 DATA GENERATION DETAILS

We first describe the generic data generative process in details.

1. The factorization of the joint distribution. We first uniformly draw a permutation π
over [1, · · · , p + 1], which is used to re-arrange (x(1:p), y) to obtain t: t(i) = x(π(i)) if
π(i) ̸= p+ 1 and t(i) = y otherwise. 1

The permutation π defines a factorization of any joint distribution p(x(1:p), y):

p(x(1:p), y) =

p+1∏
i=1

p(t(i) | t(1:i−1)), (109)

where we define t(1:0) to be an empty conditioning set.
We let each conditional density p(t(i) | t(1:i−1)) to be a linear Gaussian model, i.e. p(t(i) |
t(1:i−1)) = N (t(i) | βt(1:i−1) + β0, σ

2) for some β, β0, σ
2.

We next specify the joint distribution pe(x, y) for different environment e that factorizes
according to π. It suffices to specify the linear Gaussian model parameters for each condi-
tional density.

2. Observational environment e = 1. For i = 1, · · · , p+ 1:
• sample the intercept parameter from N (0, 1),
• sample the variance parameter from Uniform

(
[σ2

min, σ
2
max]

)
, where σ2

min and σ2
max

are lower and upper bounds on the variance parameter,
• sample each coefficient value independently:

– if π(i) = p+1, i.e. t(i) = y, first sample its absolute value from Uniform ([lb, ub])
and then assign a random sign;

– if π(i) ̸= p + 1 i.e. t(i) = x(π(i)), (i) with probability actprob ∈ [0, 1] first
sample its absolute value from Uniform ([lb, ub]) and then assign a random sign,
(ii) otherwise set to 0.

1If there are pre-specified lower bound pmin and upper bound pmax on the number of the true invariant
features |z∗|, we keep uniformly sampling π until we get a π such that pmin < π−1(p+ 1) ≤ pmax + 1.
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3. Interventional Environments (e = 2, · · · , E) Based on the observational environment
e = 1, we first randomly draw a fraction intfrace of features x′

e ⊂ x to be intervened on.
Then, for i = 1, · · · , p+ 1:

• If t(i) ̸∈ x′
e, set pe(t(i) | t(1:i−1)) = p1(t

(i) | t(1:i−1))

• Otherwise, draw new parameters for pe(t(i) | t(1:i−1))

– sample intercept parameter by first sampling its absolute value fromN (me, 1) and
assigning to it a random sign, for some me ∈ R specific to the environment e.

– sample variance parameter from Uniform
(
[σ2

e,min, σ
2
e,max]

)
, where σ2

e,min, σ
2
e,max

are the lower and upper bounds of variance parameters specific to the environment
e.

– sample each coefficient value independently:
* with probability changeprobe, copy the corresponding coefficient from e = 1

case
* with probability 1 − changeprobe, (i) with probability actprob sample its ab-

solute value from Uniform ([lbe, ube]), assign a random sign and (ii) otherwise
set to 0.

4. Draw data Finally, we can draw n data points {xei, yei}ni=1 from each environment e
independently, for e = 1, · · · , E.

We next describe the choices of number of data points per environment n, the number of environ-
ments E, the number of features p, and other hyperparameters in different experiments.

E.1.2 EMPIRICAL VERIFICATION OF THEORY

We set p = 3, the maximum number of the true invariant features pmax = 3, and the minimum
number pmin = 1. For e = 1, the lower bound of the absolute coefficient value lb = 0.5, upper
bound ub = 2; actprob = 1.0; noise level lower bound σmin = 0.1 and upper bound σmax = 0.2.
For e = 2, · · · , E,

E.1.3 METHOD DETAILS

We run the following methods for comparison:

1. Oracle: Linear regression of y against xz∗
, the true invariant features, with parameters

estimated using the least square method on pooled data. When p+1 > nE, the least square
solution is infeasible, and we instead use Lasso, with 10-fold cross-validation to select the
ℓ1-regularization hyperparameter. We return the feature dimensions whose coefficients are
significant at the α = 0.05 level. If Lasso is used, we return the dimensions of the top 10
features by absolute coefficient values.

2. PI-exact: Our method with exact inference as described in Algorithm 1. Posterior mode is
used for computing relevant metrics.

3. PI-var: Our method with variational inference as described in Algorithm 2. Posterior mode
is used for computing relevant metrics. See optimization details in Appendix D.2.

4. Regression: Similar to Oracle, but linear regression is performed on all features rather than
restricting to the true invariant features.

5. ICP: The Invariant Causal Prediction method proposed by Peters et al. (2016). We use the
significance level α = 0.05 for its multiple hypothesis testing procedure.

6. Hidden-ICP: an extension of ICP proposed by Rothenhäusler et al. (2019) that enables
faster inference and permits the existence of hidden variable. We run the method at the
significance level α = 0.05.

7. EILLS: A linear regression model proposed by Fan et al. (2023) that introduces a regular-
ization term to encourage invariant predictions among environments. Following the default
choice in their original codebase, the regularization penalty is set to 36.

Notably, PI-exact, ICP and EILLS require enumeration of all candidate z values, which is only
feasible when p is small. Additionally, parameter estimation for Hidden-ICP is intractable when
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the number of features exceed the number of observations. Therefore, for p = 450, we apply a
screening step to reduce to 10 features with highest coefficient magnitudes from Regression, and
then apply these methods to the screened features. We call the modified versions PI-exact-s, ICP-s,
Hidden-ICP-s, and EILLS-s.

PI-var does not require enumeration of z values, and is therefore directly applicable to high-
dimensional settings. However, we find that using a uniform prior over the full space of {0, 1}p
can lead to unstable optimization process when p is large. Consequently, we set the prior p(z) in PI-
var to be uniform over {0, 1}p when p = 10, and to be uniformly distributed over zs with ∥z∥0 ≤ 20
when p = 450.

E.1.4 SIMULATION DETAILS

We describe the process to create a random set of joint distributions {pe(x, y)}Ee=1 given p and E.
The reason to differentiate between various p is to control the scale of parameter values to prevent
the sampled x, y values from exploding when p increases.

1. When p = 10,

(a) actprob ∼ Uniform ({0.6, 0.7, 0.8, 0.9})
(b) For e = 1: (i) coefficient lower bound lb = 1; (ii) coefficient upper bound ub = 2.1,

(iii) noise level lower bound σmin = 0.1; (iv) noise level upper bound σ2
max = 0.2.

(c) Separately for e = 2, · · · , E: for the intervened variable (i) mean of the absolute value
of the intercept me ∼ Uniform ([0, 1]); (ii) coefficient lower bound lbe = (me +
0.01) ∗ 2; (iii) coefficient upper bound ube = (me + 0.5) ∗ 2; (iv) noise level lower
bound σe,min ∼ Uniform ([0.1, 0.2]); (v) noise level upper bound σe,max = σe,min +
Uniform ([0.1, 0.5]); (vi)the probability of changing the coefficient changeprobe ∼
Uniform ([0.1, 0.3]); and (vii) the fraction of features to be intervened on intfrace ∼
Uniform ([0.5, 1])

2. When p = 60,

(a) actprob ∼ Uniform ({0.1, 0.2, 0.3, 0.4})
(b) For e = 1: same as p = 10 case
(c) Separately for e = 2, · · · , E: for the intervened variable (i) mean of the absolute value

of the intercept me ∼ Uniform ([0, 1]); (ii) coefficient lower bound lbe = me + 0.01;
(iii) coefficient upper bound ube = (me + 0.01) ∗ 1.5; other hyperparameters are
chosen in the same way as p = 10 case

3. When p = 450,

(a) actprob ∼ Uniform ({0.1, 0.15, 0.2, 0.25})
(b) For e = 1: same as p = 10 case
(c) Separately for e = 2, · · · , E: for the intervened variable (i) mean of the absolute value

of the intercept me ∼ Uniform ([0, 0.4]); (ii) coefficient lower bound lbe = me+0.01;
(iii) coefficient upper bound ube = (me + 0.01) ∗ 1.5; other hyperparameters are
chosen in the same way as p = 10 case

We set the maximum number of the true invariant features pmax = 5 when p = 10, and pmax = 10
otherwise. For all cases of p we set the minimum number of the true invariant features pmin = 1.

E.1.5 ADDITIONAL RESULTS

Results for p = 10 case. Figure 4 displays the results for p = 10 case. In Figure 4a we observe
that the exact discovery rate of all methods improves with more environments. In particular, all
methods except Regression and Hidden-ICP have an exact discovery rate close to 1 for large E = 20,
demonstrating their effectiveness with sufficiently many environments. The exact discovery rate of
Oracle has the fastest convergence to 1, followed by PI-exact and then PI-var.

In the coverage results shown in Figure 4b, we observe an upward tread for all methods as E in-
creases. Both Oracle and ICP consistently maintain a coverage close to 1 across different values
of E. Notably, when E is small, ICP returns empty prediction for most of times, leading to a high
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(c) Exact posterior at z∗

Figure 4: Synthetic study: comparison to other methods with p = 10 features. Left panel: As E
increases, the exact discovery rate of all methods increases; PI-exact converges to 1 faster than other
methods except for Oralce, followed by PI-var. Middle panel: The coverage of Oracle and ICP
remains close to 1 across different E; the coverage of PI-exact, PI-var and ELLIS converges to 1
as E increases; other methods have relatively low converge. Right panel: The posterior value at
z∗ from PI-exact increases with larger E and higher intervention fraction, demonstrating posterior
consistency. All results are averaged over cases with n = 50, 200, 500, each comprising 400 random
simulations. Error bars indicate 95% confidence intervals.
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Figure 5: Synthetic study with p = 10 features. Variational posterior at z∗ v.s. number of envi-
ronments E under different fraction of intervention features. Similar to Figure 4c, we observe that
the variational posterior also concentrates at z∗ with increasing number of environments, and the
convergence is faster when the fraction of intervention features is higher. However, the convergence
of the variational posterior is slower than that of the exact posterior as in Figure 4c.

coverage but low exact discovery rate. The coverage of our methods, both PI-exact and PI-var,
converges to a near perfect coverage when E = 20.

Figure 4c displays the posterior value at the true z∗ given by PI-exact. The posterior value converges
to 1 with more environments. Additionally, the convergence is faster with higher level of intervention
fraction. This result is consistent with the theoretical contraction rates. We include the variational
posterior value at z∗ from PI-var in Figure 5 in the appendix, where we observe a similar trend as in
the exact inference, but with a slower convergence rate compared to the exact posterior.

E.2 GENE PERTURBATION STUDY

We include the full experiment setup and additional results for the gene experiment in ??.
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Following prior work (Peters et al., 2016), we treat the target gene as outcome y and the remaining
p = 6, 169 genes as features x. Our goal is to find a subset of feature genes xz∗ ⊂ x that invariantly
predict y across environments. If the value of an invariant feature x′ ∈ xz∗

is perturbed, the invari-
ance of the predictive model implies that the value of y is expected to change in the new environment
created by the perturbation, which allows us to predict a gene perturbation effect. For non-invariant
feature x′ ̸∈ xz∗

, we do not make such prediction. Peters et al. (2016) also provides a justificiation
through a causal perspective, where the invariant feature genes are viewed as the direct causes of the
target gene.

We set up the training and validation procedure largely following Peters et al. (2016). The inter-
ventional samples from e = 2 are randomly divided into 5 blocks at the beginning. We then sweep
through 6,170 genes, treating each as the target gene, with the remaining genes as features. For each
target gene, we construct a training set that includes all observational samples from e = 1 and 4
out of 5 blocks of interventional samples from e = 2, reserving the remaining block for validation.
Notably, if the training set contains a sample corresponding to the perturbation of the target gene,
we exclude it as we want to make sure the distribution of the target gene is not affected. This pro-
cess is repeated five times, with each block of interventional samples held out once, ensuring that
each gene perturbation result is used for validation at least once. When a method infers some set of
invariant features, we check through the validation set that whether perturbing these features leads
to a significant change in the expression level of the target gene.

We run the following methods:

1. Marginal: we pool training data over the two environments and retain all features that have
a correlation with the outcome y at significance level α/p with α = 0.01.

2. Lasso: we run Lasso on the pooled training data where the regularization penalty is se-
lected from {0.1, 0.05, 0.01, 0.005, 0.001} with 5-fold cross-validation and retain up to 10
features with the highest non-zero absolute coefficient values.

3. EILLS-s: we run EILLS on the screened features with an invariance regularization strength
of 36.

4. Hidden-ICP-s: We run Hidden-ICP on the screened covaraites at significance level α,
where we vary α ∈ {0.001, 0.005, 0.01, 0.05, 0.1};

5. ICP-s: we run ICP on the screened features at significance level α/nint where we vary
α ∈ {0.001, 0.005, 0.01, 0.05, 0.1}, and the factor nint = 1, 479 is used for Bonferroni
correction, as suggested by Peters et al. (2016).

6. PI-exact-s: we run PI with exact inference on the screened features, and retain the fea-
tures whose marginal posterior probability is above a threshold t where we vary t ∈
{0.5, 0.6, 0.7, 0.8, 0.9}.

7. PI-var: we run PI with variational inference on the full set of features with a sparse prior
uniform over {z ∈ {0, 1}p : ∥z∥0 ≤ 200}, and rxetain the features whose marginal poste-
rior probability is above a threshold t where we vary t ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. See the
optimization details in Appendix D.2.

For the same reason as in the synthetic study, EILLS-s, ICP-s, PI-exact-s and Hidden-ICP-s all use
a screening step. The screened features are initially selected using the features returned by Lasso.
If Lasso does not return any features, namely, all the Lasso coefficients are 0, we instead select up
to the top 10 features with largest absolute correlation values from Marginal. For all methods, the
linear Gaussian family is used for specifying the prediction models.

As PI-var and ICP-s achieve the highest precision among the methods, we make a more detailed
comparison between them.

Comparison between PI-var and ICP-s. We examine the consistency of predictions made by
PI-var (with marginal probability threshold t = 0.5) and ICP-s (with a significance level α = 0.01).
For any fixed target gene, we take the intersection of predicted invariance features across 3 random
seeds for each method. We find that around 72% (23 out of 32) of the predictions made by ICP-
s are also identified by PI-var, suggesting a certain level of consistency. Moreover, PI-var is less
conservative than ICP-s, making a total of 371 true predictions – about 11.6 times that of ICP-s.
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Inferred invariant feature gene(s)Target gene Meinshausen et al. (2016) ICP-s (α = 0.01) PI-var (t = 0.5)
YMR103C YMR104C YMR104C YMR104C, YHR209W∗

YMR321C YPL273W YPL273W YPL273W
YCL042W YCL040W YCL040W YCL040W
YLL020C YLL019C YLL019C YLL019C
YPL240C YMR186W YMR186W YJL077C, YMR186W
YBR126C YDR074W YGR008C∗, YKL035W∗, YDR074W
YMR173W-A YMR173W YMR173W YMR173W
YGR264C YGR162W
YJL077C YOR027W YLL026W∗, YOR027W, YFL010W-A∗

YLR170C YJL115W×

Table 1: Comparison of predictions based on ICP from previous findings (Meinshausen et al., 2016)
(left column) to predictions from our implementation of ICP-s (middle column) and PI-var (right
column). We observe consistency in most of their predictions on the 10 target genes selected by
Meinshausen et al. (2016). Genes highlighted in blue are validated to have significant effects on the
corresponding target gene; genes marked with a superscript ∗ cannot be checked given existing data,
while those with a superscript × can be checked but do not have a significant effect; blank means no
invariant features are predicted by the method.

We also compare our findings to previous findings in Meinshausen et al. (2016) which is also based
on ICP. They use ICP at significance level α = 0.01 after a Lasso pre-screening step, followed
by a stable selection procedure over 50 randomly bootstrapped dataset 2. The comparison results
are summarized in Table 1. We observe that most of the true effects predicted by PI-var, ICP-s,
and Meinshausen et al. (2016) are the same. Moreover, PI-var infers more invariant feature genes;
However, not all of these predictions can be checked with existing experimental data.

2In addition, the dataset used in Meinshausen et al. (2016) only has 160 observational samples, whereas
the updated version that we use has 262 observational samples, which can be downloaded here https://
deleteome.holstegelab.nl/.
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