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ABSTRACT

Spiking neural networks (SNNs), particularly the single-spike variant in which
neurons spike at most once, are considerably more energy efficient than stan-
dard artificial neural networks (ANNs). However, single-spike SSNs are diffi-
cult to train due to their dynamic and non-differentiable nature, where current
solutions are either slow or suffer from training instabilities. These networks
have also been critiqued for their limited computational applicability such as
being unsuitable for time-series datasets. We propose a new model for train-
ing single-spike SNNs which mitigates the aforementioned training issues and
obtains competitive results across various image and neuromorphic datasets,
with up to a 13.98× training speedup and up to an 81% reduction in spikes com-
pared to the multi-spike SNN. Notably, our model performs on par with multi-
spike SNNs in challenging tasks involving neuromorphic time-series datasets,
demonstrating a broader computational role for single-spike SNNs than previ-
ously believed.

1 INTRODUCTION

Artificial neural networks (ANNs) have achieved impressive feats over recent years, obtaining
human-level performance on visual and auditory tasks (Hinton et al., 2012; He et al., 2016), nat-
ural language processing (Brown et al., 2020) and challenging games (Mnih et al., 2015; Silver
et al., 2017; Vinyals et al., 2019). However, as the difficulty and complexity of the tasks increase,
so has the size of the networks required to solve them, demanding a substantial and unsustain-
able amount of energy (Strubell et al., 2019; Schwartz et al., 2020). Inspired by the extreme energy
efficiency of the brain (Sokoloff, 1960), spiking neural networks (SNNs) emulated on neuromor-
phic computers attempt to solve this dilemma, requiring significantly less energy than ANNs
(Wunderlich et al., 2019). These networks are of growing interest, obtaining noteworthy results
on visual (Fang et al., 2021; Zhou & Li, 2021), auditory (Yin et al., 2020; Yao et al., 2021) and rein-
forcement learning problems (Patel et al., 2019; Tang et al., 2020; Bellec et al., 2020).

A particular class of SNNs in which individual neurons respond with at most one spike aims
to further amplify the energy and scaling advantages of standard SNNs and ANNs. Inspired by
the sparse spike processing shown to exist at least for certain stimuli in the auditory and visual
systems (Heil, 2004; Gollisch & Meister, 2008), and forming a class of universal function approx-
imator (Comsa et al., 2020), these networks obtain extreme energy efficiency due to their single-
spike nature (Oh et al., 2021; Liang et al., 2021). Although providing a promising path toward
building very large and energy-efficient networks, we are yet to understand how to properly train
these SNNs. The success of the backprop training algorithm in ANNs does not naturally trans-
fer to single- and multi-spike SNNs due to their non-differentiable activation function. Current
attempts at training are either slow (as time is sequentially simulated) or suffer from training
instabilities (e.g. the dead neuron problem) and idiosyncrasies (e.g. requiring particular regu-
larisation) (Eshraghian et al., 2021). Additionally, it has been argued that single-spike networks
have limited applicability and are not suited for temporal problems, as recently pointed out by
Eshraghian et al. (2021): "[...] it enforces stringent priors upon the network (e.g., each neuron
must fire only once) that are incompatible with dynamically changing input data" and Zenke
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et al. (2021): "[...] only using single spikes in each neuron has its limits and is less suitable for
processing temporal stimuli, such as electroencephalogram (EEG) signals, speech, or videos".

In this work we address these shortcomings by proposing a new model for training single-spike
networks, for which the main contributions are summarised as follows.

1. Our model for training single-spike SNNs eschews all sequential dependence on time
and exclusively relies on GPU parallelisable non-sequential operations. We experimen-
tally validate this to obtain faster training times over sequentially trained control mod-
els on synthetic benchmarks (up to 16.77× speedup) and real datasets (up to 13.98×
speedup).

2. We obtain competitive accuracies on various image and neuromorphic datasets with ex-
treme spike sparsity (up to 81% fewer spikes than standard multi-spike SNNs), with our
model being insensitive to the dead neuron problem and not requiring careful network
regularisation. In other single-spike training methods, but not in our model, the dead
neuron problem tends to halt learning due to reduced network activity.

3. We showcase our model’s applicability in deeper and convolutional networks, and
through the inclusion of trainable membrane time constants manage to solve difficult
temporal problems otherwise thought to be unsolvable by single-spike networks.

2 BACKGROUND AND RELATED WORK

Figure 1: Spiking neuron dynamics. a. Left: A multi-spike neuron emitting and receiving (per
presynaptic terminal) multiple spikes. Right: Input and output activity of the neuron (bottom
panel: Input raster, middle panel: Input current I and top panel: Membrane potential V . Dotted
line represents the firing threshold and a dot above denotes a spike). b. Left: A single-spike
neuron emitting and receiving (per presynaptic terminal) at most one spike per stimulus. Right:
Input and output activity of the neuron).

2.1 SINGLE-SPIKE MODEL

A spiking neural network (SNN) consists of artificial neurons which output binary signals known
as spikes (Figure 1a). Assume a feedforward network architecture of L fully connected layers,
where each layer l consists of N (l ) neurons that are fully connected to the next layer l + 1 via

synaptic weights W (l+1) ∈ RN (l+1)×N (l )
. Neuron i in layer l emits a spike S(l )

i [t ] ∈ {0,1} at time t if

its membrane potential V (l )
i [t ] ∈R reaches firing threshold Vth .

S(l )
i [t ] = f (V (l )

i [t ]) =
!

1, if V (l )
i [t ] >Vth

0, otherwise
(1)

Membrane potentials evolve according to the leaky integrate and fire (LIF) model

τ
dV (l )

i (t )

d t
=−V (l )

i (t )+Vr est +RI (l )
i (t ) (2)

where τ ∈ R is the membrane time constant and R ∈ R is the input resistance (Gerstner et al.,
2014).1 Without loss of generality the LIF model is normalised (V (l )

i (t ) ∈ [0,1] by Vr est = 0,Vth =
1,R = 1; see Appendix) and discretised using the forward Euler method (see Appendix), from

1Note, we use () to refer to continuous time and [] to refer to discrete time.
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which the membrane potential can be computed at every discrete simulation time step t ∈
{1, . . . ,T } for T ∈N using the difference equation below.

V (l )
i [t +1] =βV (l )

i [t ]+ (1−β)
"
b(l )

i +
N (l−1)#

j=1
W (l )

i j S(l−1)
j [t +1]

$

% &' (
Input current I (l )

i [t +1]

− S(l )
i [t ]

% &' (
Spike reset

(3)

The membrane potential is charged from the current induced by the incoming presynaptic spikes

S(l−1)[t ] ∈ RN (l−1)
and from the constant bias current source b(l )

i . Over time, this potential dissi-

pates, and the degree of dissipation is captured by 0 ≤β= exp(−∆t
τ ) ≤ 1 (for simulation time-step

size ∆t ∈ R). The neuron’s membrane potential is at resting state Vr est = 0 in the absence of any
input current and emits a spike S(l )

i [t ] = 1 if the potential rises above firing threshold Vth = 1 (after
which it is reduced back close to resting state).

To enforce the single-spike constraint, we keep track if a neuron has spiked prior to time t us-
ing the variable d (l )

i [t ] = max(S(l )
i [t − 1],d (l )

i [t − 1]), which is zero before the first spike and one

thereafter (d (l )
i [t = 0] = 0). We then redefine the output spikes as S̃(l )

i [t ] = (1−d (l )
i [t ]) ·S(l )

i [t ], thus
ensuring that no more than a single spike is emitted during simulation (Figure 1b).

2.2 SINGLE-SPIKE TRAINING TECHNIQUES

The main problem with training single- and multi-spike SNNs is the non-differentiable nature
of their activation function. This precludes the direct use of the backprop algorithm (Rumel-
hart et al., 1986), which has underpinned the successful training of ANNs. Various SNN training
solutions have been proposed, which we group into three categories.

Shadow training Instead of directly training a SNN, an already trained ANN is mapped to a
SNN. This approach has actively been explored in the multi-spike setting (O’Connor et al., 2013;
Esser et al., 2015; Rueckauer et al., 2016; 2017), with recent work extending this to single-spike
networks (Stöckl & Maass, 2019; Park et al., 2020). Although these approaches permit the training
of large networks, they come with various shortcomings. Some shortcomings are method spe-
cific, such as Stöckl & Maass (2019) who outline how a single ANN unit can be represented as a
network of spiking units. However, this leads to an undesirable blowup of network parameters in
their conversion process (which is avoided by our approach). Other shortcomings are more gen-
eral, such as the lack of support for training neural parameters besides synaptic weights (which
our approach permits) or inference accuracy being lost in the conversion process, where mapped
SNNs perform worse than the original ANNs (which we avoid).

Training using the spike times An approach used to directly train SNNs using backprop in-
volves passing gradients through the time of spiking, which sidesteps the aforementioned non-
differentiability issue (Bohte et al., 2002; Mostafa, 2017; Comsa et al., 2020; Kheradpisheh &
Masquelier, 2020; Zhang et al., 2021; Zhou & Li, 2021; Zhou et al., 2021). Although commonly
used for training single-spike SNNs, this approach suffers from various shortcomings, such as
1. the dead neuron problem, where a lack of spiking activity halts the learning process (which
we overcome), 2. being usually constrained to integrate and fire (IF) neurons (where we support
both the IF and LIF model), 3. having performance dependent on the computationally costly
processing of presynaptic spikes using postsynaptic potential (PSP) kernels (which we show not
to be necessary) and 4. requiring careful network regularisation (which we avoid).

Training using the membrane potentials Another approach to directly training SNNs using
backprop is by replacing the undefined gradient of the non-differentiable spike function with
a surrogate gradient (Esser et al., 2016; Hunsberger & Eliasmith, 2015; Zenke & Ganguli, 2018;
Lee et al., 2016), which permits the flow of gradient through every membrane potential in time
(Bellec et al., 2018; Shrestha & Orchard, 2018; Neftci et al., 2019). This method has been shown to
circumvent the dead neuron problem and permit the training of other neural parameters besides
synaptic connectivity (such as membrane time constants) that have been shown to improve net-
work performance (Perez-Nieves et al., 2021). However, these results have not been replicated in
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the single-spike setting (which we do). A shortcoming of this method is its slow training speed,
as the network needs to sequentially be simulated at every point in time (which we overcome).

3 PROPOSED TRAINING SPEEDUP ALGORITHM

S (0) [1] S (0) [2] S (0) [3] S (0) [4]

I (1) [1] I (1) [2] I (1) [3] I (1) [4]

V (1) [1]

S (1) [1] S (1) [2] S (1) [3] S (1) [4]

z (1) [1] z (1) [2] z (1) [3] z (1) [4]

! "

V (1) [2] V (1) [3] V (1) [4]

S (1) [1] S (1) [2] S (1) [3] S (1) [4]

Figure 2: Illustration of our model. a. The computational graph of our model for 4 time steps.
Input spikes S(0) induce currents I(1), which charge the membrane potential without reset Ṽ(1).
These no-reset membrane potentials are mapped to erroneous output spikes S̃(1), which are then
transformed to a latent representation z(1) encoding an ordering of spikes and finally mapped to
the correct output spikes S(1) (same coloured edges denote output from same source). b. Exam-
ple activity of our model throughout the different stacks of processing.

We propose a new model for training SNNs in which individual neurons spike at most once. Our
solution overcomes the slow training speeds of prior training algorithms by eschewing all se-
quential dependence and recasting the standard single-spike model to exclusively rely on non-
sequential operations. Although our model performs more calculations than the standard single-
spike model, all these calculations are highly parallelisable and thus substantially faster to train
(see Appendix). Our model is comprised of three main steps which are readily implementable in
modern auto differentiation frameworks (Abadi et al., 2016; Paszke et al., 2017; Bradbury et al.,
2018). For illustration purposes, we provide a diagram of the model’s computational graph (Fig-
ure 2a) and an example of how input spikes are transformed throughout the model’s different
layers of processing (Figure 2b).

1. Convert presynaptic spikes to input current As in the standard model, we map the time
series of presynaptic spikes S(l−1)

j
2 to a time series of input currents I(l )

i , which is achieved using

a tensor multiplication.

I (l )
i [t ] =

N (l−1)#

j=1
W (l )

i j S(l−1)
j [t ] (4)

2. Calculate membrane potentials without reset In contrast to the standard model, we calcu-
late modified membrane potentials Ṽ(l )

i from the input current I(l )
i by excluding the reset mecha-

nism. By dropping the reset term −S(l )
i [t ] in Equation 3 and unrolling this altered equation (see

Appendix), we obtain a convolutional form allowing us to calculate these no-reset membrane
potentials Ṽ(l )

i without any sequential operations (where β = [β0,β1, · · · ,βT−1]).

Ṽ (l )
i [t ] =βt V (l )

i [0]+ (1−β)
t#

k=1
βt−k I (l )

i [k]

=βt V (l )
i [0]+ (1−β)

)
I(l )

i ⊛β
*
[t ]

(5)

3. Map no-reset membrane potentials to output spikes We map the time series of no-reset
membrane potentials Ṽ(l )

i to output spikes S(l )
i (which contains at most one spike). We obtain a

2Bold face variables denotes arrays as opposed to scalar values.
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time series of erroneous output spikes S̃(l )
i by passing no-reset membrane potentials Ṽ(l )

i through
the spike function f (Equation 1)

S̃(l )
i [t ] = f (Ṽ (l )

i [t ]) (6)

Due to the removal of the spike reset mechanism, only the first spike occurrence in S̃(l )
i follows

the dynamics set out by the LIF model (Equation 3) and thus all spikes succeeding the first spike
occurrence are removed (compliant with the single spike assumption). We achieve this by con-
structing correct output spikes S(l )

i with S(l )
i [t ] = 0 for t ∈ {1,2, . . . ,T } except S(l )

i [t ] = 1 for the

smallest t satisfying Ṽ (l )
i [t ] > 1 (if such Ṽ (l )

i [t ] exists). A straightforward solution would be to it-

erate over all elements in S̃(l )
i and set all spikes succeeding the first to zero, but such sequential

calculation is the very problem we set out to remediate. We propose a vectorised solution to this
problem which is comprised of two steps:

1. Map the erroneous output spikes S̃(l )
i to a latent representation z(l )

i = φ(S̃(l )
i ), where ev-

ery element therein encodes an ordering of the spikes. This is achieved by passing the
erroneous output spikes S̃(l )

i through proposed function φ (Proposition 1), which maps

all elements besides the first spike occurrence to a value other than one (z(l )
i [t ] ∕= 1 for

all t except for the smallest t satisfying S̃(l )
i [t ] = 1 if such t exists).

2. Obtain the correct output spikes S(l )
i = g (z(l )

i ) by passing the latent representation z(l )
i

through function g , which uses the encoded spike ordering to produce the correct out-
puts spikes S(l )

i by mapping every value besides one to zero. 3

g (z(l )
i )[t ] =

!
1, if z(l )

i [t ] = 1

0, otherwise
(7)

Proposition 1. Function φ(S̃(l )
i )[t ] =+t

k=1 S̃(l )
i [k](t −k +1) acting on S̃(l )

i ∈ {0,1}T contains at most

one element equal to one φ(S̃(l )
i )[t ] = 1 for the smallest t satisfying S̃(l )

i [t ] = 1 (if such t exists).

Proof. Firstly, if S̃(l )
i [t ] = 0 for all t ∈ [1,T ] thenφ(S̃(l )

i )[t ] = 0 for all t ∈ [1,T ] (follows from substitu-

tion). Secondly, if S̃(l )
i [t1] = 1 for smallest t1 ∈ [1,T ] then φ(S̃(l )

i )[t1] = 1 (follows from substitution)

and there can exist no t2 > t1 such that φ(S̃(l )
i )[t2] = 1 as

φ(S̃(l )
i )[t +1] =

t+1#

k=1
S̃(l )

i [k]
)
(t +1)−k +1

*

=
t#

k=1
S̃(l )

i [k]
)
(t +1)−k +1

*
+ S̃(l )

i [t +1]

=
t#

k=1
S̃(l )

i [k](t −k +1)+
t#

k=1
S̃(l )

i [k]+ S̃(l )
i [t +1]

=φ(S̃(l )
i )[t ]+

t+1#

k=1
S̃(l )

i [k]

(8)

Thus φ(S̃(l )
i )[t2] >φ(S̃(l )

i )[t1] for all t2 > t1 as
+t2

k=1 S̃(l )
i [k] ≥+t1

k=1 S̃(l )
i [k] = 1 > 0.

4 EXPERIMENTS AND RESULTS

We investigate our model’s speedup advantages and performance on real datasets in comparison
to prior work. All models were implemented using PyTorch (Paszke et al., 2017) with benchmarks
and training conducted on a cluster of NVIDIA Tesla A100 GPUs.
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Figure 3: Training speedup of our model over the standard model. a. Total training speedup as
a function of the number of hidden neurons n and simulation steps t (left), alongside the cor-
responding forward and backward pass speedups (right). b. Training durations of both models
for fixed hidden neurons n = 100 and variable batch size b. c. Training speedup over different
number of layers for fixed time steps t = 27 and batch size b = 128. d. Training speedup over large
number of hidden neurons n for fixed time steps t = 27 and variable batch size b. e. Forward pass
speedup for fixed time steps t = 27 and variable batch size b. f. Forward vs the backward pass
speedup of our model for fixed time steps t = 27 and variable batch size b. b-f use a 10 sample
average with the mean and s.d. plotted.

4.1 SPEEDUP BENCHMARKS

We evaluate the speedup advantages of our model over the standard single-spike model trained
using surrogate gradients, by simulating the forward and backward passes for different numbers
of hidden units, layers, simulation steps and batch sizes on a synthetic spike dataset (see Ap-
pendix).

Robust speedup for different numbers of hidden units and simulation steps We observe a
considerable training speedup across a range of hidden units and simulation steps in a single
layer (Figure 3a). We obtain an optimal speedup of 16.77× for n = 100 units and t = 27 time steps,
where our model takes 4.34±0.9ms compared to the 72.82±2.7ms it takes the standard model to
complete a training pass (Figure 3b). Our model still obtains a reasonable speedup of 3.40× for
largest benchmarked n = 1000 units and t = 211 time steps (albeit the forward pass speedup being
slower).4 These speedups are even more pronounced when the membrane time constants are
fixed (obtaining a maximum speedup of 17.42×) or when using smaller batch sizes (with batch
sizes b = 32 and b = 64 obtaining a maximum speedup of 35.05× and 25.16×, respectively; See
Appendix).

Applicability to deeper networks We find our model to obtain substantial training speedups
when using multiple layers (Figure 3c) and layers containing thousands of neurons (Figure 3d).
The training speedups remain similar across an increasing numbers of layers for different num-
ber of hidden units (Figure 3c). Furthermore, we obtain a speedup of ∼ 3× when using a large
number of neurons (ranging between 2 ·103 to 2 ·104 neurons) in a single layer (Figure 3d). Inter-

3We still permit gradients to flow through the points where g (z(l )
i )[t ] = 0.

4This is due to the convolutional algorithm chosen by cudnn (Chetlur et al., 2014).
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estingly, these speedups remain approximately the same across the different number of neurons,
even when the batch size is changed.5

Speedup advantages and room for improvement Previous attempts at accelerating SNN train-
ing either speed up the backward pass (Perez-Nieves & Goodman, 2021) or remove it completely
(Bellec et al., 2020). These methods however still sequentially compute the forward pass, which
our model is able to accelerate (Figure 3e). Furthermore, we observe the backward pass to slow
down relative to the forward pass for increasing time steps (Figure 3f). Further training speedup
may therefore be achieved using sparse gradient descent, as auto differentiation frameworks are
not optimised for the sparse nature of SNNs (Perez-Nieves & Goodman, 2021).

4.2 PERFORMANCE ON REAL DATASETS

We investigate the applicability of our model to classify real data from different domains and of
varying complexity (Table 1). These include the Yin-Yang dataset (Kriener et al., 2022) in which
the goal is to classify spatial coordinates belonging to different groups, and the MNIST (LeCun,
1998) and Fashion-MNIST (F-MNIST) (Xiao et al., 2017) image datasets, where the objective is to
classify images of handwritten digits and fashion items. All these analog datasets were converted
into a spike representation using the time-to-first-spike encoding (see Appendix). We also test
performance on two neuromorphic datasets, being the vision N-MNIST (Orchard et al., 2015) and
the more difficult auditory SHD dataset (Cramer et al., 2020). The N-MNIST dataset is the MNIST
dataset mapped onto a spike code using a neuromorphic vision sensor and the SHD dataset com-
prises spoken digit waveforms converted into spikes using a model of auditory bushy neurons in
the cochlear nucleus.

Figure 4: Analysis of our models performance on real datasets. a. Difference in accuracy be-
tween the standard multi-spike and our model. b. Training speedup of our model vs the standard
single-spike model. c. Reduction in spikes of our single-spike model vs the standard multi-spike
model (a-c use a 3 sample average with the mean and s.d. plotted). d. Training robustness of our
model to solve different datasets when starting with zero network activity, which is fatal to other
single-spike training methods. Top panel: Normalised training loss over time. Bottom panel:
Normalised network activity over time, where the red cross denotes the absence of any spikes.

Obtaining competitive results across different image and neuromorphic datasets The results
of our model across all datasets are comparable or superior to prior reported results using single-
spike SNNs. We reach an accuracy of 98.02%, 97.91% and 89.05% using a single hidden layer net-
work on the Yin-Yang, MNIST and F-MNIST datasets respectively, where best performing prior
work reported an accuracy of 95.90%, 98.50% and 88.1% respectively. Furthermore, our single-
spike model nearly obtains the same accuracies to those obtained in the standard multi-spike
SNN on these datasets (Yin-Yang and MNIST < 0.3% difference; F-MNIST ∼ 2% difference; Fig-
ure 4a).

5Again, this is due to the convolutional algorithm chosen by cudnn.
6Results reported by Kheradpisheh et al. (2022).
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Table 1: Performance comparison to existing literature (* denotes self-implementation, † denotes
data augmentation and β denotes trainable time constants).

Dataset Model Spike code Architecture Neuron model Accuracy (%) Epoch time (s)

Yin-Yang
Göltz et al. (2021)† single 120-10 LIF (alpha-PSP) 95.9±0.7 -

our model single 120-10 LIFβ 98.02±0.19 1.41±0.027

Neftci et al. (2019)* single 120-10 LIFβ 97.91±0.37 19.77±0.18

MNIST
Zhang et al. (2021)† single 800-10 IF (ReL-PSP) 98.5 -

Comsa et al. (2020) single 340-10 IF (alpha-PSP) 97.90 -

our model† single 1000-10 LIFβ 97.91±0.10 14.05±0.01

Neftci et al. (2019)*† single 1000-10 LIFβ 97.87±0.09 65.05±0.46

Zhang et al. (2021)† single 16C5-P2-32C5-P2-800-128-10 IF (ReL-PSP) 99.4 -

Zhou et al. (2021) single 32C5-16C5-10 IF 99.33 -

Mirsadeghi et al. (2021) single 40C5-P2-1000-10 IF (PL-PSP) 99.2 -

our model† single 32C5-P2-64C5-P2-1000-10 LIFβ 99.30±0.05 23.44±0.02

Neftci et al. (2019)*† single 32C5-P2-64C5-P2-1000-10 LIFβ 99.35±0.05 32.34±0.18

FMNIST
Zhang et al. (2021)† single 1000-10 IF (ReL-PSP) 88.1 -

Kheradpisheh & Masquelier (2020)†6 single 1000-10 IF 88.0 -

our model† single 1000-10 LIFβ 89.05±0.27 16.16±0.05

Neftci et al. (2019)*† single 1000-10 LIFβ 89.93±0.30 68.89±0.10

Zhang et al. (2021)† single 16C5-P2-32C5-P2-800-128-10 IF (ReL-PSP) 90.1 -

Mirsadeghi et al. (2021) single 20C5-P2-40C5-P2-1000-10 IF (PL-PSP) 92.8 -

our model† single 32C5-P2-64C5-P2-1000-10 LIFβ 90.57±0.28 24.11±0.10

Neftci et al. (2019)*† single 32C5-P2-64C5-P2-1000-10 LIFβ 90.76±0.3 33.60±0.14

N-MNIST
our model single 300-10 LIF 95.91±0.1 36.29±0.54

LIFβ 96.34±0.20 41.93±0.42

Neftci et al. (2019)* single 300-10 LIFβ 97.47±0.25 191.90±1.93

SHD
Cramer et al. (2020) multi 128-20 LIF 48.1±1.6 -

Neftci et al. (2019)* multi 300-20 LIFβ 70.81±2.05 45.80±0.22

Cramer et al. (2020) multi 128-20 recurrent LIF 71.4±1.9 -

Perez-Nieves et al. (2021) multi 128-20 recurrent LIFβ 82.7±0.8 -

our model single 300-20 LIF 44.50±2.65 8.68±0.01

LIFβ 70.32±0.30 11.27±0.21

Neftci et al. (2019)* single 300-20 LIFβ 68.91±0.25 50.12±0.13

Single-spike neurons solve challenging temporal problems using neural heterogeneity It has
been noted that single-spike SNNs are well suited for static datasets (such as spike encoded im-
ages) and less suited for processing temporally complex stimuli (such as audio or video) due to
the single-spike constraint (Zenke et al., 2021; Eshraghian et al., 2021). Prior single-spike SNN
training techniques have attempted to optimise network connectivity without learning other
neural parameters, such as membrane time-constants, which have shown to improve perfor-
mance in multi-spike SNNs (Perez-Nieves et al., 2021). We explored the effect of learning the
membrane time-constants in our single-spike model. We obtained an accuracy of 44.50% using
a network trained with fixed time constants on the temporally-complex auditory SHD dataset.
However, by including learnable time constants we were able to obtain a much higher accuracy
of 70.32%, which is similar to the performance obtained by a standard SNN with trainable time
constants 70.81% or recurrent connections 71.40%.

Drastic speedup in training We obtain over a four-fold training speedup across all datasets over
the standard single-spike SNN, with a maximum speedup of 13.98× on the Yin-Yang dataset (Fig-
ure 4b). We observe similar training speedups over the multi-spike SNN (see Appendix). Differ-
ences in speedups are due to the different temporal lengths and input dimensions of the datasets,
as well the different network architectures employed (see section 4.1).7

Increased spike sparsity Our single-spike SNN is able to solve various datasets with a large
reduction in spikes compared to a standard multi-spike SNN (Figure 4c), with over a 44% and
up to a 81% reduction in spikes. This corroborates the value of obtaining more energy-efficient
computations using single- rather than multi-spike neuromorphic systems (Liang et al., 2021; Oh

7Note that - unlike the neuromorphic datasets - the training speedup for the image datasets is dependent
on the selected number of simulation time steps for transforming an image into the temporal domain (see
Appendix for chosen values).
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et al., 2021; Zhou et al., 2021), as energy consumption scales approximately proportional to the
number of emitted spikes (Panda et al., 2020).

Training deeper convolutional architectures We evaluate our model in deeper convolutional
architectures, which to date remains largely unexplored in single-spike SNNs (Mirsadeghi et al.,
2022). We trained a multi-layer convolutional network on the MNIST and F-MNIST datasets, ob-
taining accuracies (MNIST: 99.32% and F-MNIST: 90.57%) similar to best performing prior work
(MNIST: 99.4% and F-MNIST: 92.8%), whilst being faster to train in comparison to the control
(MNIST-speedup ∼ 1.37× and F-MNIST-speedup ∼ 1.39×).

Robust learning and bypassing the dead neuron problem A limitation of current single-spike
SNN training methods is the dead neuron problem, referring to the hinderance in learning when
neurons do not spike, as the learning signal is dependent on the occurrence thereof (Eshraghian
et al., 2021). Our model is able to overcome this problem as we use surrogate gradients for train-
ing, in which the learning signal is instead passed through the membrane potentials. We exper-
imentally verified this by showing how networks instantiated with zero starting activity (fatal to
other single-spike training methods) still manage to solve different datasets (Figure 4d).

5 DISCUSSION

SNNs emulated on neuromorphic hardware are a promising avenue towards addressing the en-
ergy and scaling constraints of ANNs (Wunderlich et al., 2019). Single-spike SNNs further amplify
these energy improvements through extreme spike sparsity, as energy consumption scales ap-
proximately proportionally to the number of emitted spikes (Panda et al., 2020). To date, SNN
training remains challenging due to the non-differentiable nature of the spike function, pro-
hibiting the direct use of the backprop training algorithm which underpins the success of ANNs.
Various extensions of backprop for SNNs have been proposed, but fall short in particular as-
pects. Gradients can be passed through the timing of spikes (Bohte et al., 2002; Mostafa, 2017;
Kheradpisheh & Masquelier, 2020), yet this method suffers from the dead neuron problem, re-
quires careful regularisation or imposes computationally-expensive modelling constraints. Al-
ternatively, gradients can be passed through the membrane potentials using surrogate gradi-
ents (Shrestha & Orchard, 2018; Neftci et al., 2019), and although this method improves upon
the problems of passing gradients through the spike times, it is painfully slow.

In this work, we address these problems by proposing a new general model (e.g. neurons can be
IF or LIF) for training single-spike SNNs, without imposing any modelling (e.g. requiring PSP ker-
nels) or training constraints (e.g. requiring careful regularisation) and support training of neural
parameters other than synaptic connectivity (e.g. membrane time constants). We mathemati-
cally show how training can be sped up by replacing the slow sequential operations with faster
convolutional ones. We experimentally validate this speedup across various numbers of units,
time steps, layers and batch sizes, obtaining up to a 16.77× speedup. We show that our model
can be trained across different network architectures (e.g. feedforward, hierarchical and convolu-
tional) and obtain competitive results on different image and neuromorphic datasets. Our results
compare well against multi-spike SNNs (< 2% accuracy difference on all datasets) and obtain up
to an 81% reduction in spike counts. Furthermore, our method circumvents the dead neuron
problem and, for the first time, we show how single-spike SNNs can solve temporally-complex
datasets on a par with multi-spike SNNs by including trainable membrane time constants. Our
findings therefore challenge the dogma that single-spike SNNs are only suited to non-temporal
problems (Eshraghian et al., 2021; Zenke et al., 2021).

We obtain training speedups on all datasets, however, find that the backward pass slows down
relative to the forward pass for longer timespans. Future work could mitigate this bottleneck and
accelerate training using sparse gradient descent, which has shown to accelerate the backward
pass in standard SNNs by taking advantage of spike sparsity (Perez-Nieves & Goodman, 2021).
Currently, our single-spike model performs slightly worse compared to its multi-spike counter-
part, where better performance could be achieved by extending our model to the multi-spike
setting and permitting recurrent connectivity. Finally, it remains an open question how the in-
clusion of trainable membrane time constants in our model boost performance, requiring further
theoretical analysis.
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6 REPRODUCIBILITY STATEMENT

The theoretical construction and derivations of our model are outlined in section 3 and
we provide accompanying derivations in the Appendix. All code is publicly available at
https://github.com/webstorms/Block under the BSD 3-Clause Licence. This includes instruc-
tions on installation, data processing and running experiments to reproduce all results and fig-
ures portrayed in the paper. Training details are also provided in the Appendix.
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Maass, Timothée Masquelier, Richard Naud, Emre O Neftci, Mihai A Petrovici, et al. Visualizing
a joint future of neuroscience and neuromorphic engineering. Neuron, 109(4):571–575, 2021.

Malu Zhang, Jiadong Wang, Jibin Wu, Ammar Belatreche, Burin Amornpaisannon, Zhixuan
Zhang, Venkata Pavan Kumar Miriyala, Hong Qu, Yansong Chua, Trevor E Carlson, et al. Rec-
tified linear postsynaptic potential function for backpropagation in deep spiking neural net-
works. IEEE Transactions on Neural Networks and Learning Systems, 33(5):1947–1958, 2021.

Shibo Zhou and Xiaohua Li. Spiking neural networks with single-spike temporal-coded neurons
for network intrusion detection. In 2020 25th International Conference on Pattern Recognition
(ICPR), pp. 8148–8155. IEEE, 2021.

Shibo Zhou, Xiaohua Li, Ying Chen, Sanjeev T Chandrasekaran, and Arindam Sanyal. Temporal-
coded deep spiking neural network with easy training and robust performance. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pp. 11143–11151, 2021.

13



Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 SPIKING NEURAL NETWORK DERIVATIONS

A.1.1 NORMALISING THE LEAKY INTEGRATE AND F IRE MODEL

Proposition 2. Any leaky integrate and fire (LIF) model τ
dV (t )

d t
=−V (t )+Vr est+RI (t ) (with mem-

brane potential V , resting potential Vr est , firing threshold Vth , resistance R, input current I and

membrane time constant τ) can be normalised to a LIF model of the form τ
dṼ (t )

d t
= −Ṽ (t )+ Ĩ (t )

(such that 0 ≤ Ṽ (t ) ≤ 1, with firing threshold Ṽth = 1, resting potential Ṽr est = 0 and a resistance
equal to one).

Proof. This mapping from any LIF model to the normalised LIF model is achieved using the fol-
lowing transformation (taken from Hunsberger (2018)).

Ṽ (t ) = V (t )−Vr est

Vth −Vr est
(9)

Rearranging this expression with respect to V (t ) = Ṽ (t )(Vth −Vr est )+Vr est and substituting this
into the LIF model we obtain

τ
dV (t )

d t
=−V (t )+Vr est +RI (t )

(Vth −Vr est )τ
dṼ (t )

d t
=−

"
Ṽ (t )(Vth −Vr est )+Vr est

$
+Vr est +RI (t )

τ
dṼ (t )

d t
=−Ṽ (t )+ R

Vth −Vr est
I (t )

% &' (
Input current Ĩ (t )

(10)

This new LIF form has a resting potential Ṽr est = 0 and firing threshold Ṽth = 1 (obtained by sub-
stituting V (t ) =Vr est and V (t ) =Vth in Equation 9 respectively). Thus, without loss of generality,
any LIF model can be mapped to a normalised form using linear transformation Equation 9.

A.1.2 DISCRETISING THE LEAKY INTEGRATE AND F IRE MODEL

Proposition 3. The normalised continuous time leaky integrate and fire model τ
dV (t )

d t
=−V (t )+

I (t ) (with membrane potential V , input current I and membrane time constant τ) can numerically
be approximated by discrete time difference equation V [t +1] = βV [t ]+ (1−β)I [t +1], where β=
exp(∆t

τ ) (for simulation time resolution ∆t ).

Proof. We proceed using the forward Euler method. Let I (t ) = I be constant with respect to time,
for which the ordinary differential equation becomes separable.

τ
d tV (t )

d t
=−V (t )+ I

,
dV

V (t )− I
=−1

τ

,
d t

ln(V (t )− I ) =−1

τ
t + ln(k)

V (t ) = k exp(−1

τ
t )+ I

(11)
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For initial solution V (t0) at time t0 we derive k = (V (t0)−I )exp( t0
τ ). Then for constant I and initial

solution V (t0) we obtain solution.

V (t ) = (V (t0)− I )exp(− t − t0

τ
)+ I

= exp(− t − t0

τ
)V (t0)+ (1−exp(− t − t0

τ
))I

(12)

To obtain the discretised update equation, we define simulation update time step ∆t = t − t0,
decay factor β = exp(−∆t

τ ), assign continuous time points to discretised time steps t ← t0 and
t +1 ← t0 +∆t and assume the input current to be approximately constant and equal to I [t +1]
between discretised update steps t to t +1.

V [t +1] =βV [t ]+ (1−β)I [t +1] (13)

A.1.3 UNROLLING THE LEAKY INTEGRATE AND F IRE MODEL WITHOUT THE RESET TERM

Proposition 4. Equation V [t ] = βt V [0]+ (1−β)
t#

i=1
βt−i I [i ] is equivalent to difference equation

V [t ] =βV [t −1]+ (1−β)I [t ] for t ≥ 1.

Proof. We proceed to proof equivalence by induction. For t = 1 we obtain

V [1] =β1V [0]+ (1−β)
1#

i=1
β1−i I [i ]

=β1V [0]+ (1−β)I [1]

(14)

Hence the relation holds true for the base case t = 1. Assume the relation holds true for t = k ≥ 1,
then for t = k +1 we derive

V [k +1] =βV [k]+ (1−β)I [k +1]

=β
"
βkV [0]+ (1−β)

k#

i=1
βk−i I [i ]

$
+ (1−β)I [k +1]

=βk+1V [0]+ (1−β)
k#

i=1
β(k+1)−i I [i ]+ (1−β)I [k +1]

=βk+1V [0]+ (1−β)
k+1#

i=1
β(k+1)−i I [i ]

(15)

This implies equivalence for t = k+1 if t = k holds true. By the principle of induction, equivalence
is established given that both the base case and inductive step hold true.

A.2 ADDITIONAL MODEL THEORY: WHY IS OUR MODEL FASTER?

To address the question why our model is faster than the standard single-spike model, we analyse
their respective computational complexities. Consider a single neuron with N presynaptic neu-
rons simulated for T time steps. Our model has a computational complexity of O(N T 2) and the
computational complexity of the standard model is O(N T ). However, the sequential complexity
of our model is constant time O(1) (as our model eschews all sequential dependence) and the se-
quential complexity of the standard model is linear O(T ). Our model performs more calculations
than the standard single-spike model, yet is able to obtain faster training speeds, as - unlike the
standard single-spike model - all these calculations are highly parallelisable.
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A.3 ADDITIONAL DATASET DETAILS

A.3.1 SYNTHETIC SPIKE DATASET FOR THE SPEED BENCHMARKS

We generated binary input spike tensors of shape B×N×T (B being the batch size, N the number
of input neurons and T the number of simulation steps). For every batch dimension b a firing
rate rb ∼ U(umin,umax) was uniformly sampled (with umin = 0Hz and umax = 200Hz), from which
a random binary spike matrix of shape N ×T was constructed, such that every input neuron in
this matrix had an expected firing rate of rbHz.

A.3.2 TIME-TO-F IRST-SPIKE ENCODING

We encoded all analog non-spiking input data into a spike raster using the time-to-first-spike
coding method (Kheradpisheh & Masquelier, 2020). Here, every scalar value Ii ∈ {0, Imax} within
an input tensor is converted into a spike train with a single spike, where the time of spike ti ∈
{0,T } is determined by the following equation

ti = ⌊ Imax − Ii

Imax
T ⌋ (16)

A.4 TRAINING DETAILS AND HYPERPARAMETERS

A.4.1 READOUT NEURONS

The output layer L of every trained network contained the same number of neurons as the num-
ber of classes contained within the dataset being trained on. As suggested by Zenke & Vogels
(2021), every neuron had a firing threshold set to infinity (i.e. the spiking and reset mechanism
was removed) from which the output ob,c of readout neuron c to input sample b was either taken
to be the maximum membrane potential over time ob,c = maxt V L

b,c [t ] or the summated mem-

brane potential over time ob,c =
+

t V L
b,c [t ] (see table 2).

A.4.2 BETA CLIPPING

As the beta β(l )
i (a transformation of the membrane time constant) of every neuron was opti-

mised, we had to enforce correct neuron dynamics by clipping the values into the range [0,1].
Note that β(l )

i = 0 implies no memory i.e. a binary neuron, 0 <β(l )
i < 1 implies decaying memory

i.e. a LIF neuron and β(l )
i = 1 implies full memory i.e. an IF neuron.

β(l )
i =

!
1, if β(l )

i > 1

0, if β(l )
i < 0

(17)

A.4.3 WEIGHT INITIALISATION

The network weights in a layer were sampled from a uniform distribution U(−
+

N−1,
+

N−1), ex-
cept for the Yin-Yang dataset for which the weights were sampled from U(−

+
2N−1,

+
2N−1). For

the feedforward layers N was set to the number of afferent connections to the layer and for the
convolutional layers N = k2 for kernel shape k ×k. The bias terms were initialised to 0 in all net-
works. All neurons in the hidden layers were initialised with a membrane time constant τ= 10ms
and τ= 20ms for the readout neurons.

A.4.4 SUPERVISED TRAINING LOSS

All networks were trained to minimise a cross-entropy loss

L =− 1

B

B#

b=1

C#

c=1
yb,c log(pb,c ) (18)
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with B and C being the number of batch samples and dataset classes respectively, and yb,c ∈
{0,1}C and pb,c being the one hot target vector and network prediction probabilities respec-
tively. The prediction probabilities pb,c were obtained by passing the readout neuron outputs
ob,c through the softmax function.

pb,c =
expob,c+C

k=1 expob,k
(19)

A.4.5 SURROGATE GRADIENT

The backprop algorithm requires all nodes within the computational graph of optimisation to
be differentiable. This requirements is however violated in a SNN due to the non-differentiable
heavy stepwise spike function f . To permit the use of backprop, we replaced the undefined

derivate d f
dV of the function f with a surrogate gradient d fsur

dV (Zenke & Ganguli, 2018), which has
been shown to work well in practice (Zenke & Vogels, 2021). Here hyperparameter βsur (which
we set to 10 in all experiments) defines the slope of the gradient.

d fsur (V )

dV
= (βsur|V |+1)−2 (20)

A.4.6 TRAINING PROCEDURE

All models were trained using the Adam optimiser (with default parameters) (Kingma & Ba, 2014).
Training started with an initial learning rate, which was decayed by a factor of 10 every time
the number of epochs reached a new milestone, after which the best performing model (that
achieved lowest training loss) was loaded and training continued.

A.4.7 TRAINING HYPERPARAMETERS

Table 2: Dataset and corresponding training parameters.

Yin-Yang MNIST conv MNIST F-MNIST conv F-MNIST N-MNIST SHD

Dataset (train/test) 20k/10k 60k/10k 60k/10k 60k/10k 60k/10k 60k/10k 8156/2264

Input neurons 4 784 28×28 784 28×28 1156 700

Dataset classes 3 10 10 10 10 10 20

Epochs 200 140 140 140 140 200 200

Learning rate 0.001 0.001 0.001 0.001 0.001 0.0002 0.0002

Batch size B 128 128 64 128 64 128 128

Simulation steps T 100 100 8 100 8 300 500

Time resolution ∆t (ms) 1 1 1 1 1 1 2

Milestones (50,100) (15,90,120) (30,60,90) (15,90,120) (30,60,90) (30,60,90) (30,60,90)

Output function sum sum max sum sum sum sum

A.5 EXTENDED SPEEDUP RESULTS
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Figure 5: Total training speedup using smaller batch sizes as a function of the number of hidden
neurons n and simulation steps t (left), alongside the corresponding forward and backward pass
speedups (right). a. Speedups using batch size b = 32. b. Speedups using batch size b = 64.

Figure 6: Training speedup of our model over the standard model (using fixed membrane time
constants). a. Total training speedup as a function of the number of hidden neurons n and sim-
ulation steps t (left), alongside the corresponding forward and backward pass speedups (right).
b. Training durations of both models for fixed hidden neurons n = 100 and variable batch size
b. c. Training speedup over different number of layers for fixed time steps t = 27 and batch size
b = 128. d. Training speedup over large number of hidden neurons n for fixed time steps t = 27

and variable batch size b. e. Forward pass speedup for fixed time steps t = 27 and variable batch
size b. f. Forward vs the backward pass speedup of our model for fixed time steps t = 27 and
variable batch size b. b-f use a 10 sample average with the mean and s.d. plotted.
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Figure 7: Training speedup of our model vs the standard multi-spike model across different
datasets (using a 3 sample average with the mean and s.d. plotted)
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